
A Reach and Bound Algorithm for Acyclic
Dynamic-Programming Networks

Matthew D. Bailey
Management Department, Bucknell University, Lewisburg, Pennsylvania

Robert L. Smith
Department of Industrial and Operations Engineering, University of Michigan, Michigan

Jeffrey M. Alden
General Motors Research and Development Center, Warren, Michigan

Node pruning is a commonly used technique for solu-
tion acceleration in a dynamic-programming network. In
pruning, nodes are adaptively removed from the dynamic
programming network when they are determined not to
lie on an optimal path. We introduce an ε-pruning con-
dition that extends pruning to include a possible error
in the pruning step. This results in a greater reduction
of the computation time; however, as a result of the
inclusion of this error, the solution can be suboptimal
or possibly infeasible. This condition requires the abil-
ity to compare the costs of an optimal path from a node
to a terminal node. Therefore, we focus on the class
of acyclic dynamic programming networks with mono-
tonically decreasing optimal costs-to-go. We provide an
easily implementable algorithm, Reach and Bound, which
maintains feasibility and bounds the solution’s error. We
conclude by illustrating the applicability of Reach and
Bound on a problem of single location capacity expan-
sion. © 2007 Wiley Periodicals, Inc. NETWORKS, Vol. 52(1), 1–7
2008

Keywords: dynamic programming networks; shortest path prob-
lem; pruning

1. INTRODUCTION

We confront the intractability of large-scale dynamic pro-
grams (DPs) through approximation methods that build on
the success of known optimal solution techniques. We intro-
duce an error-bounded pruning device to eliminate nodes

Received March 2005; accepted June 2007
Correspondence to: M. D. Bailey; e-mail: matt.bailey@bucknell.edu
Contract grant sponsor: National Science Foundation GOALI; Contract grant
number: DMI-9900267
Contract grant sponsor: General Motors
DOI 10.1002/net.20219
Published online 14 December 2007 in Wiley InterScience (www.
interscience.wiley.com).
© 2007 Wiley Periodicals, Inc.

that fail to be within a user-specified value of being poten-
tially optimal. We provide an efficient implementation for
the class of deterministic acyclic dynamic programs with
non-negative costs. We develop the notion of ε-pruning and
construct an algorithm, Reach and Bound, that systemati-
cally incorporates this pruning device, while bounding the
overall error. Reach and Bound is most effective in DP net-
works that are simultaneously created and solved, so that
“descendant" nodes and arcs of pruned nodes may never be
generated. In Section 4, we introduce a problem of this type
in capacity expansion and provide computational results for
an application of Reach and Bound.

2. NODE PRUNING

We begin with an acyclic network N = (N , A, C), where
N = {0, 1, 2, . . . , n} is the set of nodes, A ⊆ {(i, j) | i, j ∈ N}
is the set of arcs, and C is the set of nonnegative arc costs cij.
We assume that the nodes have a topological ordering, where
if (i, j) ∈ A then i < j with origin 0 ∈ N and destination
n ∈ N . We can, and often will, view the problem as searching
for a shortest path in the DP network from node 0 to node
n, where the length of an arc is its associated arc cost. When
a node i is pruned from the network N , N is replaced by
N \{i}, where we define N \T as the resulting network when
the node set N is replaced by N\T , and the arc set A is replaced
by A\{(i, j) ∈ A | i ∈ T or j ∈ T}. We define Pij(N) as the
set of paths from node i to node j in network N , where paths
are defined by a sequence of nodes in N . The cost or length
of a path p is defined as the sum of the arc costs between
consecutive nodes on the path and is denoted as l(p). Under
this framework, we provide the following definitions.

h(s, N) = min{l(p) | p ∈ P0,n(N), s ∈ p}, i.e., the length of
an optimal path from the origin to the destination where
node s ∈ N is an intermediate node on the path.

