
Complexity and Approximability

of the Maximum Flow Problem

with Minimum Quantities

Clemens Thielen1 and Stephan Westphal2

1 Department of Mathematics, University of Kaiserslautern
Paul-Ehrlich-Str. 14, D-67663 Kaiserslautern, Germany

thielen@mathematik.uni-kl.de
2 University of Goettingen, Institute for Numerical and Applied Mathematics,

Lotzestr. 16-18, D-37083 Goettingen, Germany
s.westphal@math.uni-goettingen.de

Abstract. We consider themaximum flow problem with minimum quan-
tities (MFPMQ), which is a variant of the maximum flow problem where
the flow on each arc in the network is restricted to be either zero or above
a given lower bound (a minimum quantity), which may depend on the
arc. This problem has recently been shown to be weakly NP-complete
even on series-parallel graphs.

In this paper, we provide further complexity and approximability results
for MFPMQ and several special cases. We first show that it is strongly
NP-hard to approximate MFPMQ on general graphs (and even bipartite
graphs) within any positive factor. On series-parallel graphs, however,
we present a pseudo-polynomial time dynamic programming algorithm
for the problem.
We then study the case that the minimum quantity is the same for each
arc in the network and show that, under this restriction, the problem is
still weakly NP-complete on general graphs, but can be solved in strongly
polynomial time on series-parallel graphs. On general graphs, we present
a (2 − 1

λ
)-approximation algorithm for this case, where λ denotes the

common minimum quantity of all arcs.

Keywords: maximum flow problem, minimum quantities, computational
complexity, approximation algorithms

1 Introduction

The maximum flow problem is a classical problem in network flow theory (cf.,
for example, [1]), which can be used to model many problems in logistics and
transportation.

In this paper, we consider a variant of the problem where the flow on each
arc in the network is restricted to be either zero or above a given lower bound (a
minimum quantity), which may depend on the arc. This problem is motivated
by pipe systems where, for example in a wastewater system, a used pipe will
get clogged if not at least a minimum amount of water runs through it. Other

2

applications stem from minimum lot sizes in transportation and logistics (cf.
[4]). Formally, the maximum flow problem with minimum quantities (MFPMQ)
is defined as follows:

Definition 1 (Maximum Flow Problem with Minimum Quantities).
INSTANCE: A directed graph G = (V,R), a source s ∈ V , a sink t ∈ V , arc

capacities u : R → N∪{+∞}, and minimum quantities λ : R → N0

such that λ(r) ≤ u(r) for all r ∈ R.
TASK: Find a feasible s-t-flow f : R → N0 of maximum flow value in G.

In the above definition, a feasible s-t-flow is a function f : R → N0 that
satisfies the flow conservation constraints and respects the minimum quantities
and upper capacities on the arcs. Denoting the set of arcs starting in v ∈ V
by δ+(v) and the set of arcs ending in v by δ−(v), these requirements can be
expressed by the following constraints:

∑

r∈δ+(v)

f(r)−
∑

r∈δ−(v)

f(r) = 0 ∀ v ∈ V \ {s, t},

f(r) ∈ {0} ∪ [λ(r), u(r)] ∀ r ∈ R.

The flow value of f is then defined as val(f) :=
∑

r∈δ+(s) f(r)−
∑

r∈δ−(s) f(r).

In the decision version of the problem, a bound F ∈ N on the flow value is
given and the question is whether there exists a feasible flow with flow value at
least F . When stating results about the computational complexity of an opti-
mization problem such as MFPMQ, we will always mean the complexity of the
corresponding decision problem.

1.1 Previous Work

The classical maximum flow problem is well-studied in literature. A thorough
introduction to the problem is given in [1]. The maximum flow problem with
minimum quantities was introduced in [4], where the problem was shown to be
weakly NP-complete even on series-parallel graphs and Lagrangean relaxation
techniques and heuristics for solving the problem were studied.

Minimum quantities have also been studied recently for minimum cost net-
work flow problems [5, 7, 9], where introducing minimum quantities results in
the minimum cost flow problem becoming strongly NP-complete [5]. Moreover, it
was shown in [5] that (unless P = NP) no polynomial time g(|I|)-approximation
for the minimum cost flow problem with minimum quantities exists for any
polynomially computable function g : N+ → N+, where |I| denotes the encoding
length of the given instance1.

