## Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 07/06

## Cyclic sums, network sharing and restricted edge cuts in graphs with <br> long cycles

Rautenbach, Dieter; Volkmann, Lutz

2007

## Impressum:

Hrsg.: Leiter des Instituts für Mathematik
Weimarer Straße 25
98693 Ilmenau
Tel.: +49 3677693621
Fax: +493677 693270
http://www.tu-ilmenau.de/ifm/

# Cyclic Sums, Network Sharing and Restricted Edge Cuts in Graphs with Long Cycles 

Dieter Rautenbach ${ }^{1}$ and Lutz Volkmann ${ }^{2}$<br>${ }^{1}$ Institut für Mathematik, TU Ilmenau, Postfach 100565, 98684 Ilmenau, Germany, e-mail: dieter.rautenbach@tu-ilmenau.de<br>${ }^{2}$ Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany, e-mail: volkm@math2.rwth-aachen.de


#### Abstract

We study graphs $G=(V, E)$ containing a long cycle which for given integers $a_{1}$, $a_{2}, \ldots, a_{k} \in \mathbb{N}$ have an edge cut whose removal results in $k$ components with vertex sets $V_{1}, V_{2}, \ldots, V_{k}$ such that $\left|V_{i}\right| \geq a_{i}$ for $1 \leq i \leq k$. Our results closely relate to problems and recent research in network sharing and network reliability.


Keywords: restricted edge connectivity; arbitrarily vertex decomposable graph; network reliability; network sharing

2000 Mathematics Subject Classification: 05A17; 05C40

## 1 Introduction

The problem we study in the present paper receives motivation from at least two sources: network sharing and network reliability.

For a given graph $G=(V, E)$ of order $n$ one of the problems considered in the context of network sharing is whether for every $k \in \mathbb{N}$ and every choice of integers $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{N}$ with $n=a_{1}+a_{2}+\ldots+a_{k}$, the vertex set $V$ of $G$ can be partitioned into $k$ sets $V=$ $V_{1} \cup V_{2} \cup \ldots \cup V_{k}$ such that $\left|V_{i}\right|=a_{i}$ and the subgraph $G\left[V_{i}\right]$ induced in $G$ by the set $V_{i}$ is connected for all $1 \leq i \leq k$. Graphs having this property were called arbitrarily vertex decomposable ( $\mathcal{A V D}$ ).

Trees which are $\mathcal{A V D}$ have been studied in some detail. No tree of maximum degree at least five is $\mathcal{A V D}[2,10]$ and while it is NP-complete to decide the $\mathcal{A V} \mathcal{D}$ property for general graphs (cf. [1]), the $\mathcal{A V D}$ trees homeomorphic to $K_{1,3}$ or $K_{1,4}$ can be recognized in polynomial time [1, 2]. Since graphs with a Hamiltonian path are clearly $\mathcal{A V} \mathcal{D}$, Ore type conditions implying a graphs to be $\mathcal{A V D}$ have been studied [13]. $\mathcal{A V D}$ graphs in which almost all vertices lie in a unique and dominating cycle were studied in $[4,11]$.

The second source of motivation is related to the notion of restricted egde connectivity which was proposed as a natural measure of network fault-tolerance or reliability $[5,6,8]$. The central problem considered in this context for a given connected graph $G=(V, E)$ and some integer $a \in \mathbb{N}$ concerns the existence and minimum cardinality of edge cuts $S \subseteq E$ whose removal from $G$ results in a graph $G-S=(V, E \backslash S)$ all components of which are of order at least $a$. If such a cut $S$ exists the corresponding graph is called $\lambda_{a}$-connected
and if $|S|$ is small the corresponding network can be considered vulnerable because the removal of few edge can separate large parts. $\lambda_{a}$-connected graphs and the sizes of the corresponding edge cuts have received notable attention $[3,9,14,15,16,17]$.

Being $\mathcal{A V D}$ is clearly an extremely restrictive property. A main reason for this is that the number of parts $k$ in the desired partitions is arbitrary. Therefore, it seems a natural idea to study graphs which are arbitrarily vertex decomposable into a bounded number of parts which corresponds to sharing a network among a bounded number of parties.

