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Restricted edge connectivity is a more refined network
reliability index than edge connectivity. A restricted edge
cut F of a connected graph G is an edge cut such that
G−F has no isolated vertex. The restricted edge connec-
tivity λ′ is the minimum cardinality over all restricted edge
cuts. We call G λ′-optimal if λ′ = ξ , where ξ is the minimum
edge degree in G. Moreover, a λ′-optimal graph G is called
a super restricted edge-connected graph if every mini-
mum restricted edge cut separates exactly one edge. Let
D and g denote the diameter and girth of G, respectively.
In this paper, we first present a necessary condition for
non-super restricted edge-connected graphs with min-
imum degree δ ≥ 3 and D ≤ g − 2. Next, we prove
that a connected graph with minimum degree δ ≥ 3 and
D ≤ g −3 is super restricted edge-connected. Finally, we
give some sufficient conditions on the conditional dia-
meter and the girth for super restricted edge-connected
graphs. © 2007 Wiley Periodicals, Inc. NETWORKS, Vol. 51(3),
200–209 2008
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1. TERMINOLOGY AND INTRODUCTION

A processor interconnection network or a communica-
tions network is conveniently modeled by an undirected graph
G = (V , E), in which the vertex set V corresponds to proces-
sors or switching elements, and the edge set E corresponds
to communication links. One fundamental consideration in
the design of networks is reliability. When studying network
reliability, one often considers a network model [9] whose
vertices are perfectly reliable while edges may fail indepen-
dently with the same probability ρ ∈ (0, 1). For subsets A and
A′ of V , we denote by [A, A′] the set of edges with one end in
A and the other in A′. An edge cut of G is a subset of E of the
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form [A, Ā], where A is a nonempty proper subset of V and
Ā = V −A. The edge connectivity λ = λ(G) is the minimum
size of any edge cut of G. Let mi be the number of edge cuts
of size i. Then the probability of G being connected is

R(G; ρ) = 1 −
ε∑

i=λ

miρ
i(1 − ρ)ε−i,

where ε = |E(G)|. The polynomial R(G; ρ) is called the
(all-terminal) reliability of G. Clearly, the larger R(G; ρ) is,
the more reliable is the network. But in general, to deter-
mine R(G; ρ), i.e., to determine every mi, is NP-hard [5,16].
When ρ is sufficiently small, the maximum of R(G; ρ) can
be obtained by maximizing λ first and then minimizing
mλ, mλ+1, . . . , mε sequentially [18].

The degree d(v) of the vertex v in G is the number of
vertices adjacent to v, and the edge degree d(e) of the edge
e = uv in G is d(u) + d(v) − 2. Let δ = δ(G) and ξ =
ξ(G) denote the minimum degree and the minimum edge
degree in G, respectively. It is well known that λ ≤ δ for
a general graph. If λ = δ, then G is said to be maximally
edge-connected. To minimize mλ, Bauer et al. [6, 7] defined
the super–λ graphs. A graph G is said to be super–λ if each
of its minimum edge cuts isolates a vertex. That is, if F is
a set of λ edges such that G − F is disconnected, then F
is the set of edges incident with a certain vertex of G. If G
is super–λ, then λ = δ. But the converse is not true. As a
more refined index than edge connectivity, restricted edge
connectivity was proposed by Esfahanian and Hakimi [9]. A
set of edges F in a connected graph G is called a restricted
edge cut if G − F is disconnected and contains no isolated
vertex. If such an edge cut exists, then the restricted edge
connectivity of G, denoted by λ′ = λ′(G), is defined to be
the minimum number of edges over all restricted edge cuts
of G. A restricted edge cut F is called a λ′-cut if |F| = λ′(G).
A connected graph G is called λ′-connected if λ′(G) exists.
Esfahanian and Hakimi [9] showed that each connected graph
G of order ν ≥ 4 except a star K1,ν−1 is λ′-connected and
satisfies λ(G) ≤ λ′(G) ≤ ξ(G). So a connected graph G must
be λ′-connected if δ ≥ 3. A graph G is called a λ′-optimal
graph if λ′(G) = ξ(G). Moreover, G is super restricted edge-
connected, in short, super–λ′, if every minimum restricted
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edge cut of G isolates one edge. That is, every minimum
restricted edge cut of G is a set of edges adjacent to a certain
edge with minimum edge degree in G. By definition, a super–
λ′ graph must be a λ′-optimal graph. However, the converse
is not true because there are many λ′-optimal graphs that are
not super–λ′. A trivial example is Cν(ν ≥ 6), the cycle of
length ν. It should be pointed out that if δ ≥ 3, then a λ′-
optimal graph must be super–λ. In fact, a graph G is super–λ

if and only if λ = δ < λ′ [14, 15].
For u, v ∈ V(G), the distance d(u, v) = dG(u, v) between

them is the length of a shortest path from u to v. The diameter
D = D(G) is the maximum distance between two vertices of
G and the girth g = g(G) is the length of a shortest cycle in
G. Some sufficient conditions for a graph to be maximally
edge-connected or super–λ have been given in terms of its
diameter D and its girth g.

Theorem A.

(1) [17]. G is maximally edge-connected if D ≤ 2�(g −
1)/2�.

(2) [10]. G is super–λ if δ ≥ 3 and D ≤ 2�(g − 1)/2� − 1.
(3) [2]. G is super–λ if G is a bipartite graph with δ ≥ 3 and

D ≤ g − 2.
(4) [11]. λ′(G) ≥ 2δ−2 if δ ≥ 3 and D ≤ 2�(g−1)/2�−1.

Later, the following theorem was obtained in [19], which
generalized the above-mentioned results.

Theorem B ([19]). If δ ≥ 3 and D ≤ g − 2, then G is
λ′-optimal, that is, λ′(G) = ξ(G).

Recently, many sufficient conditions for a graph to be λ′-
optimal were given with girth g and diameter D [4, 13, 14].
In particular, a theorem given in [4] improves Theorem B.

Theorem B′ ([4]). Let G be a λ′-connected graph with δ ≥
2. Then G is λ′-optimal if D ≤ g − 2.

Wang and Li [19] pointed out that the graph W shown
in Figure 1 satisfying the conditions in Theorem B is not
super–λ′, and made the following conjecture.

FIG. 1. A non-super–λ′ graph W with δ = 3, D = 2, and g = 4.

FIG. 2. A non-super–λ′ graph with δ = 3, D = 4, and g = 6.

Conjecture A ([19]). Suppose that G is not isomorphic to
W shown in Figure 1. If δ ≥ 3 and D ≤ g − 2, then G is
super–λ′.

In fact, this conjecture is false. A counterexamples is given
in Figure 2. In this paper, we shall present a necessary con-
dition for non-super–λ′ graphs with δ ≥ 3 and D ≤ g − 2.
According to this necessary condition, it can be easily seen
that a graph G satisfying δ ≥ 3 and D ≤ g − 3 is super–λ′.

For A, B ⊆ V , let d(A, B) = dG(A, B) = min{d(u, v) :
u ∈ A, v ∈ B}. In particular, if A = {u}, then we denote
d(A, B) by d(u, B). For U ⊆ V , let G[U] be the subgraph
induced by U. Sometimes, we also regard d(A, B) as the dis-
tance between G[A] and G[B]. In [3], some conditions were
given to guarantee λ′ = ξ for graphs with diameter D ≥ g−1
by introducing the concept of conditional diameter. For any
property P satisfied by some pairs (V1, V2) of non-empty sub-
sets of V , the conditional diameter, or simply the P−diameter
of G, is defined by (see [1])

DiamP = max{d(V1, V2) : V1, V2 ⊆ V , (V1, V2) satisfies P}.
In particular, for any non-negative integer k, let

Diamk = max{d(V1, V2) : δ(G[Vi]) ≥ k, i = 1, 2}.
Notice that D = Diam0 ≥ Diam1 ≥ · · · ≥ Diamδ . Clearly,
Diam1 is the maximum distance between two edges of G, and
Diam2 is the maximum distance between two cycles of G.

Theorem C ([3]). Let G be a λ′-connected graph with δ ≥
2. Then G is a λ′-optimal graph if Diam1 ≤ g − 3 or both
Diam1 = g−2 and Diam2 ≤ g−5, for odd girth g ≥ 5; and
if both Diam1 ≤ g − 3 and Diam2 ≤ g − 4, for even girth
g ≥ 4.