1 In addition, a dynamic programming algorithm and fully polynomial time approxi-
mation scheme (FPTAS) for the minimum cost flow problem with minimum quan-
tities on series-parallel graphs were presented in [5]. These results, however, were
shown to be erroneous in a recent erratum [6].

3

1.2 Our Contribution

We show that it is strongly NP-hard to approximate MFPMQ within any posi-
tive factor even when the graph is bipartite. On series-parallel graphs, however,
we present a pseudo-polynomial time dynamic programming algorithm for the
problem. This result is best possible for series-parallel graphs since the proof of
weak NP-completeness of MFPMQ on series-parallel graphs given in [4] in fact
shows weak NP-hardness of approximation. Moreover, our result shows that the
problem cannot be strongly NP-hard for series-parallel graphs (unless P = NP).

We then consider the case that the minimum quantity is the same for each arc
in the network and show that, on general graphs, the problem is still weakly NP-
complete under this assumption. Moreover, we present a (2− 1

λ
)-approximation

algorithm for this case, where λ ≥ 2 denotes the common minimum quantity of
all arcs (for λ ∈ {0, 1}, the problem can be solved optimally in strongly polyno-
mial time as a standard maximum flow problem without minimum quantities).
Finally, we show that the problem on series-parallel graphs can be solved in
strongly polynomial time when the minimum quantity is the same for each arc
in the network.

2 Hardness of Approximation on Bipartite Graphs

We start our discussion by showing that it is strongly NP-hard to approximate
MFPMQ within any positive factor even when the graph is bipartite. For the
proof, we use a reduction from the well-known NP-complete exact cover by 3-
sets problem (cf. [3]). An instance of EXACT COVER 3-SETS consists of a
finite set X = {x1, . . . , xn} with n = 3q, q ∈ N, and a collection of 3-element
subsets S1, . . . , Sm ⊆ X and the question is whether there exists an exact cover
of X by some of the subsets S1, . . . , Sm, i.e., indices c1, . . . , cq such that each
element xi ∈ X is contained in exactly one of the sets Sc1 , . . . , Scq .

Theorem 1. MFPMQ is strongly NP-hard to approximate within any positive
factor even when the graph is bipartite.

Proof. Given an instance of EXACT COVER 3-SETS specified by the set X =
{x1, . . . , xn} and the 3-element subsets S1, . . . , Sm ⊆ X , we construct an instance
of MFPMQ such that any positive factor approximation for this instance can
be used to decide whether the given instance of EXACT COVER 3-SETS has
a solution: The graph G = (V,R) contains a source s, a sink t, a vertex xi for
every element xi ∈ X , and a vertex Sj for each subset. Moreover, there is one
additional vertex s′. There are arcs from the source s to s′, from s′ to each
set Sj , and from each element xi to the sink t. Finally, each set Sj has arcs to
all elements xi contained in it.

The arc capacities are defined as follows: The arc (s, s′) has capacity u(s, s′) =
n. Each arc r = (s′, Sj) connecting s′ to a subset Sj has capacity u(r) = |Sj | = 3.
All arcs (xi, t) connecting an element xi to the sink t and all arcs (Sj , xi) con-
necting a subset to an element have capacity 1. Nontrivial minimum quantities

4

are only imposed on the arc (s, s′), for which λ(s, s′) = n, and on the arcs con-
necting s′ to the subsets Sj , where we have λ(s′, Sj) = |Sj| = 3. For all other
arcs r ∈ R, we set λ(r) := 0.

Figure 1 shows the graphG for an example instance. Note thatG is not series-
parallel as the subgraph induced by s′, S2, S3, x3, x4, and t is homeomorphic to
Braess’s graph (the forbidden minor for series-parallel graphs).

t

s

s′

x1 x2 x3 x4 x5 x6

S1 S2 S3 S4 S5

λ = 3 λ = 3 λ = 3

.

. . .

.

. . . u = 1u = 1

u = 1 u = 1

λ = n

u = n

Fig. 1. The graph G for the set X = {x1, . . . , x6} (so n = 6) and the subsets S1 =
S2 = {x1, x3, x4}, S3 = {x2, x3, x4}, S4 = {x3, x4, x6}, S5 = {x2, x5, x6}.

