
Online Traveling Salesman Problems with

Service Flexibility∗

Patrick Jaillet‡ Xin Lu§

January 2009; accepted February 2010; published August 2011

Abstract

The Traveling Salesman Problem (TSP) is a well-known combinatorial optimization

problem. We are concerned here with online versions of this problem defined on metric

spaces. One novel aspect in the paper is the introduction of a sound theoretical model

to incorporate “yes-no” decisions on which requests to serve, together with an online

strategy to visit the accepted requests.

In order to do so, we assume that there is a penalty for not serving a request.

Requests for visit of points in the metric space are revealed over time to a server,

initially at a given origin, who must decide in an online fashion which requests to serve

in order to minimize the time to serve all accepted requests plus the sum of the penalties

associated with the rejected requests.

We first look at the special case of the non-negative real line. After providing a poly-

nomial time algorithm for the offline version of the problem, we propose and prove the

optimality of a 2-competitive polynomial time online algorithm based on re-optimization

approaches. We also consider the impact of advanced information (lookahead) on this

optimal competitive ratio. We then consider the generalizations of these results to the

case of the real line. We show that the previous algorithm can be extended to an op-

timal 2-competitive online algorithm. Finally we consider the case of a general metric

space and propose an original c-competitive online algorithm, where c =
√
17+5
4 ≈ 2.28.

We also give a polynomial-time (1.5ρ + 1)-competitive online algorithm which uses a

polynomial-time ρ-approximation for the offline problem.

Key words: online algorithms; traveling salesman; prize-collecting

∗Appeared in Networks, 58, 137-146, 2011. Research funded in part by ONR, grant N00014-09-1-0326
‡Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer

Science, and Operations Research Center, MIT, Cambridge, MA, 02139; jaillet@mit.edu
§Operations Research Center, MIT, Cambridge, MA, 02139; luxin@mit.edu

1

1 Introduction

The context of this paper deals with routing and scheduling problems under incomplete and

uncertain data. More generally, we are interested on the fundamental aspects of decision

making under uncertain data sets, dynamically revealed over time in an online fashion, and

on how to design and evaluate corresponding intelligent algorithms.

Here we want to consider these questions around the most basic combinatorial opti-

mization problem in routing and scheduling - the Traveling Salesman Problem (TSP). In

one of its simplest forms, we are given a metric space with an origin and a set of points

in the space. The task is to find a tour of minimum total length, beginning and ending

at the origin, that visits each point at least once. One can introduce a “time” aspect to

the problem by considering a server moving along, and visiting these points. Assuming a

constant speed for the server, the TSP objective is then to minimize the time required to

complete a tour. By incorporating release dates with points, where a point can only be

visited on or after its release date, we obtain the so-called “TSP with Release Dates”.

Finally one can associate a penalty to each point and remove the requirement that the

server needs to visit all points. Rather the server can decide which points to serve and

its objective is to minimize the time to go through all accepted points plus the sum of

the penalties associated with the rejected points. This latter problem, which we will call

hereafter the “TSP with Flexible Service” will be our main fundamental offline canonical

problem of interest.

1.1 Context and Definitions for Online and Offline Versions

The assumption that problem instances are completely known a priori is unrealistic in

many applications. One answer is to consider an online model in which requests (i.e. points

to visit) are revealed over time, while the server is “en route” serving previously released

requests. Such considerations lead to the formal definition of the online TSP, which, together

with several of its variants, has recently received a detailed treatment from a competitive

analysis point-of-view (see Subsection 1.3).

In this paper we consider a new online problem - the Online TSP with Flexible Service.

Besides providing a solid building block for many real applications in routing, scheduling,

robotics, etc., this problem’s main theoretical attraction is to provide a basic canonical

enrichment of the online TSP by adding “yes-no” decisions on which points/requests to

2

serve. The formal definition of the online and offline version of the problem is as follows:

The TSP with Flexible Service:

Instance: A metric spaceM with a given origin o and a distance metric d(·, ·).
A series of n requests (li, ri, pi)1≤i≤n where li ∈ M is the location (point in

metric space), ri ∈ R+ the release date (first time after which service can be

done), and pi ∈ R+ the penalty (for not serving) of request i. The problem

begins at time 0; the server is initially idle at the origin (initial state), can travel

at unit speed (when not idle), and eventually needs to be idle at the origin at

the end (final state). The earliest time the server reaches this final state will be

called the makespan.

Offline version: The number of requests n is known to the offline server. All

requests (li, ri, pi)1≤i≤n are revealed to the offline server at time 0.

Online version: The number of requests n is not known to the online server.

Requests are revealed to the online server at their release dates ri ≥ 0; assume

r1 ≤ r2 · · · ≤ rn.

Objective: In both cases, minimize {the makespan to serve all accepted re-

quests + the sum of the penalties of all rejected requests}.

A natural approach for solving the online version of this problem is to consider re-optimisation:

at the time of a new request, immediately recompute an optimal solution through all re-

vealed but not yet served requests. This motivates the introduction of the following path

problem with an arbitrary starting location x, and with no consideration of release dates:

Flexible Path Problem:

Instance: A metric spaceM with a given origin o and a distance metric d(·, ·).
A total of n requests (li, pi)1≤i≤n where li ∈ M is the location (point in metric

space) and pi ∈ R+ the penalty (for not serving) of request i. The problem

begins at time 0; the server is initially idle at a point x ∈M (initial state), can

travel at unit speed (when not idle), and eventually needs to be idle at the origin

at the end (final state). The earliest time the server reaches this final state will

be called the makespan.

Objective: minimize {the makespan to serve all accepted requests + the sum

of the penalties of all rejected requests}.

3

Below is an illustration of the TSP with Flexible Service problem which shows how successive

optimal offline solutions can vary drastically:

o

l2(r2=2
p2=1)

l3(r3=4
p3=1)

l4(r4=6
p4=10)

l1(r1=1
p1=1)

1a: initial optimal solution

o

l2(r2=2
p2=1)

l3(r3=4
p3=1)

l4(r4=6
p4=10)

l1(r1=1
p1=1) l5(r5=8

p5=10)

1b: after one more request (l5) is released

2

2 2

2

2

5

5

2

Figure 1: An illustration of the TSP with Flexible Service. As shown, the addition of

request l5 in the input cause dramatic changes in the optimal offline solution.