For a minimal edge cut $S$ whose removal from a connected graph $G$ results in a graph all components of which are at least of some given order, the graph $G-S$ will always have exactly two components. Here it seems natural to consider the existence and minimum cardinality of edges cuts whose removal creates a given number of components which are all at least of some given order. Graphs which have such a cut of small cardinality can easily be split into many large parts.

These last two observations motivate to study graphs $G=(V, E)$ which for given integers $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{N}$ have an edge cut $S$ whose removal results in $k$ components with vertex sets $V_{1}, V_{2}, \ldots, V_{k}$ such that $\left|V_{i}\right| \geq a_{i}$ for $1 \leq i \leq k$. There are beautiful theorems due to Győri [7] and Lovász [12] which imply that $k$-connectivity forces the existence of such an edge cut provided the obvious necessary condition that the order of $G$ is at least $a_{1}+a_{2}+\ldots+a_{k}$. We call graphs which have such an edge cut $\lambda_{a_{1}, a_{2}, \ldots, a_{k}}$-connected and study conditions which imply this property for graphs which contain a long cycle. The structure of these graphs is similar to the graphs studied in [4, 11]. Our main tools are results about cyclic sums (Theorems 2.1 and 2.5) which we feel to be interesting on their own right.

## 2 Results

In our first result we consider the following question: Given n positive integers arranged in a cycle; which values can we realize as the sum of cyclically consecutive integers? We give a best-possible condition implying that all values between 1 and the sum of all integers are realizable up to some specified error as such a cyclic sum.

Theorem 2.1 Let $p \in \mathbb{N}, r \in \mathbb{N}_{0}$ and $x_{0}, x_{1}, \ldots, x_{p-1} \in \mathbb{N}$. For $y \in \mathbb{N}$ let $N_{y}=\{i \mid 0 \leq i \leq$ $\left.p-1, x_{i}=y\right\}$ and $n_{y}=\left|N_{y}\right|$.

If

$$
\sum_{y \leq r+1} y n_{y} \geq 1+\sum_{y \geq r+2}(y-r-2) n_{y}
$$

then for all $X \in\left\{1,2, \ldots, x_{0}+x_{1}+\ldots+x_{p-1}\right\}$ there are indices $0 \leq i, j \leq p-1$ such that

$$
X \leq x_{i}+x_{i+1}+\ldots+x_{i+j} \leq X+r
$$

where the indices of the $x_{i}$ 's are taken modulo $p$.

Proof: We call a term of the form $x_{i}+x_{i+1}+\ldots+x_{i+j}$ a cyclic sum. Since $\sum_{y \leq r+1} y n_{y} \geq 1$, some integer between 1 and $1+r$ is a cyclic sum.

Now let $X \in\left\{2+r, 3+r, \ldots, x_{0}+x_{1}+\ldots+x_{p-1}\right\}$. We will prove that some integer between $X$ and $X+r$ is a cyclic sum. For every $i \in \bigcup_{y \leq r+1} N_{y}$ let $f(i) \in\{0,1, \ldots, p-1\}$ be such that

$$
\begin{aligned}
x_{i}+x_{i+1}+\ldots+x_{f(i)-1} & \leq X-1 \\
\text { and } x_{i}+x_{i+1}+\ldots+x_{f(i)} & \geq X .
\end{aligned}
$$

Clearly, $f(i)$ is well-defined for every $i \in \bigcup_{y \leq r+1} N_{y}$.
If $x_{i}+x_{i+1}+\ldots+x_{f(i)} \leq X+r$, then it is a cyclic sum between $X$ and $X+r$. Hence we may assume that $x_{i}+x_{i+1}+\ldots+x_{f(i)} \geq X+r+1$ which implies that

$$
\begin{aligned}
x_{f(i)} & =\left(x_{i}+x_{i+1}+\ldots+x_{f(i)}\right)-\left(x_{i}+x_{i+1}+\ldots+x_{f(i)-1}\right) \\
& \geq(X+r+1)-(X-1)=r+2
\end{aligned}
$$

and hence $f(i) \in \bigcup_{y \geq r+2} N_{y}$ for every $i \in \bigcup_{y \leq r+1} N_{y}$, i.e.

