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Abstract. This paper studies the pickup and delivery traveling salesman problem with 
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constraint which states that any new item must be loaded on top of a stack and any 
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1 Introduction

While the vehicle routing problem has been studied for a long time and hundreds
of papers have dealt with solution algorithms for different variants of this problem,
much less attention has been paid to problems with both routing and loading aspects.
As vehicle routing problems are hard problems, integrating routing and loading is
a challenging task. However, this is the kind of problems that carriers must face
on a daily basis. By solving the routing and loading problems separately, grossly
sub-optimal solutions are obtained. For example, if the loading problem is solved
first, the optimization of the loading space is likely to lead to severe constraints on
the routing aspect of the problem and to time consuming unloading and reloading
operations along the route.

In this paper, we study the pickup and delivery traveling salesman problem
with multiple stacks (PDTSPMS ), where a single vehicle is available to serve a
set of customer requests. Each request consists in picking up an item at a given
location and delivering it to a different location. The vehicle contains a number
of independent horizontal stacks (rows) of finite length (capacity) for loading items
from the rear. Each stack must satisfy the last-in-first-out (LIFO) property which
states that any new item must be loaded on top of a stack and any unloaded item
must be on top of its stack. The objective is to serve all requests at minimum cost,
where the cost corresponds to the traveling distance.

The PDTSPMS is a generalization of the double traveling salesman problem with
multiple stacks (DTSPMS ) introduced in [27]. In the DTSPMS, a number of LIFO
stacks are available to stock items of equal length. In a valid solution, the vehicle
must collect all pickups and return to the depot before performing the deliveries.
In [27], the authors propose a mathematical model and some metaheuristics to
solve the DTSPMS, while new neighborhood structures are considered in [14]. A
large neighborhood search heuristic developed primarily for the PDTSPMS is also
successfully applied to the DTSPMS in [10]. Exact solution methods are reported
in [22, 26]: the second work is based on a branch-and-cut procedure, while the first
one matches the k best tours for the pickups and the k best tours for the deliveries.
An additive branch-and-bound method is proposed in [4] for a special case with only
two stacks. Finally, some theoretical properties of the DTSPMS are derived in [6]
and a heuristic algorithm is developed to exploit these properties.

The PDTSPMS is also a generalization of the pickup and delivery TSP with
LIFO loading constraints (PDTSPL), where the vehicle contains a single LIFO stack
of infinite capacity. This problem is solved with either heuristic of exact methods
in [3, 5, 9]. A polyhedral study and a branch-and-cut algorithm are also described
in [12]. Other variants of pickup and delivery traveling salesman problems with
different types of loading policies, like first-in-first-out (FIFO), are reported in [2,
3, 8, 13].

Many types of combined vehicle routing and loading problems can be found in
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the scientific literature when the routing problem is made of pickup- or (exclusive)
delivery-only operations. A tabu search and an ant colony heuristic are used to
solve a problem with two dimensional loading constraints in [15, 18], while an exact
approach is proposed in [21]. The problem is extended to three dimensional loading
constraints and is solved with metaheuristics in [16]. Other types of loading con-
straints have also been considered in [11, 17, 32]. For an overview of this line of
research, the reader is referred to [20].

In this paper, several classes of valid inequalities for the PDTSPMS are derived
and exploited within a branch-and-cut algorithm. The computational results show
that the size of instances that can be solved with this algorithm strongly depends on
the specific type of instance considered. While instances with up to 43 nodes can be
solved in some test sets, instances with 27 nodes cannot be solved exactly in some
other sets. Since the branch-and-cut algorithm proposed in this work is the first
exact algorithm for the PDTSPMS, DTSPMS instances have been used to compare
its performance with other exact methods, namely the algorithms of Lusby et al.
[26] and Petersen et al. [22], for a variable number of stacks, and the algorithm of
Carrabs et al. [4] for two stacks. The results show that our algorithm outperforms
these previous methods, even if it was not specifically designed for the DTSPMS.

The paper is organized as follows. In Section 2, three different formulations
for the PDTSPMS are proposed. Then, several classes of valid inequalities are
presented in Section 3 and separation procedures are described in Section 4. Section
5 is devoted to the branch-and-cut algorithm and computational results are reported
in Section 6.

2 Problem formulation

The PDTSPMS can be formally stated as follows. Let G = (V,A) be a complete
directed graph where V = {0, 1, ..., 2n+1} is the node set and A is the arc set. Nodes
0 and 2n + 1 denote the depot at the start and at the end of the tour, respectively,
while nodes i and n+i are the pickup and delivery locations of customer i, 1 ≤ i ≤ n.
Each request implies to pickup an item at location i and to deliver it at location
n+i. We denote P = {1, ..., n} and D = {n+1, ..., 2n} the set of pickup and delivery
locations, respectively. An item of length di is associated with pickup location i ∈ P .
For simplicity, we will refer in the following to the item picked up at location i as
item i. An item of length d0 = d2n+1 = 0 is associated with the depot and an item of
length −di with delivery location n+ i ∈ D. We also have a cost cij associated with
each arc (i, j) ∈ A. A single vehicle is available to serve all requests. This vehicle
contains a set M = {1, 2, ...,m} of LIFO stacks, each of capacity Q, to transport the
items between pickup and delivery locations. The goal is to serve all customers with
a least-cost route, starting at node 0 and ending at node 2n+1, while satisfying the
side constraints.
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To model the problem as a mathematical program, we introduce the following
notation:

• S̄ = V \S, S ⊆ V ;

• x(S) =
∑

i,j∈S xij , S ⊆ V ;

• x(δ+(S)) =
∑

i∈S,j /∈S xij , S ⊆ V ;

• x(δ−(S)) =
∑

i/∈S,j∈S xij , S ⊆ V ;

• x(δ(S)) = x(δ+(S)) + x(δ−(S)), S ⊆ V ;

• x(i, S) =
∑

j∈S xij , i ∈ V , S ⊆ V ;

• x(S, i) =
∑

j∈S xji, i ∈ V , S ⊆ V ;

• π(j) = j, j ∈ P ;

• π(n + j) = j, n + j ∈ D;

• π(S) = {i ∈ P |n + i ∈ S};

• σ(S) = {n + i ∈ D|i ∈ S};

• Sj = {S′ ⊂ P ∪D|j ∈ S
′
and n + j /∈ S

′};

• Sn+j = {S′ ⊂ P ∪D|j /∈ S
′
and n + j ∈ S

′};

We also define the following decision variables:

• xij is 1 if node j is visited immediately after node i, 0 otherwise, i, j ∈ V ,
i 6= j;

• yik is 1 if item i is loaded in stack k, 0 otherwise, i ∈ P , k ∈ M ;

• 0 ≤ sik ≤ Q is the load of stack k upon leaving node i, i ∈ V , k ∈ M (with
s0k = 0, k ∈ M).

