
Join Tree Propagation with Prioritized Messages

C. J. Butz, S. Hua, K. Konkel, and H. Yao
Department of Computer Science, University of Regina, Regina, Canada S4S 0A2

Current join tree propagation algorithms treat all prop-
agated messages as being of equal importance. On the
contrary, it is often the case in real-world Bayesian net-
works that only some of the messages propagated from
one join tree node to another are relevant to subsequent
message construction at the receiving node. In this arti-
cle, we propose the first join tree propagation algorithm
that identifies and constructs the relevant messages first.
Our approach assigns lower priority to the irrelevant mes-
sages as they only need to be constructed so that pos-
terior probabilities can be computed when propagation
terminates. Experimental results, involving the process-
ing of evidence in four real-world Bayesian networks,
empirically demonstrate an improvement over the state-
of-the-art method for exact inference in discrete Bayesian
networks. © 2009 Wiley Periodicals, Inc. NETWORKS, Vol. 55(4),
350–359 2010

Keywords: Bayesian networks; join tree propagation; exact
probabilistic inference; conditional independence

1. INTRODUCTION

Bayesian networks [19] are a formal approach to uncer-
tainty management based on the combination of probability
theory and graph theory. A Bayesian network is a directed
acyclic graph [26] coupled with a set of conditional proba-
bility tables [23]. The vertices of the graph represent random
variables, while the arcs in the graph represent probabilis-
tic dependencies amongst the variables. It can be shown
[11] that the product of the conditional probability tables is
a joint probability distribution by utilizing the probabilis-
tic conditional independencies [25] encoded in the directed
acyclic graph. By providing a sound and concise represen-
tation of probabilistic knowledge [7,13], Bayesian networks
have been successfully applied in practice to many problem
domains, including medical diagnosis [12, 20].

Although Cooper [9] has shown that the complexity
of inference in Bayesian networks is NP-hard, various
approaches have been developed that seem to work quite well

Received September 2006; accepted February 2009
Correspondence to: C. J. Butz; e-mail: butz@cs.uregina.ca
Contract grant sponsor: NSERC Discovery; Contract grant number: 238880
DOI 10.1002/net.20328
Published online 31 July 2009 in Wiley InterScience (www.interscience.
wiley.com).
© 2009 Wiley Periodicals, Inc.

in practice [5,8,10,22,24]. Generally speaking, there are two
approaches to exact inference in discrete Bayesian networks.
One approach, called direct computation, performs inference
directly within a Bayesian network. Two classical direct com-
putation algorithms are variable elimination (VE) [28] and
arc reversal (AR) [18, 21]. Another approach, known as join
tree propagation, first builds a secondary network called a
join tree [4] by triangulating [27] the directed acyclic graph.
Join tree propagation then performs inference by propagat-
ing probabilities in the join tree. Shafer [23] emphasizes that
join tree probability propagation is central to the theory and
practice of probabilistic expert systems.

The state-of-the-art algorithm for exact inference in dis-
crete Bayesian networks is Madsen’s Lazy AR [14,15]. Lazy
AR is a hybrid approach, because it falls into the join tree
propagation framework while utilizing a direct computation
inference algorithm. More specifically, AR is applied to phys-
ically construct the messages passed from a join tree node to
a neighbor. Although traditional join tree propagation algo-
rithms pass a single probability table between neighboring
nodes in the join tree [23], Lazy AR can pass a set of prob-
ability tables between nodes. By maintaining a factorization
of probability tables, Lazy AR can show favorable experi-
mental results [14, 15] with its exploitation of barren [21]
variables and independencies induced by evidence. Never-
theless, there is room for improvement, because Lazy AR
views all propagated messages as being of equal importance.
On the contrary, it is often the case in real-world Bayesian
networks that only some of the messages propagated from
one join tree node to a neighbor are relevant to subsequent
message construction at the neighbor node.

In this article, we propose prioritized join tree propagation
as a new approach to exact inference in Bayesian networks.
The distinguishing feature of our method can be seen as a
three-step process. First, AR is applied only to determine
the distribution heading (the schema or label) of each mes-
sage (distribution) that will be propagated in a join tree. In
other words, we identify all of the message headings with-
out physically building in computer memory the probability
distributions complete with probability values. Second, the
relevant and irrelevant messages are identified (with respect
to the subsequent message construction at the receiving join
tree nodes). Finally, the relevant messages are then physically
constructed in memory using variable elimination. Thus, in

NETWORKS—2010—DOI 10.1002/net

FIG. 1. Tables p(a), p(b|a), p(c), p(d|c), p(e|c), p(f |d, e), p(g|b, f), p(h|c), p(i|h), p(j|g, h, i), and p(k|g).

our method, a join tree node is allowed to physically build an
outgoing message as soon as it has received all incoming mes-
sages that are relevant to its construction. The main advantage
of prioritized join tree propagation over Lazy AR is that our
approach does not force a join tree node to wait for messages
that are irrelevant to its subsequent message computation.
The efficiency improvement offered by prioritized join tree
propagation is shown through empirical evaluations on four
real-world Bayesian networks and one benchmark Bayesian
network. As is usually done, inference is performed in each
network with varying amounts of evidence, namely, zero,
nine, and eighteen percent. Our prioritized join tree propaga-
tion approach finished inference faster than Lazy AR in all
fifteen cases, as reported in Tables 2, 3, and 4.

This article is organized as follows. Section 2 contains
background information. We propose prioritized join tree
propagation in Section 3. Experimental results are shown in
Section 4. Section 5 presents the conclusion.

2. DEFINITIONS

Here we review results from discrete Bayesian networks,
and three approaches for exact inference therein.