1.2 Our Contributions

Besides introducing a solid framework for looking at the additional impacts of including

“yes-no” decisions on the online TSP problem, this paper presents many new results gen-

eralizing and/or improving existing known results. We first look at the special case of the

non-negative real line. After providing a polynomial time algorithm for the offline version

of the problem, we propose and prove the optimality of a 2-competitive polynomial time

online algorithm based on re-optimization approaches. One of the key results here is the

lower bound (for the optimality result). We also consider the impact of advanced informa-

tion (lookahead) on this optimal competitive ratio, and generalize similar results that were

obtained on the online TSP in [15]. We then consider the generalizations of these results to

the case of the real line. We show that the previous algorithm can be extended to an optimal

2-competitive online algorithm. Finally we consider the case of a general metric space and

propose an original c-competitive online algorithm, where c =
√

17+5
4 ≈ 2.28. We also give

a polynomial-time (1.5ρ + 1)-competitive online algorithm which uses a polynomial-time

ρ-approximation for the offline problem.

4

1.3 Literature Review

The literature for the TSP is vast. The interested reader is referred to the books by Lawler

et al. [20] and Korte and Vygen [19] for comprehensive coverage of results concerning the

classical TSP.

A systematic study of online algorithms is given by Sleator and Tarjan [22], who suggest

comparing an online algorithm with an optimal offline algorithm. Karlin et al. [18] introduce

the notion of a competitive ratio. Online algorithms have been used to analyze paging in

computer memory systems, distributed data management, navigation problems in robotics,

multiprocessor scheduling, etc. (e.g. see the survey paper of Albers [1] and the books of

Borodin and El-Yaniv [11] and Fiat and Woeginger [13] for more details and references.)

Research concerning online versions of the TSP is more recent but has been growing

steadily. Kalyanasundaram and Pruhs [17] examine a unique version where new cities

are revealed locally during the traversal of a tour (i.e., an arrival at a city reveals any

adjacent cities that must also be visited). Angelelli et al. [3, 4] study related online routing

problems in a multi-period setting. Bent and Van Hentenryck [9] have looked at online

stochastic optimization techniques (e.g. scenario-based approaches) for addressing dynamic

online routing problems; see their book [14] for more references and applications of these

approaches.

More closely related to our paper is the stream of works which started with the paper

by Ausiello et al. [8]. In this paper, the authors study the online version of the TSP with

release dates (but with no service flexibility); they analyze the problem on the real line

and on general metric spaces, developing online algorithms for both cases and achieving

an optimal online algorithm for general metric spaces, with a competitive ratio of 2. They

also provide a polynomial-time online algorithm, for general metric spaces, which is 3-

competitive. Subsequently, the paper by Ascheuer et al. [5] implies the existence of a

polynomial-time algorithm, for general metric spaces, which is 2.65-competitive as well as

a (2 + ε)-competitive (ε > 0) algorithm for Euclidean spaces. Lipmann [21] develops an

optimal online algorithm for the real line, with a competitive ratio of 1.64. Blom et al. [10]

give an optimal online algorithm for the non-negative real line, with a competitive ratio

of 3
2 , and also consider different adversarial algorithms in the definition of the competitive

ratio. Jaillet and Wagner [15] introduce the notion of a disclosure date, which is a form

of advanced notice for the online salesman, and quantify the improvement in competitive

ratios as a function of the advanced notice. A similar approach was taken by Allulli et al. [2]

5

in the form of a lookahead.

There has also been work on generalizing the basic online TSP framework. The paper

by Feuerstein and Stougie [12] considers the online Dial-a-Ride problem, where each city

is replaced by an origin-destination pair. The authors consider both the uncapacitated

case, giving a best-possible 2-competitive algorithm, and the capacitated case, giving a

2.5-competitive algorithm. The previously cited paper by Ascheuer et al. [5] also gives a

2-competitive online algorithm and a (1 +
√

1 + 8ρ)/2-competitive polynomial-time online

algorithm for the uncapacitated online Dial-a-Ride problem (ρ being the approximation

ratio of a simpler but related offline problem). Their algorithm is generalizable to the case

where there are multiple servers with capacities; this generalization is also 2-competitive.

Jaillet and Wagner [16] consider the (1) online TSP with precedence and capacity constraints

and the (2) online TSP with m salesmen. For both problems they propose 2-competitive

online algorithms (optimal in case of the m-salesmen problem), consider polynomial-time

online algorithms, and then consider resource augmentation, where the online servers are

given additional resources to offset the powerful offline adversary advantage. Finally, they

study online algorithms from an asymptotic point of view, and show that, under general

stochastic structures for the problem data, unknown and unused by the online player, the

online algorithms are almost surely asymptotically optimal.

Finally there has been other recent work dealing with online routing problems which do

not require the server to visit every revealed request. Ausiello et al. [7] analyze the online

Quota TSP, where each city to be visited has a weight associated with it and the server

is given the task to find the shortest sub-tour through cities in such a way to collect a

given quota of weights by visiting the chosen cities. They present an optimal 2-competitive

algorithm for a general metric space. Wagner [23] considers the case where whenever a

new request arrives, the online algorithm has the option of rejecting the request and pay a

given penalty. In the model considered, there are however no release dates; rather the online

algorithm is presented a series of request, must decide to accept or reject each request, before

the next one is revealed. The overall objective is to minimize the tour length through the

accepted requests plus the sum of the penalties associated with the rejected requests. The

paper presents an optimal 2-competitive algorithm for this problem on the non-negative

half-line. Ausiello et al. [6] provide a competitive analysis of the “prize-collecting TSP”, a

generalization of the quota problem where penalties for not visiting cities are also included,

beyond meeting a given quota. They provide a 7/3-competitive algorithm and a lower

bound on any competitive ratios of 2 for a general metric space, and refer to a 2-competitive

6

algorithm and a lower bound of 1.89 on the non-negative real line. More generally, assuming

a ρ-approximation algorithm for the offline problem, they show that their online algorithm is

a (2ρ+ ρ
1+2/ρ)-competitive polynomial time algorithm. Our main results, when comparable,

provide improved competitive ratios on all these problems. The “prize-collecting TSP” is

a slight generalization of the problem we consider here; we feel confident that our stronger

(competitive ratio) results would in fact carry through to this generalization, but this is

beyond the scope of this current paper.

Outline: The remainder of the paper is as follows: we present first our results on the Online

TSP with Service Flexibility for the non-negative half-line in Section 2; we then consider

extensions of these results to the real line in Section 3. We then treat the general metric

space in Section 4 and then offer few concluding remarks in Section 5.

