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Abstract

Given a large weighted graph G = (V, E) and a subset U of V , we define several graphs

with vertex set U in which two vertices are adjacent if they satisfy some prescribed proximity

rule. These rules use the shortest path distance in G and generalize the proximity rules that

generate some of the most common proximity graphs in Euclidean spaces. We prove basic

properties of the defined graphs and provide algorithms for their computation.
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1 Introduction

A basic need in spatial data analysis, from statistics to pattern recognition and wherever shape

extraction is involved, is to decide closeness and neighborhoods among elements of a given input.

When the data are described as points in Euclidean spaces, proximity graphs —in which two of

these nodes are connected when they satisfy some proximity criterion— have been a basic tool in

the analysis of their relative position [12, 17, 23]. Finding clusters, spanning structures, or tools

allowing good interpolation are among the goals proximity graphs help to achieve. Moreover,

when a combinatorial graph is drawn, a realization as a geometric proximity graph is quite

satisfactory as it provides a natural aesthetical quality arising from associating adjacency to

closeness. This is why proximity graphs have been extensively investigated in the field of graph

drawing [5, 20]. In this context, the Delaunay graph —dual to the Voronoi diagram— and its

relatives are by far the proximity graphs that have attracted more attention [23].

Nowadays, many complex relation systems are represented as very large networks. In some

cases, as in transportation networks or circuit layouts, they correspond to physical situations
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in which a geometric framework is inherent or implicit. In some others, the relationship is es-

sentially combinatorial; important representatives of this situation include the world-wide web,

social networks, commercial networks, and citation networks. Whichever the scenario, identify-

ing communities or contrasting local characteristics with global properties within a network are

among the basic tasks in network analysis. These tasks are particularly demanding as modern

technologies have made it possible to build up massive data sets. Handling these data sets

has become crucial and requires combined efforts from different fields, including in particular

discrete mathematics and computer science [3].

Consider in this situation a very large graph —a huge network— in which the focus of some

study is on a subset U of the nodes. Suppose that we have to decide which elements of U are

close to other elements of U within the graph, or we must find a suitable subgraph that spans

the elements in U , or we have to describe the relative positions in the network of the elements

of U . This is nothing else than describing the proximity relations of U as a substructure of

the network. Measuring this proximity is a basic data mining tool and hence defining suitable

notions of closeness among vertices of a graph has found different approaches in the literature.

For some specific networks, proximity measures have been proposed without properly relying

on graph-theoretic concepts, as in [9, 19], where the network is modeled as an electrical circuit

and edges with high weights contribute to the proximity of their endpoints because they can

conduct more electricity.

A logical option to be carefully explored in this setting is to adapt or mimic geometric

proximity graphs; which have been so successful in metric scenarios, particularly the Delaunay

family of graphs. The case when the graph is purely combinatorial and the distance between

two vertices is the minimum number of edges of any path connecting them, has been considered,

for example in [1, 14], yet the approach falls somehow short to provide rich analysis tools.

Another situation arises when the network in embedded in a metric space. Here one may

consider the Voronoi diagram inside the network, focusing just on the nodes and the connections

or extending the implications of the resulting partition of the graph to the surrounding space.

These situations nicely fit phenomena occurring alongside a network, or in its area of influence,

and have been intensively investigated as network Voronoi diagrams (see [23] and [24] for a

thorough description and multiple references) or from the viewpoint of time metrics [2, 25, 4].

Another related direction of research considers proximity inside an embedded geometric graph

while using regions of interaction that are defined in the full euclidean plane [13, 18, 28].

If the surrounding space is ignored and the focus is on a geometric or weighted graph,

the Voronoi partition is still a powerful analysis tool that has been repeatedly studied, as in

[21, 8, 15]), where efficient construction algorithms are developed for several situations. In

this case a Delaunay graph can be defined as dual to the Voronoi diagram obtained from the

generators. Notice that if the graph is embedded in the plane, the internal proximity features

may be completely unrelated to the geometric proximity in the plane, i.e., points that are drawn

very close in the plane may be very far along the network.

While the Delaunay graph is the most fundamental tool for domain decomposition in eu-
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clidean spaces, other related proximity graphs are sometimes preferred, such as the Gabriel

graph in some geographic applications, the minimum spanning tree in pattern recognition, or

the nearest-neighbor graphs in classification procedures [17, 30]. Therefore, it is somehow sur-

prising that their counterparts in network analysis have not received a comparable attention.

This is precisely the scope of this paper in which we consider a very large graph G = (V, E)

whose edges have a positive associated weight, and we study the aforementioned proximity rela-

tions for a subset of nodes U ⊆ V , based on shortest paths along the edges of G. For example, G

may be the road network of a city and U the locations of schools or other important facilities. To

provide notions of closeness, we use generalizations of the nearest neighbor graph, the minimum

spanning tree, the relative neighborhood graph, the Gabriel graph, and the Delaunay graph.

We systematically study the relations among these graphs, their computation in terms of the

nodes and the network itself, and the fundamental variations that arise when only the vertices

of the input graph are taken as generators for the influence regions, or when arbitrary points on

the edges may also play this role.

It is worth mentioning that the set U together with the shortest-path distance on G consti-

tutes a finite metric space. Therefore, our problem may be seen as a particular case of proximity

graphs defined on general metric spaces. However, to the best of our knowledge, the precise

topic of our work has not been properly investigated and only some definitions and easily-

derived relations among the proximity graphs have been established (see Section 4.5 in [29], and

also [16]).