NETWORKS—2008—DOI 10.1002/net

f (s, N) = min{l(p) | p ∈ P0,s(N)}, i.e., the length of an
optimal path from the origin to node s in network N .

g(s, N) = min{l(p) | p ∈ Ps,n(N)}, i.e., the length of an
optimal path from node s to the destination node n in
network N . This will also be referred to as the optimal
cost-to-go from node s.

f ∗(N) = min{l(p) | p ∈ P0,n(N)}, i.e, the cost of an optimal
path from the origin to the destination in network N .

Since we are restricted to acyclic networks, it is clear that
h(s, N) = f (s, N) + g(s, N). It is necessary to define each
of these values with respect to the current network N , since
the pruning of nodes could potentially change their values.

Under standard pruning, node s ∈ N prunes node t ∈ N if
it is known that the cost of an optimal path through s is less
than or equal to the cost of an optimal path through t. By con-
struction, the cost of the pruned network’s optimal solution
is identical to the cost of the original network’s optimal solu-
tion. However, the cost of an optimal path through a node
is typically not known and instead the following standard
pruning condition is used:

f (s, N) ≤ f (t, N) and (1)

g(s, N) ≤ g(t, N).

By summing the two inequalities in (1), we conclude that
h(s, N) ≤ h(t, N). Therefore, the standard pruning condi-
tion implies that the value of an optimal path through node s
is at most the value of an optimal path through t. If there does
not exist a zero cost path between s and t, we are assured that
t cannot lie on an optimal path through s, since one of the
two conditions would be violated. In general, it is only nec-
essary to know that these conditions hold; the explicit costs
f (s, N), f (t, N), g(s, N), and g(t, N) are not necessary. As
a result, we will assume that knowledge about the relation-
ships between the optimal cost-to-go from the nodes can be
inferred through problem structure or known bounds. Typ-
ically, in solution algorithms for DP networks, the costs of
optimal paths to a subset of nodes, i.e., f (s, N), are com-
puted as the algorithm progresses (see, for example, [3]). We
will assume that this information is available for a subset
of nodes and illustrate this within the algorithm Reach and
Bound.

According to Denardo and Fox [4], pruning was first used
by Gilmore and Gomory [6] for the group knapsack problem.
Denardo and Fox [4] investigated pruning as an accelerat-
ing device applied to the reaching algorithm. Reaching is
a label-setting algorithm that allows the exploitation of net-
work structure. Their technique was primarily used to remove
arcs emanating from a node that could not lie on an optimal
path. Pearl and Kim [11] developed an error-bounded solution
acceleration technique based on the algorithm A∗ by allow-
ing an error in the node selection sequence criteria. Although
their technique is related to that presented here, it does not
explicitly prune the nodes. The nodes that are passed over
for selection are still eligible for subsequent selection. Lark
et al. [7] also developed a variant of A∗ for which the cost-
to-go estimate can be used to eliminate suboptimal nodes.

Pruning has also been successfully applied as an accelerating
device in several applications. Nemhauser and Ullman [10]
applied reaching with pruning to capital budgeting. Morin
and Marsten [8] applied the technique to resource allocation.
Morin and Marsten [9] also view pruning as an application of
the branch-and-bound technique from integer programming.
In their applications, they assumed the existence of a bound
on the optimal cost and used this to prune nodes for which
an optimal path through the node exceeded the bound. This
bound is found from a known feasible solution or from prob-
lem structure. They illustrated the technique by applying it
to the traveling-salesman problem and to the nonlinear knap-
sack problem. Building on this paper, Easton [5] investigated
the relationship between the quality of the bound on the opti-
mal cost and the solution time as applied to the assembly
line balancing problem. Alden and Yano [2] defined standard
pruning and successfully applied it to a lot sizing problem to
significantly reduce the size of the network.

An extension of the type of pruning performed by Gilmore
and Gomory [6] was applied to the single location capac-
ity expansion problem by Smith [13]. In this instance, the
author found significant time savings, since the pruning was
performed simultaneously as the network was created. The
pruning of a node resulted in descendant nodes not being cre-
ated. Thereby, it was possible that with the removal of one
node, an entire subnetwork of the DP network was extracted.
This motivates the inclusion of a pruning error, which will
allow us to prune an even greater number of nodes at the
expense of a possible error in the final solution.