In this paper, it is shown that the conditions in Theorem C
also guarantee that G is super–λ′ if δ ≥ 3 instead of δ ≥ 2.
Considering Cν(ν ≥ 6), we know that the condition δ ≥ 3 is
necessary.

For graph-theoretical terminology and notation, not
defined here, we follow [8]. We only consider finite, undi-
rected and simple connected graphs G = (V , E). For every
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A ⊆ V and every non-negative integer k, Nk(A) = Nk
G(A) =

{w ∈ V : d(w, A) = k} denotes the neighborhood of A at
distance k. Let G′ = (V ′, E′) be a subgraph of G. We define
Nk

G′(A) = Nk
G(A) ∩ V ′. Observe that N0

G(A) = A. When
k = 1, we simply use NG(A) instead of N1

G(A). Let F ⊆ E
and x ∈ V . We denote by F(x) the subset of F whose edges
are incident with x. For A ⊆ V , let F(A) = ∪x∈AF(x).

2. PROPERTIES OF λ′-OPTIMAL GRAPHS

Let G be a λ′-connected graph and let F be an arbi-
trary λ′-cut of G. By the minimality of F, the graph G − F
consists of exactly two components, say G1 and G2. Then,
F = [V(G1), V(G2)]. As there exist X0 ⊆ V(G1) and
Y0 ⊆ V(G2) such that both X0 and Y0 are the end ver-
tices of the edges of F, we will also write F = [X0, Y0].
Let G0

1 = G1[X0], G0
2 = G2[Y0] and let

m = max{d(x, X0) : x ∈ V(G1)},
Xi = Ni

G1
(X0), Gi

1 = G[Xi], i = 1, . . . , m;

n = max{d(y, Y0) : y ∈ V(G2)},
Yi = Ni

G2
(Y0), Gi

2 = G[Yi], i = 1, . . . , n.

It is easy to see that Xi ∩ Xj = ∅, Yi ∩ Yj = ∅ if i �= j,
and V(G1) = ∪m

i=0Xi, V(G2) = ∪n
i=0Yi. (We will use such

notation in this section and next section.)
The main goal of this section is to give some useful prop-

erties of G1 and G2. By reason of symmetry, we only discuss
G1. We first present the structure of G1 when m = 0.

Lemma 2.1. Let G be a λ′-optimal graph with δ ≥ 3, g ≥ 4.
If F = [X0, Y0] is a λ′-cut such that |V(G1)| = |X0| ≥ 3,
then |F(w)| = 1 for any w ∈ V(G1) and G1 is a complete
bipartite graph Kp,q, where p ≥ 2, q ≥ 2.

Proof. Since V(G1) = X0, it follows that |F(x)| ≥ 1 for
any x ∈ V(G1). Consider any edge e = xy ∈ E(G1). Since
g ≥ 4, we have NG1(x) ∩ NG1(y) = ∅, E(G1[NG1(x)]) = ∅
and E(G1[NG1(y)]) = ∅. Therefore, we have

ξ ≤ d(e)

= d(x) + d(y) − 2

= |F(x)| + |F(y)| + |NG1(x) − {y}| + |NG1(y) − {x}|
= |F(x)| + |F(y)| + |NG1(x) ∪ NG1(y) − {x, y}|
≤ |F(x)| + |F(y)| + |F(NG1(x) ∪ NG1(y) − {x, y})|
= |F(NG1(x) ∪ NG1(y))| ≤ |F(V(G1))| = |F| = λ′ = ξ .

This implies that V(G1) = NG1(x) ∪ NG1(y) and |F(u)| = 1
for any u ∈ V(G1) − {x, y}.

Since |V(G1)| ≥ 3, we may assume, without loss of gener-
ality, NG1(x)−{y} �= ∅. Picking arbitrarily y′ ∈ NG1(x)−{y}
and considering the edge xy′ similarly, we have V(G1) =
NG1(x) ∪ NG1(y

′), NG1(x) ∩ NG1(y
′) = ∅, and |F(u)| = 1

for any u ∈ V(G1) − {x, y′}. Hence, NG1(y) = NG1(y
′)

and |F(y)| = 1. Since |F(y)| = 1 and δ ≥ 3, we have
NG1(y)−{x} �= ∅. Considering x′y for any x′ ∈ NG1(y)−{x}
similarly, we conclude that NG1(x) = NG1(x

′) and |F(x)| =
1. Thus |F(u)| = 1 for any u ∈ V(G1), G1 is a com-
plete bipartite graph with bipartition (NG1(x), NG1(y)), and
|NG1(x)| ≥ 2, |NG1(y)| ≥ 2. ■

Lemma 2.2. Let G be a λ′-optimal graph with δ ≥ 3. If
F = [X0, Y0] is a λ′-cut such that 1 ≤ m ≤ (g − 3)/2, then
E(Gm

1 ) �= ∅.

Proof. Suppose, on the contrary, E(Gm
1 ) = ∅. Then

NG(u) ⊆ Xm−1 for any u ∈ Xm. For any edge e = xy ∈
[Xm, Xm−1], where x ∈ Xm, y ∈ Xm−1, let Am = NGm

1
(y) −

{x}, Am−1 = NGm−1
1

(Am)−{y}, Bm−1 = NG(x)−{y}, Cm−1 =
NGm−1

1
(y), and let A0 = Nm−1

G0
1

(Am−1), B0 = Nm−1
G0

1
(Bm−1),

C0 = Nm−1
G0

1
(Cm−1), D0 = Nm−1

G0
1

(y). Clearly, if m = 1, then

D0 = {y}. Since m ≤ (g − 3)/2, it follows that g ≥ 2m + 3.
This implies the following: (1) A0, B0, C0, and D0 are pair-
wise disjoint subsets of X0; (2) |A0| ≥ |Am−1| ≥ |Am|,
|B0| ≥ |Bm−1|, and |C0| ≥ |Cm−1|; (3) |D0| ≥ |NGm−2

1
(y)|

if m ≥ 2. Therefore, we have

ξ ≤ d(e)

= |Am| + |Bm−1| + |Cm−1| +
{

|F(y)| if m = 1

|NGm−2
1

(y)| if m ≥ 2

≤ |A0| + |B0| + |C0| +
{

|F(y)| if m = 1

|D0| if m ≥ 2

≤ |F(A0)| + |F(B0)| + |F(C0)| + |F(D0)|
≤ |F(X0)| = |F| = λ′ = ξ .

This implies |A0| = |Am| and hence |Am−1| = |Am|. Suppose
Am �= ∅ and let x′ ∈ Am. By assumption, NGm

1
(x′) = ∅. Since

|Am−1| = |Am| and g ≥ 2m+3, we conclude that |NGm−1
1

(x′)−
{y}| = 1. Therefore, d(x′) = 2, which contradicts δ ≥ 3. So
Am = ∅, and hence Am−1 = A0 = ∅. Combining this with the
equality |F(A0)| + |F(B0)| + |F(C0)| + |F(D0)| = |F(X0)|,
we have

X0 = B0 ∪ C0 ∪ D0 = Nm
G0

1
(x) ∪ C0.

Since d(x) ≥ δ ≥ 3, it follows that Bm−1 �= ∅. If m = 1,
since |F(B0)| = |B0|, we have |NG0

2
(u)| = 1 for any u ∈ B0.

If m ≥ 2, since |B0| = |Bm−1| and g ≥ 2m + 3, we have
|NGm−2

1
(u)| = 1 for any u ∈ Bm−1.

For any vertex y′ ∈ Bm−1, let B′
m−1 = N(x)−{y′}, C′

m−1 =
NGm−1

1
(y′), and C′

0 = Nm−1
G0

1
(C′

m−1). Considering the edge

xy′ similarly, we have X0 = Nm
G0

1
(x) ∪ C′

0, |NG0
2
(v)| = 1 if

m = 1 and |NGm−2
1

(v)| = 1 if m ≥ 2 for any v ∈ B′
m−1.

In particular, |NG0
2
(y)| = 1 if m = 1 and |NGm−2

1
(y)| = 1 if

m ≥ 2 because y ∈ B′
m−1. Combining this with δ ≥ 3, we
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have Cm−1 �= ∅ and hence C0 �= ∅. It follows that C0 = C′
0

from Nm
G0

1
(x) ∪ C0 = X0 = Nm

G0
1
(x) ∪ C′

0. Therefore, there

exists a cycle of length at most 2m +2 through y, x, y′, which
contradicts g ≥ 2m + 3. Therefore, E(Gm

1 ) �= ∅. ■

Lemma 2.3. Let G be a λ′-optimal graph with δ ≥ 3 and
let F = [X0, Y0] be a λ′-cut such that 1 ≤ m = (g − 3)/2.
Then the graph G1[Xm ∪ Xm−1] contains cycles.

