
Graph Orientation and Flows Over Time?

Ashwin Arulselvan1??, Martin Groß2, and Martin Skutella2

1 Department of Management Science, University of Strathclyde
ashwin.arulselvan@strath.ac.uk

2 Institut für Mathematik, TU Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany
gross,skutella@math.tu-berlin.de

Abstract. Flows over time are used to model many real-world logistic
and routing problems. The networks underlying such problems – streets,
tracks, etc. – are inherently undirected and directions are only imposed
on them to reduce the danger of colliding vehicles and similar problems.
Thus the question arises, what influence the orientation of the network
has on the network flow over time problem that is being solved on the ori-
ented network. In the literature, this is also referred to as the contraflow
or lane reversal problem.
We introduce and analyze the price of orientation: How much flow is lost
in any orientation of the network if the time horizon remains fixed? We
prove that there is always an orientation where we can still send 1

3
of

the flow and this bound is tight. For the special case of networks with a
single source or sink, this fraction is 1

2
which is again tight. We present

more results of similar flavor and also show non-approximability results
for finding the best orientation for single and multicommodity maximum
flows over time.

1 Introduction

Robbins [19] studied the problem of orienting streets as early as 1939, motivated
by the problem of controlling congestion by making streets of a city one-way
during the weekend. He showed that a strongly connected digraph could be
obtained by orienting the edges of an undirected graph if and only if it is 2-edge
connected.
The problem of prescribing or changing the direction of road lanes is a strategy
employed to mitigate congestion during an emergency situation or at rush hour.
This is called a contraflow problem (or sometimes reversible flow or lane reversal
problem). Contraflows are an important tool for hurricane evacuation [24], and
in that context the importance of modeling time has become prevalent in the
past decade [25]. It is also employed to handle traffic during rush hours [10].

? Supported by the DFG Priority Program “Algorithms for Big Data” (SPP 1736)
and by the DFG Research Center Matheon “Mathematics for key technologies” in
Berlin. An extended abstract [1] has appeared in proceedings of the 25th Interna-
tional Symposium on Algorithms and Computation (ISAAC ’14).

?? The work was performed while the author was working at TU Berlin.

Flows over time (also referred to as dynamic flows) have been introduced by Ford
and Fulkerson [7] and extend the classic notion of static network flows. They can
model a time aspect and are therefore better suited to represent real-world phe-
nomena such as traffic, production flows or evacuations. Ford and Fulkerson
studied the maximum flow over time problem, and described an efficient algo-
rithm to solve it. This problem consists of a given time window in which as much
flow as possible is to be sent from a source to a sink. An application for this are
traffic problems where a high throughput is important, e. g., where many people
need to get to a destination in a fixed time window – for example, from suburbs
into the city and vice versa during rush hours; see, e. g., [16].

For evacuations, quickest flows (over time) are the model of choice. They are
based on the idea that a given number of individuals should leave a dangerous
area as quickly as possible [4, 6]. Such an evacuation scenario is modeled by
a network, with nodes representing locations. Nodes containing evacuees are
denoted as sources while the network’s sinks model safe areas or exits. For
networks with multiple sources and sinks, quickest flows are also referred to as
quickest transshipments [13] and the problem of computing them is called an
evacuation problem [21]. A strongly polynomial algorithm for the quickest flow
problem was described in [12]. For a more extensive introduction to flows over
time, see [20].

In this paper, we are interested in combining the orientation of a network with
flows over time – we want to orient the network such that the orientation is as
beneficial as possible for the flow over time problem. We will assume that we can
orient edges in the beginning, and cannot change the orientation afterwards. The
assumption is reasonable in an evacuation setting as altering the orientation in
the middle of an evacuation process can be difficult or even infeasible, depending
on the resources available. We also assume that each edge has to be routed
completely in one direction – but this will not impose any restriction to our
modeling abilities, as we can model lanes with parallel edges if we want to orient
them individually.

If there is only a single source and sink, we can apply the algorithm of Ford
and Fulkerson [7] to obtain an orientation and a solution. Furthermore, it was
shown that finding the best orientation for a quickest flow problem with multi-
ple sources and sinks is NP-hard [14, 18]. Due to the hardness of the problem,
heuristic and simulation tools are predominantly used in practice [24]. Boesch
and Tindell [3] extended the theorem of Robbins to study graphs with bridges.
They showed that given a graph with both directed and undirected edges, orien-
tation of the undirected edges (except for the bridges) could be achieved without
altering the strong connectivity. Kim and Shekhar [14] proposed two heuristics to
solve the contraflow problem with multiple sources and sinks. The first heuristic
was proposed on a time expanded network making it unattractive for large scale
evacuation modelling. Their second heuristic was based on simulated annealing.
A tabu search heurisitc was proposed by Tuydes and Ziliaskopoulos [23] to iden-
tify lanes to be reversed. In another work [22], they employed a cell transmission

2

based dynamic traffic assignment model, wherein they allowed reversal of partial
capacities.