2 Online TSP with Service Flexibility on R+

In this section, we study the problem when the locations of the requests are all on the

non-negative real line. In that case, for sake of notational simplicity, we will use li as both

the location of the request i as well as its distance to the origin (an abuse of notation, but

circumventing the need to use d(o, li)). We begin with an offline analysis.

2.1 Polynomial Time Offline Algorithm for the TSP with Flexible Service

The offline server is given n requests (li, ri, pi)1≤i≤n all at once. If the server accepts request

i, then the makespan has to exceed max{ri + li, 2li}. Let ai
.
= max{ri + li, 2li}. Reorder

all the requests in non-decreasing order of ai, i.e., ak1 ≤ ak2 ≤ · · · ≤ akn . Let Copt be the

optimal offline cost, then we have the following lower bound:

Lemma 1. Copt ≥ min{
∑n

i=1 pi, min
1≤m≤n

{akm +
∑n

i=m+1 pki}}

Proof. If the server does not accept any requests, then Copt =
∑n

i=1 pi. Otherwise, Copt ≥
akm +

∑n
i=m+1 pki , where km is the largest index of accepted requests.

This result leads to the following algorithm:

Offline Algorithm on R+:

1. If
∑n

i=1 pi ≤ min
1≤m≤n

{akm +
∑n

i=m+1 pki}, the server remains idle (at the

origin) and rejects all the requests.

7

2. Otherwise, let m∗ = max{argmin1≤m≤n{akm +
∑n

i=m+1 pki}}:

2a. Find the furthest point that needs to be visited, lmax = max
1≤m≤m∗

lkm ,

and go directly to lmax;

2b. Remain idle at point lmax for max
1≤m≤m∗

{max{0, rkm − 2lmax + lkm}}
units of time;

2c. Go back to the origin and serve all requests ready to be served along

the way.

It is easy to see that this algorithm is an O(n log n) polynomial-time exact algorithm for

the TSP with Flexible Service on R+.

2.2 Lower Bound on Competitive Ratios

Theorem 1. Any c-competitive online algorithm on R+ has c ≥ 2.

Proof. Assume that an online server A follows a given c-competitive online algorithm, where

c is a finite constant. With n an arbitrary number to be defined by the adversary, consider

a series of up to n + 1 requests as follows: (li, ri, pi) = (21−i, 2 − 21−i, 21−i) for 1 ≤ i ≤ n,

and (ln+1, rn+1, pn+1) = (2−n, 2 − 2−n,∞). Let CA(k) and Copt(k) be the costs incurred

by the online server A and the offline adversary, respectively, when the instance is drawn

from the first k requests of the series: (li, ri, pi)1≤i≤n+1. Let t0 be the time the online server

begins to move from the origin for the first time.

First note that r1 ≤ t0 ≤ ∞. Indeed if 0 ≤ t0 < r1, then no request would be presented,

leading to CA > 0, Copt = 0, and thus an infinite c; also t0 obviously needs to be finite in

order to have a finite c. We can now consider two cases:

1. If t0 < rn+1, let m ∈ {1, 2, . . . , n}, be such that rm ≤ t0 < rm+1. Then only the first

m requests are presented, and the offline server rejects them all. Then Copt(m) =∑m
i=1 pi = 2−21−m. If A rejects all requests, then CA(m) ≥ rm+

∑m
i=1 pi = 4−22−m.

Otherwise, let k, k ≤ m, be the accepted request whose location is furthest away from

the origin. We have CA(m) ≥ rm + 2lk +
∑k−1

i=1 pi = 4 − 21−m ≥ 4 − 22−m. We then

get c ≥ (4− 22−m)/(2− 21−m) = 2.

2. If t0 ≥ rn+1, then all n + 1 requests are presented. The offline adversary serves

them all, and we have Copt(n + 1) = 2l1 = 2. On the other hand, A will have

to serve at least the last request n + 1. If it serves only this last request, then

CA(n+1) ≥ rn+1 +2ln+1 +
∑n

i=1 pi = 2−2−n+2 ·2−n+2−21−n = 4−2−n. Otherwise,

8

let k, k ≤ n, be the accepted request whose location is furthest away from the origin.

We have CA(n+ 1) ≥ rn+1 + 2lk +
∑k−1

i=1 pi = 2− 2−n + 2 · 21−k + 2− 22−k = 4− 2−n.

Therefore, either way, we have c ≥ 2− 2−n−1. By letting n→ +∞, then c ≥ 2.

2.3 A 2-Competitive Algorithm

Let us first consider the version of the offline optimization problem without release dates,

the Flexible Path Problem as defined in Section 1.1. Assume that the current initial position

of the server is a given point x > 0, and that we have n requests (li, pi)1≤i≤n. Let Cxopt

be the optimal objective value. Reorder the requests in non-decreasing order of li, i.e.,

lk1 ≤ · · · ≤ lkn . For simplicity, define lk0 = 0, and lkn+1 as an arbitrary large number

strictly greater than max{x,max1≤i≤n li}. First note that if there exists 1 ≤ m ≤ n such

that lkm < x ≤ lkm+1 , then irrespective of the other acceptance decisions, the server can

accept all requests k1, . . . , km at no extra costs. If there is not such an m, then simply

define m = 0. Consider now the following cases:

1. If the server does not accept any other requests, then Cxopt ≥ x+
∑n

i=m+1 pki .

2. Otherwise, let kr (r > m) be the visited request whose location is furthest away from

the origin. Then Cxopt ≥ 2lkr − x+
∑n

i=r+1 pki .

So Cxopt = min{ min
m+1≤r≤n

{2lkr − x +
∑n

i=r+1 pki}, x +
∑n

i=m+1 pki}, and this leads to the

following optimal algorithm for the Flexible Path Problem, which we label OFP(x 6= 0) (for

“Optimal Flexible Path starting at a location x away from the origin”):

OFP(x 6= 0):

0. Reorder the requests in non-decreasing order of li, lk1 ≤ · · · ≤ lkn . Let

1 ≤ m ≤ n be such that lkm < x ≤ lkm+1 if it exists, m = 0 otherwise. Go

to Step 1.

1. If x+
∑n

i=m+1 pki ≤ min
m+1≤r≤n

{2lkr−x+
∑n

i=r+1 pki}, the server goes directly

to the origin and serves all requests along the way.