Proof. Let T = G1[Xm ∪NGm−1
1

(Xm)]. Clearly, dT (w) ≥
1 for any vertex w of T , and if dT (w) = 1 then w ∈
NGm−1

1
(Xm). Let � = {w ∈ V(T) : dT (w) = 1}. Then

� ⊆ NGm−1
1

(Xm). Notice that NGm−1
1

(�) ⊆ Xm−1−NGm−1
1

(Xm)

and let us consider the subgraph H = T − �. If each vertex
x ∈ V(H) satisfies dH(x) ≥ 2, then there must be a cycle in
H and hence in G1[Xm ∪ Xm−1]. Thus, it is enough to show
that δ(H) ≥ 2.

Suppose, on the contrary, there exists a vertex x ∈ V(H)

such that dH(x) ≤ 1. Obviously, x ∈ Xm and there are
at least dG(x) − 1 ≥ 2 vertices adjacent to x in �. Let
y, z be distinct vertices in N(x) ∩ �. By the definition
of �, we know NGm

1
(y) − {x} = NGm

1
(z) − {x} = ∅.

Let Am = NGm
1
(x), Bm−1 = NGm−1

1
(x) − {y}, Cm−1 =

NGm−1
1

(y), and let A0 = Nm
G0

1
(Am), B0 = Nm−1

G0
1

(Bm−1),

C0 = Nm−1
G0

1
(Cm−1), D0 = Nm−1

G0
1

(y). Clearly, z ∈ Bm−1.

Since m = (g − 3)/2, that is, g = 2m + 3, it fol-
lows that A0, B0, C0, D0 are pairwise disjoint and |Am| ≤
|A0|, |Bm−1| ≤ |B0|, |Cm−1| ≤ |C0|. Hence ξ ≤ d(xy) ≤
|A0| + |B0| + |C0| + |F(D0)| ≤ |F(A0)| + |F(B0)| +
|F(C0)| + |F(D0)| ≤ |F(X0)| = λ′ = ξ . This implies
X0 = A0∪B0∪C0∪D0, dGm−2

1
(z) = 1 if m ≥ 2 and dG0

2
(z) = 1

if m = 1. It follows that NGm−1
1

(z) �= ∅ from dG(z) ≥ 3. On

the other hand, Nm−1
G0

1
(NGm−1

1
(z)) ⊆ X0 = A0 ∪ B0 ∪ C0 ∪ D0.

This implies that there exists a cycle of length at most 2m+2
through x, z, a contradiction. The proof is complete. ■

Lemmas 2.2 and 2.3 show that Gm
1 must contain edges and

G1[Xm ∪ Xm−1] must contain cycles when m = (g − 3)/2.
It will be proved that either Gm

1 contains edges or G1[Xm ∪
Xm−1∪Xm−2] contains cycles when m = (g−1)/2 as follows.

Lemma 2.4. Let G be a λ′-optimal graph with δ ≥ 3 and
let F = [X0, Y0] be a λ′-cut such that 2 ≤ m = (g − 1)/2. If
Gm

1 contains no edge, then G1[Xm ∪ Xm−1 ∪ Xm−2] contains
cycles.

Proof. Let T = G1[Xm∪Xm−1∪NGm−2
1

(Xm−1)]. Clearly,
dT (w) ≥ 1 for any vertex w of T , and if dT (w) = 1 then w ∈
NGm−2

1
(Xm−1). Let � = {w ∈ V(T) : dT (w) = 1}. Then � ⊆

NGm−2
1

(Xm−1). Notice that NGm−2
1

(�) ⊆ Xm−2 −NGm−2
1

(Xm−1)

and let us consider the subgraph H = T −�. If δ(H) ≥ 2, we
are done. Otherwise, set � = {w ∈ V(H) : dH(w) ≤ 1}. It is
easy to see that � ⊆ Xm−1. Let x ∈ �. Then |NGm−2

1
(x)∩�| ≥

dG(x)−1 ≥ 2. Pick two distinct vertices y1, y2 ∈ N(x)∩�. By
the definition of �, NGm−1

1
(y1) − {x} = NGm−1

1
(y2) − {x} = ∅.

Let Bm−2 = NGm−2
1

(x) − {y1}, Cm−2 = NGm−2
1

(y1), and let

B0 = Nm−2
G0

1
(Bm−2), C0 = Nm−2

G0
1

(Cm−2), D0 = Nm−2
G0

1
(y1).

Clearly, y2 ∈ Bm−2. Since g = 2m + 1, we have: (1) B0, C0,
and D0 are pairwise disjoint; (2) |B0| ≥ |Bm−2| and |C0| ≥
|Cm−2|; (3) |D0| ≥ |NGm−3

1
(y1)| if m ≥ 3.

Claim 1. |NGm−2
1

(x)| = dG(x) − 1.

Since |NGm−2
1

(x) ∩ �| ≥ dG(x) − 1, we have dG(x) −
1 ≤ |NGm−2

1
(x)| ≤ dG(x). Suppose |NGm−2

1
(x)| = dG(x). Then

ξ ≤ d(xy1) ≤ |Bm−2| + |Cm−2| + |F(D0)| ≤ |B0| + |C0| +
|F(D0)| ≤ |F(B0)|+|F(C0)|+|F(D0)| ≤ |F(X0)| = λ′ = ξ .
This implies that X0 = B0 ∪ C0 ∪ D0, dGm−3

1
(y2) = 1 if

m ≥ 3 and dG0
2
(y2) = 1 if m = 2. Since d(y2) ≥ 3 and

NGm−1
1

(y2) − {x} = ∅, there exists at least one vertex, say w,

in NGm−2
1

(y2). Noticing that Nm−2
G0

1
(w) ⊆ X0 = B0 ∪ C0 ∪ D0,

we can find a cycle of length at most 2m through y2, w, a
contradiction completing the proof of Claim 1.

By Claim 1, we can assume NG(x) − NGm−2
1

(x) = {z}.
Similarly, we have

ξ ≤ d(xy1)

= |{z}| + |Bm−2| + |Cm−2| +
{

|F(y1)| if m = 2

|NGm−3
1

(y1)| if m ≥ 3

≤ 1 + |B0| + |C0| +
{

|F(y1)| if m = 2

|D0| if m ≥ 3

≤ 1 + |F(B0)| + |F(C0)| + |F(D0)|
≤ 1 + |F(X0)| = 1 + λ′ = 1 + ξ .

Therefore, either X0 = B0 ∪ C0 ∪ D0 or |X0| = |B0 ∪ C0 ∪
D0| + 1.

Claim 2. max{|NGm−2
1

(y)| : y ∈ NGm−2
1

(x)} > 0.

Suppose, on the contrary, that NGm−2
1

(y) = ∅ for any vertex
y ∈ NGm−2

1
(x). Then Cm−2 = ∅ and hence C0 = ∅. Assume

X0 = B0 ∪ D0. If z ∈ Xm, then since E(Gm
1 ) = ∅ and δ ≥ 3,

there is a vertex x′ ∈ NGm−1
1

(z) − {x}. Considering Nm−1
G0

1
(x′),

we can find a cycle of length at most 2m through x′, z, x, a
contradiction. If z ∈ Xm−1, then since Nm−1

G0
1

(z) ⊆ X0 = B0 ∪
D0, we can find a cycle of length at most 2m−1 through z, x, a
contradiction. Thus, |X0| = |B0|+|D0|+1. This implies that
ξ ≤ d(xy1) ≤ 1+|Bm−2|+ |F(D0)| ≤ 1+|B0|+ |F(D0)| ≤
1 + |F(B0)| + |F(D0)| < 1 + |F(X0)| = 1 + ξ . Therefore,
|Bm−2| = |B0| = |F(B0)| and hence |NGm−3

1
(y2)| = 1 if

m ≥ 3 and |NG0
2
(y2)| = 1 if m = 2. Combining this with

NGm−1
1

(y2)−{x} = ∅ and NGm−2
1

(y2) = ∅, we have d(y2) = 2,
a contradiction completing the proof of Claim 2.

Claim 3. G1[Xm ∪ Xm−1 ∪ Xm−2] contains cycles.

