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Bounds on the radius and status of graphs
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Abstract

Two classical concepts of centrality in a graph are the median and the

center. The connected notions of the status and the radius of a graph seem

to be in no relation. In this paper, however, we show a clear connection of

both concepts, as they obtain their minimum and maximum values at the

same type of tree graphs. Trees with fixed maximum degree and extremum

radius and status, resp., are characterized. The bounds on radius and

status can be transferred to general connected graphs via spanning trees.

A new method of proof allows not only to regain results of Lin et al. on

graphs with extremum status, but it allows also to prove analogous results

on graphs with extremum radius.
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1 Introduction

The status and radius of a graph are fundamental notions in graph theory. This
paper presents upper and lower bounds for both with respect to the order and
the maximum degree of the graph. We will characterize trees with fixed order
and fixed maximum degree and minimum (maximum) radius and status. It
turns out that such trees have the same structure for the radius and the status
although the positions of the center and the centroid do not coincide in general.
Therefore the results demonstrate that despite several different properties of
center and centroid these two notions correlate in a subtle way.

Before we give an overview on the structure of this work, we want to clarify
the notation and recall the definitions used below. Throughout this paper a
graph G = (V,E) is undirected, connected and simple (no loops, no multiple
edges). The order of G is the cardinality |V | of its vertex set V and the maximum
degree ∆(G) of G is defined as maxx∈V deg(x), the largest degree of a vertex of
G. The distance d(u, v) between two vertices u and v is defined as the number
of edges of a shortest path from u to v.
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The status s(x) of a vertex x is defined as the sum of distances to all other
vertices of the graph, that is,

s(x) =
∑

y∈V

d(x, y). (1.1)

The status s(G) of a graph G is the minimum status of a vertex of G, that is,

s(G) = min
x∈V

s(x).

A vertex of minimum status is called median. This notion is strongly related to
the notion of a centroid vertex, that is, a vertex (of a tree) of minimum branch
weight. We will recall the exact definition in Section 2. In fact, Zelinka [11]
showed that a vertex of a tree is a median if and only if it is a centroid vertex
(in his work a centroid vertex is called mass center). Therefore we will (in case
the underlying graph is a tree) refer to a median also as a centroid vertex. The
set of centroid vertices of a tree is called centroid of the tree.

Replacing the sum in (1.1) by the maximum leads us to the eccentricity of
a vertex and the radius of a graph. Thus the eccentricity ecc(x) of a vertex x
is the maximum distance to a vertex in G, that is,

ecc(x) = max
y∈V

d(x, y).

The radius rad(G) of graph G is the minimum eccentricity of a vertex of G, that
is,

rad(G) = min
x∈V

ecc(x).

A vertex of minimum eccentricity is called a central vertex, the set of central
vertices is called the center of the graph. Further research on these terms and
generalizations can be found e.g. in the work of Hakimi ([1],[2]), Kariv and
Hakimi ([5],[4]), Jeger and Kariv [3], Tansel, Francis and Lowe [9], Lin and
Shang ([6]) and Lin et al. ([7]).

Before we state results for general graphs in the Section 5 we will concentrate
on trees. Sections 3 and 4 are dedicated to details on lower and upper bounds
for the radius and status of trees. These results will, together with a lemma,
imply results on general graphs in the Section 5. This is possible due to the
observation that a connected graph always contains a spanning tree which allows
us to reduce the argumentation to trees. In Section 6 we conclude our work and
give a small outlook on a possible generalization of this theory in case of a
weighted graph.

We want to stress, that the results on the status of a graph were already
published by Lin et al. [7]. The authors used chains of inequalities to show their
statements. Further the value of the upper bound of the radius was already
shown by Vizing ([10, Lemma 1]). We introduce in this paper a new proof
technique, based on tree-transformations which not only points out the similar
behavior of radius and status in dependence of order and maximum degree of
the input tree, but also allows to regain the results of Lin et al. in an elegant
way.

This transformation will be introduced in Section 2 and, in particular, the
location of the centroid of the transformed tree is discussed.