2. Otherwise, let r∗ = max{argminm+1≤r≤n{2lkr − x+
∑n

i=r+1 pki}}:

2a. go directly to lkr∗;

2b. go back to the origin and serve all requests along the way.

9

It is easy to see that OFP(x 6= 0) is an O(n log n) polynomial-time exact algorithm for

the Flexible Path Problem on R+, when x > 0. When x = 0, this algorithm needs to be

adapted in order to take care of a special case of interest for the online version of the TSP

with Flexible Service. For this case, the amount of time the server has been idle at the

origin, say w, is a critical factor. The new algorithm, OFP(0), is as follow:

OFP(0):

0. Let w be the amount of time the server has been at the origin prior to

facing the n requests. Reorder the requests in non-decreasing order of li,

lk1 ≤ · · · ≤ lkn . Go to Step 1.

1. If −w +
∑n

i=1 pki ≤ min
1≤r≤n

{2lkr +
∑n

i=r+1 pki}, the server remains at the

origin.

2. Otherwise, let r∗ = max{argmin1≤r≤n{2lkr +
∑n

i=r+1 pki}}:

2a. go directly to lkr∗;

2b. go back to the origin and serve all requests along the way.

We can now present the main online algorithm of this section: ReOpt.

10

Online Algorithm ReOpt:

0. Initial server location: x = 0, initial time t = 0, iteration counter i = 0. Go

to Step 1.

1. If no new request, Stop: any previously unserved requests are rejected and

the final makespan is t. Otherwise, i
.
= i+ 1, the server remains idle at the

origin until the time ri of the next request. Go to Step 2.

2. If x > 0 the server calls OFP(x 6= 0), otherwise it calls OFP(0) with

w = ri−t [in each case, on the instance of requests which have been revealed

but not yet served], and then follows the corresponding new solution. Go

to Step 3.

3. If no new requests come before the time tr the server finishes its current

route, set x = 0, t = tr and go to Step 1. Otherwise, increment i
.
= i + 1,

update x as the server’s current location at time of this next request and t

as the release date of the next request. Go to Step 2.

Theorem 2. ReOpt is 2-competitive, and thus optimal.

Proof. At the time of the last request, say request n, ReOpt is faced with an optimization

problem containing all known information to the offline server, and this is thus a critical

time to consider. Let CReOpt and Copt be the objective value obtained by the online and

offline server, on the overall instance. Also let Ci be the total cost that the online server

would have obtained if only the first i requests were presented. So we have CReOpt = Cn.

Consider now the following cases, depending on what the offline server has done on the

overall instance:

1. The offline server does not accept any requests. Obviously, Ci+1 ≤ Ci + pi+1, C1 ≤ p1.

So CReOpt = Cn ≤
∑n

i=1 pi = Copt. Hence CReOpt/Copt = 1.

2. The offline server visits the last request n. Let S be the set of requests accepted by the

offline server. Let m = argmaxi∈S{li}, and x be the position of the online server at

time rn:

2a. If x ≤ lm, then it won’t be worse if the online server moves to lm and then

go back to the origin (serving requests along the way). In this case, the online

server will have served all requests in S. SoCReOpt ≤ rn + 2lm +
∑

i/∈S pi, while

Copt ≥ max{rn, 2lm}+
∑

i/∈S pi. So CReOpt/Copt ≤ 2.

11

2b. If x > lm, then assume that the furthest location in his current route is L

(x ≤ L and this location may or may not have been visited yet). Let us show

that L cannot be too large. Let S1 denote the set of requests not accepted by

the offline server, but visited by ReOpt between his last leaving lm (to the right)

to his next arriving to lm. We will show that 2(L − lm) ≤
∑

i∈S1
pi. Assume

that after every previous iteration of the algorithm, the furthest request that

the online server is going to serve is lq1 , lq2 , · · · , lqn−1 (if he is going to reject all

requests, let qi = 0 for all i and l0 = 0). We can find j1 < j2 < · · · < jk, so

that lm = lqj0 < lqj1 < · · · < lqjk = L and , for all i such that ju−1 < i < ju

and 1 ≤ u ≤ k, we have lqi ≤ lqju−1
. For 1 ≤ u ≤ k, let S̄u denote the set

of locations that ReOpt serves between its first and second crossing of lqju−1
.

We then have 2(lqju − lqju−1
) ≤

∑
i∈S̄u

pi (otherwise, at the time of the first

crossing of lqju−1
, the online server could have saved

∑
i∈S̄u

pi − 2(lqju − lqju−1
)

from its cost by not going to lqju , contradicting the optimality of the ReOpt

algorithm). Since S1 = ∪ku=1S̄u, 2(L − lm) ≤
∑

i∈S1
pi. Now we can conclude

with Case 2b. CReOpt ≤ rn + 2L+
∑

i/∈S pi−
∑

i∈S1
pi ≤ rn + 2lm +

∑
i/∈S pi, and

Copt ≥ max{rn, 2lm}+
∑

i/∈S pi. Therefore, CReOpt/Copt ≤ 2.

3. The last accepted request by the offline server is request m, m < n. As Ci+1 ≤ Ci+pi+1,

then CReOpt = Cn ≤ Cm+
∑n

i=m+1 pi. Also, it is easy to check that the offline server’s

behavior will remain the same if only the first m requests are ever presented. Let

Copt(m) be the optimal offline solution through the first m requests. We then have

Copt = Copt(m) +
∑n

i=m+1 pi. According to Case 2, Cm/Copt(m) ≤ 2. Therefore

c = CReOpt/Copt ≤ (Cm +
∑n

i=m+1 pi)/(Copt(m) +
∑n

i=m+1 pi) ≤ 2.

2.4 Competitive Ratios under Advanced Information

In this subsection we consider the situation where the online server receives advanced notice

for each request in a problem instance. In other words, let qi ∈ R+ be the ith request’s

disclosure date: at time qi, the server learns about request i and its corresponding values

li, ri, and pi. We will be concerned here with the case where the quantity of advanced

information is uniform over all requests: More specifically we assume that there exists a

constant a ∈ [0, rmax] such that qi = (ri−a)+, ∀i, where (x)+ = max{x, 0}. Let L = maxi li

and α = a
L .

12

Lemma 2. If α < 1, any c-competitive online algorithm on R+ has c ≥ 2− α
2 .