Consider a finite set of discrete random variables U =
{v1, v2, . . . , vn}. Let dom(vi) denote the finite domain of val-
ues that each variable vi ∈ U can assume. For a subset
X ⊆ U, the Cartesian product of the domains of the indi-
vidual variables in X is dom(X). An element x ∈ dom(X) is
a configuration of X. A potential [12] on dom(X) is a function
φ such that φ(x) ≥ 0, for each configuration x ∈ dom(X),
and at least one φ(x) is positive. For simplicity, we speak of
a potential as defined on X instead of on dom(X), and we
call X its domain rather than dom(X) [23]. A joint probabil-
ity distribution [23] on U, written p(U), is a function p on U
satisfying the following two conditions: (i) 0 ≤ p(u) ≤ 1, for
each configuration u ∈ dom(U); (ii)

∑
u∈dom(U) p(u) = 1.

Let X and Y be two disjoint subsets of U. A conditional
probability table (table for short) [23] for Y given X , denoted
p(Y |X), is a nonnegative function on X ∪ Y , satisfying the
following condition: for each configuration x ∈ dom(X),∑

y∈dom(Y) p(Y = y|X = x) = 1. For example, given binary
variables U = {a, b, . . . , k}, tables p(a), p(b|a), p(c), p(d|c),
p(e|c), p(f |d, e), p(g|b, f), p(h|c), p(i|h), p(j|g, h, i), and
p(k|g) are shown in Figure 1. Note that missing probabili-

ties can be obtained by the definition of a table. For instance,
p(a = 0) = 0.504 and p(b = 0|a = 0) = 0.948.

The heading of a table is the label shown above the prob-
ability column. For instance, the heading of table p(a) in
Figure 1 is the label “p(a)” appearing above the probability
column. It will always be made clear as to whether p(Y |X)

refers to the heading or the table itself.
A discrete Bayesian network [19] on U = {v1, v2, . . . , vn}

is a pair (D, C). D is a directed acyclic graph with vertex
set U. C is the set of tables {p(vi|Pi)|i = 1, 2, . . . , n}, where
Pi denotes the parents of variable vi ∈ D. For example, the
directed acyclic graph in Figure 2i together with the corre-
sponding tables in Figure 1 is based on a real-world Bayesian
network for coronary heart disease (CHD) [12]. Here, the
parents Pi of variable vi = g are Pi = {b, f }.

We use the terms Bayesian network and directed acyclic
graph interchangeably. A topological ordering [7] of the vari-
ables in a Bayesian network is denoted by ≺. The family Fi

of a variable vi in a Bayesian network is the variable together
with its parents, that is, {vi} ∪ Pi. A variable without parents
is called a root variable.

A Bayesian network D graphically encodes probabilistic
conditional independencies [25], which can be inferred from
D using the d-separation algorithm [19]. Based on the inde-
pendencies encoded in D, the product of the tables in C is a
joint distribution p(U) [11], namely, p(U) = ∏

vi∈U p(vi|Pi).
For example, the independencies encoded in the Bayesian
network of Figure 2i indicate that the product of the tables
in Figure 1 is a joint distribution on U = {a, b, c, d, . . . , k},
namely, p(U) = p(a)·p(b|a)·p(c)·p(d|c) · · · p(k|g). Thereby,
one favorable feature of Bayesian networks is that they
provide a compact, graphical representation of a joint distri-
bution modelling a real-world problem domain. For instance,
only 30 probabilities are required for the CHD Bayesian net-
work in Figure 2i versus 211 −1 probabilities required for
specifying the joint distribution p(U) directly.

Suppose that the values e of a set E of variables in a
Bayesian network have been observed and that the poste-
rior probabilities of set X (disjoint with E) are sought. All
variables outside of E ∪ X must necessarily be eliminated
in answering this query, denoted p(X|E = e). A brute-
force approach to eliminating these variables, however, can
involve unnecessary manipulation of probability distribu-
tions in memory. Given a Bayesian network D and a query

NETWORKS—2010—DOI 10.1002/net 351

FIG. 2. (i) The coronary heart disease (CHD) Bayesian network [12]. Given the query p(k|f = 0): (ii) barren
variables h, i, and j have been pruned; (iii) variables c, d, and e are also removed as they are independent of k
given evidence f = 0.

p(X|E =e), a variable vi is barren [21] if ({vi}∪Y)∩(X∪E) =
∅, where Y is the set of descendants of vi in D. For example,
given the query p(k|f = 0) posed to the Bayesian network in
Figure 2i, variables h, i, and j are barren. Thus, they can be
removed, yielding the network in Figure 2ii.

Similarly, independencies induced by evidence can also be
taken advantage of to save unnecessary physical computation.
Baker and Boult [2] proposed an algorithm, which we will call
Prune, that prunes all variables from a Bayesian network that
are irrelevant to a given query p(X|E = e). Their algorithm
removes barren variables as well as those variables rendered
immaterial to X given the evidence E = e. Note that the time
complexity of Prune is O(|λ|), where |λ| is the number of arcs
in the Bayesian network [2]. For example, given evidence
f = 0 in query p(k|f = 0) posed to Figure 2ii, variable k is
conditionally independent of variables c, d, and e. Thus, c,
d, and e can be safely removed to yield the smaller Bayesian
network in Figure 2iii.