2.1. ε-Pruning

ε-Pruning is an extension of standard pruning that allows
the possibility that the cost of a path through the pruned node
is less than the cost of the path through the pruning node. By
expanding the class of nodes that are pruned by a node, the
reduction in computation time will be even more significant.
However, such pruning may result in a higher cost solution.
We will show that under certain conditions the resulting error
will be contained within an a priori user-defined error bound.

We adjust the standard pruning condition (1) to include an
error when pruning. The ε-pruning condition is then

f (s, N) ≤ f (t, N) + ε and (2)

g(s, N) ≤ g(t, N).

Although an allowable error could also be included in the
relationship between the costs-to-go, we restrict the allowable
error to the relationship between the costs to the nodes.

By summing the two inequalities in (2), we see that it is
possible that the cost of the optimal path through t is actually
less than the cost of the optimal path through s, but it is at
most ε less. As a result of using condition (2), the complexity
of the network can be further simplified as more nodes may
be pruned using (2) than by using condition (1) exclusively.

There can often be multiple optimal paths to a node; how-
ever, to maintain the error bound, we need to only maintain

2 NETWORKS—2008—DOI 10.1002/net

one of these paths. As a result, we select a designated optimal
path to a node. It is assumed that the designated optimal path
to node j consists of the designated optimal paths to each node
that lies on the designated optimal path to j. By construction,
this will be satisfied in Reach and Bound.

2.1.1. ε-Pruning Complications. As stated previously,
using the standard pruning conditions will result in no loss
of optimality. However, the same is not true using condi-
tion (2). As a result, the error bound may no longer be valid.
Therefore, to maintain the validity of the error bound, we
restrict pruning to nodes not on the designated optimal path
through the current pruning node. It is actually necessary to
only maintain any path whose cost is at most the cost of an
optimal path through s. However, an optimal path through s
is typically not known. In the absence of this information, we
maintain the designated optimal path through s to guarantee
that the final solution cost is at most ε more than the cost of
the optimal path.

A complication also arises with ε-pruning in that the error
in the resulting solution can accumulate. We will show that the
error in the resulting solution is nonetheless at most

∑p
i=1 εi,

where p is the number of nodes used for pruning and εi is
the allowable error associated with the ith pruning node. In
addition, we will show that this bound can be tightened and
refined as the algorithm progresses.

3. REACH AND BOUND

To implement the ε-pruning condition for two nodes, it
is necessary to compare the costs of an optimal path to the
nodes and the optimal costs-to-go from the nodes. We will
compute bounds on the optimal costs to nodes and assume
the following structure:

(A1) For all nodes i and j if i < j then g(j, N) ≤ g(i, N).

We assume that the DP network has monotonically
decreasing optimal costs-to-go. We expect to see the great-
est computational gains in problems for which the network is
created as we discover a solution. We therefore define succ(i)
as the set of successor nodes of node i: i.e., succ(i) = {j |
(i, j) ∈ A}.

Standard dynamic programming formulations of many
problems in various applications arise that have monoton-
ically decreasing optimal costs-to-go. Specific examples
include production line design [1] and single location capac-
ity expansion [13]. The applications allow us to verify
assumption A1 a priori. This structure can be exploited to
create a greatly simplified algorithm for utilizing ε-pruning.
The algorithm presented will be an extension and gen-
eralization of the reaching algorithm presented in Smith
[13], which was motivated by the reaching algorithm pre-
sented in Gilmore and Gomory [6] and in Shapiro and
Wagner [12]. We will first present the algorithm and its
properties for acyclic DP networks that satisfy assump-
tion A1 and then directly apply the technique to the single

location capacity expansion problem in the next section.
We will show that nodes can be pruned based only on
the cost of a feasible path and still maintain the error
bound.