Proof. A generalization of the proof of Theorem 1. Assume that an online server A follows

a given c-competitive online algorithm, where c is a finite constant. Let y = 1
2−α . Since

α < 1, we have y < 1. With n an arbitrary number to be defined by the adversary, consider

a series of up to n + 1 requests as follows: (li, ri, pi) =
(
yi−1L, (2− yi−1)L, 2(yi−1 − yi)L

)
for 1 ≤ i ≤ n, and (ln+1, rn+1, pn+1) = (ynL, (2− yn)L,∞). Let CA(k) and Copt(k) be

the costs incurred by the online server A and the offline adversary, respectively, when the

instance is drawn from the first k requests of the series. Let t0 be the time the online server

begins to move from the origin for the first time. Again note that q1 ≤ t0 ≤ ∞. Indeed if

0 ≤ t0 < q1, then no request would be presented, leading to CA > 0, Copt = 0, and thus

an infinite c; also t0 obviously needs to be finite in order to have a finite c. We can now

consider two cases:

1. If t0 < qn+1, let m ∈ {1, 2, . . . , n}, be such that qm ≤ t0 < qm+1. Then only the first

m requests are presented, and the offline server rejects them all. Then Copt(m) =∑m
i=1 pi = (2 − 2ym)L. If A rejects all requests, then CA(m) ≥ qm +

∑m
i=1 pi = (4 −

ym−1−2ym−α)L. Otherwise, let k, k ≤ m, be the accepted request whose location is

furthest away from the origin. We have CA(m) ≥ qm+2lk+
∑k−1

i=1 pi = (4−ym−1−α)L.

We then get c ≥ 4−ym−1−2ym−α
2−2ym = 2− α

2 .

2. If t0 ≥ qn+1, then all n + 1 requests are presented. The offline server accepts them

all, and we have Copt(n + 1) = 2l1 = 2L. On the other hand, A will have to serve

at least the last request n + 1. If it serves only this last request, then CA(n + 1) ≥
qn+1 + 2ln+1 +

∑n
i=1 pi = 2 − 2−n + 22̇−n + 2 − 2n−1 = (4 − yn − α)L. Otherwise,

let k, k ≤ n, be the accepted request whose location is furthest away from the origin.

We have CA(n + 1) ≥ qn+1 + 2lk +
∑k−1

i=1 pi = (4 − yn − α)L. Therefore, either way,

we have c ≥ 2− α
2 −

yn

2 . By letting n→ +∞, then c ≥ 2− α
2 .

Let ReOpt(α) be the online algorithm ReOpt when decision times associated with the

requests are made at their disclosure dates rather than their release dates.

Theorem 3. If 0 < α ≤ 2, Algorithm ReOpt(α) is 2− α
2 -competitive.

Proof. A generalization of the proof of Theorem 2. At the disclosure date of the last request,

say qn, the online server faces an optimization problem with all known information and this

13

is again a critical time to consider. Let CReOpt(α) and Copt be the objective value obtained

by the online and offline server, respectively on the overall instance. Also let Ci be the total

cost that the online server would have obtained if only the first i requests where presented.

So we have CReOpt(α) = Cn. Consider now the following cases, depending on what the

offline server has done on the overall instance:

1. The offline server does not accept any requests. Obviously, Ci+1 ≤ Ci + pi+1, C1 ≤ p1.

So CReOpt(α) = Cn ≤
∑n

i=1 pi = Copt. Hence CReOpt(α)/Copt = 1.

2. The offline server visits the last request n. Let S be the set of requests accepted by

the offline server. Assume m = argmaxi∈S{li}. Let T be its makespan. Obviously,

T ≥ max{rn, 2lm}. Let x be the position of the online server at time qn:

2a. If x ≤ lm, then it won’t be worse if the online server moves to lm, waits un-

til t0 = max{T − lm, qn + lm} and then goes back to the origin (serving re-

quests along the way). In this case, since for any i ∈ S request i is ready to be

served at time T − li, the online server will have served all requests in S on his

last return. So CReOpt(α) ≤ t0 + lm +
∑

i/∈S pi ≤ max{T, qn + 2lm} +
∑

i/∈S pi.

If T ≥ qn + 2lm, CReOpt(α) ≤ T +
∑

i/∈S pi = Copt. Otherwise, CReOpt(α) ≤
qn + 2lm +

∑
i/∈S pi = rn + 2lm − a +

∑
i/∈S pi, while Copt(n) = T +

∑
i/∈S pi ≥

max{rn, 2lm} +
∑

i/∈S pi. So c ≤ rn+2lm−a+
∑

i/∈S pi
max{rn,2lm}+

∑
i/∈S pi

≤ max{ rn+2lm−a
max{rn,2lm} , 1}. If

rn ≤ 2L, rn+2lm−a
max{rn,2lm} = rn

max{rn,2lm} + 2lm
max{rn,2lm} −

a
max{rn,2lm} ≤ 2 − a

2L . If

rn > 2L, rn+2lm−a
max{rn,2lm} = rn+2lm−a

rn
= 1 + 2lm−a

rn
≤ 1 + max{2lm−a

2L , 0} ≤ 2 − a
2L .

Therefore, c ≤ 2− a
2L = 2− α

2 .

2b. If x > lm, then assume that the furthest location in his current route is Lmax.

Let S1 denote the set of cities being visited by the online server between the time

of his last passing lm and the time of his next passing lm (lm is not included).

So 2(Lmax − lm) ≤
∑

i∈S1
pi (see proof of Theorem 2). Let the server go to

Lmax and return to lm, and then wait at lm until max{T − lm, qn + 2Lmax −
x − lm}, and then return to the origin. So the server visits all the cities be-

longing to S ∪ S1. CReOpt(α) ≤ max{T − lm, qn + 2Lmax − x − lm} + lm +∑
i/∈S∪S1

pi. If T ≥ qn + 2Lmax, CReOpt(α) ≤ T +
∑

i/∈S∪S1
pi ≤ Copt. Otherwise,

CReOpt(α) ≤ qn + 2L+
∑

i/∈S∪S1
pi ≤ rn− a+ 2lm +

∑
i/∈S pi. On the other hand,

Copt(n) ≥ max{rn, 2lm}+
∑

i/∈S pi. Therefore, c ≤ max{1, rn−a+2lm+
∑

i/∈S pi
max{rn,2lm}+

∑
i/∈S pi

} ≤
max{1, 2− a

2L} = 2− α
2 .