This paper emerged from a thesis by Rissner [8] at Graz University of Tech-
nology.
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2 Transformation

In this section we exhibit a transformation for trees: if a tree with given order
and maximum degree does not have an optimum (minimum or maximum, resp.)
status or radius then we can apply a simple transformation to obtain a tree of
the same order and the same maximum degree, but with a better (lower or
larger) value for status or radius, respectively.

The transformation consists of the reallocation of a single leaf, that is, a
vertex of degree 1. Clearly this transformation can change the value of the
radius at most by 1 and it is rather easy to determine if it is increasing or
decreasing depending on the choice of the leaf. However, the change rate of the
status is not that easily determined. To compute the status it is useful to know
a centroid vertex of the tree. In this section we investigate the position of the
centroid of the transformed tree with respect to a centroid vertex of the original
tree. Given a centroid vertex x of the original tree, it turns out that if x is not
a centroid vertex of the transformed tree, then a neighbor of x is, and we can
determine which neighbor in dependence of the location of the reallocated leaf.

In this context the classical definition of the centroid turned out to be useful,
hence we will recall it at this point. Let T be a tree and x a vertex, a branch
T ′ at x is a maximal subtree of T which contains x as a leaf. The weight of
a branch is defined as |T ′| − 1, that is, the number of vertices in this branch
excluding the vertex x. The branch weight wT (x) of x is the maximum weight
of a branch at x and a centroid vertex is a vertex of minimum branch weight.

This section provides two propositions which describe the location of a cen-
troid vertex of the transformed tree with respect to the position of a centroid
vertex of the original tree. We start with the following well-known lemma.

Lemma 2.1. Let T be a tree of order n and v a vertex of T . Then v is a
centroid vertex of T if and only if its branch weight wT (v) is less than or equal
to n

2 .

An immediate consequence of this lemma is the following inequality. Let T ′

be a branch at a centroid vertex x, then

|T ′| ≤ |T \ T ′|+ 1. (2.1)

Proposition 2.2. Let T = (V,E) be a tree and let x be a centroid vertex, b
a leaf, b̄ the vertex adjacent to b and u 6= x an arbitrary vertex of T . Further
let T1 be the branch at x containing u, T2 the branch containing b and S =
(T \ (T1 ∪ T2)) ∪ {x} the union of all other branches at x.

For T = (V, (E\{(b̄, b)})∪{(u, b)}), the tree resulting from T by removing the
edge (b̄, b) and inserting the edge (u, b) instead, the following statements hold.

(a) If T1 = T2 or |T1| < |T2|+ |S| − 1, then x is a centroid vertex of T .

(b) If T1 6= T2 and |T1| ≥ |T2|+ |S|−1, the vertex adjacent to x on the shortest
path (geodesic) from x to u is a centroid vertex of T .

Proof. In case T1 = T2, the branches of T at x have the same weights as the
branches of T . Due to Lemma 2.1, x is a centroid vertex of T .

Henceforth let us consider the case T1 6= T2. Depending on the degree of
x, the subtree S contains no, exactly one or more than one branch at x. Let
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S′ ⊂ S be a branch at x of maximum weight in S. In case there is no branch
inside S, let S′ = S = {x} be the subtree consisting of the single vertex x. Let
further T 1 = T1 ∪ {b} and T 2 = T2 \ {b} be the branches of T corresponding to
the branches T1 and T2, respectively.

The branch weight of x in T is equal to

wT (x) = max{|T 1|, |T 2|, |S
′|} − 1.

If wT (x) ≤ wT (x) then x is a centroid vertex of T due to Lemma 2.1. So,
we need to check what happens in case the branch weight of x increases. This
is the case if T1 is a branch of x of maximum weight (in T and thus in T ), that
is,

|T1| ≥ max{|T2|, |S
′|}

and we have

wT (x) = |T 1| − 1 = |T1|. (2.2)

After these observations it is quite easy to prove the first claim.

Claim. The subtree T 1 contains at least one centroid vertex of T .

x

u

z

b

bb

T1

T2

S

branch at z

Figure 1: Neighbor z of x in T2.

Let z be a neighbor of x in T 2 (see Fig. 1). The subtree T 1 ∪ S ∪ {z} with
weight |T 1|+ |S| − 1 = |T1|+ |S| is a branch at z of maximum weight, hence we
get

wT = |T1|+ |S| > |T1| = wT (x).