3.1. Reach and Bound Algorithm

The Reach and Bound algorithm is an extension of a
label-setting algorithm. The labels of the nodes, vj, are upper
bounds for the cost of an optimal path to the node in the cur-
rent network, i.e., an upper bound for f (j, N). Initially, they
are all set to zero, and the algorithm begins by reaching from
or expanding node s0 = 0, the origin, where expanding a
node means updating the labels, vj, of all nodes j ∈ succ(s0).
After expanding node si, we select, si+1, the next node that
will be expanded. We first determine the set of unexpanded
nodes j for which vj is at most ε more than the label of any
other unexpanded node. From this set, we select the largest
node with respect to the topological ordering and define this
as si+1. As illustrated in Figure 1, this effectively prunes the
nodes numbered between si and si+1. It is assumed that the
user has specified the sequence of pruning step errors allowed,
{ε1, ε2, . . .}. This sequence is associated with {s1, s2, . . .}, the
sequence of pruning nodes selected in the algorithm. By
construction, at iteration i the current label vj is the mini-
mum cost of traveling through the previous pruning nodes
{s0, s1, . . . , si} to j.

Reach and Bound algorithm

1. Set i = 0, s0 = 0, v0 = 0, N = {0}.
2. For each j ∈ succ(si), if j /∈ N set vj = vsi + csi ,j and

N = N ∪ {j}, otherwise let

vj ← min{vj , vsi + csi ,j}.
3. Set si+1 to the largest k > si, k ∈ N such that vk ≤

min{vj | j > si, j ∈ N} + εi+1.
4. Set i = i + 1. If si < n, go to Step 2, otherwise stop.

During iteration i, any node t such that si < t < si+1

is pruned from the network, i.e., any node passed over for

FIG. 1. Reach and bound in networks with monotonically decreasing
costs-to-go.

NETWORKS—2008—DOI 10.1002/net 3

expansion is removed from the network. These nodes can
be explicitly removed from the generated network; however,
the computational savings is a result of not exploring paths
through these nodes, and so the added effort to explicitly
remove them is unnecessary. Therefore, at the beginning of
iteration i, the current subnetwork only contains nodes with
topological node numbering less than si that were expanded
and all nodes with numbering greater than or equal to si that
are descendants of these nodes.

3.1.1. Satisfying ε-Pruning Conditions. In Reach and
Bound, we are pruning nodes using upper bounds on the
optimal cost vj to each of the nodes in the current network.
However, as the following results show, the relationships of
these upper bounds are sufficient to satisfy the previous ε-
pruning conditions. If we define mi+1 as the highest numbered
node m greater than si such that vm = minj>si vj in the current
subnetwork of iteration i, then this is the node that would be
expanded if εi+1 = 0 for iteration i. The following lemma
states that the label of node mi+1 is less than or equal to the
cost of an optimal path in the current subnetwork to any node
greater than si.

Lemma 1. At the conclusion of Step (2) in iteration i of
Reach and Bound, if node si was the last node to be expanded
within the current subnetwork Ni, then f (j, Ni) ≥ vmi+1 ≥
f (mi+1, Ni) for all j > si.

Proof. By construction vmi+1 is the cost of an optimal
path to mi+1 restricted to the previously expanded nodes in
Ni, therefore vmi+1 ≥ f (mi+1, Ni).

We show f (j, Ni) ≥ vmi+1 by induction on j > si. For
j = si+1, since all of its ancestors in Ni have been previously
expanded

f (si + 1, Ni) = vsi+1

≥ vmi+1 by definition.

Now assume

vmi+1 ≤ f (j, Ni), for si < j ≤ k.

Now, for node k +1 either its optimal ancestor is after si, i.e.,

f (k + 1, Ni) = f (t, Ni) + ct,k+1 for some si < t < k + 1,

or its optimal ancestor is before si, i.e.,

f (k + 1, Ni) = f (t, Ni) + ct,k+1 for some 1 ≤ t ≤ si.