A root variable vi that is also an evidence variable can
have its table ignored and, for each child vj of vi, the table
p(vj|Pj) is modified to agree with the observed evidence. In
our running example, because f is both an evidence variable
and a root variable in Figure 2iii, table p(f |d, e) is ignored and
table p(g|b, f) for the child g of f is modified to only contain
rows agreeing with the evidence f = 0 [23]. That is, all rows
in p(g|b, f) with f = 1 are deleted leaving p(g|b, f = 0)

stored in computer memory. The query p(k|f = 0) can now
be answered by eliminating variables a, b, and g from the
distributions stored in computer memory.

Given a set of variables to be eliminated from a set S of
potentials, variable elimination (VE) [28] recursively elim-
inates the variables vi one-by-one using the following four
steps: (i) remove from S the set of potentials containing vi; (ii)
multiply together the distributions removed from S; (iii) sum
vi out of the potential obtained in (ii); and (iv) add the resulting
potential to S. Unlike VE, arc reversal (AR) [18, 21] elimi-
nates variables while maintaining a factorization of tables.
The following outline draws from [14,15,21]. Suppose vari-
able vi is to be eliminated. Arc (vi, vj) is reversed by setting the

new parents of vj as Pi ∪Pj −{vi}, while making Pi ∪Fj −{vi}
the new parents of vi. Next, new tables for vj and vi in the
modified directed acyclic graph are physically constructed as
follows [21]:

p(vj|Pi ∪ Pj − {vi}) =
∑

vi

p(vi|Pi) · p(vj|Pj), (1)

and

p(vi|Pi ∪ Fj − {vi}) = p(vi|Pi) · p(vj|Pj)

p(vj|Pi ∪ Pj − {vi}) . (2)

Note that it is not necessary to evaluate Equation (2) when the
final arc from vi is reversed, because vi will be eliminated.
Also, a directed acyclic graph structure is maintained after
eliminating a variable, because AR uses a fixed topological
ordering of the original Bayesian network to avoid creating
directed cycles.

Although VE and AR compute the posterior probabili-
ties of a set X of variables given the evidence E = e, join
tree propagation seeks to update all variables in U − E. The
notion of a join tree is first needed. A join tree [4] is a tree
with sets of variables as nodes, and with the property that
any variable in two nodes is also in any node on the path
between the two. The directed acyclic graph D of a Bayesian
network is converted into a join tree via the moralization and
triangulation procedures. The moralization [19] Dm of D is
the undirected graph obtained from D by adding undirected
edges between every pair of nonadjacent vertices that have a
common child, and then dropping the directions of all arcs.
If necessary, undirected edges are added to the moralization
to create a triangulated graph. An undirected graph is trian-
gulated (chordal) [27], if each cycle of length four or more
possesses an edge (vi, vj) between two nonadjacent variables
vi and vj in the cycle. Finding a triangulation of a graph by
adding the minimum number of edges is NP-complete [19].
Each maximal clique (complete subgraph) [6] of the triangu-
lated graph is represented by a node in the join tree. Although
the CHD Bayesian network is useful for illustrating some per-
tinent concepts, it is not interesting due to its small size. A

352 NETWORKS—2010—DOI 10.1002/net

FIG. 3. The Hailfinder join tree, where only the pertinent nodes and messages are shown. Both messages p(n|l)
and p(q|l, n) from lmnqr are irrelevant to the forwarding of message p(i) at node ilnqr.

larger real-world Bayesian network, called Hailfinder [1], is
instead used here. Figure 3 shows the partial depiction of one
possible join tree for Hailfinder. Some join tree edges have
been directed to depict the propagation of those messages
pertinent to our forthcoming discussion. Each join tree node
name corresponds to the variables in the node. For instance,
in Figure 3, node abcf means that the join tree node consists
of variables {a, b, c, f }. The table of each variable vi in the
given Bayesian network is assigned to precisely one join tree
node containing vi and its parents Pi. For instance, p(f |a, b, c)
is assigned to abcf in Figure 3.

Given collected evidence, messages are systematically
passed in a join tree such that each join tree node can compute
the posterior probabilities of its variables when propagation
finishes. In particular, the message passing is controlled by
the rule that each node waits to send its message to a particular
neighbor until it has received all messages from all its other

neighbors. It is well known that join tree propagation can be
performed serially or in parallel [16, 23]. Our discussion is
based on parallel computation.

Madsen’s Lazy AR [14,15] implements AR as the engine
for performing inference in join tree propagation. When a
join tree node N is ready to send its messages to a particular
neighbor N ′, the Lazy AR approach computes the messages
from node N to N ′ using the following three steps: (i) col-
lect all messages from N’s other neighbors; (ii) identify the
relevant and irrelevant variables; (iii) apply AR to physically
eliminate variables in N − N ′ from the relevant distributions.

Example 1. Consider how Lazy AR physically constructs
the messages passed from node lmnqr to node ilnqr in the
Hailfinder join tree of Figure 3 given evidence j = 0. In Step
(i), lmnqr collects p(n|m) and p(q|m, n) from node kmnq, as
well as p(m|l) from node elm. For Step (ii), no variables are

FIG. 4. Lazy AR applies AR to eliminate variable m in Example 1.