The PDTSPMS can now be formulated as follows:

min
∑

(i,j)∈A

cijxij (1)

subject to∑
j∈V

xij = 1, i ∈ P ∪D ∪ {0} (2)
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∑
j∈V

xji = 1, i ∈ P ∪D ∪ {2n + 1} (3)

x(S) ≤ |S| − 1, S ⊂ P ∪D, |S| ≥ 2 (4)

x(S) ≤ |S| − 2, S ∈ Ω (5)∑
k∈M

yik = 1, i ∈ P (6)

sjk ≥ sik + djyπ(j)k −Q(1− xij), i ∈ V, j ∈ P ∪D, k ∈ M (7)

sjk ≤ sik + djyπ(j)k + Q(1− xij), i ∈ V, j ∈ P ∪D, k ∈ M (8)

s(n+j)k ≥ sjk − djyjk −Q(1− yjk), j ∈ P, k ∈ M (9)

s(n+j)k ≤ sjk − djyjk + Q(1− yjk), j ∈ P, k ∈ M (10)

s0k = 0, k ∈ M (11)

0 ≤ sik ≤ Q, i ∈ V, k ∈ M (12)

xij ∈ {0, 1}, i, j ∈ V (13)

yik ∈ {0, 1}, i ∈ P, k ∈ M. (14)

This model will be referred to as the network formulation. In this formulation,
the objective function (1) is aimed at minimizing the total cost which corresponds
to the distance traveled by the vehicle. Each node is visited exactly once through
constraints (2) and (3). Constraints (4) impose connectivity on the route. The
precedence constraints between the pickup and delivery locations (5) are taken from
[30]. Here, the set Ω is a collection of subsets S ⊂ V such that, for each subset S,
we have 0 ∈ S, 2n + 1 /∈ S and there exists a pickup i /∈ S for which n + i ∈ S.
Constraints (6) state that each item is loaded in exactly one stack. Constraints (7)
and (8) define the status of the stacks after each pickup and delivery. The LIFO
loading constraints are stated in (9) and (10). Finally, constraints (11) and (12)
take into account the capacity of each stack.

In the next sections, alternative formulations are considered to avoid the use of
(7), (8), (9) and (10) which are similar to the Miller, Tucker and Zemlin constraints
[25]. These constraints are known to generate poor linear relaxations.

2.1 Flow formulation

We can extend the flow formulation proposed in [9] for the PDTSPL by adding a
stack index to the variables. Let fk

ij be the flow circulating on arc (i, j) for stack
k. A pickup operation increases the flow whereas a delivery operation decreases it.
Thus, the flow on arc (i, j) for stack k increases by di if item i is loaded on stack k,
as indicated in constraints (15) below. When item i is not loaded on stack k, the
flow remains unchanged.

4

A Branch-and-Cut Algorithm for the Pickup and Delivery Traveling Salesman Problem with Multiple Stacks

CIRRELT-2010-55



To satisfy the LIFO constraints, the load on stack k before serving i ∈ P and
after serving n + i ∈ D must be the same. Constraints (16) and (17) guarantee
the LIFO policy only for items loaded on the same stack. If item i is on stack k,
inequalities (16) and (17) state that the flow to i ∈ P and the flow from n + i ∈ D
must be the same. On the other hand, if item i is not on stack k, constraints (16)
and (17) are not binding. The flow formulation is then given by (1)-(6), (13)-(14)
and (15)-(18).

∑
j∈N

fk
ji −

∑
j∈N

fk
ij = diyπ(i)k i ∈ P ∪D (15)

∑
j∈N

fk
ji −

∑
j∈N

fk
(n+i)j ≤ Q(1− yik) i ∈ P, k ∈ M (16)

∑
j∈N

fk
ji −

∑
j∈N

fk
(n+i)j ≥ −Q(1− yik) i ∈ P, k ∈ M (17)

0 ≤ fk
ji ≤ Q (i, j) ∈ A, k ∈ M. (18)

2.2 Infeasible path formulation

Let p be a path in G. The formulation presented here is inspired by the work on the
DTSPMS in [26] and requires no additional variables with regard to the network
formulation. The infeasible path formulation is given by (1)-(5), (13) plus a set of
constraints for eliminating all paths which are infeasible with regard to the LIFO
constraints (9)-(10) or capacity constraints (12). These so-called path inequalities
are of the form:

x(p) ≤ |p| − 1 p ∈ Φ (19)

where x(p) is the sum, over all arcs in path p, of the x variables associated with
these arcs, |p| is the number of arcs in path p and Φ denotes the set of all LIFO or
capacity infeasible paths.

As the number of LIFO or capacity infeasible paths can be huge, inserting a cut
for each infeasible path is inefficient. Thus, we relax these constraints and check for
possible violations to the LIFO or capacity constraints by solving a packing problem
(see below) whenever a valid pickup and delivery traveling salesman tour is found.
If the packing problem is infeasible, we add a constraint of type (19) to remove this
path from the solution space. Conversely, if a feasible packing is found, we have a
feasible solution to the PDTSPMS.
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n+3
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5n+1 n+2 n+4 n+5

Figure 1: Example of a pickup and delivery sequence

2.2.1 Packing problem

Let p be a path. We want to check whether p is LIFO or capacity infeasible. From
p it is possible to compute a set I of incompatible pairs of items (i, j), namely those
items which cannot be packed on the same stack due to the LIFO constraints. This
computation can be done in O(n2) by looking at each pair of nodes i, j ∈ P visited
in p, for which i < j < n + i < n + j or j < i < n + j < n + i, where i < j
means that i is visited before j in p. For a set of items {i1, i2, ..., ik} for which
i1 < i2 < ... < ik < n + i1 < n + i2 < ... < n + ik, we say that items i1, i2, ..., ik
cross each other. We denote by O the list of nodes in the path sequenced by their
visit order. Let also aio be equal to 1 if item i is in the vehicle when node o ∈ O
is visited, 0 otherwise. Hence, aio = 1 if item i is picked up before o and delivered
after o (i.e., i < o < n + i).

In Figure 1, an example for a path with 5 pickups and 5 deliveries is depicted.
The list O is equal to {1, 2, n + 1, n + 2, 3, 4, 5, n + 4, n + 5, n + 3}. With regard
to incompatibilities, items 1 and 2 cross each other and cannot be on the same
stack. The same applies to items 4 and 5. The set of incompatible pairs is then
I = {(1, 2), (4, 5)}.

The objective is to find a feasible packing for the route, that is, an assignment
of each item to a stack such that the LIFO and capacity constraints are satisfied.
Let zik be a binary variable equal to 1 if item i is loaded on stack k. The packing
problem is then:

∑
k∈M

zik = 1 i ∈ P (20)

zik + zjk ≤ 1 (i, j) ∈ I (21)∑
i∈P

aiodizik ≤ Q k ∈ M, o ∈ O (22)

zik ∈ {0, 1} i ∈ P, k ∈ M (23)

In this formulation, constraints (20) associate a single stack with each item.
Constraints (21) prohibit items on the same stack to cross each other. Capacity
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constraints (22) state that the sum of the lengths of items which are on the same
stack at the same time must be less than or equal to the capacity of the stack.

We conclude this section by noting that a similar problem arises in the DTSPMS
(where deliveries can only be done once all items have been picked up). The au-
thors in [6, 31] note that the packing problem in the DTSPMS is NP-hard, as it
is equivalent to a Q-bounded graph coloring problem. However, they showed that
the problem is polynomially solvable when there is no capacity constraint. Since
our packing problem is much more complex, due to deliveries which are allowed to
precede pickups, it is very unlikely that a polynomial time algorithm exists.