If si < t < k + 1 then

f (k + 1, Ni) = f (t, Ni) + ct,k+1,

≥ vmi+1 + ct,k+1, by assumption,

≥ vmi+1 , since ct,k+1 ≥ 0.

If 1 ≤ t ≤ si then

f (k + 1, Ni) = f (t, Ni) + ct,k+1,

= vk+1 by construction,

≥ vmi+1 , by definition. ■

Using the above result, we show that a pruning node si+1

in Reach and Bound satisfies the ε-pruning condition (2).

Proposition 1. For a given εi+1 ≥ 0 and computed pruning
node si+1, at the conclusion of Step (2) in iteration i of Reach
and Bound,

f (si+1, Ni) ≤ f (j, Ni) + εi+1 and

g(si+1, Ni) ≤ g(j, Ni)

for si < j < si+1, where node si was the last node to be
expanded in Ni.

Proof.

f (si+1, Ni) ≤ vsi+1 , (3)

≤ vmi+1 + εi+1, by definition,

≤ f (j, Ni) + εi+1, by Lemma 1 for si < j<si+1.
(4)

Since si+1 > j, then

g(si+1, Ni) ≤ g(j, Ni),

by assumption A1. ■

From this proposition, we know that at iteration i for a fixed
εi+1 > 0, the cost of the designated optimal path through
node si+1 is at most εi+1 more than the optimal cost through
all nodes j, si < j < si+1. Therefore, if we remove all such
nodes j from Ni and maintain the designated optimal path
through si+1, then the cost of an optimal path in the resulting
subnetwork is at most εi+1 more than the cost of an optimal
path in Ni.

Reach and Bound does not actually check whether the
designated optimal path through si+1 is maintained; instead
it maintains a path through si+1 with the cost of the path
to si+1 given by the label vsi+1 . However, in the following
proposition, we show that maintaining such a feasible path is
sufficient to maintain the fixed error bound for an individual
pruning step.

Proposition 2. For a given εi+1 ≥ 0,

vsi+1 + g(si+1, Ni) ≤ h(j, Ni) + εi+1,

for si < j < si+1.

Proof. For si < j < si+1,

vsi+1 ≤ f (j, Ni) + εi+1,

4 NETWORKS—2008—DOI 10.1002/net

by inequalities (3) and (4). Hence,

vsi+1 + g(si+1, Ni) ≤ h(j, Ni) + εi+1,

by assumption A1. ■

Then, from Lemma 1, we know that f (mi+1, Ni) ≤
f (j, Ni) for si < j < mi+1. Also, by assumption A1,
h(mi+1, Ni) ≤ h(j, Ni). Therefore, if all nodes j, where
si < j < mi+1, are removed from the network, then an opti-
mal path in the current network is still intact. In other words,
the only error incurred in this technique is by pruning node
mi+1 and the nodes between mi+1 and si+1. In addition, from
Proposition 2, if all nodes k, where mi+1 ≤ k < si+1, are
removed then there still exists a path in the pruned network
with cost vsi+1 + g(si+1, Ni). The costs of the paths removed
were at worst εi+1 less than vsi+1 + g(si+1, Ni). Therefore,
the cost of an optimal path in the resulting pruned network is
within εi+1 of the cost of an optimal path in the network Ni.
As a result, the error in the total solution is at most

∑i
k=1 εk

after i iterations of Reach and Bound.

3.1.2. Error Bound Updating. Although the maximum
allowed error εi+1 at any pruning step is user-defined, in
Reach and Bound, we determine a tighter bound on the actual
maximum error incurred. The amount of the error bound
“used” can be tracked during the solution, so that a more
accurate error bound can be reported.

Lemma 2. After Step (2) of iteration i of Reach and Bound
for networks with nonincreasing costs-to-go, an upper bound
on the actual maximum error incurred for that pruning
step is

vsi+1 − vmi+1 .