NETWORKS—2010—DOI 10.1002/net 353

FIG. 5. For building messages p(j = 0) and p(m|j = 0) from node lmnqr, messages p(j = 0) and p(l|j = 0)

from ilnqr are, respectively, relevant, whereas the message p(r|j = 0, l, n, q) is irrelevant in both cases.

irrelevant. In Step (iii), Lazy AR eliminates variable m from
the Bayesian network in Figure 4i defined by these tables
as follows. Observe that arcs (m, n) and (m, q) need to be
reversed and n ≺ q. For the first arc (m, n), vi = m, Pi = {l},
vj = n, Pj = {m}, and Fj = {m, n}. The reversed arc (n, m)

is created by setting Pi = {l, n} and Pj = {l}, as shown
in Figure 4ii. Next, the new table p(n|l) for n is physically
constructed by Equation (1) as: p(n|l) = ∑

m p(m|l)·p(n|m).
Using Equation (2), the new table for m is constructed in
computer memory as: p(m|l, n) = (p(m|l) · p(n|m))/p(n|l).
Similarly, arc (m, q) is reversed as (q, m) and a new table for q
is physically computed: p(q|l, n) = ∑

m p(m|l, n) ·p(q|m, n),
as shown in Figure 4iii. Variable m can now be removed
from the network as illustrated in Figure 4iv. The constructed
messages p(n|l) and p(q|l, n) are sent to ilnqr.

3. PRIORITIZED JOIN TREE PROPAGATION

In this section, we introduce prioritized join tree propaga-
tion as a new approach to Bayesian inference. Our method
can be broken down into three tasks: (i) identify the headings
of all messages to be propagated in the join tree. (ii) for each
join tree node, identify the relevant and irrelevant incoming
messages with respect to each outgoing message; (iii) apply
VE to physically build the relevant messages, followed by
the irrelevant messages.

For probabilistic inference in real-world Bayesian net-
works, it is often the case that only some of the messages
propagated are relevant to subsequent message computation
at the receiving node. Using the propagation of evidence in

the Hailfinder join tree, Example 2 will show that all mes-
sages from lmnqr are irrelevant to ilnqr, while Example 3
illustrates that some of the messages from ilnqr to lmnqr
are irrelevant. For simplicity we ignore all distributions not
essential to our main point.

Example 2. Consider the message p(i) to be passed from
node ilnqr to node gijl in Figure 3. Clearly, ilnqr simply
forwards to gijl the incoming message p(i) from node fi.
Therefore, all of the physical computation done by Lazy AR
at node lmnqr in Example 1 to construct messages p(n|l) and
p(q|l, n) is irrelevant to the subsequent message construction
at ilnqr.

Example 2 shows that Lazy AR will force node ilnqr to
wait for node lmnqr to build messages p(n|l) and p(q|l, n),
even though these messages are irrelevant to the forwarding
of the subsequent message p(i) from ilnqr.

Example 3. In Figure 5, consider Lazy AR’s construction of
the three messages p(j = 0), p(l|j = 0), and p(r|j = 0, l, n, q)

sent from node ilnqr to node lmnqr in the Hailfinder join
tree given evidence j = 0. By Step (i), node ilnqr has col-
lected messages p(i), p(j = 0|i), and p(l|i, j = 0) from
its other neighbors. In Step (ii), all variables are relevant.
For Step (iii), variable i needs to be eliminated from these
three messages together with the table p(r|i, l, n, q) assigned
to ilnqr. Arcs (i, j), (i, l), and (i, r) need to be reversed.
Because j ≺ l ≺ r, AR is applied as follows. Arc (i, j) is
reversed as (j, i) using p(j = 0) = ∑

i p(i) · p(j = 0|i) and
p(i|j = 0) = (p(i) · p(j = 0|i))/p(j = 0). To create (l, i),

354 NETWORKS—2010—DOI 10.1002/net

Lazy AR builds p(l|j = 0) = ∑
i p(i|j = 0) · p(l|i, j = 0)

and p(i|j = 0, l) = (p(i|j = 0) · p(l|i, j = 0))/p(l|j = 0).
Lastly, reversing (i, r) is accomplished by physically build-
ing p(r|j = 0, l, n, q) = ∑

i p(i|j = 0, l) · p(r|i, l, n, q).
Lazy AR then sends the constructed messages p(j = 0),
p(l|j = 0), and p(r|j = 0, l, n, q) to lmnqr. Revisiting Figure
5, now consider how the subsequent messages p(j = 0)

and p(m|j = 0) from lmnqr to node kmnq are constructed.
Message p(j = 0) can be simply forwarded meaning that
the incoming messages p(l|j = 0), p(r|j = 0, l, n, q), and
p(m|l) are irrelevant. Lazy AR builds message p(m|j = 0)

as: p(m|j = 0) = ∑
l p(l|j = 0) · p(m|l). This implies that

only the incoming message p(l|j = 0) from ilnqr and message
p(m|l) from elm are relevant, while the incoming messages
p(j = 0) and p(r|j = 0, l, n, q) are irrelevant.

Example 3 shows that Lazy AR forces lmnqr to wait for
all messages to be received, even though only some of the
messages are relevant to subsequent message computation at
lmnqr. Examples 2 and 3 together motivate the development
of a new approach to Bayesian inference—one that gives
priority to relevant messages.

3.1. Identifying the Message Headings

Our prioritized join tree propagation approach can identify
the headings of all messages propagated in a join tree with
Algorithm 1, called MsgId, defined as follows.

Algorithm 1 [3] MsgId (C, X)

Input: C- a set of distribution headings at a join tree node N ,
X- the set of variables to be eliminated.

Output: the set C of message headings sent from a join tree
node to a neighbor.

begin
Construct the unique directed acyclic graph DN defined
by C.
for each variable vi in X

Let Y = {v1, . . . , vk} be the set of all children of vi in
DN , where v1 ≺ · · · ≺ vk .
for j =1, . . . , k

Pj = Pi ∪ Pj − {vi}.
Pi = Pi ∪ Fj − {vi}.