$$
f: \bigcup_{y \leq r+1} N_{y} \rightarrow \bigcup_{y \geq r+2} N_{y} .
$$

If there are $i_{1}, i_{2}, \ldots, i_{q} \in \bigcup_{y \leq r+1} N_{y}$ and $j \in N_{z}$ for some $z \geq r+2$ with cyclic order $i_{1}, i_{2}, \ldots, i_{q}, j$ and $f\left(i_{1}\right)=f\left(i_{2}\right)=\ldots=f\left(i_{q}\right)=j$, then

$$
\begin{aligned}
X & \leq(X+r+1)-x_{i_{q}} \\
& \leq\left(x_{i_{q}}+x_{i_{q}+1}+\ldots+x_{j}\right)-x_{i_{q}} \\
& =x_{i_{q}+1}+x_{i_{q}+2}+\ldots+x_{j} \\
& \leq\left(x_{i_{1}}+x_{i_{1}+1}+\ldots+x_{i_{q}}+x_{i_{q}+1}+\ldots+x_{j}\right)-\left(x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{q}}\right) \\
& =\left(x_{i_{1}}+x_{i_{1}+1}+\ldots+x_{j-1}\right)+z-\left(x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{q}}\right) \\
& \leq(X-1)+z-\left(x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{q}}\right) .
\end{aligned}
$$

If $x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{q}} \geq z-r-1$, then $x_{i_{q}+1}+x_{i_{q}+2}+\ldots+x_{j}$ is a cylic sum between $X$ and $X+r$. Hence $x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{q}} \leq z-r-2$, i.e. for every $j \in N_{z}$ with $z \geq r+2$ the sum of the $x_{i}$ over the preimages $i$ of $j$ under $f$ is at most $z-r-2$. This implies the contradiction

$$
\sum_{y \leq r+1} y n_{y} \leq \sum_{y \geq r+2}(y-r-2) n_{y}
$$

and the proof is complete.
The choice $x_{0}=x_{1}=\ldots=x_{p-1}=r+2$ clearly implies that the condition given in Theorem 2.1 is best-possible.

If we want all possible values to be realized exactly as a cyclic sum, the condition from Theorem 2.1 can actually be simplified as follows.

Corollary 2.2 If $p, x_{0}, x_{1}, \ldots, x_{p-1} \in \mathbb{N}$ and

$$
x_{0}+x_{1}+\ldots+x_{p-1} \leq 2 p-1,
$$

then for all $X \in\left\{1,2, \ldots, x_{0}+x_{1}+\ldots+x_{p-1}\right\}$ there are indices $0 \leq i, j \leq p-1$ such that

$$
X=x_{i}+x_{i+1}+\ldots+x_{i+j},
$$

where the indices of the $x_{i}$ 's are taken modulo $p$.
Proof: For $y \in \mathbb{N}$ let $N_{y}=\left\{i \mid 0 \leq i \leq p-1, x_{i}=y\right\}$ and $n_{y}=\left|N_{y}\right|$. The condition $x_{0}+x_{1}+\ldots+x_{p-1} \leq 2 p-1$ is easily seen to be equivalent to the condition $n_{1} \geq 1+$ $\sum_{y \geq 2}(y-2) n_{y}$ and the result follows from Theorem 2.1 for $r=0$.

From Theorem 2.1 we can derive a sufficient condition for a graph of large enough order containing a cycle long enough to be $\lambda_{a, b}$-connected. Note that graphs corresponding to the example given immediately after the proof of Theorem 2.1 show that the following result is best-possible.

Corollary 2.3 Let $a, b, p \in \mathbb{N}$ and $r \in \mathbb{N}_{0}$ with $p \geq 3$ and $a \leq b$. Let $G=(V, E)$ be $a$ connected graph of order $n \geq a+b+r$ which contains a cycle $C$ of length $p$. Let $G-E(C)$ contain exactly $n_{i}$ components of order $i$ for $i \in \mathbb{N}$.