By Claim 1, we have dG(x) − 1 = |NGm−2
1

(x)| ≥
|NGm−2

1
(x) ∩ �| ≥ dG(x) − 1 and hence NGm−2

1
(x) ⊆ �. Thus,
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we can assume, without loss of generality, that |NGm−2
1

(y2)| =
max{|NGm−2

1
(y)| : y ∈ NGm−2

1
(x)} and pick u ∈ NGm−2

1
(y2).

Since g = 2m + 1, we conclude that Nm−2
G0

1
(u) ∩ (B0 ∪ C0 ∪

D0) = ∅. Therefore, |X0| = |B0| + |C0| + |D0| + 1. Let
X0 − (B0 ∪ C0 ∪ D0) = {w}. Clearly, Nm−2

G0
1

(u) = {w} and

NGm−2
1

(y2) = {u}. If z ∈ Xm−1, then since Nm−1
G0

1
(z) ⊆ X0 =

B0 ∪ C0 ∪ D0 ∪ {w}, there exists a cycle of length at most
2m, a contradiction implying z ∈ Xm. By the choice of y2,
we have |C0| ≤ 1. Since d(z) ≥ 3 and Gm

1 contains no edge,
there exist two distinct vertices, say x1, x2, in NGm−1

1
(z)−{x}.

Noticing Nm−1
G0

1
(xi) ∩ (B0 ∪ D0) = ∅ (i = 1, 2), we have

|C0| = 1, NGm−1
1

(z) = {x, x1, x2}, |Nm−1
G0

1
(xi)| = 1 and hence

|NGm−2
1

(xi)| = 1. Since |NGm−2
1

(x) ∩ �| ≥ dG(x) − 1 ≥ 2 for
any x ∈ �, we have x1, x2 /∈ �. It follows that dH−�(w) ≥ 2
for any vertex w ∈ V(H)−�. Therefore, the subgraph H−�

has cycles. The proof is complete. ■

Lemma 2.5. Let G be a λ′-optimal graph with δ ≥ 3 and let
F = [X0, Y0] be a λ′-cut such that 1 ≤ m = (g−2)/2. If Gm

1
contains no edge and G1[Xm ∪Xm−1] contains no cycle, then
there exists a vertex x in Xm such that |NGm−1

1
(x)| = |Nm

G0
1
(x)|

and |Nm−1
G0

1
(y)| = |Nm

G0
2
(y)| = 1 for any y ∈ NG(x).

Proof. Let T = G1[Xm ∪NGm−1
1

(Xm)]. Clearly, dT (w) ≥
1 for any vertex w of T , and if dT (w) = 1 then w ∈
NGm−1

1
(Xm). Let � = {w ∈ V(T) : dT (w) = 1}. Then

� ⊆ NGm−1
1

(Xm). Notice that NGm−1
1

(�) ⊆ Xm−1−NGm−1
1

(Xm)

and let us consider the subgraph H = T − �. By assump-
tion, H has no cycle, which implies that there exists a
vertex x of H such that dH(x) ≤ 1. Clearly, x ∈ Xm and
|NGm−1

1
(x) ∩ �| ≥ dG(x) − 1 ≥ 2. Pick two distinct vertices

y1, y2 ∈ NGm−1
1

(x) ∩ �. By the definition of �, NGm
1
(y1) − {x}

= NGm
1
(y2)−{x} = ∅. Let Bm−1 = NGm−1

1
(x)−{y1}, Cm−1 =

NGm−1
1

(y1), B0 = Nm−1
G0

1
(Bm−1), C0 = Nm−1

G0
1

(Cm−1), D0 =
Nm−1

G0
1

(y1).

Considering the edge xy1, we have ξ ≤ d(xy1) ≤ |Bm−1|+
|Cm−1| + |F(D0)| ≤ |B0| + |C0| + |F(D0)| ≤ |F(B0)| +
|F(C0)| + |F(D0)| ≤ |F(X0)| = ξ . So X0 = B0 ∪ C0 ∪ D0,
|Bm−1| = |B0| = |F(B0)|, |Cm−1| = |C0| = |F(C0)|. In par-
ticular, 1 = |{y2}| = |Nm−1

G0
1

(y2)| = |F(Nm−1
G0

1
(y2))| because

y2 ∈ Bm−1 and g = 2m + 2. Considering the edge xy2 sim-
ilarly, we have 1 = |{y1}| = |Nm−1

G0
1

(y1)| = |F(Nm−1
G0

1
(y1))|,

that is, 1 = |{y1}| = |D0| = |F(D0)|. Since |Bm−1| =
|B0| = |F(B0)| and |{y1}| = |D0| = |F(D0)|, we have
|NGm−1

1
(x)| = |Bm−1 ∪ {y1}| = |B0 ∪ D0| = |Nm

G0
1
(x)| and

|Nm−1
G0

1
(y)| = |Nm

G0
2
(y)| = 1 for any y ∈ NG(x). The proof is

complete. ■

For an edge e = xy ∈ E(Gm
1 ), we shall use the follow-

ing notation in Lemma 2.6, Lemma 2.7, and in the next
section: Am = NGm

1
(x) − {y}, Bm = NGm

1
(y) − {x}, Cm−1 =

NGm−1
1

(x), Dm−1 = NGm−1
1

(y), and Am−1 = NGm−1
1

(Am),

Bm−1 = NGm−1
1

(Bm). Furthermore, A0 = Nm−1
G0

1
(Am−1), B0 =

Nm−1
G0

1
(Bm−1), C0 = Nm−1

G0
1

(Cm−1), D0 = Nm−1
G0

1
(Dm−1).

Lemma 2.6. Let G be a λ′-optimal graph with δ ≥ 3. Then
there is no λ′ − cut such that 1 ≤ m ≤ (g − 5)/2.

Proof. Suppose, on the contrary, there exists a λ′ − cut
F = [X0, Y0] such that 1 ≤ m ≤ (g − 5)/2. By Lemma
2.2, we can choose an edge e = xy ∈ E(Gm

1 ). Since m ≤
(g − 5)/2, i.e., g ≥ 2m + 5, we have that A0, B0, C0, D0

are pairwise disjoint subsets of X0 and |Am| ≤ |A0|, |Bm| ≤
|B0|, |Cm−1| ≤ |C0|, |Dm−1| ≤ |D0|. So we have

ξ ≤ d(e) = |Am| + |Bm| + |Cm−1| + |Dm−1|
≤ |A0| + |B0| + |C0| + |D0|
≤ |F(A0)| + |F(B0)| + |F(C0)| + |F(D0)|
≤ |F(X0)| = |F| = λ′ = ξ .

Therefore, X0 = A0 ∪ B0 ∪ C0 ∪ D0, and dGm−2
1

(u) = 1 if
m ≥ 2 and dG0

2
(u) = 1 if m = 1 for any vertex u ∈ Dm−1. Let

u ∈ Dm−1. Suppose there exists a vertex w ∈ NGm−1
1

(u). Since

Nm−1
G0

1
(w) ⊆ X0, we can find a cycle of length at most 2m +3

through y, u, w, contradicting g ≥ 2m+5. Hence dGm−1
1

(u) =
0. By d(u) ≥ δ ≥ 3, we have Im = NGm

1
(u) − {y} �= ∅

and hence we can pick a vertex v ∈ Im. Since g ≥ 2m + 5
and X0 = A0 ∪ B0 ∪ C0 ∪ D0, it follows that NGm−1

1
(v) −

{u} = ∅. Set Hm = NGm
1
(Im), H0 = Nm

G0
1
(Hm). Since δ ≥

3 and g ≥ 2m + 5 > 4, we have |Hm| ≥ 2|Im| > |Im|.
Clearly, |Hm| ≤ |H0| and H0 ⊆ A0. Considering the edge yu
similarly, we have |A0| + |B0| + |C0| + |D0| = ξ ≤ d(yu) ≤
|B0| + |C0| + |D0| + |Im| < |B0| + |C0| + |D0| + |Hm| ≤
|B0| + |C0| + |D0| + |A0|, a contradiction completing the
proof. ■

Lemma 2.7. Let G be a λ′-optimal graph with δ ≥ 3 and
let F = [X0, Y0] be a λ′-cut such that 0 ≤ m = (g − 4)/2
and |V(G1)| ≥ 3. Then there exists a cycle in Gm

1 such that
|Nm

G0
1
(w)| = |Nm+1

G0
2

(w)| = 1 for each vertex w of the cycle.