We now show that there exists an exact cover of X = {x1, . . . , xn} by some
of the subsets S1, . . . , Sm if and only if there exists a feasible s-t-flow f of flow
value n in G. Since the minimum quantity and capacity of n for the arc (s, s′)
imply that any feasible flow in G must have value n or 0 and G is bipartite, this
will prove the claim.

First suppose that there exists a cover X = Sc1 ∪ Sc2 ∪ · · · ∪ Scq of X .
Then we define a flow f in G as follows: We set f(s, s′) = n, f(s′, Scj) = 3
for all j ∈ {1, . . . , q}, f(Scj , xi) = 1 if and only if xi ∈ Scj , and f(xi, t) = 1
for all xi ∈ X . On all other arcs, the flow is zero. Feasibility of f now follows
immediately from the fact that the sets Scj form an exact cover of X . Since the
flow value of f is f(s, s′) = n, this shows that f is as desired.

Conversely suppose that there is a feasible flow f of flow value n in G. Then
it follows that f(xi, t) = 1 for all xi ∈ X , so each element is covered exactly once
by the sets Sj with f(s′, Sj) = 3, which shows that an exact cover exists.

5

3 A Dynamic Programming Algorithm for Series-Parallel

Graphs

In this section, we present a pseudo-polynomial time dynamic programming
algorithm that solves MFPMQ exactly on series-parallel graphs.

A directed graph with two distinguished vertices s (the source) and t (the
sink) is series-parallel if it is obtained from a set of copies of the directed one-
arc graph K2 by a finite sequence of series compositions (identifying the sink of
the first graph with the source of the second graph) and parallel compositions
(identifying the sources and sinks of the two graphs, respectively). For further
details on series-parallel graphs, we refer to [2].

For a given series-parallel graph G = (V,R) with |V | =: n vertices, |R| =: m
arcs, source s and sink t, arc capacities u : R → N, and minimum quantities λ :
R → N, we denote the maximum value of a feasible s-t-flow that is less or equal to
a given integerM ∈ N0 by FG(M). Starting from the leaves of the decomposition
tree of the series-parallel graph, our pseudo-polynomial time algorithm computes
the value FG(M) for a suitable upper bound M on the maximum flow value
recursively by dynamic programming:

If G consists of only one arc r, the value FG(γ) can be computed in constant
time for each γ ∈ {0, . . . ,M} as

FG(γ) = min {γ, u(r)}

or FG(γ) = 0 if this value is smaller than the minimum quantity λ(r) of the arc.
For the case that G is the series or parallel composition of G1 and G2, the

value FG(γ) can be computed as stated in the following lemmas:

Lemma 1. If G is the series composition of G1 and G2, then

FG(γ) = max{FG1(j) : 0 ≤ j ≤ γ and FG1(j) = FG2(FG1(j))}.

Proof. “≥”: If FG1(j) = FG2(FG1(j)) for some j ∈ {0, . . . , γ}, then, by definition
of FG1(j), it follows that FG1(j) units of flow can be sent through G1 and, by
the equality, these FG1(j) units can also be sent through G2. Hence, there exists
a feasible s-t-flow in G of value FG1(j), which proves that FG(γ) ≥ FG1(j).

“≤”: Every feasible s-t-flow f in G with flow value 0 ≤ val(f) ≤ γ must
send val(f) units of flow through G1, so we must have val(f) = FG1(val(f)).
Moreover, since this amount of flow must also be sent through G2, we obtain
that also FG2(FG1(val(f))) = FG2(val(f)) = val(f), which proves that val(f) =
FG1(val(f)) = FG2(FG1(val(f))). Hence, the maximum on the right hand side is
at least val(f).

Lemma 2. If G is the parallel composition of G1 and G2, then

FG(γ) = max
0≤j≤γ

FG1(j) + FG2(γ − j).

6

Proof. “≥”: Trivial.

“≤”: Let f be a feasible s-t-flow in G with flow value 0 ≤ val(f) ≤ γ that
sends val1(f), val2(f) units of flow through G1 and G2, respectively. Then we
have val1(f) = FG1(val1(f)) and val1(f) + val2(f) = val(f) ≤ γ, so val2(f) ≤
γ − val1(f). Consequently, we obtain that val2(f) = FG2(val2(f)) ≤ FG2(γ −
val1(f)). Hence:

val(f) = val1(f) + val2(f) ≤ FG1(val1(f)) + FG2(γ − val1(f)).