3 Valid inequalities

This section presents valid inequalities for the PDTSPMS. We first present the in-
equalities that are inherited from the classical pickup and delivery traveling salesman
problem (PDTSP), where the loading aspect is not considered. Then, we introduce
new inequalities obtained by adapting some inequalities initially proposed for the
vehicle routing problem (VRP) and the PDTSPL .

3.1 Inequalities for the PDTSPL

Given that the PDTSPMS extends the PDTSP, all known inequalities for this prob-
lem can be used. Relevant work for the PDTSP can be found in [7, 12, 28, 29]. Here,
we use the set of inequalities in [9], as described below.

(a) A first class of inequalities is obtained through the predecessor and successor
inequalities for the precedence-constrained ATSP [1]:

x(S) +
∑
i∈S

∑
j∈S̄∩π(S)

xij +
∑

i∈S∩π(S)

∑
j∈S̄\π(S)

xij ≤ |S| − 1 S ⊆ P ∪D (24)

x(S) +
∑

i∈S̄∩σ(S)

∑
j∈S

xij +
∑

i∈S̄\σ(S)

∑
j∈S∩σ(S)

xij ≤ |S| − 1 S ⊆ P ∪D (25)

(b) For a given ordered set S = {i1, i2, ..., ik} ⊆ V with k ≥ 3, the following cycle
inequalities for the ATSP have been proposed in [19]:

k−1∑
h=1

xih,ih+1
+ xik,i1 + 2

k−1∑
h=2

xih,i1 +
k−1∑
h=3

h−1∑
l=2

xih,il ≤ k − 1 (26)
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k−1∑
h=1

xih,ih+1
+ xik,i1 + 2

k∑
h=3

xi1,ih +
k∑

h=4

h−1∑
l=3

xih,il ≤ k − 1 (27)

The previous inequalities can be strengthened by considering sets π(S) and σ(S)
to obtain the cycle inequalities [7]:

k−1∑
h=1

xih,ih+1
+ xik,i1 + 2

k−1∑
h=2

xih,i1 +
k−1∑
h=3

h−1∑
l=2

xih,il+∑
n+ip∈S̄∩σ(S)

xn+ip,i1 ≤ k − 1
(28)

k−1∑
h=1

xih,ih+1
+ xik,i1 + 2

k∑
h=3

xi1,ih +
k∑

h=4

h−1∑
l=3

xih,il+∑
ip∈S̄∩π(S)

xi1,ip ≤ k − 1
(29)

(c) Finally, let U1, ..., Uk ⊂ P ∪D be mutually disjoint subsets such that i1, ..., ik ∈ P
are customer requests for which il, n+il+1 ∈ Ul for l = 1, ..., k (where ik+1 = i1). The
precedence cycle breaking inequalities, introduced for the precedence-constrained
TSP in [1], are also valid for the PDTSPMS :

k∑
l=1

x(Ul) ≤
k∑

l=1

|Ul| − k − 1 (30)

3.2 LIFO inequalities

In [9], the authors present a class of inequalities for the PDTSPL that satisfies the
LIFO constraints. Note again that this problem corresponds to a PDTSPMS with
a single stack of infinite capacity. In the PDTSPL, items are not allowed to cross
each other. To impose a LIFO policy, the set Γ is defined as a collection of sets
S ⊂ P ∪D such that there exist j ∈ S and n + j /∈ S or j /∈ S and n + j ∈ S. In [9]
the authors proved that inequalities of type (31) are sufficient to prohibit all LIFO
infeasible solutions. A graphical representation is shown in Figure 2.

x(i, S) + x(S) + x(S, n + i) ≤ |S| S ∈ Γ, i, n + i /∈ S, i ∈ P. (31)
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S

n+jj
i

n+i

Figure 2: Forbidden pattern for LIFO constraint with one stack

Note that inequalities (31) are not valid for the PDTSPMS because multiple
stacks are available. However, they can be adapted to the PDTSPMS. We first
show how inequalities (31) can be extended to the PDTSPMS with two stacks.
Then we derive a formulation for an arbitrary number of stacks.

In the PDTSPMS, items can be allowed to cross each other depending on the
number of stacks. For example, consider a vehicle with two stacks. A situation
where two items cross each other could be acceptable because the first item can be
loaded on the first stack and the other on the second stack. However, a situation
where three items cross each other is forbidden because three stacks would then be
required. We conclude that for a vehicle with k stacks, a set of k + 1 or more items
cannot cross each other, otherwise an infeasible solution is obtained.

Let us show how constraints (31) can be extended to two stacks. We suppose
that the LIFO constraint is violated and that the solution is feasible for the PDTSP.
It means that we can find a path where three items cross each other. In other words,
there exist i, j, k ∈ P such that i < j < k < n + i < n + j < n + k. We can exclude
this path by using a constraint of type (19). However, this approach is rather weak
because inequality (19) cuts a single path. A different type of inequalities is proposed
here based on an extension of (31). Let us define two subsets Sj , Sk ⊂ P ∪D such
that j, k ∈ Sj ; i, n + i, n + j, n + k /∈ Sj and k, n + i ∈ Sk; i, j, n + j, n + k /∈ Sk.
A prohibited pattern is shown in Figure 3. By extending (31) to this pattern we
obtain :

x(i, Sj) + x(Sj) + x(Sj , n + i)+
x(j, Sk) + x(Sk) + x(Sk, n + j) ≤

|Sj |+ |Sk|+ 1.

(32)

Inequalities (32) forbid all paths from i to n + i going through j and k (but not
through n + j and n + k) and, at the same time, forbid all paths from j to n + j
going through k and n + i (but not through i and n + k).

Constraints (32) can be extended to impose LIFO constraints in the general case
with an arbitrary number of stacks M . Let L = {i1, i2, ..., iM+1 ∈ P, ij 6= ik} be a
set of pickup locations where the associated items mutually cross each other (i.e.,
each item in L crosses all other items in L). This situation induces the following
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n+ji j

Sj

k n+i n+k

Sk

Figure 3: Forbidden pattern for LIFO constraint with two stacks

Sl

i j k l n+i n+ln+kn+j

Sj Sk

Figure 4: Forbidden pattern for LIFO constraint with three stacks

delivery pattern: i1 < i2 < ... < iM+1 < n + i1 < ... < n + iM+1. Also, let Sih ,
2 ≤ h ≤ M + 1, denote a set with nodes ih to iM+1 and n + i1 to n + ih−2, but
without nodes i1 to ih−1 and n + ih−1 to n + iM+1. Note that Si2 does not contain
the delivery nodes n + i1 to n + iM+1. An example with three stacks is shown in
Figure 4. Since all these requests cross each other, none of them can be on the same
stack and at least M + 1 different stacks are required. Thus, we can exclude all
paths with this delivery pattern by extending inequalities (32) in the following way:

M∑
h=1

[x(ih, Sih+1
) + x(Sih+1

) + x(Sih+1
, n + ih)] ≤

M+1∑
h=2

|Sih |+ M − 1.

(33)

Using the line of reasoning for (32), inequalities (33) forbid all paths from ih to
n+ ih going through nodes ih+1 to iM+1 and n+ i1 to n+ ih−1, for h = 1, ...,M +1.