Our Contribution. In Section 3 we study the price of orientation for networks
with single and multiple sources and sinks, i. e., we deal with the following ques-
tions: How much flow is lost in any orientation of the network given a fixed
time horizon? And how much longer do we need in any orientation to satisfy all
supplies and demands, compared to the undirected network?
To our knowledge, the price of orientation has not been studied for flows over
time so far. It follows from the work of Ford and Fulkerson [7] that for maximum
s-t-flows over time the price of orientation is 1: Ford and Fulkerson proved that
a maximum flow over time can be obtained by temporally repeating a static
min-cost flow and thus uses every edge in one direction only. The latter property
no longer holds if there is more than one source or sink; see Fig. 1.

s2
+1

s1
+1

t
−2

j

i
(u = 1, τ = 0)

(1
T
, 0)

(1,0)

(1,T − 1)

(1
T
, 0)

Fig. 1. An instance with time horizon T where flow has to use edge {i, j} in both
directions: At most 1

T
units of flow can reach the sink via path s2, j, t due to the

capacity of edge {s2, j} and the transit time of edge {j, t}. Thus, a meaningful amount
of flow from source s2 can only be sent via path s2, j, i, t and thus blocks edge {i, t}.
As a consequence, flow originating at source s1 needs to take the path s1, i, j, t.

We are able to give tight bounds for the price of orientation with regard to the
flow value, and we show that the price of orientation with regard to the time
horizon cannot be smaller than linear in the number of nodes. Table 1 shows an
overview of our results. Our main result is the tight bound of 3 on the flow price

Sources Sinks Flow Value Time

Price Reference Price Reference

1 1 1 Ford, Fulkerson [7] 1 Ford, Fulkerson [7]
2+ 1 2 Theorem 3 Ω(n) Theorem 4
1 2+ 2 Theorem 3 Ω(n) Theorem 4

2+ 2+ 3 Theorem 1, 2 Ω(n) Theorem 4

Table 1. An overview of price of orientation results.

of orientation for the multiple sources and sinks case. We describe an algorithm

3

that is capable of simulating balances through capacities of auxiliary edges. This
allows us to transform a problem with supplies and demands to the much simpler
case of a single source with unbounded supply and a single sink with unbounded
demand. We characterize the properties that the capacities of the auxiliary edges
should have for a good approximation, and describe how they can be obtained
using an iterative approach that uses Brouwer fixed-points. On the negative side,
we give an instance whose price of orientation is not better than 3.
Since we have two ways to pay the price of orientation – decreasing the flow
value or increasing the time horizon – the question arises whether it might be
desirable to pay the price partly as flow value and partly as time horizon. We
prove that by doing so, we can achieve a bicriteria-price of 2/2 for the case of
multiple sources and sinks, i. e., we can send at least half the flow value in twice
the amount of time.
In Section 4 we analyze the complexity of finding the best orientation to minimize
the loss in time or flow value for a specific instance. We are able to show that these
problems cannot be approximated with a factor better than 2, unless P = NP .
Furthermore, we extend this to two multicommodity versions of this problem
and show that these become inapproximable, unless P = NP .

2 Preliminaries

Networks and Orientations. An undirected network over time N consists of an
undirected graph G with a set of nodes V (G), a set of edges E(G), capacities
ue ≥ 0 and transit times τe ≥ 0 on all edges e ∈ E(G), balances bv on all
nodes v ∈ V (G), and a time horizon T ≥ 0. For convenience, we define V (N) :=
V (G), E(N) := E(G). The capacity ue is interpreted as the maximal inflow rate
of edge e and flow entering an edge e with a transit time of τe at time θ leaves
e at time θ + τe. We extend the edge and node attributes to sets of edges and
nodes by defining: u(E) :=

∑
e∈E ue, τ(E) :=

∑
e∈E τe and b(V) :=

∑
v∈V bv.