Now, assume that z is a neighbor of x in S and S̄ is the branch at x containing
z (see Fig. 2). A branch of maximum weight at z in T is T 1∪T 2∪ (S \ S̄)∪{z},
its weight amounts to |T 1|+ |T 2|+ |S| − |S̄| − 1. Again, we get

wT = |T 1|+ |T 2|+ |S| − |S̄| − 1 ≥ |T1| = wT (x).

The branch weights of all vertices in S ∪ T2 must therefore be greater than or
equal to the branch weight of x, that is, either x is a centroid vertex of T or
some other vertex of T1. In both cases a centroid vertex is located in T1.

4
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b

bb

T1

T2

S

branch at z

Figure 2: Neighbor of x in S

Now let y be the neighbor of x in T 1 (see Fig. 3). Obviously one branch at
z is represented by the subtree S ∪ T 2 ∪ {y} with weight |S| + |T 2| − 1. We
distinguish two cases, |T1| < |S|+ |T2| − 1 and |T1| ≥ |S|+ |T2| − 1.

Case A. In case |T1| < |S|+ |T2| − 1, we get

wT (y) = |S|+ |T 2| − 1 ≥ |T1| = wT (x)

Case B. If |T1| ≥ |S|+ |T2| − 1, we get

wT (y) ≤ |T1| − 1 < wT (x), (2.3)

that is, x is no centroid vertex of T̄ .

x

uy
z

b

bb

T1

T2

S

T ′

Figure 3: Distance from centroid vertex and x is at most 1

It remains to prove that y is a centroid vertex of T . For this we use inequality
(2.3) and Lemma 2.1 and we get

wT (y) < wT (x) ≤
n

2
+ 1

which completes the proof.
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Proposition 2.2 does not cover the case u = x. So, if we want to replace the
edge connecting the leaf b by an edge which is incident to the centroid vertex x
we have the following result:

Proposition 2.3. Let T = (V,E) be a tree and let further x be a centroid vertex,
b a leaf and b̄ the vertex adjacent to b. Let further T = (V, (E\{(b̄, b)})∪{(x, b)})
be the tree resulting from T by removing the edge (b̄, b) and inserting the edge
(x, b) instead. Then x is a centroid vertex of T .

Proof. If b is already adjacent to x in T , then clearly T = T . Therefore vertex
x remains a centroid vertex. Otherwise, there is one more branch at x in T
than in T (see Fig. 4). The weight of the new branch is equal to 1 and, since
|T | = |T | = n, the branch weights of x in T and T satisfy

wT (x) − 1 ≤ wT (x) ≤ wT (x) ≤
n

2

which implies that x is a centroid vertex of T .

x

b

bb

T2

S

Figure 4: New branch at vertex x

3 Lower Bounds

In this section we derive lower bounds for the status and the radius of trees. In
particular, we shall consider so-called k-balanced trees. A tree T of maximum
degree k is called k-balanced if there exists a vertex x such that for every vertex z
with d(z, x) ≤ rad(x)−2, deg(z) = k holds. In general there are non-isomorphic
k-balanced trees of order n, but it is rather obvious that both the status and
the radius of a balanced tree depends only on k and n. Therefore, we are not
interested in a certain instance and denote an arbitrary k-balanced tree of order
n by Bn,k.

The following theorems show that both the status and the radius of a tree
of order n and maximum degree k are bounded by the status and radius of
k-balanced trees of order n. First we state the assertion on the radius.
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Theorem 3.1. Let T be a tree of order n and of maximum degree ∆(T ) = k.
Its radius is greater than or equal to the radius of a k-balanced tree of order n,
that is,

rad(Bn,k) ≤ rad(T ).

Proof. Let x be a central vertex of T and r = rad(T ). If T is not k-balanced,
there exists a vertex u such that degT (u) < k and dT (x, u) ≤ r− 2. Further let
b be an endvertex of a longest path. We can choose b such that ∆(T \ {b}) = k.
Now let T be the tree which results by removing the edge connecting b and
inserting the edge (u, b) instead. Obviously T is a tree of order n and maximum
degree k.

If T has just one longest path, the transformation from T to T shortens the
longest path by 1. If there are several longest paths, the radius remains the
same. Overall we can conclude that rad(T ) ≤ rad(T ) holds in every case.