As 0 ≤ val1(f) ≤ γ, this shows that the maximum on the right hand side is at
least FG1(val1(f)) + FG2(γ − val1(f)) ≥ val(f).

Using the recursions stated in Lemma 1 and 2, the value FG(γ) can be com-
puted in time O(γ) when the values FGk

(j) for k ∈ {1, 2}, j ∈ {0, . . . , γ} are

already known. Thus, we need time O(
∑M

γ=0 γ) = O(M2) to compute the val-
ues FG′(γ), γ = 0, . . . ,M , for each series-parallel graph G′ representing a branch
vertex of the decomposition tree of the given series-parallel graph. For a leaf of
the decomposition tree, we only need constant time to compute each value,
which yields a total time requirement of O(M) for computing all values FG′(γ),
γ = 0, . . . ,M , if G′ is a leaf. Hence, since the decomposition tree of a series-
parallel graph with n vertices and m arcs has O(m) vertices and can be com-
puted in O(m) time if the graph is connected (cf. [8]), our procedure computes
the value FG(M) in O(m ·M2) time.

To obtain an optimal solution of MFPMQ, the algorithm computes the value
FG(M) for a suitable upper bound M on the maximum flow value in G. For
example, we can set

M :=
∑

r∈δ+(s)

u(r)

to be the sum of all capacities of the arcs starting in the source. Hence, our
algorithm finds an optimal solution of MFPMQ in time O(m · M2). Note that
this running time bound is only pseudo-polynomial since it depends on an upper
bound M on the maximum flow value (and, hence, on the arc capacities).

4 Identical Minimum Quantities on General Graphs

We now show that MFPMQ on general graphs is weakly NP-complete even
if we restrict ourselves to instances with identical minimum quantities on all
arcs. We show, however, how a (2 − 1

λ
)-approximation for the case of identical

minimum quantities can be obtained in polynomial time, where λ ≥ 2 denotes
the common minimum quantity of all arcs (for λ ∈ {0, 1}, the problem can
be solved optimally in strongly polynomial time as a standard maximum flow
problem without minimum quantities).

We start by showing weak NP-completeness. To show NP-hardness, we use a
reduction from the (weakly) NP-complete partition problem (cf. [3]). An instance

7

of PARTITION consists of n positive integers a1, . . . , an ∈ N and the question
is whether there exists a subset S of {1, . . . , n} such that

∑

i∈S ai =
1
2

∑n
i=1 ai

(in which case we call (S, {1, . . . , n} \ S) a partition of a1, . . . , an).

Theorem 2. MFPMQ with identical minimum quantities is weakly NP-com-
plete.

Proof. Membership in NP is obvious as feasibility and flow value of a given
flow f can be checked easily in polynomial time. To show NP-hardness, we reduce
PARTITION to MFPMQ with identical minimum quantities in polynomial time.
Given an instance of PARTITION specified by a1, . . . , an, first note that we may
assume without loss of generality that there does not exist j ∈ {1, . . . , n} such
that aj ≥

1
2 ·

∑n
i=1 ai as, for aj >

1
2 ·

∑n
i=1 ai, the instance can clearly not have

a solution and, for aj = 1
2 ·

∑n
i=1 ai, the instance has the trivial solution given

by the subset S = {j}.
We now construct an instance of MFPMQ with identical minimum quantities

as follows: The graph G = (V,R) contains a source s, a sink t, a vertex vi for
every i ∈ {1, . . . , n}, and vertices x1, x2, y1, y2. There are arcs from the source s
to each vi with capacity λ+ai, and from each vi to each xj with capacity λ+ai,
where λ := 1

2 ·
∑n

i=1 ai is the minimum quantity on all arcs. Furthermore, there
are n + 1 parallel arcs with capacity λ from xj to yj and one arc from yj to t
with capacity (n + 1) · λ for j = 1, 2. Figure 2 shows the graph G for the case
n = 5.

t

s

x1 x2

y1 y2

λ λ λλλ λ λ λλλλ λ

(n + 1) · λ(n + 1) · λ

λ + a1

λ + a1

λ + a2
λ + a3

λ + a4

λ + a5

λ + a5

v1 v2 v3 v4 v5

.

Fig. 2. The graph G from the proof of Theorem 2 for n = 5. The minimum quantity
on all arcs is λ and the capacities are given by the arc labels.