Proof. If m = 0, then |V(G1)| = |X0| ≥ 3. This lemma
follows immediately from Lemma 2.1. Therefore, we may
assume m ≥ 1. By Lemma 2.2, E(Gm

1 ) �= ∅. Let e = xy be
an arbitrary edge in Gm

1 .

Claim 1. A0, B0, C0, D0 are pairwise disjoint, X0 = A0 ∪
B0 ∪C0 ∪D0, |Cm−1| = |C0|, |Dm−1| = |D0| and |F(u)| = 1
for every vertex u ∈ X0.

Since m = (g − 4)/2, that is, g = 2m + 4, it fol-
lows that |A0| ≥ |Am−1| ≥ |Am|, |B0| ≥ |Bm−1| ≥ |Bm|,
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|C0| ≥ |Cm−1|, |D0| ≥ |Dm−1| and A0, B0, C0, D0 are
pairwise disjoint. So we have

ξ ≤ d(e) = |Am| + |Bm| + |Cm−1| + |Dm−1|
≤ |Am−1| + |Bm−1| + |Cm−1| + |Dm−1|
≤ |A0| + |B0| + |C0| + |D0|
≤ |F(A0)| + |F(B0)| + |F(C0)| + |F(D0)|
≤ |F(X0)| = |F| = λ′ = ξ .

This implies that X0 = A0 ∪ B0 ∪ C0 ∪ D0, |C0| = |Cm−1|,
|D0| = |Dm−1|, |Am| = |Am−1| = |A0|, |Bm| = |Bm−1| =
|B0|, and |F(A0)| = |A0|, |F(B0)| = |B0|, |F(C0)| = |C0|,
|F(D0)| = |D0|. Hence |F(u)| = 1 for any u ∈ X0. The proof
of Claim 1 is complete.

Suppose Am �= ∅. Since |Am| = |Am−1| and g = 2m+4, it
follows that |NGm−1

1
(y′)| = 1 for any y′ ∈ Am = NGm

1
(x)−{y}.

Applying the same argument to xy′ for any y′ ∈ Am, we have
|NGm−1

1
(y′′)| = 1 for any y′′ ∈ NGm

1
(x) − {y′}. In particular,

|Dm−1| = 1 because y ∈ NGm
1
(x) − {y′}. Combining this

with d(y) ≥ 3, we have Bm �= ∅. Similarly, if Bm �= ∅ then
|Cm−1| = 1 and Am �= ∅. Therefore, we have the following
Claims 2 and 3.

Claim 2. If Am �= ∅, then |C0| = |Cm−1| = 1,|D0| =
|Dm−1| = 1.

Claim 3. Am = ∅ ⇔ Bm = ∅.

Claim 4. There exists a vertex z ∈ Xm such that
dGm

1
(z) ≥ 2.

For any edge xy ∈ E(Gm
1 ), if Am �= ∅, then Claim 4

follows. Suppose Am = ∅. By Claim 3, Bm = ∅. By Claim
1, we have X0 = C0 ∪ D0, C0 ∩ D0 = ∅, |Cm−1| = |C0|,
|Dm−1| = |D0|, and |F(u)| = 1 for any u ∈ X0. Let w ∈
Cm−1. Suppose NGm−1

1
(w) �= ∅ and let w′ ∈ NGm−1

1
(w). Since

Nm−1
G0

1
(w′) ⊆ X0 = C0 ∪ D0, we can find a cycle of length

at most 2m + 2, a contradiction implying dGm−1
1

(w) = 0. By
Claim 1, we have |NGm−2

1
(w)| = 1 if m ≥ 2 and |NG0

2
(w)| = 1

if m = 1. Thus |NGm
1
(w)| ≥ 2, which implies that there

exists a vertex z ∈ NGm
1
(w) − {x}. We have NGm−1

1
(z) = {w}.

Otherwise, there exists a vertex v ∈ NGm−1
1

(z) − {w}. Since

Nm−1
G0

1
(v) ⊆ X0 = C0 ∪ D0, we can find a cycle of length at

most 2m+3 through x, w, z, v, which contradicts g = 2m+4.
Thus, dGm

1
(z) = dG(z) − |NGm−1

1
(z)| ≥ 2, as claimed.

Now we begin to prove the lemma. By Claims 3 and 4,
we can choose an edge xy ∈ E(Gm

1 ) such that Am �= ∅, Bm �=
∅. Let H be the component of Gm

1 containing the edge xy.
We will show δ(H) ≥ 2. Otherwise, there exists z ∈ V(H)

such that dH(z) ≤ 1. Clearly, z /∈ {x, y} and dH(z) = 1. Let
NH(z) = {w}. By the connectivity of H, NH(w)−{z} �= ∅ and
hence NGm

1
(w)−{z} �= ∅. Considering the edge wz, it follows

that NGm
1
(z) − {w} �= ∅ from Claim 3 and NGm

1
(w) − {z} �= ∅.

So NH(z) − {w} �= ∅, contradicting dH(z) ≤ 1. Therefore,

δ(H) ≥ 2. This implies that there exists a cycle in H and
hence in Gm

1 . This lemma follows from Claims 1 and 2. ■

3. MAIN RESULTS

Theorem 3.1. Let G be a graph with δ ≥ 3, D ≤ g − 2
which is not isomorphic to the graph W shown in Figure 1. If
F = [V(G1), V(G2)] is a λ′-cut such that each vertex of G1 is
incident with at least one edge of F, then either |V(G1)| = 2
or |V(G2)| = 2.

Proof. By Theorem B, G is a λ′-optimal graph. It is
easy to verify that every complete graph of order at least 4 is
super–λ′. Hence it suffices to prove the case D ≥ 2. Since
D ≤ g − 2, it follows that g ≥ 4.

Since F = [V(G1), V(G2)] is aλ′-cut such that each vertex
of G1 is incident with at least one edge of F, it follows that
V(G1) = X0. Assume by way of contradiction that |V(G1)| ≥
3 and |V(G2)| ≥ 3. By Lemma 2.1, |F(x)| = 1 for each
vertex x ∈ V(G1) and G1 is a complete bipartite graph, say
G1 = (S1, S2), where |S1| ≥ 2, |S2| ≥ 2. This shows that
there exists a cycle of length 4 in G1. So g = 4 and hence
D = 2. Let U1 = NG2(S1), U2 = NG2(S2). It is easy to see
that U1 ∩ U2 = ∅, Y0 = U1 ∪ U2.

Suppose V(G2) − Y0 �= ∅ and let w be an arbitrary vertex
in V(G2) − Y0. We consider the distance between w and
every vertex in V(G1). Since D = 2 and |F(u)| = 1 for
each u ∈ V(G1), the vertex w is adjacent to every vertex in
Ui, i = 1, 2. Combining this with g = 4, it follows that
E(G[Y0]) = ∅. Suppose |U1| > 1 and let y1, y2 be two
distinct vertices in U1. We have that the distance between y1

and each vertex in NG1(y2) is at least 3, contradicting D = 2.
Therefore |U1| = 1. We also have |U2| = 1 similarly. In this
case, since d(w) ≥ 3, there is a vertex w′ ∈ V(G2) − Y0

such that ww′ ∈ E(G). Since w is arbitrary, the vertex w′ is
adjacent to every vertex in U1 and U2, too. It follows that
there exists a cycle of length 3 through w, w′, a contradiction.
Hence V(G2) = Y0. By Lemma 2.1, |F(y)| = 1 for each
vertex y ∈ V(G2) and G2 is a complete bipartite graph, say
G2 = (T1, T2), where |T1| ≥ 2, |T2| ≥ 2.

We will show that |NG2(S1) ∩ T1| ≤ 1. Otherwise, let
y1, y2 ∈ NG2(S1) ∩ T1. Then there exist x1, x2 ∈ S1 such that
x1y1, x2y2 ∈ F. It follows that d(x1, y2) ≥ 3 from the fact
that |F(v)| = 1 for each v ∈ V(G). This is contrary to D = 2.
Thus |NG2(S1) ∩ T1| ≤ 1. Similarly, we conclude |NG2(S1) ∩
T2| ≤ 1. Moreover, since |S1| ≥ 2, we have |NG2(S1) ∩
Ti| = 1 (i = 1, 2) and hence |S1| = 2. Furthermore, we
have |NG2(S2) ∩ Ti| = 1 (i = 1, 2) and |S2| = 2 similarly.
It follows that G is isomorphic to the graph W , contradicting
the hypothesis. The proof is complete. ■

The following corollary shows that Conjecture A is true
for graphs with D = 2.