Proof. For every si < j < si+1,

h(si+1, Ni) − h(j, Ni) = f (si+1, Ni) + g(si+1, Ni)

− f (j, Ni) − g(j, Ni),

≤ f (si+1, Ni) + g(si+1, Ni)

− vmi+1 − g(j, Ni), by Lemma 1,

≤ vsi+1 + g(si+1, Ni)

− f (mi+1, Ni) − g(j, Ni)

≤ vsi+1 − vmi+1 , by assumption A1.
(5)

■

As we see from inequality (5), a tighter bound can be
obtained if the difference g(si+1, Ni) − g(j, Ni) can also be
bounded by a greater bound than zero.

If the user specifies an a priori total acceptable error ε

from which to allocate the per iteration error bounds εi, this
error could be adaptively partitioned and allocated to each
pruning iteration. Initial iterations may be allocated a larger

amount of the error bound to, for example, prune a larger
number of nodes initially. The εi would be set to zero when∑i

k=0(vsk+1 − vmk+1) = ε. Such allocation schemes would
be highly application-dependent and are beyond the scope of
this work.

4. APPLICATION TO SINGLE LOCATION
CAPACITY EXPANSION

To illustrate the potential effectiveness of Reach and
Bound, we focus on the problem of single location capacity
expansion. This is an example of the problem investigated
by Smith [13]. In this work, he considered the problem of
sequentially selecting capacity additions from a finite set of
possible facility sizes to meet growing demand at a single
location over an infinite decision horizon. When the current
capacity is exhausted, an additional facility must be selected
to expand capacity. It is shown that there exists an optimal
policy such that after a time t∗, the least average-cost facility
is repeatedly installed. As a result, once t∗ has been deter-
mined, the problem reduces to a dynamic program over a
horizon of length t∗. The problem is to find, at minimum cost,
a sequence of facility installations, in which the additional
capacity of the last facility ensures that the total capacity will
not be exhausted until after t∗.

We will adopt the same notation and assumptions as in
[13]. We assume exponential growth in demand for capac-
ity at time t, i.e., D(t) = D0(edt − 1) where D0 > 0 is
the initial demand completely met by the installed capac-
ity and d > 0 is the demand growth rate. Additional
demand can be met by any of a finite set of distinct facil-
ities 1, 2, . . . , n where a facility provides capacity. Each
facility l has fixed cost Fl > 0 and an integer capacity
Xl > 0, which is incurred at the time of installation. All
costs are discounted continuously using an interest rate r.
We alter the problem slightly and seek a sequence of facility
installations that satisfies demand for capacity over a finite
horizon at a cost within a specified error of the minimum
discounted cost. We call this error ε. An installation epoch is
defined as a time at which the installed capacity is exhausted
and the next facility is installed. We stage on installation
epochs and restate the problem as the following dynamic
program:

Find g(0) where g(t) = minl=1,2,...,n{Fl + e−rτl(t)g(t +
τl(t))} and τl(t) is the time from installation of facility l
at time t until its capacity is exhausted when installed. We
define g(t) = 0 for t ≥ t∗.

Since D(t + τl(t)) = D0(ed(t+τl(t)) −1) = D(t)+Xl, then
τl(t) = d−1 ln(1+ Xl

D0edt). In a typical telephone transmission

facility application, there are about 1016 potential installation
sequences.

4.1. Reach and Bound in Capacity Expansion

The algorithm begins by stepping-off at time zero with
each possible facility type. Thus, it generates n potential

NETWORKS—2008—DOI 10.1002/net 5

FIG. 2. Capacity expansion DP network generation.

installation epochs/nodes. Figure 2 illustrates how the net-
work is dynamically created from node t and three facility
choices with all installation costs converted to their present
values at the initial installation epoch. The pruning device
of rejecting potential installation epochs of ε-dominated par-
tial sequences leads to the next installation epoch, node si+1.
This is repeated successively until all candidate sequences
span the finite horizon time t∗. When node t is expanded,
vt is the minimum discounted cost of reaching time t in the
pruned network.