3.3 Capacity inequalities

In the classical capacitated VRP, the capacity constraints can be imposed as follow:

x(δ(S)) ≥ 2r(S) S ⊂ P ∪D, (34)
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Figure 5: Violated capacity constraint

where r(S) is the minimum number of vehicles required to serve all customers in S.
However, computing r(S) is difficult as it involves solving a bin packing problem. By
replacing r(S) with the lower bound d|

∑
i∈S di/Q|e, we obtain the rounded capacity

inequalities

x(δ(S)) ≥ d|
∑
i∈S

di|/Qe. (35)

Inequalities (35) can be easily adapted to the PDTSPMS by ignoring the pres-
ence of multiple stacks. The whole loading area would then become available for a
total capacity of MQ. The rounded capacity inequalities become:

x(δ(S)) ≥ 2d|
∑
i∈S

di|/(MQ)e. (36)

Note that we have |
∑

i∈S di| in (36) because di < 0 for delivery locations. Un-
fortunately, these inequalities are not sufficient to cut all solutions that violate the
capacity constraints. Consider the example shown in Figure 5 with two stacks and
Q = 2. The total available capacity is equal to 4 and the sum of the lengths of the
items in S is also equal to 4. Thus, (36) is satisfied. However, this solution is clearly
infeasible because i and j cross each other. Thus, j and k must be in the same stack
which is infeasible.

However, it is possible to derive a new set of inequalities for the capacity con-
straints. In the previous example, all items in conflict with i must fit in the remaining
available capacity of the vehicle, which is Q(M − 1). By summing up the lengths of
those items, we obtain a value of 3 which is larger than Q(M − 1), thus indicating
that the solution is infeasible. The basic idea is presented in Figure 6, where D1

is the sum of the lengths of items that are picked up before i and delivered before
n + i, while P1 is the sum of the lengths of items picked up between i and n + i
and delivered after n + i. Items corresponding to D1 and P1 cross i and cannot be
on the same stack than i, which implies that they must fit in the M − 1 remaining
stacks.
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P
S

n+i
i

D1 1

Figure 6: Conflict capacity constraint

To write these inequalities, we define q(S) =
∑

i∈S di as the sum of the lengths
of items in S and z(S) as the maximum between the sum of the lengths of pickup
and delivery items in S:

z(S) = max{q(π(S)\S),−q(σ(S)\S)}. (37)

Note that π(S)\S is the set of pickup nodes not in S and for which the corresponding
delivery is in S, while σ(S)\S is the set of delivery nodes not in S and for which
the corresponding pickup is in S.

When z(S) is greater than Q(M − 1), then inequalities (38) can be added to
forbid all paths from i to n + i going through all nodes in S. We refer to this new
type of inequalities as conflict capacity inequalities

x(i, S)+x(S)+x(S, n+ i) ≤ |S| S ∈ P ∪D, i, n+ i /∈ S, z(S) > Q(M−1) (38)

The previous inequalities can be extended by considering more items. Let L =
{i1, i2, ..., ik ∈ P, 2 ≤ k ≤ M − 1, ij 6= ik} be a set where each item crosses all other
items in the set. This situation induces the delivery pattern i1 < i2 < ... < ik <
n + i1 < ... < n + ik. Also, let Sih , 2 ≤ h ≤ k, denote a set with nodes ih to ik
and n + i1 to n + ih−2, but without nodes i1 to ih−1 and n + ih−1 to n + ik. Note
that Si2 does not contain the delivery nodes n+ i1 to n+ ik+1. Since all these items
cross each other, none of them can be on the same stack and at least k different
stacks are required. Now, all the other items that cross items in L can only fit in
the M − k + 1 remaining stacks. These items are picked up before i1 and delivered
between ik and n+ i1 or they are picked up between ik and n+ i1 and delivered after
n+ ik. The former case means that the deliveries associated with these items are in
the intersection Si2 ∩ ...∩Sik , while the pickups are not in the union Si2 ∪ ...∪Sik . In
the latter case, the pickups associated with these items are rather in the intersection
Si2 ∩ ... ∩ Sik while the corresponding deliveries are not in the union Si2 ∪ ... ∪ Sik .
Denoting by z(Si2 , ..., Sik) the maximum between the sum of the lengths of the items
delivered and picked up in Si2 ∩ ... ∩ Sik , we have:

z(Si2 , ..., Sik) = max{q(π(Si2 ∩ ... ∩ Sik)/(Si2 ∪ ... ∪ Sik)),
−q(σ(Si2 ∩ ... ∩ Sik)/(Si2 ∪ ... ∪ Sik))}.

(39)
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If z(Si2 , ..., Sik) exceeds the capacity Q(M − k + 1) of the remaining stacks, we
have an infeasible solution which can be excluded through the following inequalities:

k∑
h=1

[x(ih, Sih+1
) + x(Sih+1

) + x(Sih+1
, n + ih)] ≤

k∑
h=2

|Sih |+ k − 1,

where z(Si2 , ..., Sik) > Q(M − k + 1).

(40)

Inequalities (40) forbid all paths from ih to Sih+1
and from Sih+1

to n + ih going
through all nodes in Sih+1

, 1 ≤ h ≤ k − 1. It is important to observe that it does
not exclude all capacity constraint violations, because the sequence of pickups and
deliveries in Si2 ∩ ... ∩ Sik is not known.

We can extend (40) to allow the DTSPMS to cover a broader range of capacity
constraint violations. Given the particular structure of DTSPMS solutions, where
all pickups are done before any delivery, we know that pick up items are served
before delivery items in Si2 ∩ ... ∩ Sik . Thus, all these items are in the vehicle at
the same time. By summing up the demand of all pickup and delivery items in the
intersection, we get:

z(Si2 , ..., Sik) = q(π(Si2 ∩ ... ∩ Sik)/(Si2 ∪ ... ∪ Sik)) +
q(σ(Si2 ∩ ... ∩ Sik)/(Si2 ∪ ... ∪ Sik)).

(41)

As before, if z(Si2 , ..., Sik) exceeds the capacity Q(M − k + 1) of the remaining
stacks, we have an infeasible solution for the DTSPMS which can be excluded
through inequalities (40).

4 Separation procedures

4.1 TSPPD inequalities

Inequalities (24)-(30) are introduced and identified through the separation algo-
rithms described in [9]. The reader is referred to this work for details.

4.2 LIFO inequalities

To separate the LIFO inequalities (33) we proceed as follows. For each pair i, j ∈ P ,
we check whether there exists a set S such that i, n+ i, n+ j /∈ S, j ∈ S and there is
one unit of flow going from i to S and one unit of flow from S to n+ i. It means that
i is visited before S while n + i is visited after S leading to the following delivery
pattern: i < j < n + i < n + j. To find this set, we use the separation procedure
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for (31) proposed in [9]. For each pair i, j ∈ P , we record the 3-tuple (i, j, S), if we
can find such a set. Now, since M + 1 requests need to cross each other to violate
an inequality, we check whether the corresponding items cross each other for each
ordered sequence in L = {i1, i2, ..., iM+1 ∈ P, ij 6= ik} (so that (33) is violated).

The complexity of this separation procedure clearly depends on the complexity
of the algorithm used to find the set S for each pair of nodes i, j ∈ P and on the
number of stacks M (as we need to check tuples of M +1 nodes). To find set S, for a
given pair of nodes i and j, we have to solve a max-flow problem. To this end, we use
the procedure proposed in [23] for which the worst-case performance is O(n2√m) on
a graph with n nodes and m arcs. However, in practice, the average performance is
O(n1.5). As there are n2 pairs of pickup nodes, we obtain a complexity O(n2f(n)),
where O(f(n)) is the complexity of the max-flow algorithm. Checking all tuples can
be done in O(nM+1). Hence, the total complexity is O(nM+1 + n2f(n)).