Corollary 3.1. Let G be a graph with δ ≥ 3, D = 2 and
g ≥ 4. Then G is super–λ′ if and only if G is not isomorphic
to the graph W shown in Figure 1.
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FIG. 3. A graph with δ = 3, D = 2, and g = 4.

Proof. The necessity is trivial. We shall prove the suffi-
ciency below. Let G be not isomorphic to W and let F =
[V(G1), V(G2)] be a λ′ − cut. If there exist two vertices
x ∈ V(G1), y ∈ V(G2) such that F(x) = ∅ and F(y) = ∅,
then d(x, y) ≥ 3, contradicting the hypothesis D = 2. So we
may assume, without loss of generality, that each vertex in
V(G1) is incident with at least one edge in F. Since D = 2
and g ≥ 4, we have D ≤ g − 2. It follows from Theorem
3.1 that either |V(G1)| = 2 or |V(G2)| = 2 and so G is
super–λ′. ■

It is easy to verify that if G is a graph with order ν ≥ 8,
girth g ≥ 4, and d(x) + d(y) ≥ ν − 1 for every pair of
non-adjacent vertices x, y, then D = 2 and δ ≥ 3. There-
fore, Corollary 3.1 implies the following theorem due to
Fan:

Theorem D ([12]). Suppose a graph G of order ν > 7
contains no cycle of length 3. If d(x) + d(y) ≥ ν − 1 for
every pair of non-adjacent vertices x, y, then G is super–λ′.

Consider the graph shown in Figure 3. By Corollary 3.1,
we know that the graph is super–λ′, but Theorem D does not
apply to the graph. So Corollary 3.1 improves Theorem D in
this sense.

Without loss of generality, we shall assume m ≤ n in this
section.

Lemma 3.1. Let G be a graph with δ ≥ 3, D ≤ g−2. Then
m ≤ (g − 3)/2 for any λ′-cut F = [X0, Y0]. Furthermore,
if F = [X0, Y0] is a λ′-cut such that m = (g − 3)/2, then
m = n = (g − 3)/2, g = 2m + 3, D = 2m + 1 and d(x, y) =
2m + 1 for any x ∈ Xm, y ∈ Yn.

Proof. Since m ≤ n, it follows that D ≥ d(x, y) ≥
m+n+1 ≥ 2m+1 for any x ∈ Xm, y ∈ Yn. So g ≥ D+2 ≥
2m +3, which implies that m ≤ (g−3)/2. If m = (g−3)/2,
then m ≤ n ≤ d(x, y)−m−1 ≤ D−m−1 ≤ g−3−m = m.
Consequently, m = n = (g − 3)/2, g = 2m + 3 and D =
d(x, y) = 2m + 1. The proof is complete. ■

Lemma 3.2. Let G be a graph with δ ≥ 3, D ≤ g − 2, and
let F = [X0, Y0] be a λ′-cut such that 1 ≤ m = (g − 3)/2.
If there exists a vertex x ∈ Xm such that |Nm+1

G0
2

(x)| ≤ 2, then

dGn
2
(v) ≤ 1 for every vertex v ∈ Yn.

Proof. Suppose, on the contrary, there exists a vertex
v2 ∈ Yn such that dGn

2
(v2) ≥ 2. Then we can find a path

P = v1v2v3 in Gn
2. Let P1, P2, and P3 be the shortest paths

from x to v1, v2, and v3, respectively. By Lemma 3.1, we
have n = m, D = 2m + 1, and hence the length of Pi (i =
1, 2, 3) is 2m + 1. It follows that V(Pi) ∩ Nm+1

G0
2

(x) �= ∅.

Since |Nm+1
G0

2
(x)| ≤ 2, there exist two paths in {P1, P2, P3},

say Pj, Pk , such that V(Pj) ∩ V(Pk) ∩ Nm+1
G0

2
(x) �= ∅. Let

V(Pj)∩V(Pk)∩Nm+1
G0

2
(x) = {y}. Clearly, there exists a cycle

of length at most 2m + 2 through y, vj, vk , which contradicts
the fact that g = 2m + 3. The proof is complete. ■

Lemma 3.3. Let G be a graph with δ ≥ 3, D ≤ g − 2 and
let F = [X0, Y0] be a λ′-cut such that 1 ≤ m = (g − 3)/2.
Then g = 2m + 3, D = 2m + 1 and ξ(G) = 4.

Proof. By Theorem B, G is a λ′-optimal graph. By
Lemma 3.1, we get n = m = (g − 3)/2, g = 2m + 3, and
D = 2m + 1. It follows that E(Gm

1 ) �= ∅, E(Gn
2) �= ∅ from

Lemma 2.2 and 1 ≤ n = m = (g − 3)/2. Let uv ∈ E(Gn
2).

For any edge xy ∈ E(Gm
1 ), we have the following.

Claim 1. |F(A0)| ≥ 2|Am|.

We need only prove Claim 1 for the case Am �= ∅. Let
z be an arbitrary vertex in Am. By Lemma 3.1, d(z, u) =
d(z, v) = 2m + 1. Let P1, P2 be shortest paths from z to u
and v, respectively. Set {ei} = E(Pi) ∩ F for each i ∈ {1, 2}.
Clearly, e1, e2 ∈ F(A0). We have e1 �= e2. Indeed, if e1 = e2,
then there exists a cycle of length at most 2m + 1 through
u, v in G2, which contradicts g = 2m + 3. Suppose z′ is
another vertex in Am and let P′

1 and P′
2 be shortest paths from

z′ to u and v, respectively. Set {e′
i} = E(P′

i) ∩ F for each
i ∈ {1, 2}. Similarly, e′

1 �= e′
2. If there exist i, j ∈ {1, 2} such

that ei = e′
j, then since z, z′ ∈ Am, there is a cycle of length

at most 2m + 2 through z, x, z′ in G1, a contradiction. There-
fore, e1, e2, e′

1, e′
2 are four distinct edges in F(A0). Claim 1

follows.

Claim 2. A0, C0, D0 are pairwise disjoint, X0 = A0 ∪
C0 ∪ D0, A0 = B0, |F(A0)| = 2|Am| = 2|Bm|, |F(C0)| =
|C0| = |Cm−1| and |F(D0)| = |D0| = |Dm−1|.

Without loss of generality, assume |Am| ≥ |Bm|. Since
g = 2m + 3, it follows that |C0| ≥ |Cm−1|,|D0| ≥ |Dm−1|
and A0, C0, D0 are pairwise disjoint. Combining this with
Claim 1, we have

ξ ≤ d(xy) = |Am| + |Bm| + |Cm−1| + |Dm−1|
≤ 2|Am| + |Cm−1| + |Dm−1|
≤ 2|Am| + |C0| + |D0|
≤ |F(A0)| + |F(C0)| + |F(D0)|
≤ |F(X0)| = |F| = λ′ = ξ .
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This implies that X0 = A0 ∪C0 ∪D0, |Am| = |Bm|, |F(A0)| =
2|Am|, |F(C0)| = |C0| = |Cm−1| and |F(D0)| = |D0| =
|Dm−1|. Since |Am| = |Bm|, we can get X0 = B0 ∪ C0 ∪ D0

similarly. It follows that A0 = B0. The proof of Claim 2 is
complete.

Claim 3. If Am �= ∅, then |NGm−1
1

(z)| = |Nm
G0

1
(z)| = 2 for

any z ∈ Am ∪ Bm ∪ {x, y} and |F(w)| = 1 for any w ∈ X0.

For any vertex y′ ∈ Am, let A′
m = Am ∪ {y} − {y′}

and consider the edge xy′. It is easy to see that Nm
G0

1
(A′

m) =
A0 ∪ Nm

G0
1
(y) − Nm

G0
1
(y′). Similar to the proof of |F(A0)| =

2|Am| in Claim 2, we have |F(A0 ∪ Nm
G0

1
(y) − Nm

G0
1
(y′))| =

2|Am ∪ {y} − {y′}| = 2|Am| = |F(A0)|, which implies
|F(Nm

G0
1
(y′))| = |F(Nm

G0
1
(y))| = |F(D0)| = |D0|. Since

2|Am| = |F(A0)| = |F(∪y′∈Am Nm
G0

1
(y′))| = | ∪y′∈Am

(F(Nm
G0

1
(y′)))| = |F(D0)||Am| = |D0||Am|, we get |F(D0)| =

|D0| = |Dm−1| = 2, and hence |F(z)| = 1 for any z ∈ D0.
Considering edges yx, xy′, yx′ for every y′ ∈ Am, x′ ∈ Bm

similarly, we can conclude |NGm−1
1

(z)| = |Nm
G0

1
(z)| = 2 for

any vertex z ∈ {x, y} ∪ Am ∪ Bm and |F(w)| = 1 for any
w ∈ X0. The proof of Claim 3 is complete.