2 Definitions and Notation

We deal with a pair of a connected and edge-weighted graph G = (V, E) and a subset U ⊆ V .

For simplicity, we write G = (V, U,E). The edge set E is a set of interior disjoint continuous

curves. Each edge e = (v1, v2) with (positive) weight w(e) is isometric to the interval [0, w(e)],

and its endpoints are v1 and v2. Together with the shortest path distance, the union of the edge

set constitutes a metric space, and we refer to this metric space also as G. In this way, when we

speak of a point of G we may refer to either an endpoint or an interior point of an edge. The

distance between a pair vertices of G as a metric space corresponds to the distance in G as a

weighted graph, with the gained advantage that we may extend this definition to points in the

interior of edges. The distance dG(p, q) between two points p and q of G is thus the minimum

total weight of any path connecting p and q in G. The closed disk DG(p, r) is defined as the set of

points q of G for which dG(p, q) ≤ r. If i 6= j, we say that ui ∈ U is a nearest neighbor of uj ∈ U

if dG(uj , ui) ≤ dG(uj , uk) for all vertices uk ∈ U different from uj . A midpoint of two points p

and q of G is a point m on one of the shortest paths from p to q such that dG(m, p) = dG(m, q).

We denote the set of midpoints of p and q by MG(p, q). For the remainder of this paper, we

define |V | = m, |U | = n, and |E| = e.

When using empty regions as proximity criteria in G, such as disks, two main variations

arise, since we might allow these disks to be centered at any point of G, or restrict their centers
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to lie only on vertices of the graph, as in [14, 1]. Moreover, the definition of certain regions

of interference such as the Gabriel disk might depend on the multiplicity of paths or distances

in G. Degeneracies that occur in the standard geometric case, such as non-uniqueness of the

nearest neighbor, also generate several possibilities. For the sake of clarity we first present the

situation where there are essentially no degeneracies (Sections 3–5). In Section 6 we drop the

non-degeneracy assumptions and extend our results to the general setting.

More precisely, in Sections 3, 4, and 5 we consider the case where the following non-

degeneracy assumptions are satisfied:

(A1) for all ui, uj ∈ U, the shortest path connecting ui and uj is unique;

(A2) there do not exist three distinct vertices ui, uj ∈ U, v ∈ V − U such that dG(v, ui) =

dG(v, uj);

(A3) there do not exist vertices vi, vj ∈ V, ui, uj ∈ U such that dG(vi, ui) = dG(vj , uj) and

vi 6= ui;

(A4) all paths in G connecting distinct nodes in V have different lengths.

Obviously, the previous assumptions are not independent (A4 implies A1, A2, and A3;

A3 implies A2), but considering them separately allows to clarify and provide a more precise

description of the scenario. In Section 6, we extend the results from Sections 3–5 to the general

case where A1–A4 are not necessarily satisfied.

We now adapt several known definitions to proximity structures in graphs G = (V, U,E).

Definition 2.1. The nearest neighbor graph of G = (V, U,E), denoted by NNG(G), is the graph

H = (U,F ) such that (ui, uj) ∈ F if and only if uj is one of the nearest neighbors of ui in G.

See Figure 1 for an example.

Definition 2.2. A minimum spanning tree of G = (V,U,E) is a tree T = (U,F ) such that the

sum of dG(ui, uj) over all edges (ui, uj) ∈ F is minimal. The union of the minimum spanning

trees of G, denoted by UMST(G), is the graph consisting of all the edges included in any of the

minimum spanning trees of G.

If A3 holds, all distances between vertices in U are different. This in particular implies that

each vertex in U has exactly one nearest neighbor and that the minimum spanning tree of G,

denoted by MST(G), is unique.

Definition 2.3. The relative neighborhood graph of G = (V, U,E), denoted by RNG(G), is the

graph H = (U,F ) such that (ui, uj) ∈ F if and only if there exists no vertex uk ∈ U such that

dG(uk, ui) < dG(ui, uj) and dG(uk, uj) < dG(ui, uj).

Definition 2.4. The free-one Gabriel graph of G = (V, U,E), denoted by GGf1(G), is the graph

H = (U,F ) such that (ui, uj) ∈ F if and only if there exists p ∈ MG(ui, uj) such that no vertex

uk ∈ U (uk 6= ui, uj) satisfies dG(p, uk) ≤ dG(p, ui).
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Figure 1: A graph G and its nearest neighbor graph. The black vertices belong to U, while the

white vertices belong to V − U. The edges of G are solid and the edges of NNG(G) are dashed.

The weight of the edges of G corresponds to their length.

Definition 2.5. The free-all Gabriel graph of G = (V,U,E), denoted by GGfa(G), is the graph

H = (U,F ) such that (ui, uj) ∈ F if and only if, for each p ∈ MG(ui, uj), no vertex uk ∈ U

(uk 6= ui, uj) satisfies dG(p, uk) ≤ dG(p, ui).

If A1 holds, the two definitions coincide and we denote the graph by GGf(G).

Definition 2.6. The constrained-one Gabriel graph of G = (V, U,E), denoted by GGc1(G), is

the graph H = (U,F ) such that (ui, uj) ∈ F if and only if there exists a closed disk DG(v, r),

with v ∈ V and r = minv∈V {r | DG(v, r) contains both ui and uj}, enclosing ui and uj and

no other vertex from U .