If $\sum_{y \leq r+1} y n_{y} \geq 1+\sum_{y \geq r+2}(y-r-2) n_{y}$, then $G$ is $\lambda_{a, b}$-connected.
Proof: By Theorem 2.1, the graph $G$ is $\lambda_{a^{\prime}, n-a^{\prime}}$-connected for some $a \leq a^{\prime} \leq a+r$. Since $n-a^{\prime} \geq n-a-r \geq b$, the desired result follows.

Similarly, we can derive a graph-theoretic consequence from Corollary 2.2.
Corollary 2.4 Let $a, b, p \in \mathbb{N}$ with $p \geq 3$ and $a+b \leq 2 p-1$. If $G=(V, E)$ is a connected graph of order $n \geq a+b$ which contains a cycle of order $p$, then $G$ is $\lambda_{a, b}$-connected.

Proof: Clearly, the graph $G$ has a spanning subgraph $G^{\prime}$ with a unique cycle $C$ of order $p$. If $p>a+b$, then $G$ is obviously $\lambda_{a, b}$-connected. Hence we may assume that $p \leq a+b$. By iteratively deleting endvertices from $G^{\prime}$, we obtain a connected subgraph $G^{\prime \prime}$ of order exactly $a+b$ which contains $C$. Corollary 2.2 implies that $G^{\prime \prime}$ is $\lambda_{a, b}$-connected. Therefore, also $G$ is $\lambda_{a, b}$-connected.

Now we consider the problem to split a graph with a long cycle into more than two large parts. As before, the main tool is a result about cyclic sums. While Theorem 2.1 was best-possible, we were not able to obtain a similarly strong result in this situation.

Theorem 2.5 Let $k, p \in \mathbb{N}, r \in \mathbb{N}_{0}$ and $x_{0}, x_{1}, \ldots, x_{p-1} \in \mathbb{N}$. For $y \in \mathbb{N}$ let $N_{y}=\{i \mid 0 \leq$ $\left.i \leq p-1, x_{i}=y\right\}$ and $n_{y}=\left|N_{y}\right|$.

If

$$
\sum_{y \leq r+1} y n_{y} \geq 1+k \sum_{y \geq r+2}(y-1) n_{y}
$$

then for all $S_{1}, S_{2}, \ldots, S_{k} \in \mathbb{N}$ with

$$
1 \leq S_{1}<S_{2}<\ldots<S_{k} \leq x_{0}+x_{1}+\ldots+x_{p-1}
$$

there exist indices $0 \leq i_{0}, i_{1}, i_{2}, \ldots, i_{k} \leq p-1$ such that

$$
S_{j} \leq x_{i_{0}}+x_{i_{0}+1}+\ldots+x_{i_{0}+i_{j}} \leq S_{j}+r
$$

for all $1 \leq j \leq k$, where the indices of the $x_{i}$ 's are taken modulo $p$.
Proof: Let $k, p, x_{0}, x_{1}, \ldots, x_{p-1}, N_{y}, n_{y}$ be as in the statement of the result. Furthermore, let

$$
\sum_{y \leq r+1} y n_{y} \geq 1+k \sum_{y \geq r+2}(y-1) n_{y} .
$$

Let $S_{1}, S_{2}, \ldots, S_{k} \in \mathbb{N}$ be such that $1 \leq S_{1}<S_{2}<\ldots<S_{k} \leq x_{0}+x_{1}+\ldots+x_{p-1}$.
For contradiction, we assume that indices $0 \leq i_{0}, i_{1}, i_{2}, \ldots, i_{k} \leq p-1$ with

$$
S_{j} \leq x_{i_{0}}+x_{i_{0}+1}+\ldots+x_{i_{0}+i_{j}} \leq S_{j}+r
$$

for all $1 \leq j \leq k$ do not exist. For every $i \in \bigcup_{y \leq r+1} N_{y}$ let $l(i) \in\{1,2, \ldots, k\}$ be minimum such that there is no index $0 \leq j \leq p-1$ with