14

3. The last accepted request by the offline server is request m, m < n. Then, CReOpt(α) ≤
Cm+

∑n
i=m+1 pi. If only the first m requests are ever presented, let C ′opt be the optimal

offline solution. We have Copt = C ′opt +
∑n

i=m+1 pi. According to Case 2, Cm/C
′
opt ≤

2− α
2 . Therefore c = CReOpt/Copt ≤ (Cm +

∑n
i=m+1 pi)/(C

′
opt +

∑n
i=m+1 pi) ≤ 2− α

2 .

From Lemma 2 and Theorem 3 we have

Corollary 1. Algorithm ReOpt(α) is optimal when α < 1.

3 Online TSP with Service Flexibility on R

In this section, we study the problem when the locations of the requests are on the real line.

In order to distinguish the requests on the negative side from those on the non-negative

side, we will use l̄i to indicate that request i’s location is on the negative side. We will

continue to use the same notation for both the location of a request i and its distance to

the origin.

From Theorem 1 we know that the lower bound on the competitive ratio of any online

algorithm is at least 2. We will prove here that ReOpt is in fact 2-competitive and thus

optimal on the line.

First let us look at the offline version of the problem. Suppose there are r requests on

the right side (including the origin; i.e., the non-negative side) and l on the negative side (for

a total of n = r + l requests). Reorder all requests as follows: −l̄jl ≤ −l̄jl−1
≤ · · · ≤ −l̄j1 <

0 ≤ lj1 ≤ · · · ≤ ljr . Define ah = max{2lh, lh + rh} and āh = max{2l̄h, l̄h + rh}. Reorder as

follows: ai1 ≤ ai2 ≤ · · · ≤ air and āi1 ≤ āi2 ≤ · · · ≤ āil . If the server visits the right side

requests first, the optimal solution should be in the following form: let t1 be the time when

the server arrives at the origin after visiting the requests on the right side, and t2 be the

time when he arrives at the origin after visiting the requests on the left side. Then, request

h on the right side is visited if and only if ah ≤ t1 and request h on the left side is visited if

and only if āh ≤ t2, 2l̄h ≤ t2 − t1. So S = {h|ah ≤ t1} ∪ {h|āh ≤ t2, 2l̄h ≤ t2 − t1} is the set

of visited requests. Consequently, the server’s cost should be t2 +
∑

h/∈S ph. In order to be

optimal, t1 ∈ {ai1 , ai2 , · · · , air , 0}, t2 ∈ {āi1 , āi2 , · · · , āil , t1 + 2l̄i1 , t1 + 2l̄i2 , · · · , t1 + 2l̄il , t1}
and t1 ≤ t2. It is very similar if the server visits the left side requests first. Find the smallest

value among these and move accordingly, then we get the optimal offline algorithm. The

idea is also very similar when one considers solving the Flexible Path Problem on the line.

15

Theorem 4. Algorithm ReOpt on R is 2-competitive, and thus optimal.

Proof. The proof is quite similar to the proof of Theorem 2. Let CReOpt and Copt be the

objective value obtained by the online and offline server, on the overall instance. Let Topt

be the makespan of the optimal offline solution. Also let Ci be the total cost that the

online server would have obtained if only the first i requests where presented. So we have

CReOpt = Cn. Consider now the following cases, depending on what the offline server has

done on the overall instance:

1. The offline server does not accept any requests. Obviously, Ci+1 ≤ Ci + pi+1, C1 ≤ p1.

So CReOpt = Cn ≤
∑n

i=1 pi = Copt. Hence CReOpt/Copt = 1.

2. The offline server visits the last request n. Let S be the set of requests accepted by

the offline server, and [−L,R] be the interval covered. Let P (t) be the position of the

online server at any time t, and consider its position at time rn, x = P (rn):

2a. If −L ≤ x ≤ R. Without loss of generality, let −L ≤ x ≤ 0. Assume that

at time T1, T2, the offline server is at point −L, R, respectively. Define T s1 =

max{t < T1|P (t) = x}, T e1 = min{t > T1|P (t) = 0}, T s2 = max{t < T2|P (t) =

0}, T e2 = min{t > T2|P (t) = 0}. Let τi denote the portion of the route followed

by the offline server from time T si to T ei (i = 1, 2). Obviously, τ1 and τ2 will not

overlap. Let ReOpt start τ1 at time rn, and then start route τ2 after arriving

at the origin. By doing so, ReOpt can serve all the cities that the offline server

serves. So CReOpt ≤ rn + T (τ1) + T (τ2) +
∑

i/∈S pi ≤ 2Topt +
∑

i/∈S pi, while

Copt = Topt +
∑

i/∈S pi. Therefore, c ≤ 2.

2b. If x /∈ [−L,R]. Without loss of generality, let x < −L. Assume that at time

T1, T2, the offline server is at point −L, R, respectively. Define T s1 = T1, T
e
1 =

min{t > T1|P (t) = 0}, T s2 = max{t < T2|P (t) = 0}, T e2 = min{t > T2|P (t) = 0}.
Let τi denote the portion of the route followed by the offline server from time T si

to T ei (i = 1, 2). Obviously, τ1 and τ2 will not overlap. Let S0 denote the cities

that ReOpt visits from last leaving −L to next arriving to −L. The length of

such a tour is L0. Then, L0 ≤
∑

i∈S0
pi. Let ReOpt ignore request n until his

next arriving to −L, then follow route τ1, and then follow route τ2. In that case,

CReOpt ≤ rn + L0 + Topt +
∑

i∈S\S0
pi ≤ Topt +

∑
i∈S0

pi + Topt +
∑

i∈S\S0
pi ≤

2Topt +
∑

i∈S pi, while Copt = Topt +
∑

i∈S pi. Therefore, c ≤ 2.

16

3. The last accepted request by the offline server is request m, m < n. As Ci+1 ≤ Ci+pi+1,

then CReOpt = Cn ≤ Cm+
∑n

i=m+1 pi. Also, it is easy to check that the offline server’s

behavior will remain the same if only the first m requests are ever presented. Let

Copt(m) be the optimal offline solution through the first m requests. We then have

Copt = Copt(m) +
∑n

i=m+1 pi. According to Case 2, Cm/Copt(m) ≤ 2. Therefore

c = CReOpt/Copt ≤ (Cm +
∑n

i=m+1 pi)/(Copt(m) +
∑n

i=m+1 pi) ≤ 2.