We denote the set of edges incident to a node v by δ(v).
We define S+ := {v ∈ V (G) | bv > 0} as the set of nodes with positive balance
(also called supply), which we will refer to as sources. Likewise, we define S− :=
{v ∈ V (G) | bv < 0} as the set of nodes with negative balance (called demand),
which we will refer to as sinks. Additionally, we assume that

∑
v∈V (G) bv = 0

and define B :=
∑
v∈S+ bv. To define a directed network over time, replace the

undirected graph with a directed one. In a directed network, we denote the set
of edges leaving a node v by δ+(v) and the set of edges entering v by δ−(v) for
all v ∈ V (G).

An orientation
−→
N of an undirected network over time N is a directed network

over time
−→
N = (

−→
G,−→u , b,−→τ , T), such that

−→
G , −→u and −→τ are orientations of G,

u and τ , respectively. This means that for every edge {v, w} ∈ E(G) there is

either (v, w) or (w, v) in E(
−→
G) (but not both) and (assuming (v, w) ∈ E(

−→
G))

−→u (v,w) = u{v,w} and −→τ (v,w) = τ{v,w}. Recall that we can use parallel edges if
we want to model streets with multiple lanes – each parallel edge can then be
oriented individually.

4

Flows over Time. A flow over time f in a directed network over time N =
(G, u, b, τ, T) assigns a Lebesgue-integrable flow rate function fe : [0, T) → R+

0

to every edge e ∈ E(G). We assume that no flow is left on the edges after the time
horizon, i. e., fe(θ) = 0 for all θ ≥ T −τe. The flow rate functions fe have to obey
capacity constraints, i. e., fe(θ) ≤ ue for all e ∈ E, θ ∈ [0, T). Furthermore, they
have to satisfy flow conservation constraints. For brevity, we define the excess
of a node as the difference between the flow reaching the node and leaving it:

exf (v, θ) :=
∑
e∈δ−(v)

∫ θ−τe
0

fe(ξ) dξ −
∑
e∈δ+(v)

∫ θ
0
fe(ξ) dξ. Additionally, we

define ex(v) := ex(v, T). Then we can write the flow conservation constraints as

ex(v) = 0, ex(v, θ) ≥ 0 for all v ∈ V (N)\(S+ ∪ S−), θ ∈ [0, T),

0 ≥ ex(v, θ) ≥ −bv for all v ∈ S+, θ ∈ [0, T),

0 ≤ ex(v, θ) ≤ −bv for all v ∈ S−, θ ∈ [0, T).

The value |f |θ of a flow over time f until time θ is the amount of flow that has
reached the sinks until time θ: |f |θ :=

∑
s−∈S− exf (s−, θ) with θ ∈ [0, T]. For

brevity, we define |f | := |f |T .

We define flows over time in undirected networks over time N by transforming
N into a directed network N ′, using the following construction. We replace every
undirected edge e = {v, w} ∈ E(N) by introducing two additional nodes vw, vw′

and edges (v, vw), (w, vw), (vw, vw′), (vw′, v), (vw′, w). We set u(vw,vw′) = ue
and τ(vw,vw′) = τe, the rest of the new edges gets zero transit times and infinite
capacities. This transformation replaces all undirected edges with directed edges,
giving us the directed network N ′. Every flow unit that could have used {v, w}
from either v to w or w to v must now use the new edge (vw, vw′), which has
the same attributes as {v, w}. The other four edges just ensure that (vw, vw′)
can be used by flow from v to w or w to v. Thus, whenever we consider flows
over time in N , we interpret them as flows over time in N ′ instead.

We will use edges with zero transit times and infinite capacity repeatedly from
now on. Such edges can be traversed instantly and be used by as much flow
as desired – thus, they can neither become bottlenecks nor do they affect the
transit time of flow using them. They can be seen as an extreme case of very
short streets with a very high number of lanes.

Maximum Flows over Time. The maximum flow over time problem consists of a
directed or undirected network over time N = (G, u, b, τ, T) where the objective
is to find a flow over time of maximum value. The sources and sinks have usually
unbounded supplies and demands in this setting but it can also be studied with
finite supplies and demands. In the latter case, the problem is sometimes referred
to as transshipment over time problem. If supplies and demands are unbounded,
we usually introduce a super-source s (super-sink t) with an infinite capacity
and zero transit time arc to all sources (from all sinks).

Ford and Fulkerson [7] showed that the case of unbounded supplies and demands
can be solved by a reduction to a static minimum cost circulation problem. The
algorithm works as follows (compare [20, page 9]):

5

1. Compute a static s-t-flow x maximizing

T |x| −
∑
e∈E

xeτe.

with |x| being the flow value of x. The transit times only appear in the
objective function as costs. Equivalent to this is adding an edge (t, s) with
infinite capacity and cost −T to the network, followed by a minimum cost
circulation computation in this extended network (transit times are again
interpreted as costs).