$$
S_{l(i)} \leq x_{i}+x_{i+1}+\ldots+x_{i+j} \leq S_{l(i)}+r .
$$

Furthermore, let $f(i) \in\{0,1, \ldots, p-1\}$ be such that

$$
\begin{aligned}
x_{i}+x_{i+1}+\ldots+x_{f(i)-1} & \leq S_{l(i)}-1 \\
\text { and } x_{i}+x_{i+1}+\ldots+x_{f(i)} & \geq S_{l(i)} .
\end{aligned}
$$

Clearly, $l(i)$ and $f(i)$ are well-defined for every $i \in \bigcup_{y \leq r+1} N_{y}$ and $x_{i}+x_{i+1}+\ldots+x_{f(i)} \geq$ $S_{l(i)}+r+1$ which implies that $f(i) \in \bigcup_{y \geq r+2} N_{y}$.

If there are $i_{1}, i_{2}, \ldots, i_{q} \in N_{1}, l \in\{1,2, \ldots, k\}$ and $j \in N_{z}$ for some $z \geq 2$ with cyclic order $i_{1}, i_{2}, \ldots, i_{q}, j, l\left(i_{1}\right)=l\left(i_{2}\right)=\ldots=l\left(i_{q}\right)=l$ and $f\left(i_{1}\right)=f\left(i_{2}\right)=\ldots=f\left(i_{q}\right)=j$, then

$$
\begin{aligned}
S_{l} & \leq\left(S_{l}+r+1\right)-x_{i_{q}} \\
& \leq\left(x_{i_{q}}+x_{i_{q}+1}+\ldots+x_{j}\right)-x_{i_{q}} \\
& =x_{i_{q}+1}+x_{i_{q}+2}+\ldots+x_{j} \\
& \leq\left(x_{i_{1}}+x_{i_{1}+1}+\ldots+x_{i_{q}}+x_{i_{q}+1}+\ldots+x_{j}\right)-\left(x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{q}}\right) \\
& =\left(x_{i_{1}}+x_{i_{1}+1}+\ldots+x_{j-1}\right)+z-\left(x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{q}}\right) \\
& \leq\left(S_{l}-1\right)+z-\left(x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{q}}\right)
\end{aligned}
$$

which implies $\left(x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{q}}\right) \leq z-1$. (Note that we cannot conclude an upper bound of $z-r-2$ as in the proof of Theorem 2.1 because $x_{i_{q}+1}+x_{i_{q}+2}+\ldots+x_{j} \leq X+r$ would not imply a contradiction.)

Therefore for every tupel $(l, j) \in\{1,2, \ldots, k\} \times N_{z}$ for some $z \geq 2$ the sum of the $x_{i}$ over all $i$ with $(l(i), f(i))=(l, j)$ is at most $z-1$. This implies the contradiction

$$
\sum_{y \leq r+1} y n_{y} \leq k \sum_{y \geq r+2}(y-1) n_{y}
$$

and the proof is complete.
Again, we derive a result about exact realizations.
Corollary 2.6 Let $k, p \in \mathbb{N}$ and $x_{0}, x_{1}, \ldots, x_{p-1} \in \mathbb{N}$.
If

$$
x_{0}+x_{1}+\ldots+x_{p-1}<\frac{k+2}{k+1} p
$$

then for all $S_{1}, S_{2}, \ldots, S_{k} \in \mathbb{N}$ with

$$
1 \leq S_{1}<S_{2}<\ldots<S_{k} \leq x_{0}+x_{1}+\ldots+x_{p-1}
$$

there exist indices $0 \leq i_{0}, i_{1}, i_{2}, \ldots, i_{k} \leq p-1$ such that

$$
S_{j}=x_{i_{0}}+x_{i_{0}+1}+\ldots+x_{i_{0}+i_{j}}
$$

for all $1 \leq j \leq k$, where the indices of the $x_{i}$ 's are taken modulo $p$.
Proof: Since the average value of the $x_{i}$ is less than $\frac{k+2}{k+1}$, there are more than $(k+1) y-(k+2)$ different $x_{i}$ 's equal to 1 for every $x_{j}$ equal to $y \geq 2$. Since $(k+1) y-(k+2) \geq k(y-1)$ for $y \geq 2$, the result follows from Theorem 2.5 for $r=0$.