4.3 Conflict capacity inequalities

The separation of the conflict capacity inequalities (40) is similar to the LIFO in-
equalities, with the exception that the intersection of all sets must be determined
to calculate the value of z(Si2 , ..., Sik). This additional check increases the complex-
ity of the separation procedure, since the sets contain O(n) nodes. To reduce the
computation time, this procedure is only used with k = 2 or 3.

The procedure finds, for each pair (i, j) ∈ P , a set S such that i, n + i, n + j /∈ S
and j ∈ S. Then, it checks all ordered sequences in L = {i1, i2, ..., ik ∈ P, 2 ≤
k ≤ M − 1, ij 6= ik} to find k requests that cross each other. If such a sequence is
found, the value z(Si2 , ..., Sik) is calculated by scanning the nodes in the intersection
Si2 ∩ ... ∩ Sik , which requires at most O(n) operations. The final complexity of the
procedure is O(nk+1 + n2f(n)).

4.4 Rounded capacity inequalities

We use the heuristic procedure described in [28] to separate inequalities (36). This
algorithm iteratively builds set S by first choosing a single node to initialize the set
and by adding at each iteration the node which maximizes the following function
f(S):

f(S) = λ1(max{q(π(S)\S),−q(σ(S)\S)} −Qx(δ+(S))) +

λ2Q(max{dq(π(S)\S
Q

e, d−q(σ(S)\S)
Q

e} − x(δ+(S))) +

λ3(min{q(π(S)\S),−q(σ(S)\S)} −Qx(δ+(S))).

(42)

The algorithm is stopped when an inequality of type (36) is violated or when it
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is unlikely that such a violation will be found, as it is done in [28]. The function
f(S) contains the three parameters λ1, λ2 and λ3. The first two are randomly set
to a value in the interval [1, 5] and the last one in the interval [0, 1]. These values
are chosen at each restart of the heuristic. In [28], the heuristic is run several times,
using each node as a starting point. However, we observed that it is relatively easy
to find sets S that violate the inequality in our problem. To avoid generating the
same inequality many times, we only run the heuristic five times and randomly
choose the starting node each time. We refer the reader to [28] for details.

5 Branch-and-cut algorithm

Different branching strategies proposed in [8] were tried within our branch-and-cut
algorithm and the most effective one was the strong branching. We also implemented
local pools of cuts, as suggested in [8] and [24], but we observed that they were
not really effective. Instead, we separated all TSPPD inequalities (24)-(30) and
rounded capacity inequalities (36) at each node of the branch-and-bound tree and
added them locally. If none of the previous cuts were generated, we separated
the LIFO inequalities (33) and the conflict capacity inequalities (40) and added
them locally. Each time a feasible PDTSP tour was found, we called the packing
procedure to find a feasible packing. This implementation proved to be the most
effective one. Unfortunately, adding cuts locally caused the separation procedures to
generate the same cuts several times at different branches of the tree. For example,
on the DTSPMS instances with 2 stacks and a capacity of 7 for each stack, an
average of 110 000 cuts were generated. By adding them globally, only 4 000 cuts
were generated on average. However, from a computational point of view, it was
much better to add the cuts locally.

The upper bound was provided by the large neighborhood search heuristic in
[10], which was run 10 times for a total of 25 000 iterations. We do not report the
exact computation times for this heuristic, but these times stand between 3 and 30
seconds, depending on the instance.

6 Computational results

The branch-and-cut algorithm was coded in C++ and used Cplex 12 as the integer
programming solver. All tests were performed on a 2.2 Ghz AMD Opteron 275
processor running Linux and the maximum computation time was set to one hour
(except for some experiments in Section 6.3.1). In the following, the test instances
are first described, then a comparison of the three models proposed in Section 2
is presented. Finally, the results obtained with the best model on PDTSPMS and
DTSPMS instances are reported.
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6.1 Instances

To test the branch-and-cut algorithm, new PDTSPMS instances were generated
based on the PDTSPL benchmark instances in [3, 5, 9] with 23, 27, 31, 35, 39 and
43 nodes. We generated two classes of instances. In the first class C1, the demand
of each pickup is one unit, the number of stacks is a random number between 2
and 4 and the capacity of each stack is a random number between 1 and 3. In the
second class C2, the demand of each pickup is a random number between 1 and 10,
the number of stacks is a random number between 2 and 4 and the capacity is a
random number between 10 and 15. Note that the capacity value is tight to get
difficult instances and obtain solutions that are different from optimal solutions to
the standard PDTSP. We have a total of 54 instances in each class (i.e., 9 instances
of each size).

6.2 Model comparison

We first report some results aimed at evaluating the effectiveness of the three models
proposed in this work. These results are summarized in Table 1. M1 refers to model
(1)-(14) and (24)-(30). M2 is given by (1)-(6), (13)-(14), (15)-(18) and (24)-(30),
while M3 is made of (1)-(5), (13), (19) and (24)-(30). The first group of three
lines refer to the plain models. In the following three groups, the rounded capacity
constraints (36), LIFO inequalities (33) and conflict capacity inequalities (40) are
integrated, respectively. In the last group of three lines all inequalities are integrated.
For both classes of instances we report the number of instances solved over a total
of 54 instances (Solved), the average final gap on unsolved instances (Gap), the
average root node gap (Root), the average CPU time in seconds (Time) and the
average number of path inequalities (Path) generated through the packing procedure
in formulation M3. Gaps are measured with regard to the optimal solution, when
available, otherwise they are measured with regard to the heuristic solution found
in [10].

The results show that the LIFO and conflict capacity inequalities (41) improve
slightly the gaps when compared with the rounded capacity inequalities (36). More-
over, the rounded capacity inequalities seem to cut off most of the LIFO- and
capacity-infeasible paths. Using all inequalities brings the largest gain in terms
of number of solved instances and gap. Overall, model M3 is superior to both M1

and M2 when all inequalities are considered. Accordingly, formulation M3 will be
used in the following.

6.3 PDTSPMS results

Tables 2 and 3 report detailed results for formulation M3 on all instances of both
classes. The tables present the instance name (Instance), the number of nodes
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Class 1 Class 2
Model Solved Gap Root Time Path Solved Gap Root Time Path

M1 21 16.1% 9.9% 192.5 15 27.3% 11.1% 355.8
M2 24 14.3% 9.8% 273.0 17 24.4% 11.1% 457.8
M3 20 17.8% 9.9% 279.0 2503.4 13 32.6% 11.0% 109.3 3337.5

M1 + LIFO (33) 22 15.4% 9.8% 314.8 16 25.6% 11.1% 429.8
M2 + LIFO (33) 24 14.3% 9.8% 261.2 16 25.8% 11.1% 220.5
M3 + LIFO (33) 21 15.9% 9.8% 276.0 760.9 16 25.0% 11.0% 440.6 1180.1

M1 + Conflict (41) 24 13.8% 9.6% 312.9 16 24.4% 11.1% 332.1
M2 + Conflict (41) 24 14.3% 9.8% 270.2 17 24.1% 11.1% 373.7
M3 + Conflict (41) 24 13.3% 9.6% 466.1 715.4 18 20.9% 11.0% 333.2 727.1