Remove vi from DN and its distribution heading
from C.

return(C)

end

Example 4. In the Hailfinder join tree of Figure 3, let us
show how node lmnqr identifies the headings of the mes-
sages to be sent to its neighbor ilnqr. Node lmnqr collects
the headings p(m|l), p(n|m), and p(q|m, n) sent from its
neighbors elm and kmnq. It then calls MsgId with C =
{p(m|l), p(n|m), p(q|m, n)} and X = {m}. Here, vi = m,
Y = {v1 = n, v2 = q}, Pi = {l}, P1 = {m}, F1 = {m, n},
P2 = {m, n}, and F2 = {m, n, q}. Consider the first variable

FIG. 6. Given evidence j = 0 in the join tree for the real-world Hailfinder
Bayesian network (see Figs. 3 and 5), our system identifies the headings of
the messages (distributions) to be propagated.

v1 = n in Y. As Pi ∪ P1 − {vi} = {l}, P1 is modified as
P1 = {l}. Because Pi ∪ F1 − {vi} = {l, n}, Pi is changed
to Pi = {l, n}. The set C is set to C = {p(m|l, n), p(n|l),
p(q|m, n)}. Now consider the second variable v2 = q in Y.
P2 is changed to {l, n}, because Pi ∪ P2 − {vi} = {l, n}. As
Pi ∪F2 −{vi} = {l, n, q}, Pi is modified as Pi = {l, n, q}. Vari-
able m is then removed. Thus, C = {p(n|l), p(q|l, n)} denotes
the headings of messages p(n|l) and p(q|l, n) sent from lmnqr
to ilnqr.

Note that it is easy to use MsgId to identify message
headings when evidence is propagated in a join tree. Given
evidence E = e, set N = N ∪ E for each node N in the join
tree. On this augmented join tree, apply MsgId as usual. After
message heading identification, for each evidence variable
v ∈ E, change each occurrence of v in the headings returned
by MsgId from v to v = ε, where ε is the observed value
of v. The screen-shot of our implemented system in Figure 6
shows some of the message headings identified given evi-
dence j = 0 in the Hailfinder join tree. Figure 6 emphasizes
node lmnqr and its neighbors. The important point is that the
MsgId algorithm identifies the headings of the messages that
will be propagated in the join tree before the probability dis-
tributions of the messages are physically built in computer
memory.

3.2. Identifying the Relevant Messages

Here, we determine the relevant messages with respect to
subsequent message computation at the receiving node.

Consider three distinct join tree nodes N1, N2, and N3 such
that p(X1|Y1) is a message to be passed from N1 to N2 and
p(X2|Y2) is a message to be passed from N2 to N3. We say
p(X1|Y1) is relevant to p(X2|Y2), if p(X1|Y1) is required in

NETWORKS—2010—DOI 10.1002/net 355

FIG. 7. Given evidence j = 0 in the Hailfinder join tree of Figure 5, our system identifies the relevant and
irrelevant incoming messages for the construction of every outgoing message.

the physical construction or the forwarding of p(X2|Y2); oth-
erwise, p(X1|Y1) is irrelevant to p(X2|Y2). By viewing each
outgoing message p(X2|Y2) sent out from a join tree node N2

as a query posed to N2’s local directed acyclic graph DN2 ,
the RelMsgId algorithm can determine which, if any, of the
incoming messages p(X1|Y1) are relevant.

Algorithm 2 RelMsgId (A, p(v|Y), C)

Input: A - the set of distribution headings assigned to join
tree node N ,
p(v|Y) - the heading of an outgoing message sent
from N to a neighbor N ′,
C - the headings of the incoming messages sent to
N from all neighbors except N ′.

Output: classification of the headings in C as relevant or
irrelevant with respect to constructing or forwarding p(v|Y).
begin
Build the local directed acyclic graph DN uniquely defined
by A and C at join tree node N .
Apply the Prune algorithm on DN using p(v|Y).
for each variable vi that was pruned

if p(vi|Pi) ∈ C
Mark heading p(vi|Pi) as irrelevant.

for each variable vi that was not pruned
if vi
= v and p(vi|Pi) ∈ C and vi is a root evidence
variable

Mark heading p(vi|Pi) as irrelevant.
Mark all remaining unmarked headings in C as relevant.
return (C)

end

Example 5. Consider the message p(i) sent from node ilnqr
to its neighbor gijl in the Hailfinder join tree of Figure 3.
RelMsgId builds the local directed acyclic graph defined
by the incoming headings p(i), p(n|l), and p(q|l, n) along
with the assigned heading p(r|i, l, n, q). Given this graph
and query p(i), the Prune algorithm removes the irrelevant
variables l, n, q, and r. Thus, RelMsgId marks the incoming
messages p(n|l) and p(q|l, n) from node lmnqqr as irrele-
vant to the forwarding of p(i). On the contrary, the incoming
message p(i) from node fi is marked relevant. In the converse
direction, consider message p(m|j = 0) sent from node lmnqr
to its neighbor kmnq in Figure 5. RelMsgId builds the local
directed acyclic graph defined by the incoming messages
p(j = 0), p(l|j = 0), p(r|j = 0, l, n, q), and p(m|l). The Prune
algorithm removes irrelevant variables n, q, and r. Thus,
RelMsgId marks p(r|j = 0, l, n, q) as irrelevant. Because j is
a root evidence variable, RelMsgId marks p(j = 0) as irrel-
evant. On the other hand, the incoming messages p(l|j = 0)

and p(m|l) are marked as relevant.

Given evidence j = 0 in the Hailfinder join tree, the
screen-shot of our system in Figure 7 indicates whether or
not an incoming message from node 1 is relevant at node 2
for the subsequent construction of a particular message from
node 2 to node 3.