8

We now show that there exists a partition (S1, S2) of a1, . . . , an if and only
if the maximum flow value in G is equal to n · λ+

∑n
i=1 ai = (n+ 2) · λ.

First suppose that there exists a partition (S1, S2) of a1, . . . , an. Then we
define a flow f in G as follows: We set f(s, vi) = λ + ai for all i ∈ {1, . . . , n},
f(vi, xj) = λ+ ai for all j ∈ {1, 2}, i ∈ Sj . For i /∈ Sj , we set f(vi, xj) = 0. From
the n+ 1 parallel arcs leading from xj to yj, the flow f has value λ on |Sj |+ 1
of them and value 0 on the others. Finally, the flow on the arcs (y1, t) and (y2, t)
attains values (|S1|+1) · λ and (|S2|+1) · λ, respectively. It is then clear that f
is a feasible s-t-flow with value (n+ 2) · λ

Conversely, suppose that there exists a feasible flow f of flow value n · λ +
∑n

i=1 ai = (n + 2) · λ in G. Then it follows that f(s, vi) = λ + ai for all i ∈
{1, . . . , n}. As there is a minimum quantity of λ for each of the arcs (vi, xj)
and λ > ai by our assumption on the PARTITION instance, exactly one of the
arcs (vi, x1), (vi, x2) can have a positive flow value for each i ∈ {1, . . . , n}, and
this value has to be λ + ai in order to fulfill the flow conservation constraints.
For j = 1, 2, let Sj be the set of all i such that f(vi, xj) = λ + ai. Observe
that (S1, S2) is a partition of {1, . . . , n}. The parallel arcs between xj and yj
ensure that the total flow going into xj has to be an integer multiple of λ.
Since

∑n
i=1 ai = 2λ, we have

∑

i∈S1
ai ∈ {0, λ, 2λ}. As the total capacity of

the arcs going from x1 to y1 is (n + 1) · λ, it is impossible that
∑

i∈S1
ai = 2λ.

As
∑

i∈S1
ai = 0 would result in

∑

i∈S2
ai = 2λ, the only possible case is that

∑

i∈S1
ai = λ = 1

2 ·
∑

i=1 ai. This shows that (S1, S2) is a solution to the given
instance of PARTITION, which proves NP-completeness.

We now show how a (2− 1
λ
)-approximation for MFPMQ with identical min-

imum quantity λ ≥ 2 on all arcs can be obtained in polynomial time. Our
algorithm can be stated as follows:

Algorithm 3 (MFPMQ with Identical Minimum Quantities).
INPUT: A directed graph G = (V,R), a source s ∈ V , a sink t ∈ V , arc

capacities u : R → N, and an integer minimum quantity λ ≥ 2 such
that u(r) ≥ λ for all r ∈ R.

OUTPUT: A feasible s-t-flow f : R → N0.

METHOD: Define new arc capacities ū by setting ū(r) := ⌊u(r)
λ

⌋, compute an
integral maximum s-t-flow f̄ in G without minimum quantities with
respect to these arc capacities, and return f := λ · f̄ .

Observe that, since the arc capacities ū are integral, an integral maximum
flow f̄ in G without minimum quantities exists and can be computed in strongly
polynomial time (cf. [1]). Moreover, the flow f returned by Algorithm 3 is feasi-
ble: Since f̄ satisfies the flow conservation constraints at each node, also f = λ· f̄
does so. Moreover, we have

f(r) = λ · f̄(r) ≤ λ · ū(r) = λ ·

⌊

u(r)

λ

⌋

≤ u(r)

9

for each arc r ∈ R, so f respects the arc capacities, and since the flow on each
arc that has positive flow under f̄ is at least one, the flow on each arc under
f = λ · f̄ is either zero or at least λ, so f also respects the minimum quantities.

In order to prove that Algorithm 3 is a (2 − 1
λ
)-approximation for MFPMQ

with identical minimum quantities, we need the following lemma:

Lemma 3. For all integers u ≥ λ ≥ 2:

⌊
u

λ
⌋ ≥

λ

2λ− 1
·
u

λ

Proof. Writing u = k ·λ+ q for integers 0 ≤ q ≤ λ− 1 and k ≥ 1, we obtain that

⌊u
λ
⌋

u
λ

=
k

k + q
λ

≥
k

k + λ−1
λ

=
kλ

(k + 1)λ− 1
. (1)

The derivative of this term with respect to k is

λ((k + 1)λ− 1) + kλ2

((k + 1)λ− 1)2
≥ 0,

so (1) is minimized for k = 1. Hence, we obtain that

⌊u
λ
⌋

u
λ

≥
λ

2λ− 1
,

which proves the claim.