Definition 2.7. The constrained-all Gabriel graph of G = (V, U,E), denoted by GGca(G), is

the graph H = (U,F ) such that (ui, uj) ∈ F if and only if every closed disk DG(v, r) enclosing

ui and uj , and where v ∈ V and r = minv∈V {r | DG(v, r) contains both ui and uj}, does not

contain any other vertex of U.

If A3 holds, the two definitions coincide and we denote the graph by GGc(G).

Definition 2.8. The Voronoi region of a vertex ui ∈ U is the set of points p of G such that

dG(p, ui) ≤ dG(p, uj) for all vertices uj ∈ U different from ui. The Voronoi diagram of G =

(V, U,E), denoted by VD(G), is the partition of G into the Voronoi regions of the vertices of U .

Definition 2.9. The free Delaunay graph of G = (V, U,E), denoted by DGf(G), is the graph

H = (U,F ) such that (ui, uj) ∈ F if and only if there exists a closed disk DG(p, r), where p is a

point of G, containing ui and uj and no other vertex from U .

5



Definition 2.10. The constrained Delaunay graph of G = (V,U,E), denoted by DGc(G), is the

graph H = (U,F ) such that (ui, uj) ∈ F if and only if there exists a closed disk DG(v, r), with

v ∈ V , containing ui and uj and no other vertex from U .

3 Inclusion Sequence

As in the case of the corresponding proximity graphs in Euclidean spaces, the graphs just defined

satisfy some inclusion relations. In this section we show which proximity graphs are subgraphs

of which other proximity graphs assuming A1, A2, and A3.

Lemma 3.1. For each graph G = (V, U,E) we have NNG(G) ⊆ MST(G) ⊆ RNG(G) ⊆
GGf(G) ⊆ DGf(G).

Proof. The proofs are analogous to those for proximity graphs in Euclidean spaces and, in

some cases, the more general theory of proximity graphs defined in metric spaces applies (see

Section 4.5 in [29]). It should be noticed that the inclusion RNG(G) ⊆ GGf(G) relies on the

assumption of A2 (see Theorem 6.1). £

Lemma 3.2. For each graph G = (V, U,E) we have NNG(G) ⊆ DGc(G).

Proof. Let (ui, uj) be an edge of NNG(G), where uj is the nearest neighbor of ui. The closed

disk DG(ui, r), where r = dG(ui, uj), contains no vertices from U different from ui, uj . Thus

(ui, uj) ∈ DGc(G). £

Lemma 3.3. For each graph G = (V, U,E) we have GGc(G) ⊆ DGc(G) ⊆ DGf(G).

Proof. It follows from the definitions of GGc(G), DGc(G), and DGf(G). £

Lemma 3.4. There exist graphs G1 = (V1, U1, E1), G2 = (V2, U2, E2), and G3 = (V3, U3, E3)

for which NNG(G1) 6⊆ GGc(G1), GGc(G2) 6⊆ GGf(G2), and MST(G3) 6⊆ DGc(G3).

Proof. Let G1 be the graph on Figure 2a. The graph NNG(G1) contains the edges (a, b)

and (a, d) while GGc(G1) only contains the edge (a, d). This proves that, in some cases,

NNG(G) 6⊆ GGc(G). To see that GGc(G) ⊆ GGf(G) does not hold in general, let G2 be the

graph on Figure 2b. We have that GGc(G2) contains the edge (a, b) whereas (a, b) 6∈ GGf(G2).

Finally, if G3 is the graph on Figure 2c, MST(G3) contains the edge (b, e) but DGc(G3) does

not. Thus there exist graphs G = (V, U,E) such that MST(G) 6⊆ DGc(G). £

These lemmas are sufficient to prove the following theorem:

Theorem 3.5. The inclusion relations among all classes of proximity graphs are shown in

Table 1. The symbol ⊆ means that the inclusion is satisfied for all graphs G, and * means that

there are graphs G for which the inclusion is not satisfied.
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Figure 2: Example graphs; the black vertices belong to U, while the white vertices belong to

V − U.

Table 1: Inclusion relations among proximity graphs in the non-degenerate case.

MST RNG GGc GGf DGc DGf

NNG ⊆ ⊆ 6⊆ ⊆ ⊆ ⊆
MST ⊆ 6⊆ ⊆ 6⊆ ⊆
RNG 6⊆ ⊆ 6⊆ ⊆
GGc 6⊆ ⊆ ⊆
GGf 6⊆ ⊆
DGc ⊆

It is not difficult to produce examples proving that all inclusions in the table are proper, in

the sense that there exist graphs G for which the corresponding proximity subgraph does not

coincide with its supergraph.

4 Geometric and Combinatorial Properties

In this section we study some geometric and combinatorial properties of the previously defined

proximity graphs. We start by proving that the free Delaunay graph is the dual graph of the

Voronoi diagram, and by showing the consequences of this result on the combinatorial complexity

of the graphs under study. Then we deal with two important particular cases, namely, when

G is planar and when G is a tree. Finally, we characterize the graphs that are isomorphic to a

proximity graph of some other graph.

Remark 4.1. Consider G = (V, U,E) and assume that A2 is satisfied. If the point p is in the

intersection of two Voronoi regions, then p is a point on an edge of G. Moreover, if q is a point

in the intersection of a different pair of Voronoi regions, then p and q are on different edges of

G. In particular, the intersection of three Voronoi regions is empty.

We define the dual graph of the Voronoi diagram of G = (V, U,E) as the graph with vertex

set U and edges connecting two vertices if and only if their Voronoi regions share some point of

G that does not belong to the Voronoi region of any other vertex in U.