Claim 4. dGm
1
(x) ≤ 1 for every vertex x ∈ Xm.

Suppose, on the contrary, that there exists a vertex x in
Xm such that dGm

1
(x) ≥ 2. Then there exists y ∈ NGm

1
(x) such

|Am| = k > 0 for the edge xy. By Claim 3 and g = 2m + 3,
we have |A0| = 2|Am| and |C0| = |D0| = 2. Combining this
with Claim 2, ξ = 2|Am|+|C0|+|D0| = |A0|+|C0|+|D0| =
2k+4 and hence |X0| = 2k+4. Since |F(D0)| = 2, it follows
that |Nm+1

G0
2

(y)| ≤ 2. By Lemma 3.2, dGn
2
(w) ≤ 1 for every

vertex w ∈ Yn.
For the above edge uv, let Un−1 = NGn−1

2
(u), Vn−1 =

NGn−1
2

(v), U0 = Nn
G0

2
(u), V0 = Nn

G0
2
(v). Since dGn

2
(w) ≤ 1

for every vertex w ∈ Yn, NGn
2
(u) − {v} = NGn

2
(v) − {u} = ∅.

Similar to the proof of Claim 2, we have Y0 = U0 ∪ V0,
|Un−1| = |U0| = |F(U0)|, |Vn−1| = |V0| = |F(V0)|, and
hence |F(w)| = 1 for any vertex w ∈ Y0. It follows that
|U0| + |V0| = |Y0| = |X0| = 2k + 4. Since the distance
between u (respectively, v) and each vertex in {x, y} ∪ Am is
2m + 1, we have |U0| ≥ k + 2 (respectively, |V0| ≥ k + 2)

and hence |U0| = |V0| = k + 2 and d(v) = k + 3. Let P
be a shortest (y, v)-path. Then there is exactly one vertex in
V(P) ∩ Yn−1, say z. The fact that d(zv) = d(z) + d(v) − 2 ≥
ξ = 2k + 4 implies that d(z) ≥ 2k + 6 − d(v) = k + 3.
Since Nn−1

G0
2

(NGn−1
2

(z)) ⊆ Y0 = U0 ∪ V0 and g = 2m + 3,

we have NGn−1
2

(z) = ∅. Since |Vn−1| = |V0| = |F(V0)|,
we have |NGn−2

2
(z)| = 1 if n ≥ 2 and |NG0

1
(z)| = 1 if

n = 1. It follows that |NGn
2
(z)| = d(z) − 1 ≥ k + 2 ≥ 3.

So there exist two distinct vertices v1, v2 ∈ NGn
2
(z) − {v}.

Since δ ≥ 3 and dGn
2
(w) ≤ 1 for every vertex w ∈ Yn,

it follows that Hi = NGn−1
2

(vi) − {z} �= ∅, i = 1, 2. Since

g = 2m + 3, Nn−1
G0

2
(Hi) ⊆ U0. By Lemma 3.1, d(x, u) =

d(x, v) = 2m + 1. Combining this with Claim 3, we con-
clude that there is exactly one vertex in U0, say u0, such that
d(x, u0) = m + 1. By Lemma 3.1, d(vi, x) = 2m + 1 which
implies {u0} ⊆ Nn

G0
2
(v1) ∩ Nn

G0
2
(v2). Then there exists a cycle

of length at most 2m + 2 through u0, v1, z, v2, a contradiction
completing the proof of Claim 4.

Now we begin to prove this lemma. By Claim 4, dGm
1
(x) ≤

1 for every x ∈ Xm. So for any edge xy ∈ E(Gm
1 ), Am = Bm =

∅. It follows from Claim 2 that X0 = C0 ∪D0 and |F(z)| = 1
for any z ∈ X0. Analogously, we also have that NGn

2
(u)−{v} =

NGn
2
(v) − {u} = ∅ and hence |Un−1| = |U0|, |Vn−1| = |V0|,

Y0 = U0 ∪ V0, |F(w)| = 1 for any vertex w ∈ Y0, where
Un−1, Vn−1, U0, V0 are defined as above. (Note m = n.)

Let P be a shortest (y, v)-path and let Jm = NGm
1
(z) − {y},

where z ∈ V(P)∩Xm−1. The fact that d(zy) = d(z)+d(y)−
2 ≥ ξ = |C0| + |D0| implies that d(z) ≥ |C0| + |D0| + 2 −
d(y) = |C0|+1. Since Nm−1

G0
1

(NGm−1
1

(z)) ⊆ X0 = C0∪D0 and

g = 2m + 3, we have NGm−1
1

(z) = ∅. Since |Dm−1| = |D0| =
|F(D0)|, we have |NGm−2

1
(z)| = 1 if m ≥ 2, and |NG0

2
(z)| = 1

if m = 1. It follows that |Jm| = d(z) − 2 ≥ |C0| − 1. Since
dGm

1
(x) ≤ 1 for every x ∈ Xm, we have NGm−1

1
(y′) − {z} �= ∅

for any y′ ∈ Jm and hence NGm−1
1

(Jm) − {z} �= ∅. Let Jm−1 =
NGm−1

1
(Jm)−{z} and J0 = Nm−1

G0
1

(Jm−1). Since g = 2m+3, we

have J0∩D0 = ∅ and so J0 ⊆ C0. By Lemma 3.1, the distance
between u and each vertex in Jm is 2m+1, which implies that
there exist at least (|C0| − 1) vertices in C0 such that each of
them is adjacent to some vertex in U0. Combining this with
d(x, v) = 2m + 1 and |F(w)| = 1 for any w ∈ X0 ∪ Y0,
there exists exactly one vertex in C0 such that it is adjacent
to some vertex in V0. That is |[C0, V0]| = 1. Similarly, we
have |[C0, U0]| = |[D0, U0]| = |[D0, V0]| = 1. Therefore,
|F| = 4 and hence ξ = 4. The proof is complete. ■

Lemma 3.4. Let G be a graph with δ ≥ 3, D ≤ g − 2. If
F = [X0, Y0] is a λ′-cut of G such that 1 ≤ m ≤ (g − 4)/2,
then D = 2m + 2, g = 2m + 4.

Proof. By Theorem B, G is a λ′-optimal graph. By
Lemma 2.6, we have m = (g − 4)/2, that is, g = 2m + 4.
Suppose that n > m and let x ∈ Xm, u ∈ Yn. Since
2m + 2 = g − 2 ≥ D ≥ d(x, u) ≥ m + n + 1 > 2m + 1, we
have D = 2m + 2. Suppose n = m. It is easy to verify that
|V(G1)| ≥ 3 because m ≥ 1. Therefore, by Lemma 2.7, there
exists a cycle in Gm

1 such that |Nm
G0

1
(w)| = |Nm+1

G0
2

(w)| = 1

for every vertex w of this cycle. In particular, there exists an
edge uv ∈ E(Gm

1 ) such that |Nm
G0

1
(u)| = |Nm+1

G0
2

(u)| = 1 and

|Nm
G0

1
(v)| = |Nm+1

G0
2

(v)| = 1. Since n = m = (g − 4)/2, we

can apply Lemma 2.7 to G2, too. It follows that there exists
a vertex y ∈ Yn such that |Nn

G0
2
(y)| = 1. Without loss of gen-

erality, assume Nm+1
G0

2
(u) �= Nn

G0
2
(y). Then d(u, y) ≥ 2m + 2.

Combining this with D ≤ g − 2 = 2m + 2, we conclude that
D = 2m + 2. The proof is complete. ■

Theorem 3.2. Let G be a graph with δ ≥ 3, D ≤ g − 2.
If G is not super–λ′, then there exists a non-negative integer
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k such that either g = 2k + 3, D = 2k + 1, ξ(G) = 4 or
g = 2k + 4, D = 2k + 2.