Now let (S, T) be a minimum s-t-cut in G with respect to the capacities ū
and let δ+(S) denote the set of arcs with start point in S and end point in T .
Then, by the Max-Flow Min-Cut Theorem (cf., for example, [1]) and Lemma 3,
the flow value of f̄ satisfies

val(f̄) =
∑

r∈δ+(S)

ū(r) =
∑

r∈δ+(S)

⌊

u(r)

λ

⌋

≥
∑

r∈δ+(S)

λ

2λ− 1
·
u(r)

λ

=
1

2λ− 1
·

∑

r∈δ+(S)

u(r) ≥
1

2λ− 1
·OPT,

where OPT denotes the maximum flow value for the original instance. Thus, we
obtain that val(f) = λ·val(f̄) ≥ λ

2λ−1 ·OPT, which proves the following theorem:

Theorem 4. Algorithm 3 is a (2− 1
λ
)-approximation for MFPMQ with identical

minimum quantity λ ≥ 2 on all arcs.

Note that the above analysis of Algorithm 3 is tight for every λ ≥ 2: If
the graph G consists of only a single arc (s, t) with minimum quantity λ and
capacity 2λ − 1, Algorithm 3 returns a flow f of value val(f) = λ, while the
optimal solution has flow value 2λ− 1.

10

Also note that, since we only used that OPT is bounded from above by the
capacity of the cut (S, T), we can also conclude that val(f) is at least λ

2λ−1 times
the value of a maximum s-t-flow in G without minimum quantities. Hence, since
f is a feasible flow for the instance with minimum quantities, we obtain the
following corollary:

Corollary 1. Let OPTMQ denote the maximum value of an s-t-flow for a given
instance of MFPMQ with identical minimum quantity λ ≥ 2 on all arcs and let
OPT denote the maximum value of an s-t-flow for the same instance without
minimum quantities. Then OPTMQ ≥ λ

2λ−1 · OPT.

Note that, in the case of non-identical minimum quantities on the arcs, no
universal upper bound on the ratio OPT/OPTMQ exists, even for series-parallel
graphs: If G is the series composition of two single arcs r1 = (s, v) and r2 = (v, t)
with λ(r1) = u(r1) = 1 and λ(r2) = u(r2) = 2, the maximum flow value without
minimum quantities is one, whereas only the zero flow is feasible for the instance
with minimum quantities.

5 Identical Minimum Quantities on Series-Parallel

Graphs

While MFPMQ is (weakly) NP-hard to solve on series-parallel graphs (as shown
in [4]) as well as when the minimum quantity on all arcs is identical (as shown in
the previous section), we now show that the problem can be solved in strongly
polynomial time when both restrictions are present, i.e., in the case of identical
minimum quantities on series-parallel graphs. To do so, we present a strongly
polynomial time dynamic programming algorithm for this case.

For a given series-parallel graph G = (V,R) with |V | =: n vertices, |R| =: m
arcs, source s and sink t, arc capacities u : R → N, and an identical minimum
quantity λ ≥ 2 on all arcs and an integer k ∈ {0, . . . ,m}, we denote the set of all
flow values of feasible s-t-flows f in G such that f(r) > 0 (and, thus, f(r) ≥ λ) for
exactly k arcs in G by SG(k). Starting from the leaves of the decomposition tree
of the series-parallel graph, our algorithm computes the sets SG(k) recursively
by dynamic programming:

If G consists of only one arc r, the set SG(k) can be computed in constant
time for each k ∈ {0, . . . ,m} as

SG(k) =







{0} for k = 0
[λ, u(r)] for k = 1

∅ for k > 1
(2)

11

If G is the series composition of G1 and G2, we have

SG(k) =
⋃

0 ≤ k1, k2 ≤ k
k1 + k2 = k

SG1(k1) ∩ SG2(k2), (3)

and if G is the parallel composition of G1 and G2, we have

SG(k) =
⋃

0 ≤ k1, k2 ≤ k
k1 + k2 = k

SG1(k1) + SG2(k2), (4)

where SG1(k1)+SG2(k2) := {F1 +F2 : F1 ∈ SG1(k1), F2 ∈ SG2(k2)} denotes the
Minkowski sum of SG1(k1) and SG2(k2).