Proposition 4.2. Let G = (V,U,E) be a graph. Then DGf(G) is the dual graph of VD(G).
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Proof. If the Voronoi regions of two vertices ui 6= uj ∈ U intersect in a point y that is not

in the Voronoi region of any other vertex in U , then the closed disk DG(y, r), where r is the

distance from y to ui, contains ui, uj , and no other vertex from U. Thus (ui, uj) is an edge of

DGf(G).

Reciprocally, let us assume that there exists a disk DG(x, r), where x is a point of G, con-

taining only two vertices of U , ui and uj . Then it can easily be shown that there exists a disk

DG(x′, r′), where x′ is a point of G, contained in DG(x, r) and having ui and uj on its boundary.

Hence x′ lies in the Voronoi regions of ui and uj (and does not lie in the Voronoi region of any

vertex from U). £

The previous proposition is a key tool to prove other results of interest, such as the following:

Corollary 4.3. Let G = (V, U,E) be a graph. The number of edges of NNG(G), MST(G),

RNG(G), GGc(G), GGf(G), DGc(G), and DGf(G) is at most e.

Proof. Let (ui, uj) be an edge of DGf(G). By Proposition 4.2, the Voronoi regions of ui and

uj intersect at a point p of G such that dG(p, ui) = dG(p, uj) < dG(p, uk) for all vertices uk ∈ U

different from ui and uj . By Remark 4.1, p is a point on an edge of G and this edge does not

include any other point on the intersection of the Voronoi regions of two vertices in U. The

number of edges of DGf(G) is therefore less than or equal to e.

Since, for all other classes, the proximity graph on G is a subgraph of DGf(G), their size is

also bounded by e. £

The next proposition shows that this bound is tight for the graphs RNG(G), GGf(G), and

DGf(G), and is tight up to a constant factor for the graphs GGc(G) and DGc(G).

Proposition 4.4. There exists a graph G = (V, U,E) such that RNG(G) = GGf(G) = DGf(G) =

G. There also exists a graph G′ = (V ′, U ′, E′) such that the number of edges of GGc(G′) and

DGc(G′) is e′/2. Furthermore, all of these graphs have Θ(n2) edges.

Proof. Consider two groups of n/2 vertices. Let U be this set of n vertices, V = U and

G = (V, U,E) be the complete bipartite graph on the two groups of vertices. The weights of the

edges of G are real numbers between 1 and 1.5, and can be assigned so that G is non-degenerate.

In this situation RNG(G) = GGf(G) = DGf(G) = G, and RNG(G), GGf(G), and DGf(G) have

n2/4 edges.

Now add vertices to G in such a way that there exists a vertex in V −U close to the midpoint

of each edge (and the graph remains non-degenerate). Let G′ = (V ′, U ′, E′) be the resulting

graph. In this case the number of edges of GGc(G′) and DGc(G′) is e′/2 = n2/4. £

We now consider the case where G = (V,U,E) is a planar graph.

Theorem 4.5. Let G = (V,U,E) be a planar graph. Then DGf(G) is planar.
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Proof. Consider a plane drawing of G. Let (ui, uj) be an edge of DGf(G). By Proposition 4.2,

there exists a point p of G (not in V by Remark 4.1) such that dG(p, ui) = dG(p, uj) < dG(p, uk)

for all vertices uk ∈ U different from ui and uj . Draw the edge (ui, uj) by following the union of

a shortest path in G from ui to p and a shortest path from p to uj . Note that each point q 6= p

in a shortest path from ui to p is such that dG(q, ui) < dG(q, uk) for all vertices uk ∈ U different

from ui, and the same holds for uj . Draw all edges in DGf(G) in this way and suppose the

graph has one crossing. Since G is planar, this crossing occurs in a vertex w of V −U. Then, w

belongs to two shortest paths, one from a point pl ∈ G−V to a point ul ∈ U and the other from

ph ∈ G − V to uh ∈ U. Hence, dG(w, ul) < dG(w, uν) for all vertices uν ∈ U different from ul,

and dG(w, uh) < dG(w, uν) for all vertices uν ∈ U different from uh. This yields a contradiction.

Observe that an edge of G might be used in the drawing of several edges of DGf(G). It is

easy to prove that, in this case, it can be duplicated in such a way that no crossings are created. £

Corollary 4.6. If G = (V, U,E) is a planar graph, then NNG(G), MST(G), RNG(G), GGc(G),

GGf(G), and DGc(G) are planar.

We have just proved that the proximity graphs inherit planarity from the original graph.

Next we show that they also inherit acyclicity.

Theorem 4.7. Let G = (V,U,E) be a tree. Then DGf(G) = MST(G).

Proof. As MST(G) ⊆ DGf(G), it suffices to show that DGf does not contain any cycle.