We close with a corollary for graphs containing a long cycle.
Corollary 2.7 Let $k, p, a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{N}$ with $k, p \geq 2$ and $a_{1}+a_{2}+\ldots+a_{k}<\frac{k+2}{k+1} p$. If $G=(V, E)$ is a connected graph of order $n \geq a_{1}+a_{2}+\ldots+a_{k}$ which contains a cycle of order $p$, then $G$ is $\lambda_{a_{1}, a_{2}, \ldots, a_{k}}$-connected.

Numerous questions motivated by our results are obvious and we just pose two: What about $\lambda_{a_{1}, a_{2}, \ldots, a_{k}}$-connected graphs which are neither highly connected nor have long cycles or other nicely structures subgraphs along which the desired components can be cut? What is a best-possible version of Theorem 2.5?

## References

[1] D. Barth, O. Baudon and J. Puech, Decomposable trees: a polynomial algorithm for tripodes, Discrete Appl. Math., 119 (2002) 205-216.
[2] D. Barth and H. Fournier, A degree bound on decomposable trees, Discrete Math. 306 (2006), 469-477.
[3] P. Bonsma, N. Ueffing and L. Volkmann, Edge-cuts leaving components of order at least three, Discrete Math. 256 (2002) 431-439.
[4] S. Cichacz and I.A. Ziolo, On arbitrarily vertex decomposable unicyclic graphs with dominating cycle, Preprint Matematyka Dyskretna 020 (2006), available online: http://www.ii.uj.edu.pl/preMD/MD_20.pdf.
[5] A.H. Esfahanian and S.L. Hakimi, On computing a conditional edge-connectivity of a graph, Inform. Process. Lett. 27 (1988), 195-199.
[6] A.H. Esfahanian, Generalized measures of fault tolerance with application to $N$-cube networks, IEEE Trans. Comput. 38 (1989), 1586-1591.
[7] E. Győri, On division of graphs to connected subgraphs, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol I, pp. 485-494, Colloq. Math. Soc. János Bolyai, 18, North-Holland, Amsterdam-New York, 1978.
[8] F. Harary, Conditional connectivity, Networks 13 (1983), 347-357.
[9] A. Hellwig, D. Rautenbach and L. Volkmann, Cuts leaving components of given minimal order, Discrete Math. 292 (2005), 55-65.
[10] M. Horňák and M. Woźniak, Arbitrarily vertex decomposable trees are of maximum degree at most six, Opuscula Math. 23 (2003), 49-62.
[11] R. Kalinowski, M. Pilśniak, M.Woźniak, I.A. Ziolo, Arbitrarily vertex decomposable suns with few rays, Preprint Matematyka Dyskretna 015 (2006), available online: http://www.ii.uj.edu.pl/preMD/MD_15.pdf.
[12] L. Lovász, A homology theory for spanning trees of a graph, Acta Math. Acad. Sci. Hungar. 30 (1977), 241-251.
[13] A. Marczyk, A note on Arbitrarily vertex decomposable graphs, Opuscula Mathematica 26 (2006), 109-118.
[14] J. Ou, Edge cuts leaving components of order at least m, Discrete Math. 305 (2005), 365-371.
[15] M. Wang and Q. Li, Conditional edge connectivity properties, reliability comparisons and transitivity of graphs, Discrete Math. 258 (2002), 205-214.
[16] Z. Zhang and J. Yuan, A proof of an inequality concerning $k$-restricted edge connectivity, Discrete Math. 304 (2005), 128-134.
[17] Z. Zhang and J. Yuan, Degree conditions for restricted-edge-connectivity and isoperimetric-edge-connectivity to be optimal, Discrete Math. 307 (2007), 293-298.