2. Due to flow conservation, x can be decomposed into flows along paths and
cycles. This yields a flow decomposition (xP)P∈P∪C of x, with P being a
family of s-t-paths and C being a family of cycles, such that

xe =
∑

P∈P∪C:e∈P
xP .

Thus, (xP)P∈P∪C describes the same flow as x, but uses path- and cycle-
variables instead of edge-variables.

3. Output the s-t-flow over time that for each path P ∈ P repeatedly sends
xP flow units into the path as long as possible, i. e., during the time interval
[0, T − τP), where τP :=

∑
e∈P τe.

This type of flow is called temporally repeated, because flow is sent into each
path at a constant rate for as long as the total transit time of the path allows. A
temporally repeated flow has the nice property that edges are only used in one
direction, as it is based on a static flow decomposition.
The maximum contraflow over time problem is given by an undirected network

over time N = (G, u, b, τ, T) and the objective is to find an orientation
−→
N of

N such that the value of a maximum flow over time in
−→
N is maximal over all

possible orientations of N .

Quickest Flows. The quickest flow problem or quickest transshipment problem
is given by a directed or undirected network over time N = (G, u, b, τ) and
the objective is to find the smallest time horizon T such that all supplies and
demands can be fulfilled, i. e., a flow over time with value B can be sent. Hoppe
and Tardos [12] gave a polynomial algorithm to solve this problem. However, an
optimal solution to this problem might have to use an edge in both directions;
see Fig. 1.
The quickest contraflow problem is given by an undirected network over time

N = (G, u, b, τ) and the objective is to find an orientation
−→
N of N such that the

time horizon of a quickest flow in
−→
N is minimal over all possible orientations of

N .

3 The Price of Orientation

We study two different models for the price of orientation. The flow price of
orientation for an undirected network over time N = (G, u, b, τ, T) is the ratio

6

between the value of a maximum flow over time fN in N and maximum of the

values of maximum flows over time f−→
N

in orientations
−→
N of N :

|fN |/ max−→
N orientation ofN

|f−→
N
|.

Similarly, the time price of orientation for an undirected network over time N =
(G, u, b, τ) is the ratio between the minimal time horizon T (f−→

N
) of a quickest

flow f−→
N

in an orientation
−→
N of N and the time horizon T (fN) of a quickest flow

over time fN in N :
min−→

N orientation ofN

T (f−→
N

)/T (fN).

3.1 Price in Terms of Flow Value

In this subsection, we will examine the flow price of orientation. We will see that
orientation can cost us two thirds of the flow value in some instances, but not
more.

Theorem 1. Let N = (G, u, b, τ, T) be an undirected network over time, in
which B units of flow can be sent within the time horizon T . Then there exists

an orientation
−→
N of N in which at least B/3 units of flow can be sent within

time horizon T .

Proof. The idea of this proof is to simplify the instance, such that a temporally
repeated solution can be found. Such a solution gives us an orientation that
we can use, if the simplification does not cost us too much in terms of flow
value. We will achieve this by simulating the balances using additional edges
and capacities, creating a maximum flow over time problem which permits a
temporally repeated solution. Then we show that the resulting maximum flow
over time problem is close enough to the original problem for our claim to follow.

Simulating the balances. We achieve this by adding a super source s and a
super sink t to the network, resulting in an undirected network over time N ′ =
(G′, u′, τ ′, s, t, T) with V (G′) := V (G)∪{s, t}, E(G′) := E(G)∪{{s, s+}}|{s+ ∈
S+}∪{{s−, t} | s− ∈ S−}, u′e := ue for e ∈ E(G) and∞ otherwise, τ ′e := τe for
e ∈ E(G) and 0 otherwise. We refer to the newly introduced edges of E(G′)\E(G)
as auxiliary edges. Furthermore, we sometimes refer to an auxiliary edge by the
unique terminal node it is adjacent to and write uv for ue, e = (s, v), fv for
fe, e = (s, v) and so on. An illustration of this construction can be found in
Fig. 2.
The network N ′ describes a maximum flow over time problem which has an
optimal solution that is a temporally repeated flow, which uses each edge only in
one direction during the whole time interval [0, T). Thus, there is an orientation
−→
N ′ such that the value of a maximum flow over time in N ′ is the same as in−→
N ′. However, an optimal solution for N ′ will generally be infeasible for N , since
there are no balances in N ′.