Suppose that DGf contains a cycle u1u2 . . . ulu1 (3 ≤ l ≤ n). By Proposition 4.2, the in-

tersection of the Voronoi regions of every pair of points ui, ui+1 is non-empty; let pi,i+1 be a

point belonging to this intersection. By Remark 4.1, the points pi,i+1 are not in V , are pairwise

different, and satisfy that dG(pi,i+1, ui) = dG(pi,i+1, ui+1) < dG(pi,i+1, uk) for all vertices uk ∈ U

different from ui and ui+1. For every vertex ui, consider the union of the unique path in G

from pi−1,i to ui and the unique path in G from ui to pi,i+1. Let ci be the unique path in G

from pi−1,i to pi,i+1. Observe that this path is contained in the previous union. Since the paths

from pi−1,i to ui and from ui to pi,i+1 are also shortest paths, each point q in ci different from

pi−1,i and pi,i+1 is such that dG(q, ui) < dG(q, uk) for all vertices uk ∈ U different from ui. As

a consequence, two paths ci and cj , i 6= j, only intersect if j = i + 1, and the intersection takes

place at point pi,i+1. Thus the union of the paths ci is a cycle of G, contradicting that G is a

tree. £

Corollary 4.8. Let G = (V, U,E) be a tree. Then GGc(G) and DGc(G) are forests, and

RNG(G) = GGf(G) = MST(G).

Next we give complete characterizations for those graphs that are isomorphic to a certain

proximity graph of some other graph. Our results are motivated by the rich literature on

characterizations for the graphs that are isomorphic to (or can be drawn as) one of the usual

proximity graphs defined on a point set in the plane (see [20] for an excellent survey).
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Proposition 4.9. If G = (V, E) is a graph, there exists a graph Ḡ = (V̄ , Ū , Ē) such that

G ∼= NNG(Ḡ) if and only if G is acyclic and does not contain isolated vertices.

Proof. On the one hand, any nearest neighbor graph does not contain isolated vertices

because every vertex is connected to its nearest neighbor. On the other hand, this proximity

graph is acyclic because it is a subgraph of the minimum spanning tree. This settles one of the

implications.

Now let us suppose that G does not contain cycles or isolated vertices. We define a new

graph Ḡ = (V̄ , Ū , Ē) such that G ∼= NNG(Ḡ). Let V̄ = Ū = V, Ē = E, and look at each

connected component of Ḡ as a rooted tree. Connect all pairs of roots of different trees. Assign

weights to the edges of Ḡ so that the nearest neighbor of each vertex different from a root is its

predecessor in its tree, and the nearest neighbor of a root is one of its successors in its tree. The

graph Ḡ satisfies G ∼= NNG(Ḡ). £

The next characterization is straightforward.

Proposition 4.10. If G = (V, E) is a graph, there exists a graph Ḡ = (V̄ , Ū , Ē) such that

G ∼= MST(Ḡ) if and only if G is a tree.

Proposition 4.11. If G = (V, E) is a graph, there exists a graph Ḡ = (V̄ , Ū , Ē) such that

G ∼= RNG(Ḡ) if and only if G is triangle-free.

Proof. Suppose that there exists a graph Ḡ = (V̄ , Ū , Ē) such that G ∼= RNG(Ḡ). Notice

that, for every group of three vertices in RNG(Ḡ), the edge connecting the furthest pair is not

in the graph. Thus RNG(Ḡ) is triangle-free and so is G.

Reciprocally, let V̄ = Ū = V, Ē = E and assign to all edges in Ē approximately the same

weight. Consider two vertices ui, uj in Ū . If their corresponding vertices in G are adjacent, they

are relative neighbors in Ḡ. Indeed, since G is triangle-free, no vertex in G is adjacent to both

ui and uj , so no vertex in Ū lies in the lens∗ defined by ui and uj in Ḡ. If they are relative

neighbors in Ḡ, no other vertex of Ū lies in the shortest path connecting them, and thus their

corresponding vertices in G are adjacent. £

Proposition 4.12. Let G = (V,E) be a graph. There exists a graph Ḡ = (V̄ , Ū , Ē) such that

G ∼= GGc(Ḡ) = GGf(Ḡ) = DGc(Ḡ) = DGf(Ḡ).

Proof. Let Ū = V, Ē = E and assign to all edges in Ē approximately the same weight. Add

a new vertex in V̄ − Ū close to the midpoint of each of the edges in Ē. Then G ∼= GGc(Ḡ) =

GGf(Ḡ) = DGc(Ḡ) = DGf(Ḡ). £

∗The lens defined by two points at distance d has been sometimes called lune in the literature, and it is the

intersection of the disks of radius d centered at the points.
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5 Algorithms

In this section we provide algorithms to compute each of the proximity graphs we have presented.

Algorithm for DGf(G)

The Voronoi diagram of a graph G = (V, U,E) can be computed in O(e + (m− n) log(m− n))

time using an algorithm proposed in [8]. As shown in Proposition 4.2, DGf(G) is its dual graph,

so it can be computed scanning the bridges of VD(G), that is, the edges with the property that

the two endpoints belong to different Voronoi regions. This is done in O(e) extra time.

Algorithm for DGc(G)

Two different vertices u, u′ ∈ U are adjacent in DGc(G) if and only if there exists a closed disk

DG(v, r), with v ∈ V, which is empty of points in U except for u and u′. If such a disk exists,

the two vertices in U closest to vertex v are u and u′. For each vertex vi in V, the algorithm

computes its two closest vertices ui and u′i of U . Then the edges in DGc(G) are (ui, u
′
i) for all i.

To find the two closest vertices in U of every vertex in V we use a technique similar to that

in [8, 11, 24]. The sketch of the algorithm is as follows. For each vertex u ∈ U, the algorithm

constructs a tree Tu rooted at u providing the shortest paths from u to some vertices in V as in

Dijkstra’s algorithm. The trees are built simultaneously as follows. At any given point during

the execution of the algorithm, among all vertices that are adjacent in G to a vertex in any of

the n trees, we select the one at shortest distance from the root of its corresponding tree. We

do not add a vertex to a tree if it is already there, and we do not add a vertex to a tree if it

was added to two other trees in earlier iterations. The algorithm finishes when all vertices in V

have been added to two trees.