M1 + Rounded (36) 29 5.8% 6.1% 298.0 17 15.0% 7.9% 337.9
M2 + Rounded (36) 28 7.1% 6.6% 319.3 16 17.4% 8.2% 158.6
M3 + Rounded (36) 31 5.1% 6.3% 266.7 95.4 22 10.1% 7.8% 501.1 767.1

M1 + All 30 5.5% 5.9% 261.2 19 12.9% 7.8% 436.1
M2 + All 28 7.3% 6.5% 324.2 18 15.0% 8.0% 355.1
M3 + All 34 4.2% 6.1% 381.9 8.3 24 8.7% 7.8% 312.2 186.5

Table 1: Model comparison

(2n + 1), the number of stacks (M), the capacity of each stack (Q), the heuristic
upper bound (UB), the optimal solution (Optimal), the gap between the final lower
bound and the heuristic upper bound (Gap), the root node gap (Root), the CPU
time in seconds (Time), the number of cuts of type (33), (35) and (40) (Cuts), the
number of path inequalities (19) generated through the packing procedure (Path)
and the number of nodes in the branch-and-bound tree (Nodes).

More instances in class C1 are solved when compared to class C2, which means
that class C1 contains easier instances. We also observe that the number of added
cuts for both classes of instances is quite large, although path inequalities are seldom
violated. A large number of path inequalities is observed only in the few cases where
the LIFO and conflict capacity inequalities prove to be inefficient.

The sets of instances brd14051 and nrw1379 are very difficult to solve. In fact,
these instances are also very difficult to solve in their PDTSP version. It seems that
when some PDTSP instance cannot be solved, the same is true for the corresponding
PDTSPMS instance. The comparison between the heuristic and optimal solutions
show that the heuristic algorithm often finds the optimum or is close to the optimum.
There are, however, a few cases where the heuristic solution is far from the optimum.

6.3.1 DTSPMS results

Our branch-and-cut algorithm was also applied to the DTSPMS test instances in
[26], using a CPU time limit of 3 hours. Table 4 summarizes the results, where each
row refers to a set of 20 instances. Here, we show the number of stacks (M ), the
capacity of each stack (Q), the number of nodes (n), the number of solved instances
(Solved), the average gap for unsolved instances (Gap), the average gap at the root
node (Root), the average CPU time in seconds for solved instances (Time), the
number of cuts of type (33), (35) and (40) (Cuts), the number of path inequalities
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Instance 2n + 1 M Q UB Optimal Gap Root Time Cuts Path Nodes
a280 23 2 2 449 449 3.79% 2.0 192 0 42

27 488 468 3.46% 6.9 168 0 41
31 613 542 4.59% 105.1 679 0 320
35 633 624 5.54% 181.3 1 139 0 631
39 709 669 5.81% 2202.1 3 434 0 1 982
43 773 n.a. 10.35% 13.98% 3 600 3 702 0 1 923

att532 23 3 3 4 177 4 177 0.93% 0.2 10 0 2
27 4 937 4 937 1.31% 0.7 7 0 6
31 5 151 5 151 2.30% 2.9 24 0 17
35 5 294 5 294 1.51% 2.8 19 0 10
39 5 587 5 587 2.35% 13.8 30 0 25
43 9 266 9 266 3.60% 2034.2 3 110 32 4 020

brd14051 23 2 2 4 396 4396 3.69% 8.7 314 0 84
27 4 439 4 439 4.46% 30.4 642 3 164
31 4 809 n.a. 3.41% 8.38% 3 600 31 596 0 4 894
35 4 945 n.a. 4.65% 6.87% 3 600 20 525 0 3 267
39 6 704 n.a. 4.72% 8.87% 3 600 9 645 0 1 905
43 6 923 n.a. 4.40% 4.60% 3 600 7 024 0 1 305

d15112 23 3 2 74 603 74 603 6.32% 2.9 98 2 66
27 80 690 80 690 6.89% 37.0 454 0 265
31 89 754 89 754 4.82% 20.6 200 8 122
35 96 804 96 804 6.51% 3 278.0 8 569 66 5 402
39 103 609 n.a. 5.39% 8.86% 3 600 5 110 1 2 630
43 109 048 n.a. 9.68% 12.97% 3 600 3 875 0 1 390

d18512 23 2 3 4 280 4 280 1.03% 1.4 46 0 8
27 4 301 4 301 1.30% 5.7 103 0 32
31 4 638 4 638 5.84% 2 574.1 15 090 331 7 901
35 4 741 n.a. 3.56% 6.68% 3 600 9 299 0 4 278
39 4 917 n.a. 5.78% 8.22% 3 600 5 298 0 3 037
43 5 100 n.a. 9.02% 11.19% 3 600 3 321 0 1 923

fnl4461 23 4 1 1 889 1 889 0.50% 0.6 54 0 10
27 2 088 2 088 0.50% 1.6 81 0 8
31 2 356 2 356 1.78% 16.8 238 0 73
35 2 517 2 517 3.80% 102.6 560 0 168
39 2 933 n.a. 3.02% 11.02% 3 600 8 883 0 2 639
43 3 561 n.a. 3.55% 19.71% 3 600 7 174 0 1 408

nrw1379 23 3 2 2 690 2690 2.16% 0.9 39 0 6
27 3 061 n.a. 3.68% 10.74% 3 600 21 519 1 10 552
31 3 117 n.a. 5.63% 10.67% 3 600 18 099 0 7 165
35 3 197 n.a. 6.21% 10.07% 3 600 11 748 0 4 310
39 3 476 n.a. 12.11% 14.97% 3 600 7 324 0 2 253
43 3 799 n.a. 14.69% 16.89% 3 600 5 533 0 1 466

pr1002 23 2 2 13 718 13 718 1.05% 0.4 45 0 7
27 15 436 15 436 3.34% 5.1 121 0 37
31 16 268 16 268 5.01% 146.6 1 686 0 813
35 17 601 17 601 4.30% 384.2 3 143 0 1 484
39 18 673 18 673 4.33% 1 761.7 9 266 0 4 414
43 20 199 n.a. 2.31% 5.88% 3 600 4 388 0 2 456

ts225 23 2 2 22 000 22 000 0.00% 1.5 66 3 20
27 29 395 29 395 0.26% 2.4 51 0 15
31 32 541 32 541 2.66% 4.0 63 0 10
35 36 405 36 405 7.78% 44.4 241 1 73
39 40 395 n.a. 2.18% 10.55% 3 600 5 309 0 3 156
43 43 056 n.a. 5.65% 13.31% 3 600 4 980 0 2 299

Table 2: Detailed results for the instances in class C1
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Instance 2n + 1 M Q UB Optimal Gap Root Time Cuts Path Nodes
a280 23 2 12 455 455 4.89% 8.6 252 5 82