As already mentioned the status behaves similarly. In fact, in case of the
status the bounds are even strict, that is, s(T ) = s(Bn,k) if and only if T is
k-balanced, cf. Lin et al. in [7]. We will give here an alternate proof for this
statement using the method described in the Section 2. The proof is similar to
the one of Theorem 3.1, only the choice of the leaf used for the transformation
needs to be done more carefully.

Theorem 3.2. (Lin et al., 2011, [7]) Let T be a tree of order n and maximum
degree ∆(T ) = k. Its status is greater than or equal to the status of a k-balanced
tree of order n, that is,

s(Bn,k) ≤ s(T )

with equality if and only if T = Bn,k.

Proof. In case T is not a k-balanced tree we can transform T to a tree T of
same order and maximum degree such that s(T ) < s(T ). Let x be a centroid
vertex of T and r = ecc(x) its eccentricity. We split into the two cases

(1) deg(x) = k and

(2) deg(x) < k.

First, let us consider the case deg(x) = k. Since T is not k-balanced, we
know that r > 1 and that there exists a vertex u such that dT (x, u) ≤ r − 2
and degT (u) < k. Choose a leaf b with dT (x, b) = r. Every choice of b yields
∆(T \{b}) = k. Let T1 be the branch at x containing u, T2 the branch containing
b, S = (T \ (T1 ∪ T2)) ∪ {x} the union of all other branches and T be the tree
which results by removing the edge connecting b and inserting the edge (u, b)
instead. Since deg(x) = k we know that x 6= u and therefore we can apply
Proposition 2.2. Thus we know, that x is a centroid vertex of T̄ if T1 = T2 or
|T1| < |T2|+ |S| − 1. In this case we obtain the following.

s(T ) = s(x) =
∑

z∈T

dT (x, z)

=
∑

z∈T\{b}

dT (x, z) + dT (x, b)

= s(T )− dT (x, b) + dT (x, u) + 1

< s(T ).
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b

bb

T1

T2

S

Figure 5: y is a centroid vertex after transformation

In case T1 6= T2 and |T1| ≥ |T2|+ |S| − 1 we know that the neighbour y of x
on the shortest path from x to u is a centroid vertex (see Fig. 5). We get

s(T ) = s(y) =
∑

z∈T

dT (y, z)

=
∑

z∈(T1∪{b})\{x}

dT (y, z) +
∑

z∈S∪(T2\{b})

dT (y, z)

=
∑

z∈T1\{x}

(dT (x, z)− 1) + dT (y, b) +
∑

z∈S∪(T2\{b})

(dT (x, z) + 1)

= s(T )− dT (x, b)− (|T1| − 1) + dT (x, u) + |S|+ |T2| − 2

= s(T ) + (dT (x, u)− dT (x, b)) + (|S|+ |T2| − |T1| − 1)

< s(T ).

Thus case deg(x) = k is complete.
Henceforth let us consider the case degT (x) < k. Since T is not k-balanced

we can choose a leaf b such that dT (x, b) > 1 and ∆(T \ {b}) = k. (Otherwise
x would have deg(x)− 1 branches which consist of a single leaf and one branch
with a vertex of degree k, which contradicts the assumption that x is a centroid
vertex.) Let T be the tree which results by removing the edge connecting b and
inserting edge (x, b). According to Proposition 2.3 x is a centroid vertex of T
and we obtain

s(T ) = s(T )− dT (x, b) + 1 < s(T ).

4 Upper Bounds

In this section we discuss upper bounds for the radius and status of trees. First
we introduce star-like trees, so-called k-comets. Let n ≥ 3 and the maximum
degree k ≥ 2. We say a tree of order n is a k-comet Cn,k if there exists a vertex
v of degree k which is lying on a path of length n− k + 1. A k-comet is called
Sn,k if k − 1 neighbors of v are leaves.
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But there is also another star-like tree we need to consider, it is a tree
which is “almost” a Cn,k. More precisely, we denote a tree of order n and
maximum degree k by C⋆

n,k if it contains a Cn−1,k as a subtree. For examples
see Figures 6. A tree Sn,k is uniquely defined whereas the trees Cn,k and C⋆

n,k

may have different topologies.