4 Online TSP with Service Flexibility on a General Metric

Space

4.1 A 2.28-Competitive Algorithm

We assume here that the online algorithm has access to an optimal offline algorithm (a black

box) for solving any given subproblem of the TSP with Flexible Service on those requests

which have been revealed to the online server so far (hence ignoring the release dates of

these requests while solving the TSP with Flexible Service subproblems).

For any k ≥ 1, let C∗k be the objective value of such an optimal offline solution (given by

the black box) through the first k revealed requests, τk be its corresponding optimal route,

and Tk be the corresponding makespan. Finally let Sk be the set of accepted cities among

the first k requests.

Our proposed algorithm is such that the online server will follow the solution given by

the re-optimizing black box only when at the origin, and only after waiting a proper amount

of time there. Once started on a given new route - if a new request comes, say m, it will

use the black box only to estimate the likelihood that this new request should eventually be

served, and it will ask the question: is m ∈ Sm? If the answer is no, the server will continue

on its current route; otherwise it will go back directly to the origin along the shortest path.

This is thus a “plan at home” type of algorithm with the incorporation of (i) waiting time

decisions at the origin, and (ii) service estimation decisions upon the arrival of any new

requests. We will label this algorithm WOE for “Wait, Optimize, Estimate”. A formal

description of WOE is as follows. For simplicity, let c denote
√

17+5
4 . So 2 + 1

2c−1 = c. If n

is the last request in a given instance, define rn+1
.
= +∞.

17

Algorithm WOE

Whenever a new request m comes (at time rm):

1. If the server is at the origin, let k be the largest index such that k ∈ Sk,

i. If every request in Sk has been visited, the server remains idle.

ii. If at least one of them has not been visited, the server remains idle

until max{rm, (c− 1)C∗m}, and then follows τk.

2. If the server is not at the origin and is currently completing a route,

i. If m ∈ Sm, the server interrupts his route, and goes back to the

origin along the shortest path. Go to Step 3.

ii. If m /∈ Sm, the server continues on his current route.

3. If the server is not at the origin and has interrupted his route, he

continues to go back to the origin. Let t be the time he reaches the

origin, m̄ be the total number of requests at that time, and k̄ be the

largest index such that k̄ ∈ Sk̄. Then the server remains idle at the

origin until max{t, (c− 1)C∗m̄}, and then follows τk̄.

Lemma 3. Assume there are n requests, then for any l ∈ Sl, the server is at the origin at

time (c− 1)C∗l .

Proof. When l = 1, it is very easy to check the server is at the origin at time (c − 1)C∗1 .

Assume the assertion holds for all 1 ≤ l < m, (m < n), let us consider the situation when

l = m. We only need to prove the case when m ∈ Sm and the server is at x(6= 0) other

than the origin at time rm. If the server is not following any route τi, then he must be

on his way back to the origin as a result of decision associated with a previous request

k, (k < m). In that case, according to our induction, he will be at the origin before time

(c−1)C∗k ≤ (c−1)C∗l . Otherwise, the server must follow a route τk, k < m, k ∈ Sk, and will

arrive at the origin at time t
.
= rm+d(x, o). Assume rm = (c−1)C∗k +αTk, which means the

server left the origin αTk units of time ago and will finish its current route in (1−α)Tk units

of time. Notice that rm = (c−1)C∗k +αTk ≥ (c−1)Tk+αTk = (c−1+α)Tk. If 0 < α ≤ 0.5,

then t = rm + d(x, o) ≤ rm + αTk ≤ rm + α
c−1+αrm ≤ rm + 0.5

c−1+0.5Tm ≤ (1 + 1
2c−1)C∗m. If

0.5 ≤ α < 1, then t = rm + d(x, o) ≤ rm + (1− α)Tk ≤ rm + 1−α
c−1+αrm ≤ rm + 1−0.5

c−1+0.5rm ≤
(1 + 1

2c−1)C∗m. Therefore, t ≤ (1 + 1
2c−1)C∗m = (c− 1)C∗m

18

Lemma 4. If m /∈ Sm, then C∗m = C∗m−1 + pm

Proof. First, when considering the instance drawn from the first m requests, let the server

follow route τm−1 and reject all requests which are not in τm−1 (including request m). In

that case we then have C∗m ≤ Tm−1 +
∑

i/∈Sm−1
pi + pm = C∗m−1 + pm.

Second, when considering the instance drawn from the first m−1 request, let the server

follow route τm and reject all requests which are not in τm. Because request m is not

among the first m − 1 requests, its penalty should not be counted. In that case we then

have C∗m−1 ≤ Tm +
∑

i/∈Sm
pi − pm = C∗m − pm.

Consequently, C∗m = C∗m−1 + pm.

Theorem 5. WOE is c-competitive, where c =
√

17+5
4 .

Proof. Assume there are n requests. If for any 1 ≤ m ≤ n, m /∈ Sm, then according to

Lemma 4, C∗n = C∗n−1 + pn = · · · =
∑n

i=1 pi. While the server will also rejects all the

requests which makes CWOE =
∑n

i=1 pi = C∗n. Otherwise, let m be the largest request

such that m ∈ Sm. Then, according to Lemma 3, the server will be at the origin at time

(c − 1)C∗m, then, he will start to follow his last tour τm. So CWOE ≤ (c − 1)C∗m + Tm +∑
i/∈Sm

pi +
∑n

i=m+1 pi = cC∗m +
∑n

i=m+1 pi ≤ cC∗m + c
∑n

i=m+1 pi = cC∗n.

4.2 A Polynomial-Time Algorithm

Suppose we have a ρ−approximate polynomial-time offline algorithm A for the offline opti-

mization subproblems considered in the previous section (i.e. for any sequence of requests

R, CA(R) ≤ ρCopt(R)). Let x(t) denote the position of the online server at any time t, and

C(t) denote the cost of online algorithm if no more requests are presented after time t. Let

C∗i , Ti, and Si be the optimal offline cost, time, and set of accepted requests by the offline

optimal black box, and C̄∗i , T̄i, S̄i be the corresponding quantity given by A, through the

first i revealed requests.

The online algorithm is a simpler version of the WOE algorithm (without the waiting

time at the origin, and with a different estimation condition for interrupting or not a given

route). We will label this algorithm AE for “Approximation and Estimation”

Algorithm AE

When a new request m is presented, there are two options:

1. If C(rm) + pm ≥ rm + d(x(rm), o) + C̄∗m, go back to the origin along the

shortest way and then follow τ̄m.