3.3. Physical Construction of Messages

A join tree node is allowed to physically build an outgo-
ing message as soon as it has received all incoming messages
that are relevant to its construction. Our approach uses VE to
build distributions in computer memory. AR is not well suited

356 NETWORKS—2010—DOI 10.1002/net

for message construction in prioritized join tree propagation,
because it constructs a new probability distribution for every
child of the variable being eliminated [3]. As some of these
new distributions can be deemed relevant and the rest irrel-
evant, we instead call VE to build the relevant distributions
as needed. After all relevant messages have been constructed
and sent, the irrelevant messages are built so that posterior
probabilities can be computed when propagation finishes.

Example 6. Consider how VE builds message p(m|j = 0)

from node lmnqr to node kmnq in the Hailfinder join tree of
Figure 5 when evidence j = 0 is observed. By Example 5, only
p(m|l) and p(l|j = 0) are relevant to this task. To eliminate
variable l, VE computes p(m, l|j = 0) = p(m|l) · p(l|j = 0),
followed by p(m|j = 0) = ∑

l p(m, l|j = 0). The probability
table p(m|j = 0) is returned to lmnqr.

Further to Example 6, while p(r|j = 0, l, n, q) is irrel-
evant with respect to subsequent message construction at
node lmnqr, it is needed so that lmnqr can compute the
posterior probability of its variables (given the evidence
j = 0) from the tables assigned to it together with those
passed to it after propagation finishes. According to Figures
3 and 5, when propagation of the evidence j = 0 finishes,
the probability information at node lmnqr is more formally
expressed as: p(l, m, n, q, r, j = 0) = p(j = 0) · p(l|j =
0)·p(m|l)·p(n|m)·p(q|m, n)·p(r|j = 0, l, n, q). The posterior
probability p(n|j = 0), for instance, can be easily computed
from this factorization.

The primary difference between our approach and Lazy
AR is illustrated in Example 6, whereby our approach allows
node lmnqr to physically build message p(m|j = 0) as soon
as it has the received messages p(l|j = 0) and p(m|l). On
the contrary, the state-of-the-art method, Lazy AR, will force
node lmnqr to wait for the reception of messages p(j = 0) and
p(r|j = 0, l, n, q) as well, even though these two messages
are not required in the physical construction of p(m|j = 0).
This unnecessary delay in Example 6 is inherently built into
the main philosophy of Lazy AR. Messages are classified as
relevant or irrelevant in Step (ii) only after a join tree node col-
lects all of its messages in Step (i). This immediately means
that for any incoming message deemed irrelevant in Step (ii),
Lazy AR has already forced the join tree node to wait for its
physical construction prior to Step (i). On the contrary, in the
three main steps of prioritized join tree propagation, the mes-
sage headings identified in Step (i) are classified as relevant or
irrelevant in Step (ii) before any physical computation takes
place in computer memory by Step (iii). Therefore, by avoid-
ing this type of unnecessary delay, our prioritized approach
can perform Bayesian network inference faster than Lazy AR.

4. EXPERIMENTAL RESULTS

Here, we conduct an empirical comparison of Lazy AR
and prioritized join tree propagation.

We first illustrate how prioritized messages can be
exploited during parallel computation based on the

following three assumptions: (i) there are two proces-
sors, denoted P1 and P2, each with a queue of mes-
sages to be built or forwarded; (ii) in Lazy AR, if a
join tree node applies AR to physically build k messages
{p(v1|P1), p(v2|P2), . . . , p(vk|Pk)}, then we place all k mes-
sages on the queue of same processor, because p(v1|P1) is
needed to build p(v2|P2), and so on; (iii) in Lazy AR, the
processor that finishes building or forwarding the messages
sent from node N1 to node N2 will be used to build or forward
the subsequent messages sent from N2 to node N3 (N3
= N1).
The reason is that, in Lazy AR, if N1 sends messages to N2,
then N2 necessarily waits for all of N1’s messages before
building or forwarding the subsequent messages to node N3.
In the next two examples, we often refer to messages with
the sending and receiving nodes understood.

Example 7. The optimal schedule in Lazy AR for propagat-
ing the eleven distributions from nodes dkoq, elm, and abcf
towards node gijl in the real-world Hailfinder join tree of
Figure 3 is:

P1 : p(q|k, o), p(k), p(q|k, m), p(n|m), p(q|m, n),

p(n|l), p(q|l, n), p(i).

P2 : p(m|l), p(f), p(i).

By (ii) and (iii), the eight messages p(q|k, o), p(k), p(q|k, m),
p(n|m), p(q|m, n), p(n|l), p(q|l, n), and p(i) from node dkoq
towards node gijl must necessarily be built in a serial fashion,
say on processor P1. This means that processor P2 builds
three messages, namely, p(m|l), p(f), and p(i). Our optimal
schedule is:

P1 : p(q|k, o), p(q|k, m), p(n|m), p(q|m, n), p(n|l), p(q|l, n).

P2 : p(k), p(m|l), p(f), p(i), p(i).

Example 7 shows that, in our approach, when processor P1

is building p(q|k, o), processor P2 is forwarding p(k), because
we mark p(q|k, o) as irrelevant to the forwarding of p(k).
Moreover, p(i) can be built and forwarded by P2, because
p(f) is the only relevant message for building p(i). Now, let
us consider a more involved example.

Example 8. In the Hailfinder join tree of Figure 5, the
Lazy AR optimal schedule for propagating the thirteen dis-
tributions from nodes hxy, gst, abcf , and elm towards node
kmnq is:

P1 : p(h), p(j = 0|i), p(j = 0|i), p(l|i, j = 0), p(j = 0),

p(l|j = 0), p(r|j = 0, l, n, q), p(j = 0). (3)

P2 : p(g), p(f), p(i), p(m|l), p(m|j = 0).