(a) S10,9 (b) S12,9

(c) C14,9 (d) C⋆

14,9

Figure 6: k-comets

It will be shown that both radius and status take their maximum value on
these star-like trees. First we present the statement for the radius. Note that
the upper bound of the radius was already shown by Vizing [10, Lemma 1].

Theorem 4.1. Let T be a tree of order n and maximum degree ∆(T ) = k.
Then its radius is less than or equal to ⌈(n− k + 1)/2⌉. For equality we get in
particular the following.

(i) If n− k + 1 is even, then rad(T ) = n−k+1
2 if and only if T = C⋆

n,k.

(ii) If n− k + 1 is odd, then rad(T ) = n−k
2 + 1 if and only if T = Cn,k.

Proof. The proof of this assertion is straight-forward counting exercise. Let ℓ
be the length of the longest path. We need to have at least one vertex of degree
k, so ℓ + k − 2 edges are in use. Clearly ℓ + k − 2 ≤ n − 1, which implies that
ℓ ≤ n− k + 1.

Now assume T is a tree with rad(T ) = ⌈n−k+1
2 ⌉. If n − k + 1 is odd, there

is a path of length n− k+1 and therefore all k− 2 edges which are not on this
path need to be incident to one and the same vertex. Hence T is a Cn,k. If
n− k + 1 is even, the longest path of T has length at least n − k. This means
that there is one edge whose position is not important, neither to the radius nor
to the condition ∆(T ) = k. Deleting that edge would result in a Cn−1,k, so the
given tree is a C⋆

n,k.

Example. The trees in Fig. 6c and Fig. 6d are both of order n = 14 and
maximal degree k = 9. They have both minimum radius but the tree in Fig. 6d
is not a k-comet.

The next statement concerns the status. Lin et al. presented this result
in [7], but again we want to present an alternate, simpler proof using tree
transformations.
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Theorem 4.2. (Lin et al. 2011, [7]) Given a tree T of order n and maximum
degree ∆(T ) = k, its status is less than or equal to the status of a k-comet, that
is,

s(T ) ≤ s(Sn,k)

with equality if and only if T = Sn,k.

Proof. Since a path is a 2-comet we can assume k > 2. Let x be a centroid
vertex and let z be a vertex with deg(z) = k. If T 6= Sn,k then there exist
two leaves b and b with dT (z, b), dT (z, b) > 1. Without loss of generality let
dT (x, b) ≥ dT (x, b) hold during this proof.

Let T be the tree resulting from the removal of the edge incident with b and
inserting the edge (b, b) instead. Then T is again a tree of order n and maximum
degree k.

If it is possible to choose b and b such that x is also a centroid vertex of T ,
then the following holds.

s(T ) = s(x) =
∑

u∈T

dT (x, u)

=
∑

u∈T\{b}

dT (x, u) + dT (x, b) (4.1)

=
∑

u∈T

dT (x, u)− dT (x, b) + (dT (x, b) + 1)

> s(T ).

Now we need to discuss how to choose b and b, such that either x is a
centroid vertex of T or, if this cannot be assured, we can guarantee s(T ) > s(T )
otherwise.

z

b b̄̄b

b̄

x

(a) Tz contains two feasible leaves

z

b
b̄̄b

b̄

x

Tb

(b) Branch at x, which is no path

Figure 7: b and b can be chosen in same branch at x

We split into the two cases x = z and x 6= z. First, let x 6= z. Let Tz

be the branch at x containing z. If Tz contains two leaves with distance to
z greater than one, then choose b and b in Tz (see Fig. 7a). According to
Proposition 2.2 we know that x is a centroid vertex of T and together with (4.1)
follows s(T ) < s(T ).

If there exists a branch T1 6= Tz which is not a path, we can choose b and
b inside this branch (see Fig. 7b). According to Proposition 2.2 x is a centroid
vertex of T and therefore we again conclude with (4.1) that s(T ) < s(T ).

So let us assume all branches not equal to Tz to be paths and let Tz contain
at most one leaf with distance to z greater than one. Consider Tb the branch
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containing b, Tb the branch containing b and S = T \ (Tb ∪Tb)∪{x}. Obviously
Tb 6= Tb.