Using these recursions and the decomposition tree of the given series-parallel
graph, we can recursively compute the sets SG(k) for k = 0, . . . ,m and the
maximum flow value of the instance is then given as

max
k=0,...,m

max(SG(k)).

In order to obtain a polynomial running time, however, we have to show that
the sets SG(k) can be represented efficiently. To do so, we use the following
observation, which follows directly from (2) - (4) and the fact that the union,
intersection, and Minkowski sum of intervals starting at integer multiples of λ
again consist only of intervals starting at integer multiples of λ:

Observation 5. If G = (V,R) is a series-parallel graph with m := |R| arcs and
k ∈ {0, . . . ,m}, then each set SG(k) can be written as

SG(k) = ∪l∈I [l · λ, UG(l)],

where I ⊆ {0, . . . ,m}, l · λ ≤ UG(l) ≤ (l + 1) · λ for l ≤ m − 1, and m · λ ≤
UG(m) ≤

∑

r∈R u(r).

By Observation 5, each set SG(k) can be represented by at most (m+1) in-
tervals whose endpoints are of polynomial encoding length. Using the recur-
sions (3) and (4), we can, thus, compute the representation of the set SG(k) in
time O(k·(m+1)2) = O(k·m2) when the sets SG1(k1), SG2(k2) for 0 ≤ k1, k2 ≤ k
are already known. Hence, we need time O(

∑m
k=0 k ·m2) = O(m4) to compute

the sets Sk(G
′), k = 0, . . . ,m, for each series-parallel graph G′ representing a

branch vertex of the decomposition tree of the given series-parallel graph. For a
leaf vertex of the decomposition tree, we only need constant time for each set,
which yields a total time requirement of O(m) for computing all sets Sk(G

′),
k = 0, . . . ,m if G′ is a leaf. Since the decomposition tree of a connected, series-
parallel graph G with m arcs has O(m) vertices, this implies that our procedure

12

computes all sets SG(k) for k = 0, . . . ,m in O(m ·m4) = O(m5) time. Moreover,
since each set SG(k) is represented by at most m+1 intervals, we can afterwards
compute the maximum flow value of the instance given as

max
k=0,...,m

max(SG(k))

in O(m · (m+ 1)) = O(m2) time, so we obtain a total running time of O(m5) +
O(m2) = O(m5), which proves the following theorem:

Theorem 6. An optimal solution of an instance of MFPMQ with identical min-
imum quantities on series-parallel graphs can be computed in O(m5) time.

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin: Network Flows. Prentice Hall
(1993).

[2] A. Brandstädt, V. B. Le, and J. P. Spinrad: Graph Classes: A Survey. SIAM
Monographs on Discrete Mathematics and Applications (1999).

[3] M. R. Garey and D. S. Johnson: Computers and Intractability (A Guide to
the Theory of NP-Completeness). W.H. Freeman and Company, New York
(1979).

[4] D. Haugland, M. Eleyat, and M. L. Hetland: The maximum flow problem with
minimum lot sizes. In: Proceedings of the 2nd International Conference on
Computational Logistics (ICCL), volume 6971 of LNCS. pp. 170–182 (2011).

[5] S. O. Krumke and C. Thielen: Minimum cost flows with minimum quantities.
Information Processing Letters 111(11): pp. 533–537 (2011).

[6] S. O. Krumke and C. Thielen: Erratum to “Minimum cost flows with min-
imum quantities” [5]. Information Processing Letters 112(13): pp. 523–524
(2012).

[7] H. G. Seedig: Network flow optimization with minimum quantities. In: Op-
erations Research Proceedings 2010: Selected Papers of the Annual Interna-
tional Conference of the German Operations Research Society. Springer, pp.
295–300 (2011).

[8] J. Valdes, R. E. Tarjan, and E. L. Lawler: The recognition of series parallel
digraphs. SIAM Journal on Computing 11(2): pp. 298–313 (1982).

[9] X. Zhu, Q. Yuan, A. Garcia-Diaz, and L. Dong: Minimal-cost network flow
problems with variable lower bounds on arc flows. Computers and Operations
Research 38(8): pp. 1210–1218 (2011).