27 479 479 4.62% 15.3 450 3 139
31 592 553 5.95% 497.5 3105 19 1131
35 655 635 6.93% 1082.3 2509 4 1106
39 717 n.a. 6.94% 11.57% 3600 7622 11 3266
43 793 n.a. 12.68% 15.98% 3600 4199 0 1753

att532 23 2 15 4190 4190 0.50% 0.3 17 0 3
27 5033 5033 3.31% 4.7 97 0 44
31 5665 n.a. 5.23% 11.08% 3600 13263 0 7842
35 5920 n.a. 6.98% 11.60% 3600 10772 0 5551
39 6184 n.a. 7.68% 11.26% 3600 5083 0 2560
43 10025 n.a. 8.12% 9.85% 3600 4311 0 1566

brd14051 23 3 11 4386 4386 3.45% 4.0 66 0 31
27 4459 4458 4.87% 960.4 5276 1820 6540
31 4795 n.a. 3.99% 10.07% 3600 29334 0 5802
35 4891 n.a. 8.21% 11.25% 3600 20218 0 3569
39 6276 n.a. 2.81% 5.25% 3600 10015 0 2180
43 6322 n.a. 3.37% 4.95% 3600 6494 0 1846

d15112 23 3 10 73872 73872 5.40% 5.1 98 12 78
27 81657 81657 8.52% 452.7 2935 996 3734
31 91799 91799 7.34% 1402.2 4781 1673 7027
35 97040 n.a. 3.22% 9.21% 3600 8631 93 5481
39 99729 n.a. 3.48% 7.88% 3600 5160 8 3784
43 105242 n.a. 8.50% 11.03% 3600 3048 0 1706

d18512 23 2 14 4341 4341 2.40% 70.6 1467 186 1085
27 4572 n.a. 2.35% 5.97% 3600 28051 3162 17907
31 4893 n.a. 2.82% 6.91% 3600 13879 0 4795
35 5099 n.a. 4.15% 5.84% 3600 14801 0 3672
39 5359 n.a. 6.48% 9.56% 3600 8993 0 2535
43 5768 n.a. 12.00% 12.69% 3600 5936 0 1520

fnl4461 23 3 10 1883 1883 0.66% 0.5 30 1 6
27 2088 2088 2.19% 14.7 332 33 189
31 2262 2262 2.99% 36.8 502 26 224
35 2428 n.a. 3.09% 7.31% 3600 12539 2 6083
39 2634 n.a. 8.35% 11.11% 3600 7019 7 3603
43 2773 n.a. 8.79% 10.94% 3600 2522 0 1919

nrw1379 23 4 10 2690 2690 2.34% 1.3 38 0 9
27 3055 n.a. 2.82% 10.48% 3600 27110 5 13395
31 3116 n.a. 5.62% 10.61% 3600 13525 18 6614
35 3197 n.a. 6.01% 10.14% 3600 11452 0 4628
39 3422 n.a. 9.47% 12.02% 3600 4320 0 1482
43 3769 n.a. 11.33% 13.08% 3600 5390 0 1603

pr1002 23 3 13 13527 13527 1.55% 2.0 39 18 68
27 15221 15221 3.92% 14.2 170 60 271
31 15676 15676 3.19% 30.9 333 35 301
35 17009 17009 2.79% 75.7 574 52 427
39 18136 18136 3.31% 504.8 2085 66 1558
43 19613 19613 4.24% 1322.2 4018 95 2650

ts225 23 2 12 22000 22000 0.00% 0.9 39 0 9
27 34000 34000 10.60% 985.3 9191 468 5419
31 37703 n.a. 3.44% 10.57% 3600 15077 802 8884
35 41703 n.a. 5.63% 15.23% 3600 10796 392 6549
39 45703 n.a. 11.29% 20.03% 3600 4652 0 2348
43 49097 n.a. 14.18% 20.21% 3600 3476 0 1759

Table 3: Detailed results for the instances in class C2
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(19) generated through the packing procedure (Path) and the number of nodes
generated in the branch-and-bound tree (Nodes). The results show that instances
with up to 48 nodes can be solved. The number of added inequalities is huge, which
is mostly due to the increased computation time and the addition of local cuts. We
also observe that the problem is much more difficult to solve with 2 stacks than
with 4 stacks. While most of the instances with 32 nodes and 2 stacks could not be
solved within 3 hours of computation time, the instances with 4 stacks were solved
in a few seconds.

M Q n Solved Gap Root Time Cuts Path Nodes
2 5 20 20 4.86% 4.9 1 438.0 1.3 380.8
2 6 24 20 6.97% 179.1 22 347.8 6.7 5 510.4
2 7 28 16 2.66% 8.57% 1 723.3 223 692.9 4.5 49 677.2
2 8 32 3 5.12% 11.07% 4 424.6 321 952.5 0.9 69 695.1
3 4 24 20 1.93% 3.1 580.0 0.9 99.6
3 5 30 20 3.85% 216.9 20 963.4 10.7 2 550.3
3 6 36 15 1.72% 5.30% 3 385.0 238 683.6 16.3 17 539.2
3 7 42 2 3.40% 7.15% 5 721.7 259 180.1 0.7 13 885.8
4 4 32 20 1.27% 14.0 1 196.1 11.5 179.8
4 5 40 20 2.08% 360.7 22 151.4 26.1 1 668.6
4 6 48 5 1.40% 3.83% 4 282.3 180 588.3 22.1 14 762.8

Total 161

Table 4: Average results for the DTSPMS instances with 3 hours of CPU time

A comparison with the exact approaches for the DTSPMS proposed in [4, 22]
is reported in Table 5. We note that a processor of 1.6 GHz is used in [22] while a
2.33GHz Intel Core2 Q8200 processor is used in [4]. For each class of instances, we
report the number of instances solved by each procedure and the average CPU time
in seconds. We can observe that our branch-and-cut algorithm can solve a larger
number of instances.

Lusby et al. Carrabs et al. Our B&C
M Q n Solved Time Solved Time Solved Time
2 5 20 20 9.5 20 2.7 20 4.9
2 6 24 19 926.8 20 104.2 20 179.1
2 7 28 5 1 424.4 16 2423.2 16 1 723.3
2 8 32 3 4 424.6
3 4 24 20 4.0 20 3.1
3 5 30 20 492.2 20 216.9
3 6 36 5 n.a. 15 3 385.0
3 7 42 2 5 721.7
4 4 32 20 14.0
4 5 40 20 360.7
4 6 48 5 4 282.3

Table 5: Comparison with other approaches for the DTSPMS

In Table 6, our algorithm is compared with the branch-and-cut approach of
Petersen et al. [26] on their test instances, using one hour of computation time
(note that these are the only results reported in [26]). Petersen et al. [26] use
an Intel Pentium 4, 2.8 GHz with 2 GB RAM machine for their computational
tests. This alternative branch-and-cut algorithm consists in building two optimal
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routes, that is, one for the pickups and one for the deliveries. Then, the packing
problem associated with the two routes is solved. An optimal solution is obtained if
a feasible packing is found. Otherwise, parts of the routes that are responsible for
the infeasibility are forbidden through additional path inequalities (19). For each
class of instances, where each class is made of 5 instances, we report the number of
instances solved, the average gap for unsolved instances and the average CPU time
in seconds for both algorithms. Once again, due to the new types of inequalities that
we consider, our algorithm is superior by solving more instances and by exhibiting
a smaller gap on the unsolved instances.