Our algorithm is very similar to the one presented in [11] to compute the k nearest vertices

in U of every vertex in V, which runs in O(min{ne + nm log m, km log m + ke log m}) time. So

here we omit the precise description of the steps of the algorithm and the proof of its correctness,

which are carefully given in [11], and we concentrate on the implementation details that allow

to improve the running time of the algorithm in [11].

Implementation of the Algorithm

First of all, we create a min-priority queue Q implemented via Fibonnacci heaps [10], so that

the operations Insert, Find-min, and Decrease-key are done in O(1) amortized time, and

the operations Extract-min and Delete are done in O(log n) time.

The objective of creating and maintaining the min-priority queue Q is to store the current

minimum and second minimum distances from each vertex in V to the vertices in U. So for each

vertex v ∈ V, we insert into Q two elements v1, v2 with associated values d(v1), d(v2) initially set

to infinity (except for the elements u1, where u ∈ U , which are inserted with value d(u1) = 0).

The parameters d(v1) and d(v2) will respectively store the lengths of the current shortest and
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second shortest paths from v to any of the vertices in U, with the additional condition that

these two shortest paths lead to two different elements T (v1) and T (v2) of U. We also store the

parents π(v1) and π(v2) that v has in these paths and the vertices T (v1) and T (v2).

We also make use of a table SP of size m× 2 in which we will keep track of the number of

times an element has been extracted from Q to be added to a tree, and of the trees to which

the element has been added. Thus SP [v, j] = i (j = 1, 2) means that, the j-th time that vertex

v has been extracted from Q, it has been added to Ti.

It is worth pointing out that we do not actually store the trees because the only information

needed to compute DGc(G) is given by table SP.

At each iteration of the algorithm, we first extract the minimum element of Q; let it be vj .

Then v is added to the corresponding tree, so we update SP and process every neighbor of v,

w 6= π(vj). To process these neighbors we follow the same steps as in [11], except that, if we

find a shorter path from w to a vertex in U, we do not delete w from Q and reinsert it with a

new source T (w), but we simply decrease the key of w (which is done in O(1) amortized time)

and update the values of π(w) and T (w).

When all neighbors have been processed, we continue with the next iteration of the algorithm.

The algorithm ends when Q is empty.

Complexity

Since the only insertions into Q are done in the initialization step and at the end of the algorithm

Q is empty, the total running time of the insertions and extractions is O(m log m).

We must also account for the Decrease-key operations. Let v be a vertex of V. The

associated vertices v1, v2 might have their value in Q decreased only if one of the neighbors of v

in G is added to a tree, so at most 2δ(v) times (where δ(v) is the degree of v in G). This implies

that the total number of decrease operations in the algorithm is at most 8e. Since each of them

is done in constant amortized time, the total running time is O(e).

Regarding space, it is clear that the total space used by the algorithm is O(m + e).

Summarizing, we have proved

Theorem 5.1. For each graph G = (V,U,E) the graph DGc(G) can be computed in O(e +

m log m) time and O(e) space.

Algorithm for GGf(G)

Recall that ui, uj ∈ U are adjacent in GGf(G) if they are the two closest vertices in U of their

midpoint. So we propose an algorithm that first computes the shortest path between every

pair of vertices in U and afterwards tests the previous condition. To do this last step, we scan

the shortest path in O(m) time to find its midpoint and then check whether the midpoint is

contained in a bridge between the Voronoi regions of the two vertices in U, which can be done

in constant time if the Voronoi diagram of the graph has been precomputed. Observe that, as

GGf(G) ⊆ DGf(G), it suffices to test the edges in DGf(G).
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To compute all pairs (of vertices in U) shortest paths, we might distinguish two cases,

depending on the order of magnitude of the number of edges of G. As far as we know, the best

algorithm for the case in which G is a sparse graph has an asymptotic cost of O(me log α(m, e)) in

the comparison-addition model (α denotes the functional inverse of Ackermann’s function) [27].

In this algorithm, after a preprocessing phase of cost O(m log m), single-source shortest path

queries can be carried out in O(e log α(m, e)) time. Since we are only interested in shortest paths

between vertices in U, the total cost of the algorithm in our case is O(m log m + ne log α(m, e)).

If G is dense, the previous algorithms might be cubic. To the best of our knowledge, given

a dense graph G = (V, E), with |V | = m and |E| = e, the fastest algorithm to compute the

shortest paths between all pairs of vertices in V runs in O
(
m3 log3 log m/ log2 m

)
time in the

standard RAM model [6].

For practical purposes, we define

APSP(G) = O
(
min{m log m + ne log α(m, e),m3 log3 log m/ log2 m}) .

So we have:

Theorem 5.2. For each graph G = (V, U,E), the graph GGf(G) can be computed in O(APSP(G)+

min{n2, e}m) time.

Algorithm for GGc(G)

Given a pair of vertices ui, uj ∈ U, there is a straightforward way to know whether (ui, uj) is

an edge of GGc(G) if the distances from ui and uj to all vertices in V have been precomputed.

Firstly, for each v ∈ V, we compute max{dG(v, ui), dG(v, uj)}, which is the radius of the smallest

closed disk centered at v containing both ui and uj . Secondly, among this family of disks, we

pick the one that has the smallest radius. Thirdly, we check whether the chosen disk contains

some vertex in U different from ui and uj . These three steps can be done in O(m) time.