By (ii) and (iii), the first eight distributions sent from hxy
towards kmnq must necessarily be built in a serial fashion, say
on P1. Therefore, the remaining five messages are placed in
P2’s queue. Observe that even though there are two messages
p(j = 0) and p(m|j = 0) sent from node lmnqr to kmnq,

NETWORKS—2010—DOI 10.1002/net 357

TABLE 1. Description of real-world or benchmark Bayesian networks and
the constructed join trees.

Bayesian Number of Number of Number of variables
network Bayesian network join tree in the largest
name variables nodes join tree node

Alarm 37 27 5
Barley 48 36 8
CHD 11 5 6
Hailfinder 56 43 5
Insurance 27 18 8

p(j = 0) can be simply forwarded by P1 in Equation (3),
while p(m|j = 0) can be built by P2, without the need of
p(j = 0) as shown in Example 3. The prioritized propagation
optimal schedule is:

P1 : p(h), p(j = 0|i), p(j = 0|i), p(l|i, j = 0),

p(l|j = 0), p(r|j = 0, l, n, q).

P2 : p(g), p(f), p(i), p(j = 0), p(j = 0), p(m|l), p(m|j = 0).

The two important points in Example 8 are that in Equa-
tion (3), Lazy AR insists that p(l|i, j = 0) be physically built
before p(j = 0) is constructed, even though p(l|i, j = 0) is not
needed in the construction of p(j = 0). Moreover, for the sec-
ond p(j = 0) in Equation (3), Lazy AR requires p(l|i, j = 0),
p(l|j = 0), and p(r|j = 0, l, n, q) to be physically built even
though they are not needed to forward p(j = 0). These prob-
lems are avoided in our prioritized schedule. Examples 7
and 8 together illustrate that Lazy AR can impose unneces-
sary restrictions on when a distribution is built or forwarded.
Therefore, Lazy AR often performs calculations in a serial
manner when, in fact, they can be performed in a paral-
lel fashion. By recognizing and removing these unnecessary
restrictions, our prioritized approach necessarily runs faster.

It is also worth contrasting our work here with our previous
work. In [3], we suggest applying the VE algorithm to build
the messages in a Lazy AR schedule rather than applying the
AR algorithm to construct the messages as Lazy AR does.
We explicitly demonstrated that the AR algorithm can build
probability distributions that will not be passed as messages,
nor are they needed in the construction of the messages that
will be passed. Thus, although our previous work focused on
how the messages are built, the work here focuses on when
the messages are built. We now empirically demonstrate the

TABLE 2. The performance of Lazy AR and our prioritized approach
without evidence variables.

Bayesian network Prioritized Speed-up
name Lazy AR approach over Lazy AR

Alarm 0.277 0.109 41.9%
Barley 13,323.781 4,133.274 69.0%
CHD 0.033 0.014 57.6%
Hailfinder 1.192 0.866 25.8%
Insurance 0.606 0.222 53.5%

TABLE 3. The performance of Lazy AR and our prioritized approach with
nine percent evidence variables.

Bayesian
network Number of Prioritized Speed-up
name evidence variables Lazy AR approach over Lazy AR

Alarm 3 0.221 0.191 13.6%
Barley 4 1,257.560 1,017.651 19.1%
CHD 1 0.018 0.006 38.9%
Hailfinder 5 3.483 2.509 66.7%
Insurance 2 0.401 0.231 42.4%

time savings to be made by using a better schedule of when
messages can be constructed.

In our empirical evaluation, both methods were imple-
mented in the C++ programming language. The experiments
were conducted on a 24-processor SGI Onyx2 graphics
supercomputer. Each inference algorithm has two processors
allocated for its sole usage. The evaluation was carried out
on four real-world Bayesian networks, called Alarm, Barley,
CHD and Hailfinder, as well as one benchmark Bayesian net-
work known as Insurance. The corresponding join trees were
built using the Netica system [17]. Table 1 describes each
Bayesian network and its corresponding join tree.

Table 2 reports on Bayesian inference with no evidence
variables. The running times in seconds are listed in the sec-
ond and third columns for Lazy AR and prioritized join tree
propagation, respectively. The last column shows the speed-
up of our prioritized approach over Lazy AR, the average of
which was 49.6%.

Next, the running times of Bayesian network inference
involving evidence were measured. As shown in Tables 3
and 4, approximately nine percent and eighteen percent
of the variables in each Bayesian network were randomly
instantiated as evidence variables, respectively. Once again,
prioritized join tree propagation was faster than Lazy AR in
all Bayesian networks. In Table 3, the time saved ranged from
13.6 to 66.7% with an average of 36.1%. Similarly, in Table
4, the time saved ranged from 7.4 to 40.9% with an average
of 21.7%.

5. CONCLUSIONS

This article is the first work to suggest the concept of prior-
itized join tree propagation. As illustrated in Examples 2 and
3, the motivation for this study is based on the observation

TABLE 4. The performance of Lazy AR and our prioritized approach with
eighteen percent evidence variables.