In the original DP network, for two arbitrary times t and
t′, if t > t′ then the optimal sequence of facility installations
from t that spans t∗ could also be installed from t′. In addi-
tion, since the costs are discounted, the cost of the optimal
sequence of facilities that span t∗ from t is at least the cost
of the optimal sequence of facilities from t′. Therefore, the
original dynamic programming network satisfies assumption
A1. As a result, the number of nodes pruned by the algo-
rithm can be significantly increased by allowing an error in
the resulting solution.

Reach and Bound in capacity expansion algorithm

1. Set i = 1, s1 = 0, v0 = 0, N = {0}
2. For l = 1, 2, . . . , n, let t = si + τl(si). If t /∈ N set vt =

vsi + Fle−rsi and N = N ∪ {t}, otherwise, let

vt ← min{vt , vsi + Fle
−rsi }.

3. Set si+1 to the largest time k > si such that vk ≤
min{vj | j > si, j ∈ N} + εi+1.

4. Set i = i + 1. If si < t∗, go to Step 2, otherwise stop.

This technique is a slight variant of the Reach and Bound
algorithm described earlier, since the network is dynamically
created as the problem is solved. At Step 2, we expand the
current node by investigating the capacity exhaust epochs
created by installing the n facilities from that epoch. At Step
3, the next node to be expanded, si+1, is selected, thus pruning
all nodes/epochs t, where si < t < si+1. In Reach and Bound,
we find a feasible solution whose cost is within

∑k
j=1 εj of

the optimal cost for the partial decision sequence, where k is
the total number of iterations.

4.2. Computational Example

We illustrate the above algorithm on the following data
with 400 facility choices over 90 periods. We are given a set
of facility sizes Xl in thousands of circuits, where Xl = 2l for
l = 1, . . . , 400, with fixed cost K(X) in thousands of dollars
given by the following Dixon-Clapp law [14]:

K(X) = KX1−α ,

TABLE 1. Transmission facilities data.

Initial demand Growth Interest D-C Economy of
(thousands of circuits) rate rate constant scale factor

10 0.09 0.11 10 0.5

where K is a constant and α is the economy of scale factor.
The values used for our example and all other necessary data
are given in Table 1.

This problem was solved using standard reaching and sev-
eral variations of the Reach and Bound algorithm coded in
C++ on a 3.4 GHz Pentium 4 with 1.00 GB of RAM. Using
Reaching, the cost of the optimal solution was found to be
$80,571 after 1.66 s. For simplicity, the allowable error per
iteration was set at a fixed value. The value of the fixed
εi allowed per pruning iteration was incremented from $50
to $500. For each solution instance, the total error bound
was adaptively updated as described in Section 3.1.2. The
actual error, updated error bound, and computation time are
provided in Table 2. Costs are reported in thousands of dol-
lars; errors are reported in percentage of optimal cost, and
computation time is in seconds.

We see from Table 2 that there is a large deviation between
the actual error incurred and the reported error bound. We
have found, in practice, that these bounds are typically very
loose. Part of this is explained by the deviation in the opti-
mal cost-to-go from a node and the pruned nodes. We use
a worst-case bound on this value and assume that this devi-
ation is zero. One might expect that the actual error in the
solution would monotonically increase as the error allowed
per iteration is increased. However, these are only bounds
on the error and as a result of problem structure, we could
see a slightly improved solution with a larger allowance for
error.

Typically, such an installation problem is solved for each
location in a large-scale transmission network and for each
evaluated route in a network routing heuristic [15]. As a
result, the single location capacity expansion problem is

TABLE 2. Reach and Bound results in capacity expansion.