If there exists a choice of b and b such that |Tb| < |Tb| + |S| − 1 holds, then
x is a centroid vertex of T according to Proposition 2.2. With (4.1) we get
s(T ) < s(T ).
Therefore, let us consider the case |Tb| ≥ |Tb|+ |S| − 1 for every possible choice

of b and b. First of all, this assumption implies dT (x, b) > dT (x, b). Assume
equality holds. Then, we derive from our assumption (by exchanging the roles
of b and b) |Tb| = |Tb| and |S| = 1. Since one of the branches is a path and the

leaves b and b have the same distance to x, both branches must be paths. But
these are the only branches at x, so we get a contradiction to ∆(T ) = k > 2.

Proposition 2.2 states that under the actual assumptions on the choice of b
and b the neighbor y of x on the shortest path from x to b is a centroid vertex.
Thus we get the following.

s(T ) = s(y) =
∑

u∈T

dT (y, u)

=
∑

u∈Tb\{x}

dT (y, u) + dT (y, b) +
∑

u∈S∪T
b
\{b}

dT (y, u) (4.2)

=
∑

u∈T

dT (x, u)− dT (x, b)− |Tb|+ 1 + dT (x, b) + |S|+ |Tb| − 2

= s(T ) + (dT (x, b)− dT (x, b)) + (|S|+ |Tb| − |Tb| − 1).

To get the desired result, that is, s(T̄ ) > s(T ), we can use a lot of assump-
tions on T we have at this point of the proof. We know that since T is not a
comet, there exist at least two leaves of T whose distance to z is greater than
or equal to 1. If there are exactly two leaves b and b with this property, then
there are also exactly two branches at x, that is |S| = 1 and one branch at x is
path and the other is Tz. Since inequality (2.1) (and dT (x, b) > dT (x, b)) must
hold, b is the unique leaf in the branch which is a path and b is the unique leaf
in Tz which has distance to z greater than 1. Therefore dT (x, b) = |Tb| − 1 and
dT (x, b) = |Tb| − (k − 1) (and |S| = 1) and we get (using equations (4.2))

s(T )− s(T ) = k − 2 > 0

Now assume there exist more than two leaves which are suitable for the
roles of b and b. As we observed above for every choice of b and b, dT (x, b) >

dT (x, b) holds, hence a third (suitable) leaf b̂ satisfies dT (x, b̂) 6= dT (x, b) and

dT (x, b̂) 6= dT (x, b). Therefore we can choose the vertices b and b with the
property dT (x, b) > dT (x, b) + 1. Using again the equalities (4.2) we get

s(T )− s(T ) > 0

and the case x 6= z is complete.
Let now z = x, that is, deg(x) = k. In this case there is no branch at x with

a special role, we do not need to distinguish the branches at x. With the same
arguments as in the first case if either one branch is not a path or if there exists
a choice of b and b such that (with the notation from above) |Tb| < |S|+ |Tb|−1,
x is a centroid vertex of the transformed tree and we are done due to (4.1).
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Otherwise, we can use the equalities in (4.2). Every branch at x is a path,
that means dT (x, b) = |Tb| − 1 and dT (x, b) = |Tb| − 1 and, since k > 2 we know
that |S| > 1. Altogether we get

s(T )− s(T ) = (|S|+ |Tb| − |Tb| − 1) + (dT (x, b)− dT (x, b))

= |S| − 1 > 0

and the proof is complete.

5 Bounds for general graphs

Let G be an arbitrary undirected, simple, connected graph. Let T be an arbi-
trary spanning tree of G. Then dG(x, y) ≤ dT (x, y) holds for all vertices x, y
and therefore rad(G) ≤ rad(T ) and s(G) ≤ s(T ). By choosing the spanning
tree of the same maximum degree as G we get the upper bound.

On the other hand, G contains spanning trees T1, T2 such that rad(G) =
rad(T1) and s(G) = s(T2) hold. Thus the radius and status of G is bounded by
the radius and status of certain spanning trees of G. However, these spanning
trees do not need to have the same maximum degree as G. But the following
lemma holds. Note that the assertion on the status can be directly derived from
a lemma from Lin et al. in [7].