Bayesian network Number of Prioritized Speed-up
name evidence variables Lazy AR approach over Lazy AR

Alarm 7 0.122 0.113 7.4%
Barley 9 30.889 27.857 9.8%
CHD 2 0.011 0.007 36.4%
Hailfinder 10 3.673 3.159 14.0%
Insurance 5 0.225 0.133 40.9%

358 NETWORKS—2010—DOI 10.1002/net

that, during inference in real-world Bayesian networks, it is
often the case that only some of the messages passed to a join
tree node are actually needed in the physical construction of
the subsequent probability distributions (messages) sent out
from the node. Consequently, our approach first identifies the
headings of all distributions to be propagated in the join tree,
as illustrated by the screen-shot of Figure 6. With respect to
each join tree node N , our system then labels each incoming
message to N as either relevant or irrelevant to the physical
construction of each message outgoing from N , as indicated
by the screen-shot of Figure 7. Lastly, our system builds
the relevant messages and then the irrelevant messages. As
reported in Tables 2, 3, and 4, in all four real-world Bayesian
networks and one benchmark Bayesian network and with
varying amounts of evidence, prioritized join tree propaga-
tion finished faster than Lazy AR without exception. Future
work includes the identification of those instances when the
same distribution is to be constructed at multiple join tree
nodes, as well as the development of a heuristic to estimate
the node to best build the distribution.

Acknowledgments

The authors would like to thank anonymous reviewers for
their contribution in making a more clear and focused paper.

REFERENCES

[1] B. Abramson, J. Brown, W. Edwards, A. Murphy, and
R.L. Winkler, Hailfinder: A Bayesian system for forecasting
severe weather, Int J Forecasting 12 (1996), 57–71.

[2] M. Baker and T.E. Boult, Pruning Bayesian networks for
efficient computation, Proceedings of 6th Conference on
Uncertainty in Artificial Intelligence, Cambridge, MA, 1990,
pp. 225–232.

[3] C.J. Butz and S. Hua, An improved LAZY-AR approach
to Bayesian network inference, Proceedings of 19th Cana-
dian Conference on Artificial Intelligence, Quebec City, QC,
2006, pp. 183–194.

[4] A. Cano, S. Moral, and A. Salmeron, LAZY evaluation in
penniless propagation over join trees, Networks 39 (2002),
175–185.

[5] E. Castillo, J. Gutiérrez, and A. Hadi, A new method for
efficient symbolic propagation in discrete Bayesian networks,
Networks 28 (1996), 31–43.

[6] E. Castillo, J. Gutiérrez, and A. Hadi, Expert systems and
probabilistic network models, Springer, New York, 1997.

[7] E. Castillo, A.S. Hadi, F. Jubete, and C. Solares, An expert
system for coherent assessment of probabilities in multigraph
models, Networks 33 (1999), 193–206.

[8] R.M. Chavez and G.F. Cooper, A randomized approxima-
tion algorithm for probabilistic inference on Bayesian belief
networks, Networks 20 (1990), 661–685.

[9] G.F. Cooper, The computational complexity of probabilis-
tic inference using Bayesian belief networks, Artif Intell 42
(1990), 393–405.

[10] P. Dagum and E. Horvitz, A Bayesian analysis of simula-
tion algorithms for inference in belief networks, Networks
23 (1993), 499–516.

[11] D. Geiger, T. Verma, and J. Pearl, Identifying independence
in Bayesian networks, Networks 20 (1990), 507–534.

[12] P. Hájek, T. Havránek, and R. Jiroušek, Uncertain information
processing in expert systems, CRC Press, Ann Arbor, 1992.

[13] F.V. Jensen, K.G. Olesen, and S.K. Andersen, An algebra
of Bayesian belief universes for knowledge based systems,
Networks 20 (1990), 637–659.

[14] A.L. Madsen, An empirical evaluation of possible varia-
tions of lazy propagation, Proceedings of 20th Conference
on Uncertainty in Artificial Intelligence, Banff, AB, 2004,
pp. 366–373.

[15] A.L. Madsen, Variations over the message computation algo-
rithm of lazy propagation, IEEE Trans Sys Man Cybern, B
36 (2006), 636–648.

[16] A.L. Madsen and F.V. Jensen, Parallelization of inference
in Bayesian networks, Research report R-99-5002, Aalborg
University, 1999, Denmark.

[17] Norsys Software Corp., Netica software, webpage, Available
at: http://www.norsys.com/.

[18] S. Olmsted, On representing and solving decision problems,
PhD Thesis, Department of Engineering Economic Systems,
Stanford University, Stanford, California, 1983.

[19] J. Pearl, Probabilistic reasoning in intelligent systems: Net-
works of plausible inference, Morgan Kaufmann, San Fran-
cisco, 1988.

[20] C. A. de B. Pereira and R. E. Barlow, Medical diagnosis using
influence diagrams, Networks 20 (1990), 565–577.

[21] R. Shachter, Evaluating influence diagrams, Oper Res 34
(1986), 871–882.

[22] R. Shachter, An ordered examination of influence diagrams,
Networks 20 (1990), 535–563.

[23] G. Shafer, Probabilistic expert systems, SIAM, Philadelphia,
1996.

[24] D.J. Spiegelhalter and S.L. Lauritzen, Sequential updating
of conditional probabilities on directed graphical structures,
Networks 20 (1990), 579–605.

[25] S.K.M. Wong, C.J. Butz, and D. Wu, On the implication prob-
lem for probabilistic conditional independency, IEEE Trans
Sys Man Cybern A 30 (2000), 785–805.

[26] Y. Xiang, Verification of DAG structures in cooperative belief
network-based multiagent systems, Networks 31 (1998),
183–191.

[27] Y. Xiang, Cooperative triangulation in MSBNs without
revealing subnet structures, Networks 37 (2001), 53–65.

[28] N.L. Zhang and D. Poole, A simple approach to Bayesian net-
work computations, Proceedings of 10th Canadian Confer-
ence on Artificial Intelligence, Banff, AB, 1994, pp. 171–178.

NETWORKS—2010—DOI 10.1002/net 359