7

s t

Fig. 2. The modified network consisting of the original network (white), the superter-
minals (black) and the dashed auxiliary edges.

Thus, we need to modify N ′ such that balances of N are respected – but without
using actual balances. This leaves us the option to modify the capacities of the
auxiliary edges. In the next step, we will show that we can always find capacities
that enforce that the balances constraints are satisfied and have nice properties
for bounding the loss in flow value incurred by the capacity modification. These
properties are then used in the last step to complete the proof.

Enforcing balances by capacities for auxiliary edges. In this step, we show that
we can choose capacities for the auxiliary edges in such a way that there is
a maximum flow over time in the resulting network that respects the original
balances. Choosing finite capacities for some of the auxiliary edges will – in
general – reduce the maximum flow value that can be sent, though. In order to
bound this loss of flow later on, we need capacities with nice properties, that
can always be found.

Lemma 1. There are capacities u′′e that differ from u′e only for the auxiliary
edges, such that the network N ′′ = (G′, u′′, τ ′, s, t, T) has a temporally repeated
maximum flow over time f with the following properties

– the balances of the nodes in the original setting are respected:

|fv| :=
∫ T
0
fv(θ) dθ ≤ |bv| ∀v ∈ S+ ∪ S−,

– and that terminals without tightly fulfilled balances have auxiliary edges with
unbounded capacity: |fv| < |bv| ⇒ uv =∞ ∀v ∈ S+ ∪ S−.

Proof. The idea of this proof is to start with unbounded capacities and itera-
tively modify the capacities based on the balance and amount of flow currently
going through a node, until we have capacities satisfying our needs. In order to
show that such capacities exist, we apply Brouwer’s fixed-point theorem on the
modification function to show the existence of a fix point. By construction of
the modification function, this implies the existence of the capacities.

Prerequisites for using Brouwer’s fixed point-theorem. We begin by defining U :=∑
v∈S+

∑
a=(v,·)∈E(G) ua as an upper bound for the capacity of auxiliary edges

and we will treat U and ∞ interchangeably from now on. This allows us to
consider capacities in the interval [0, U], which is convex and compact, instead

8

of [0,∞). This will be necessary for applying Brouwer’s fixed point theorem later
on.
Now assume that we have some capacities u ∈ [0, U]S

+∪S− for the auxiliary
edges. Since we leave the capacities for all other edges unchanged, we identify
the capacities for the auxiliary edges with the capacities for all edges. Compute a
maximum flow over time f(u) for (G′, u, τ ′, s, t, T) by using Ford and Fulkersons’
reduction to a static minimum cost flow. For this proof, we need to ensure that
small changes in u result in small changes in f(u), i. e., we need continuity. Thus,
we will now specify that we compute the minimum cost flow by using successive
computations of shortest s-t-paths. In case there are multiple shortest paths in
an iteration, we consider the shortest path graph, and choose a path in this
graph by using a depth-first-search that uses the order of edges in the adjacency
list of the graph as a tie-breaker. The path decomposition of the minimum cost
flow deletes paths in the same way. This guarantees us that we choose paths
consistently, leading to the continuity that we need.

Defining the modification function. In order to obtain capacities for a maximum
flow over time that respects the balances, we define a function h : [0, U]S

+∪S− →
[0, U]S

+∪S− which will reduce the capacities of the auxiliary edges, if balances
are not respected:

(h(u))v := min

{
U,

bv
|fv(u)|

uv

}
∀v ∈ S+ ∪ S−.

|fv(u)| refers to the amount of flow going through the auxiliary edge of terminal
v ∈ S+ ∪ S− in this definition. If |fv(u)| = 0, we assume that the minimum is
U . Due to our rigid specification in the maximum flow computation, |fv(u)| is
continuous, and therefore h is continuous as well.

Using Brouwer’s fixed-point theorem. Thus, h is continuous over a convex, com-
pact subset of RS+∪S− . By Brouwer’s fixed-point theorem it has a fixed point
u with h(u) = u, meaning that for every v ∈ S+ ∪ S− either uv = U or
uv = bv

|fv(u)|uv ⇔ bv = |fv(u)| holds, which is exactly what we require of our
capacities. ut

We can now choose capacities u′′ in accordance to Lemma 1, and thereby gain
a maximum flow over time problem instance N ′′ = (G′, u′′, τ ′, s, t, T), that has
a temporally repeated optimal solution which does not violate the original bal-
ances. What is left to do is to analyze by how much the values of optimal solutions
for N and N ′′ are apart.