Allowable % Total Actual % Reported %
error per nodes Solution error from error Run
iteration expanded cost optimal bound time

0.00 100 80.571 0 0.00 3.81
0.05 1.72 80.633 0.077 8.78 0.08
0.10 1.22 80.6206 0.062 11.00 0.06
0.15 0.98 80.6581 0.108 13.50 0.05
0.20 0.86 80.6395 0.085 15.21 0.04
0.25 0.77 80.5959 0.031 16.92 0.03
0.30 0.72 80.6309 0.074 18.23 0.03
0.35 0.69 80.6495 0.097 18.73 0.03
0.40 0.65 80.6006 0.037 19.34 0.03
0.45 0.63 80.5883 0.021 19.75 0.03
0.50 0.60 80.6618 0.113 20.85 0.03

6 NETWORKS—2008—DOI 10.1002/net

solved repeatedly for hundreds of locations. The example
illustrates the potential power of Reach and Bound, since we
are able to compute a solution within 1% of optimal in almost
an order of magnitude less time than it takes to find the opti-
mal solution. The extension of this solution technique over
all locations for each evaluated transmission routing would
result in significant computational savings for a network
routing heuristic.

5. CONCLUSIONS

ε-Pruning is an error-bounded solution acceleration tech-
nique based on a known zero-error technique. By per-
mitting an error in the pruning, we can quickly find a
feasible solution with a bounded error. We provided con-
ditions for which ε-pruning can be applied to maintain
an error bound and provided an efficient, simplified algo-
rithm, Reach and Bound. The algorithm can be used alone
to quickly find a quality suboptimal solution or as an
iterative step within a larger heuristic. As shown, Reach
and Bound is easily implementable and can significantly
decrease the portion of the network explored while control-
ling the quality of the resulting solution. The effectiveness
of the algorithm and the error bound can be improved
through an application-specific allocation of the errors per
iteration.

REFERENCES

[1] J. Alden, M. Bailey, and R. Smith, A dynamic programming
formulation for the assembly line design problem, Technical
Report 00-06, University of Michigan, 2000.

[2] J. Alden and C. Yano, A forward dynamic programming
approach for general uncapacitated multi-stage lot-sizing
problems, Technical Report 86-11, University of Michigan,
1986.

[3] E. Denardo, Dynamic programming: Theory and applica-
tions, Prentice-Hall, Englewood Cliffs, NJ, 1980.

[4] E. Denardo and B. Fox, Shortest-route methods, Part 1:
Reaching, pruning, and buckets, Oper Res 27 (1979),
161–186.

[5] F. Easton, A dynamic program with fathoming and dynamic
upper bounds for the assembly line balancing problem,
Comput Oper Res 17 (1990), 163–175.

[6] P. Gilmore and R. Gomory, The theory and computation of
knapsack functions, Oper Res 14 (1966), 1045–1074.

[7] J. Lark, C. White, and K. Syverson, A best-first search algo-
rithm guided by a set-valued heuristic, IEEE Trans Syst, Man,
Cybernetics 25 (1995), 1097–1101.

[8] T. Morin and R. Marsten, An algorithm for nonlinear knap-
sack problems, Manage Sci 22 (1976), 1147–1158.

[9] T. Morin and R. Marsten, Branch-and-bound strategies for
dynamic programming, Oper Res 24 (1976), 611–627.

[10] G. Nemhauser and Z. Ullman, Discrete dynamic program-
ming and capital allocation, Manage Sci 15 (1969), 494–505.

[11] J. Pearl and J. Kim, Studies in semi-admissible heuristics,
IEEE Trans Pattern Anal Machine Intell 4 (1982), 392–399.

[12] J. Shapiro and H. Wagner, A finite renewal algorithm for the
knapsack and turnpike models, Oper Res 15 (1967), 319–341.

[13] R. Smith, Turnpike results for single location capacity,
Manage Sci 25 (1979), 474–484.

[14] N. Valcoff, Optimal size of transmission systems, IFAC Symp
Optimal Syst Planning (1968), 26–35.

[15] B. Yaged, Minimum cost routing for dynamic network
models, Networks 3 (1973), 193–224.

NETWORKS—2008—DOI 10.1002/net 7