Since GGc(G) ⊆ DGf(G), we only test the edges in DGf(G). Consequently,

Theorem 5.3. For each graph G = (V, U,E), the graph GGc(G) can be computed in O(APSP(G)+

min{n2, e}m) time.

Algorithm for RNG(G)

We propose a two steps algorithm. Firstly, we compute the shortest paths between all pairs of

vertices in U to obtain the distances among these vertices. Secondly, we compute RNG(G) by

checking, for all pairs of vertices ui, uj ∈ U that are adjacent in DGf(G), whether there exists

any vertex uk ∈ U such that dG(uk, ui) < dG(ui, uj) and dG(uk, uj) < dG(ui, uj).

Theorem 5.4. For each graph G = (V, U,E), the graph RNG(G) can be computed in O(APSP(G)+

min{n2, e}n) time.
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Algorithm for MST(G)

A first approach to obtain the minimum spanning tree of a graph G = (V, U,E) could be to

compute the distances between all pairs of vertices in U and then use some efficient algorithm

to produce the minimum spanning tree of the complete graph on the vertices in U (if any of

the supergraphs of MST(G) was already known, some of the edges could be discarded). This

algorithm would run in O (APSP(G)) time. Next we show that another analogy between the

usual proximity graphs and the new proximity structures on graphs allows to derive a better

algorithm.

It is well known that the Gabriel graph of a set of points in the plane contains those edges

in the Delaunay graph that intersect their dual Voronoi edges. The analogous property satisfied

by our proximity structures on graphs is the following:

Lemma 5.5. Let G = (V, U,E) be a graph and let (ui, uj) be an edge of DGf(G). The graph

GGf(G) contains (ui, uj) if and only if the shortest path between ui and uj is contained in the

Voronoi regions of ui and uj .

Proof. It suffices to notice that the shortest path between ui and uj is contained in the

Voronoi regions of ui and uj if and only if its midpoint lies in the Voronoi regions of both ver-

tices. £

Remark 5.6. Let G1 = (V,E), G2 = (V, E) be two weighted graphs with the same sets of

vertices and edges. Let |e|1 (respectively |e|2) denote the weight of edge e in G1 (respectively

G2). Suppose that E = E′ ∪ E′′, where |e′|1 = |e′|2 for all e′ ∈ E′ and |e′′|1 < |e′′|2 for all

e′′ ∈ E′′. Suppose also that no edge in E′′ belongs to MST(G1). Then MST(G1) = MST(G2).

Now let us consider DGf(G) as a weighted graph, where the weight of an edge is given by

the distance in G between its endpoints. As MST(G) ⊆ DGf(G), we have that MST(G) =

MST(DGf(G)). We define the weighted graph D̂Gf(G) as follows. The vertex set and edges

are the same as in DGf(G), and the weight of an edge (ui, uj) in D̂Gf(G) is the length of the

shortest path from ui to uj in G that is contained in the Voronoi regions of both vertices.

Observe that the weight of an edge in DGf(G) is less than or equal to its weight in D̂Gf(G),

and that, by Lemma 5.5, they are equal if and only if the edge belongs to GGf(G). Moreover,

since MST(G) ⊆ GGf(G), an edge that has different weights in DGf(G) and D̂Gf(G) is not

contained in MST(G). By Remark 5.6, we can conclude that MST(D̂Gf(G)) = MST(DGf(G)),

so MST(D̂Gf(G)) = MST(G).

Our algorithm takes advantage of the fact that computing the weights in D̂Gf(G) is easier

than in DGf(G). Firstly, we compute the Voronoi diagram of G using the algorithm proposed

in [8]. This algorithm provides not only the nearest vertex in U of every vertex in V but also

the distance between them. Thus the length of the shortest path between two neighbors ui, uj

in D̂Gf(G) containing a particular bridge of VD(G) can be computed in constant time. In order

to obtain the weight of edge (ui, uj) in D̂Gf(G), all we have to do is to scan all the bridges
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Table 2: Inclusion relations among all classes of proximity graphs in the general case.

UMST RNG GGca GGc1 GGfa GGf1 DGc DGf

NNG ⊆ ⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆
UMST ⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆
RNG 6⊆ 6⊆ 6⊆ 6⊆ 6⊆ 6⊆
GGca ⊆ 6⊆ 6⊆ ⊆ ⊆
GGc1 6⊆ 6⊆ ⊆ ⊆
GGfa ⊆ 6⊆ ⊆
GGf1 6⊆ ⊆
DGc ⊆

between the Voronoi regions of both vertices. All in all, the graph D̂Gf(G) can be computed in

O(e + (m− n) log(m− n)) time.

Afterwards we can apply some efficient algorithm to obtain MST(D̂Gf(G)). Two suitable

options are the algorithm in [7], which runs in O(e α(e, n)) time, or the algorithm in [26], whose

exact running time is not known, but which runs in linear time for most graphs.

In conclusion,

Theorem 5.7. For each graph G = (V, U,E), the graph MST(G) can be computed in O(e α(e, n)+

(m− n) log(m− n)) time.

Algorithm for NNG(G)

An algorithm to compute the nearest neighbor graph by means of DGf(G) is also provided in

[8]. Its total running time is O(e + (m− n) log(m− n)).

6 Presence of Degeneracies

In this section we generalize our results to the case in which degeneracies arise.