Petersen et al. Our B&C
M Q n Solved Gap Time Solved Gap Time
2 4 16 5 22.8 5 0.5
2 5 20 5 285.0 5 6.9
2 6 24 1 4.85% 1 680.0 5 336.7
2 7 28 0 5.76% 3 2.34% 714.7
3 4 24 5 25.0 5 2.0
3 5 30 4 2.39% 1 737.8 5 114.2
3 6 36 1 5.79% 1 995.0 3 1.41% 1 235.8
3 7 42 0 9.45% 1 4.69% 2 460.1
4 4 32 5 33.8 5 20.0
4 5 40 4 5.57% 1 876.0 5 226.4
4 6 48 0 8.72% 1 1.49% 1 809.5
4 7 56 0 12.03% 0 3.31%

Total 30 43

Table 6: Comparison between our branch-and-cut and the one of Petersen et al. [26]

In Petersen et al. [26], the authors also report DTSPMS results on modified
PDTSPL instances. In these instances, the vehicle must pickup all items, return
to the depot and then perform the deliveries. All instances have 3 stacks and the
computation time is set to one hour. Results are presented in Tables 7 and 8. For the
algorithm of Petersen et al., these tables show the final gap for unsolved instances,
based on the best known solutions, and the CPU time in seconds, as reported in
[26]. For our algorithm, the tables report the heuristic upper bound (UB), the lower
bound (LB), which is the value of the optimal solution when the instance is solved,
the final gap for unsolved instances (Gap), the gap at the root node (Root) and the
CPU time in seconds (Time). Here, we were able to solve 61 instances out of 81, as
compared with 46 instances for the algorithm of Petersen et al.

7 Conclusion

This paper has described the first exact algorithm for solving the pickup and deliv-
ery traveling salesman problem with multiple stacks. This branch-and-cut algorithm
uses different sets of valid inequalities. Some of these inequalities have been inher-
ited from previous work on pickup and delivery problems, while other new valid
inequalities have been derived. The computational results show that we can find
the optimum on instances with up to 43 nodes. The comparison with previously
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Petersen et al. Our B&C
Instance Q n Gap Time UB LB Gap Root Time

a280 19 3 2 585 585 0,51% 0,3
23 4 51 654 654 0,76% 1,5
27 5 19 696 696 0,72% 0,9
31 5 31 792 792 1,01% 2,8
35 6 2277 945 945 1,06% 12,9
39 7 0,68% 3600 1024 1024 0,98% 32,3
43 7 1,09% 3600 1103 1103 6,75% 99,6
47 8 1,57% 3600 1179 1179 6,36% 539,6
51 9 2,21% 3600 1219 1212 0,57% 2,38% 3600

att532 19 3 2 5361 5361 0,02% 0,1
23 4 23 6399 6399 0,11% 0,3
27 5 102 7261 7261 0,36% 0,5
31 5 320 7562 7562 1,28% 3,9
35 6 1,60% 3600 7863 7863 1,93% 39,0
39 7 2,88% 3600 8208 8208 3,11% 949,1
43 7 3,24% 3600 12639 12638 3,42% 1087,8
47 8 3,66% 3600 13006 12920,5 0,66% 3,81% 3600
51 9 3,11% 3600 16214 16042 1,06% 3,23% 3600

brd14051 19 3 0 7897 7897 0,91% 0,0
23 4 1 8064 8064 0,00% 0,1
27 5 41 8079 8079 0,04% 0,8
31 5 3 8196 8196 0,00% 0,5
35 6 0,32% 3600 8252 8252 0,36% 589,2
39 7 0,30% 3600 8419 8419 0,36% 213,2
43 7 0,50% 3600 8442 8442 0,53% 2150,7
47 8 0,71% 3600 8560 8527 0,39% 0,74% 3600
51 9 1,52% 3600 8644 8553,5 1,05% 1,54% 3600

d15112 19 3 28 93597 93597 1,49% 0,3
23 4 39 100489 100489 1,54% 0,9
27 5 211 108574 108574 1,96% 4,8
31 5 2,44% 3600 127814 127806 4,03% 124,5
35 6 3,65% 3600 131421 131408 4,50% 1683,2
39 7 4,64% 3600 136488 133683 2,06% 5,25% 3600
43 7 5,67% 3600 139965 135082,67 3,49% 5,91% 3600
47 8 5,63% 3600 141404 136275 3,63% 5,88% 3600
51 9 7,27% 3600 149772 140940,31 5,90% 7,45% 3600

d18512 19 3 1 7951 7951 0,00% 0,1
23 4 1 8023 8023 0,00% 0,2
27 5 6 8034 8034 0,00% 0,5
31 5 19 8098 8098 0,00% 1,2
35 6 0,33% 3600 8151 8151 0,36% 244,9
39 7 0,42% 3600 8327 8327 0,44% 1493,6
43 7 0,67% 3600 8482 8456 0,31% 0,70% 3600
47 8 0,92% 3600 8555 8499 0,65% 0,95% 3600
51 9 1,34% 3600 8672 8577,67 1,09% 1,36% 3600

Table 7: Comparison between our branch-and-cut and the one of Petersen et al. [26]
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Petersen et al. Our B&C
Instance Q n Gap Time UB LB Gap Root Time
fnl4461 19 3 1 3387 3387 0,09% 0,2

23 4 9 3430 3430 0,12% 0,5
27 5 185 3628 3628 0,41% 17,8
31 5 192 3796 3796 0,37% 17,3
35 6 0,42% 3600 3853 3853 0,88% 401,1
39 7 1,14% 3600 4027 4016 0,27% 1,32% 3600
43 7 2,15% 3600 4147 4101,5 1,10% 2,39% 3600
47 8 3,36% 3600 4315 4201,57 2,63% 3,59% 3600
51 9 3,93% 3600 4427 4280,38 3,31% 4,11% 3600

nrw1379 19 3 3 4572 4572 0,00% 0,2
23 4 17 4733 4733 0,11% 0,7
27 5 273 4872 4872 0,29% 12,3
31 5 1230 4984 4984 0,34% 14,3
35 6 0,33% 3600 5212 5212 0,54% 34,3
39 7 1,41% 3600 5320 5284,13 0,67% 1,60% 3600
43 7 1,97% 3600 5543 5476,67 1,20% 2,13% 3600
47 8 1,98% 3600 5592 5513,5 1,40% 2,11% 3600
51 9 3,20% n,a, 6056 5879,88 2,91% 3,27% 3600

pr1002 19 3 0 21498 21498 0,14% 0,1
23 4 15 22977 22977 0,38% 0,3
27 5 184 25087 25087 0,87% 2,8
31 5 929 25899 25899 1,39% 12,1
35 6 731 27246 27245 2,22% 10,5
39 7 1733 28196 28196 1,32% 20,6
43 7 5 29875 29875 0,87% 1,7
47 8 133 31463 31463 0,30% 7,9
51 9 5 32319 32319 0,05% 6,4

ts225 19 3 0 34000 34000 0,00% 0,1
23 4 443 43000 43000 0,00% 0,6
27 5 2 48440 48440 0,00% 1,0
31 5 4 50580 50580 0,05% 1,1
35 6 2 50881 50881 0,07% 1,7
39 7 17 51371 51371 0,11% 2,5
43 7 8 52322 52322 0,21% 3,1
47 8 6 54460 54460 0,46% 4,6
51 9 808 62688 62688 1,60% 44,5

Average 2,82% 219,8 1,72% 162,3

Table 8: Comparison between our branch-and-cut and the one of Petersen et al.
[26] (continued)
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reported algorithms for the double TSP with multiple stacks, which is a special case
of our problem, also demonstrates the effectiveness of our algorithm.
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