Proof. By Theorem B, G is a λ′-optimal graph. Since G
is not super–λ′, there exists a λ′-cut F = [V(G1), V(G2)] =
[X0, Y0] such that |V(G1)| ≥ 3, |V(G2)| ≥ 3. If G is isomor-
phic to the graph W shown in Figure 1, then g = 4, D = 2.
If G is not isomorphic to the graph W , then by Theorem 3.1,
V(G1) − X0 �= ∅, that is, m ≥ 1. By Lemmas 2.6 and 3.1,
(g − 4)/2 ≤ m ≤ (g − 3)/2. This theorem follows from
Lemmas 3.3 and 3.4. ■

Now we present an immediate consequence of Theo-
rem 3.2.

Corollary 3.2. Let G be a graph with δ ≥ 3, D ≤ g − 3.
Then G is super–λ′.

If D ≤ g − 3, then since Diam1 ≤ Diam0 = D, we
have Diam1 ≤ g − 3. Clearly, the converse is not true. The
following theorems improve Corollary 3.2 in this sense.

Theorem 3.3. Let G be a connected graph with δ ≥ 3 and
odd girth g ≥ 5. Then, (1) G is super–λ′ if Diam1 ≤ g − 3;
(2) G is super–λ′ if both Diam1 = g −2 and Diam2 ≤ g −5.

Proof. Recall a connected graph G isλ′-connected if δ ≥
3. By Theorem C, G is a λ′-optimal graph if Diam1 ≤ g − 3,
or both Diam1 = g − 2 and Diam2 ≤ g − 5. Suppose, on the
contrary, that G is not super–λ′. Then there exists a λ′ − cut
F = [V(G1), V(G2)] = [X0, Y0] such that |V(G1)| ≥ 3 and
|V(G2)| ≥ 3. Without loss of generality, assume m ≤ n. If
m = 0, then |X0| = |V(G1)| ≥ 3. By Lemma 2.1, we can find
a cycle of length 4 in G1, which contradicts g ≥ 5. Therefore,
m ≥ 1. Combining Lemma 2.6 with the fact that g is odd, we
have m ≥ (g − 3)/2.

Let G be a connected graph with δ ≥ 3, odd girth g ≥ 5
and Diam1 ≤ g − 3. Suppose m ≥ (g − 1)/2. Considering
the distance between an edge in [Xm, Xm−1] and an edge in
[Yn, Yn−1], we have Diam1 ≥ (m − 1) + (n − 1) + 1 ≥
g − 2, a contradiction. Suppose m = (g − 3)/2 and n >

(g − 3)/2. By Lemma 2.2, there exists an edge in Gm
1 . Thus,

Diam1 ≥ m + (n − 1) + 1 ≥ g − 2, a contradiction. Suppose
m = n = (g − 3)/2. In this case, by Lemma 2.2, there exist
e1 ∈ E(Gm

1 ), e2 ∈ E(Gn
2). Thus, Diam1 ≥ m+n+1 = g−2,

a contradiction again. Thus, the proof of (1) is complete.
Let G be a connected graph with δ ≥ 3, odd girth g ≥ 5,

Diam1 = g − 2 and Diam2 ≤ g − 5. Assume m = (g − 3)/2.
If n = (g − 3)/2, or n = (g − 1)/2 and Gn

2 contains no
edge, then by Lemmas 2.3 and 2.4, there are two cycles such
that the distance between them is at least g−4, contradicting
Diam2 ≤ g − 5. If n = (g − 1)/2 and Gn

2 contains edges, or
n > (g−1)/2, then by Lemma 2.2, there exist two edges such
that the distance between them is at least g−1, contradicting
Diam1 = g − 2. Therefore, m ≥ (g − 1)/2. If m = (g −
1)/2, n = (g − 1)/2 and neither Gm

1 nor Gn
2 contains edges,

then we can find two cycles such that the distance between

them is at least g − 4 from Lemma 2.4, a contradiction. For
the remaining cases, it is easy to find two edges such that the
distance between them is at least g−1. This is a contradiction.
The proof of (2) is complete. ■

Theorem 3.4. Let G be a connected graph with δ ≥ 3, even
girth g ≥ 4, Diam1 ≤ g − 3, and Diam2 ≤ g − 4. Then G is
super–λ′.

Proof. Clearly, G is λ′-connected. By Theorem C, G is
a λ′-optimal graph. Suppose, on the contrary, that G is not
super–λ′. Then there exists a λ′−cut F = [V(G1), V(G2)] =
[X0, Y0] such that |V(G1)| ≥ 3 and |V(G2)| ≥ 3. Without
loss of generality, assume m ≤ n. By Lemma 2.6, we have
m ≥ (g − 4)/2 or m = 0. If m = 0, then by Lemma 2.1, we
can find a cycle of length 4 in G1 and hence g = 4. In this
case, m = 0 = (g − 4)/2.

Assume 0 ≤ m = (g − 4)/2. By Lemma 2.7, there exists
a cycle C in Gm

1 such that |Nm
G0

1
(w)| = |Nm+1

G0
2

(w)| = 1 for

each vertex w of C. If n = (g − 4)/2, then, by Lemma 2.7,
Gn

2 also contains cycles. This is contrary to Diam2 ≤ g − 4.
If n > (g − 2)/2, or n = (g − 2)/2 and Gn

2 has edges,
then there exist two edges such that the distance between
them is at least g − 2, a contradiction. If n = (g − 2)/2,
Gn

2 contains no edge, but G2[Yn ∪ Yn−1] has cycles, then
the distance between a cycle in G2[Yn ∪ Yn−1] and C is at
least g − 3, a contradiction. Suppose n = (g − 2)/2, Gn

2
contains no edge and G2[Yn ∪ Yn−1] contains no cycle. For
any edge uv of the cycle C, we may assume, by the choice
of C, that Nm+1

G0
2

(u) = {u0}, Nm+1
G0

2
(v) = {v0}. By Lemma 2.5,

there exists a vertex x in Yn such that |Nn−1
G0

2
(y)| = 1 for any

y ∈ NGn−1
2

(x). Since Gn
2 contains no edge and δ ≥ 3, we have

|NGn−1
2

(x)| ≥ 3. By Lemma 2.5, |Nn
G0

2
(x)| ≥ 3 and hence there

exists a vertex y ∈ NGn−1
2

(x) such that Nn−1
G0

2
(y) ∩ {u0, v0} =

∅. Thus, d(u0, y) > n − 1, d(v0, y) > n − 1. This implies
that d(u, y) > n + m = g − 3, d(v, y) > n + m = g − 3,
and hence the distance between xy and uv is at least g − 2,
a contradiction again. Thus, m ≥ (g − 2)/2 (this implies
m ≥ 1).

Suppose m = n = (g − 2)/2 and neither Gm
1 nor Gn

2 con-
tains edges. If both G1[Xm ∪ Xm−1] and G2[Yn ∪ Yn−1] have
cycles, then we can get a contradiction to Diam2 ≤ g − 4.
Without loss of generality, we assume G1[Xm ∪ Xm−1] con-
tains no cycle. Let x be the vertex in Xm which is given
in Lemma 2.5 and let y ∈ NGm−1

1
(x). By Lemma 2.5, we

may assume Nm
G0

2
(y) = {y0}. Choose u ∈ Yn and let

v1, v2 ∈ NGn−1
2

(u). If y0 ∈ Nn−1
G0

2
(v1) ∩ Nn−1

G0
2

(v2), then

there exists a cycle of length at most 2n, which implies that
n ≥ g/2, a contradiction. Therefore, we may assume, with-
out loss of generality, that y0 /∈ Nn−1

G0
2

(v1). Then d(y0, v1) >

n − 1 and hence d(y, v1) > n − 1 + m = g − 3. So
the distance between the edge xy and the edge uv is at
least g − 2, a contradiction. For the remaining cases, it
is easy to find two edges such that the distance between
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them is at least g − 2. This is a contradiction. The proof
is complete. ■

4. CONCLUSION

The super restricted edge connectivity is an essential
parameter of an interconnection network. In this paper, we
study the super restricted edge connectivity of graphs with
small diameter or conditional diameter. First, we point out
that a conjecture on super restricted edge connectivity is
true for graphs with diameter 2 though it is false in gen-
eral. Second, we give sufficient conditions for a graph to
be super restricted edge-connected in terms of its diameter
and its girth. Third, we present sufficient conditions on the
conditional diameter (instead of the diameter itself) and the
girth for super restricted edge-connected graphs. Finally, we
expect that the methods used in this paper can be generalized
to discuss other parameters, such as k(>2) restricted edge
connectivity.
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