19

2. If C(rm) + pm < rm + d(x(rm), o) + C̄∗m, ignore the new request.

Theorem 6. Algorithm AE is (1.5ρ+ 1)-competitive.

Proof. We will use induction to prove this theorem. It is easy to check that it holds if there

is only 1 request. Assume it holds with at most m− 1 requests. Consider the case with m

requests.

1. If m ∈ Sm, then C∗m ≥ rm. Assume that the previous route that the online server

follows is τ̄k, k < m, then d(x(rm), o) ≤ 0.5T̄k ≤ 0.5C̄∗k ≤ 0.5ρC∗k ≤ 0.5ρC∗m. So the

total cost C̄ = min{C(rm) + pm, rm + d(x(rm), o) + C̄∗m} ≤ rm + d(x(rm), o) + C̄∗m ≤
C∗m + 0.5ρC∗m + ρC∗m = (1.5ρ+ 1)C∗m.

2. If m /∈ Sm, then according to Lemma 4, C∗m = C∗m−1 + pm, and according to the

induction, C(rm) ≤ (1.5ρ + 1)C∗m−1. So the total cost C̄ = min{C(rm) + pm, rm +

d(x(rm), o) + C̄∗m} ≤ C(rm) + pm ≤ (1.5ρ+ 1)C∗m−1 + pm ≤ (1.5ρ+ 1)C∗m.

5 Conclusions

In this paper we have considered a new online problem - the Online TSP with Flexible

Service. Besides providing a solid building block for many real applications in routing,

scheduling, robotics, etc., it also introduces a basic canonical enrichment of the online TSP

by adding “yes-no” decisions on which points/requests to serve.

For some special metric spaces (the non-negative real line and the real line) we have

been able to provide optimal 2-competitive polynomial time online algorithms based on

re-optimization approaches. We have also quantified the impact of advanced information

(lookahead) on this optimal competitive ratio. In a general metric space we have proposed

an original c-competitive online algorithm, with c =
√

17+5
4 ≈ 2.28.

There are a number of interesting future research questions. First for the case of the

general metric space, it would be interesting to close the gap between the current upper

bound of 2.28 and the lower bound of 2, and to find the optimal ratio. Then there are a

number of generalizations of this problem that would merit a similar analysis. We have

indicated the online prize-collecting TSP of [6]. In fact it would be interesting to consider

an online analysis of a most general form of a TSP with profits, for which requests have

release dates, penalties for not being served, and profits for being served, and for which

20

the goal is to bring enough profit (exceeding a given threshold), while minimizing the time

to serve all accepted requests plus the sum of the penalties associated with the rejected

requests.

Acknowledgements

We thank the anonymous referees for their thoughtful and detailed comments, which im-

proved the quality and clarity of our paper.

References

[1] S. Albers. Competitive online algorithms. OPTIMA: Mathematical Programming So-

ciety Newsletter, 54:1–8, June 1997.

[2] L. Allulli, G. Ausiello, and L. Laura. On the power of lookahead in on-line vehicle

routing problems. In Proceedings of the Eleventh International Computing and Combi-

natorics Conference, Lecture Notes in Computer Science, volume 3595, pages 728–736,

2005.

[3] E. Angelelli, M. Savelsbergh, and M. Speranza. Competitive analysis for dynamic

multi-period uncapacitated routing problems. Networks, 49:308–317, 2007.

[4] E. Angelelli, M. Savelsbergh, and M. Speranza. Competitive analysis of a dispatch pol-

icy for a dynamic multi-period routing problem. Operations Research Letters, 35:713–

721, 2007.

[5] N. Ascheuer, S. Krumke, and J. Rambau. Online dial-a-ride problems: Minimizing the

completion time. In Proceedings of the 17th International Symposium on Theoretical

Aspects of Computer Science, Lecture Notes in Computer Science, volume 1770, pages

639–650, 2000.

[6] G. Ausiello, V. Bonifaci, and L. Laura. The on-line prize-collecting traveling salesman

problem. Information Processing Letters, 107(6):199–204, 2008.

[7] G. Ausiello, M. Demange, L. Laura, and V. Paschos. Algorithms for the on-line quota

traveling salesman problem. Information Processing Letters, 92(2):89–94, 2004.

21

[8] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Algorithms for the

on-line travelling salesman. Algorithmica, 29(4):560–581, 2001.

[9] R. Bent and P. Van Hentenryck. Scenario based planning for partially dynamic vehicle

routing problems with stochastic customers. Operations Research, 52(6):977–987, 2004.

[10] M. Blom, S.O. Krumke, W.E. de Paepe, and L. Stougie. The online TSP against fair

adversaries. INFORMS Journal on Computing, 13(2):138–148, 2001.

[11] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-

bridge University Press, first edition, 1998.

[12] E. Feuerstein and L. Stougie. On-line single-server dial-a-ride problems. Theoretical

Computer Science, 268(1):91–105, 2001.

[13] A. Fiat and G. Woeginger. Online Algorithms: The State of the Art. Springer Verlag

LNCS State of the Art Survey, 1998.

[14] P. Van Hentenryck and R. Bent. Online Stochastic Combinatorial Optimization. MIT

Press, first edition, 2006.

[15] P. Jaillet and M. Wagner. Online routing problems: value of advanced information as

improved competitive ratios. Transportation Science, 40(2):200–210, 2006.

[16] P. Jaillet and M. Wagner. Generalized online routing: New competitive ratios, resource

augmentation and asymptotic analyses. Operations Research, 56:745–757, 2008.

[17] B. Kalyanasundaram and K.R. Pruhs. Constructing competitive tours from local in-

formation. Theoretical Computer Science, 130(1):125–138, 1994.

[18] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy caching.

Algorithmica, 3:79–119, 1988.

[19] B. Korte and J. Vygen. Combinatorial Optimization, Theory and Algorithms. Springer,

second edition, 2002.

[20] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. The Traveling

Salesman Problem, A Guided Tour of Combinatorial Optimization. John Wiley &

Sons Ltd., 1985.

[21] M. Lipmann. On-line Routing. PhD thesis, Technische Universiteit Eindhoven, 2003.

22

[22] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules. Com-

munications of the ACM, 28(2):202–208, 1985.

[23] M. Wagner. Online tsp with rejections. Short note, California State University East

Bay, October 2006.

23