Theorem 6.1. If degenerate situations are allowed, the inclusion relations among all classes

of proximity graphs are shown in Table 2. Furthermore, all classes of proximity graphs are

different.

Proof. First we deal with the new graphs. It is easy to see that, as far as inclusion relations

are concerned, the graph GGc1 behaves essentially as the graph GGc in the non-degenerate

case, and the same holds for the graphs GGf1 and GGf . This rule has few exceptions related to

NNG(G), UMST(G), and RNG(G) which are explained below.
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Regarding GGca, the example in Figure 2a shows that NNG 6⊆ GGca and RNG 6⊆ GGca.

Clearly, GGca(G) ⊆ GGc1(G) and one can easily come up with a situation where GGca(G) ⊂
GGc1(G). The graph in Figure 2b proves that GGca 6⊆ GGf1 and GGca 6⊆ GGfa. Finally, it holds

that GGca ⊆ DGc and GGca ⊆ DGf , because GGca(G) ⊆ GGc1(G) and GGc1(G) ⊆ DGc(G) ⊆
DGf(G).

Next we focus on GGfa. It is obvious that GGfa ⊆ GGf1(G) and that, in some cases, GGfa ⊂
GGf1(G). The graph in Figure 2b shows that GGc1(G) 6⊆ GGfa, while the one in Figure 2c

proves that GGfa(G) 6⊆ DGc. Since GGfa(G) ⊆ GGf1 and GGf1 ⊆ DGf(G), we conclude that

GGfa(G) ⊆ DGf .

Now let G be the graph on Figure 3a. This graph does not satisfy assumption A2 and

illustrates the changes with respect to the non-degenerate case. That is, the graphs NNG(G),

UMST(G), and RNG(G) contain edges (a, b), (b, c) and (c, a), while the graphs GGca(G), GGc1(G),

GGfa(G), GGf1(G), DGc(G), and DGf(G) only contain (a, b). Hence, none of the graphs of the

first group is a subgraph of any graph of the second group.

Finally, analogous proofs to those in Section 3 show that the remaining relations of contain-

ment hold even if degeneracies are permitted. £

(b)(a)

3
5
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b

c

5

5
5

5

d
5

3

a

b

c

f

d

e

Figure 3: Two graphs not satisfying A2. (a) The edge (b, c) belongs to NNG(G), UMST(G),

and RNG(G), but does not belong to GGca(G), GGc1(G), GGfa(G), GGf1(G), DGc(G), and

DGf(G). (b) NNG(G), UMST(G), and RNG(G) are the complete graph on U , whereas GGca(G),

GGc1(G), GGfa(G), GGf1(G), DGc(G), and DGf(G) are the empty graph.

We now focus on the most important properties presented in Section 4.

The proof that DGf(G) is the dual the graph of VD(G) does not require any non-degeneracy

assumption, so this result holds in all cases.

Let us now consider the size of the proximity graphs. If A2 is not satisfied, some of the

proximity graphs might have more edges than the original graph. More precisely,

Theorem 6.2. Let G = (V, U,E) be a graph. The number of edges of GGca(G), GGc(G),

GGfa(G), GGf(G), DGc(G), and DGf(G) is at most e. The number of edges of NNG(G),

UMST(G), and RNG(G) may be greater than e.

Proof. Let (ui, uj) be an edge of DGf(G). Then there is a point p of G such that dG(p, ui) =

dG(p, uj) < dG(p, uk) for all vertices uk ∈ U different from ui and uj .
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First suppose that the point p is unique. If p is not an element of V, we assign the edge

(ui, uj) ∈ DGf(G) to the edge in G containing p. Otherwise let uiv1v2 . . . vlp be a shortest path

from ui to p in G. Then we assign (ui, uj) to the edge (vl, p) ∈ G.

Now suppose that there are several points of G satisfying the same condition as p. Let q be

the one at smallest distance from ui and uj . Observe that q ∈ V. As in the previous case, if

uiw1w2 . . . whq is a shortest path from ui to q in G, we assign (ui, uj) to the edge (wh, q) ∈ G.

We have just constructed an injective function that maps each edge in DGf(G) to an edge

in G. Hence the number of edges of DGf(G) is at most e. Since GGca(G), GGc1(G), GGfa(G),

GGf1(G), and DGc(G) are subgraphs of DGf(G), their size is also bounded by e.

With regard to the remaining proximity graphs, consider the graph on Figure 3b, which does

not fulfill A2. Observe that NNG(G), UMST(G), and RNG(G) are the complete graph on the

vertices of U, so they have ten edges, while the original graph has five. £

Finally, the next two theorems include the proximity graphs that inherit the property of

being planar or acyclic in the degenerate case. The proof of the first part of each statement can

be obtained using the same approach as in Theorems 4.5 and 4.7 in Section 4. The graph in

Figure 3b proves the second part of each statement.

Theorem 6.3. Let G = (V, U,E) be a planar graph. Then the graphs GGca(G), GGc1(G),

GGfa(G), GGf1(G), DGc(G), and DGf(G) are planar, whereas NNG(G), UMST(G), and RNG(G)

may not be.

Theorem 6.4. Let G = (V, U,E) be a tree. Then the graphs GGca(G), GGc1(G), GGfa(G),

GGf1(G), DGc(G), and DGf(G) are acyclic, whereas NNG(G), UMST(G), and RNG(G) may

not be.

The algorithms in the preceding section can be adapted to run under the presence of de-

generacies yet we omit their descriptions which require, as usual, many details to be carefully

handled.
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