Lemma 5.1. Let 2 ≤ ℓ ≤ k ≤ n. Then

s(Bn,k) ≤ s(Bn,ℓ)

with equality if and only if k = ℓ and

rad(Bn,k) ≤ rad(Bn,ℓ).

Proof. To prove these statements we can use again the transformation intro-
duced in Section 2. Let T be a tree with ∆(T ) = ℓ. We will show that if ℓ < k
we can transform T into a tree T whose maximum degree is still less than or
equal to k and its status (resp. radius) is less than (or equal to) the correspond-
ing value of T . Start with T = Bn,ℓ and iterate until the maximum degree of
the resulting tree is equal to k. The assertion then follows from Theorem 3.2
(resp. 3.1), that is

s(Bn,ℓ) >s(T ) ≥ s(Bn,k) and

rad(Bn,ℓ) ≥ rad(T ) ≥ rad(Bn,k)

First we consider the status, let x be a centroid vertex and b a leaf of T
with d(x, b) = ecc(x) (since k > ℓ we know that ecc(x) > 1). Let T be the
tree resulting from the removal of the edge connecting b and insertion of (x, b).
According to Proposition 2.3, x is centroid vertex of T . Further ∆(T ) ≤ k.
Similar to the calculations in (4.1) we get s(T ) < s(T ).

Now let us assume that x is a central vertex and transform T in the same
manner as above. Clearly the radius does not increase during the transforma-
tion. This completes the proof.
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These observations lead to the following two theorems. Note that the second
theorem has already been stated in [7] and is presented here to demonstrate the
connection between radius and status explicitly.

Theorem 5.2. Let G = (V,E) be an undirected simple, connected graph with
n vertices and maximum degree ∆(G) = k. Then

rad(Bn,k) ≤ rad(G) ≤ rad(Sn,k).

In particular we get

(i) If G contains a k-balanced tree Bn,k, then rad(G) = rad(Bn,k).

(ii) If rad(G) = rad(Sn,k), then G contains a tree C⋆
n,k.

Theorem 5.3. (Lin et al. 2011, [7]) Let G = (V,E) be an undirected simple,
connected graph with n vertices and maximum degree ∆(G) = k. Then

s(Bn,k) ≤ s(G) ≤ s(Sn,k).

In particular we get

(i) s(G) = s(Bn,k) if and only if G contains a k-balanced tree Bn,k.

(ii) If s(G) = s(Sn,k) then G contains a comet Sn,k.

6 Conclusions and outlook

The results of this work present sharp lower and upper bounds on the radius
and status of an undirected, connected, unweighted graph G. As a connected
graph, G contains spanning trees of the same order but not necessarily of the
same maximum degree. The distance of two vertices in G is less than or equal
to the distance of the two in each spanning tree of G. Therefore both radius
and status of G are less than or equal to the radius and status, resp., of each
spanning tree of G. On the other hand there exists a spanning tree T with the
same distances as in G and therefore the radius and status of G equals to the
radius and status, resp., of T . But this tree T might have a smaller maximum
degree than G. However, the higher the maximum degree, the lower the values
of radius and status. To give lower and upper bounds for radius and status of
G with respect to its order and maximum degree, it suffices to investigate the
two functions on trees with the same order and maximum degree.

Although Lin et al. published the bounds on the status and Vizing pointed
out the upper bound of the radius, this work specifically demonstrates the simi-
larities of the extremal behavior of status and radius on graphs. Both functions
take their minimum and maximum on the same type of tree graphs. Further
the results were obtained by a new proof technique which regains the known
results and proves the new ones in a simple and elegant manner.

So far, the edges of the graphs considered in this work had all length one. As
a next step it is natural to investigate bounds of the radius and the status if it is
allowed to assign positive length to the edges, that is, a function ℓ : E −→ R>0.
The distance d(x, y) of two vertices x and y is length of a shortest path from x
to y, as usual. The definitions of status and radius remain the same, only the
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notion of distance becomes more general. The question is whether we can give
sharp bounds and if the extremal behavior of status and radius remains to be
similar. Depending on the context there might be restrictions on the distance
of certain vertices to each other which need to be considered additionally. It
is not clear if the transformation described in Section 2 can be adapted to this
case. A new approach may be required.
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