Bounding the difference in flow value between N and N ′′. We now want to show
that we can send at least B/3 flow units in the network N ′′ with the auxiliary
capacities of the previous step. For the purpose of this analysis, we partition the
sources and sinks as follows.

S+
1 :=

{
s+ ∈ S+

∣∣ us+ <∞
}
, S+

2 :=
{
s+ ∈ S+

∣∣ us+ =∞
}
,

S−1 :=
{
s− ∈ S−

∣∣ us− <∞} , S−2 :=
{
s− ∈ S−

∣∣ us− =∞
}
.

9

s

...

...

...

...

t

S+
1

S+
2

S−
1

S−
2

Fig. 3. The partitioning based on the capacities of the auxiliary edges. Dashed edges
have finite capacity, dotted edges have infinite capacities.

The partitioning is also shown in Fig. 3.
Now let f be a temporally repeated maximum flow in N ′′ that does not violate
balances. Notice that the auxiliary edges to terminals in S+

2 and S−2 , respectively,
have infinite capacity and that the supply / demand of nodes in S+

1 and S−1 is
fully utilized. Thus, |f | ≥ max

{
b(S+

1), b(S−1)
}

. Should b(S+
1) ≥ B/3 or b(S−1) ≥

B/3 hold, we would be done – so let us assume that b(S+
1) < B/3 and b(S−1) <

B/3. It follows that b(S+
2) ≥ 2/3B and b(S−2) ≥ 2/3B must hold in this case.

Now consider the network N ′ with the terminals of S+
1 and S−1 removed, leaving

only the terminals of S+
2 and S−2 . We call this network N ′(S+

2 , S
−
2). Let |f ′| be

the value of a maximum flow over time in N ′(S+
2 , S

−
2). Since B units of flow can

be sent in N (and therefore N ′ as well), we must be able to send at least B/3
units in N ′(S+

2 , S
−
2). This is due to the fact that b(S+

2) ≥ 2/3B, b(S−2) ≥ 2/3B
– even if B/3 of these supplies and demands were going to S−1 and coming from
S+
1 , respectively, this leaves at least B/3 units that must be send from S+

2 to
S−2 . Thus, B/3 ≤ |f ′|. Since the capacities of the auxiliary edges of S+

2 and S−2
are infinite, we can send these B/3 flow units in N ′′ as well, proving this part of
the claim.
Thus, we have shown that a transshipment over time problem can be transformed
into a maximum flow over time problem with auxiliary edges and capacities. If
these edges and capacities fulfill the requirements of Lemma 1, we can transfer
solutions for the maximum flow problem to the transshipment problem such that
at least one third of the total supplies of the transshipment problem can be send
in the flow problem. Finally, the proof of Lemma 1 shows that such capacities
do always exist, completing the proof. ut

Notice that the algorithm described in the proof is not necessarily efficient – it
relies on Brouwer’s fixed-point theorem, and finding an (approximate) Brouwer
fixed-point is known to be PPAD-complete [17] and exponential lower bounds
for the common classes of algorithms for this problem are known [11]. Since the
algorithm is efficient aside from finding a Brouwer fixed-point, our problem is
at least not harder than finding a Brouwer fixed-point. Thus, our problem is
probably not FNP-complete (with FNP being the functional analog of NP) as

10

s3b = 1

s2b = 1

v2
u = 1/T

v1

s1b = 1

v4

τ = (1−
δ)T

u = 1/T

v3
τ = T

t3 b = −1

t2 b = −1

τ = δT

t1 b = −1

u = 1/T

Fig. 4. An undirected network where every orientation can send at most one third of
the flow possible in the undirected setting. Not specified transit times and balances are
0 and not specified capacities are infinite.

PPAD-completeness indicates that a problem is not FNP-complete [17]. How-
ever, it is possible that the fixed-point can efficiently be found for the specific
function we are interested in. One problem for finding such an algorithm is how-
ever, that changing the capacity of one auxiliary edge does not only modify the
amount of flow through its associated terminal but through other terminals as
well – and this change in flow value can be an increase or decrease, making
monotonicity arguments problematic.
Another potential approach could be to find a modification function for which
(approximate) Brouwer fixed-points can be found efficiently. Using approximate
Brouwer fixed-points would result in a weaker version of Lemma 1, where an
additional error is introduced due to the approximation. This error can be made
arbitrarily small by approximating the Brouwer fixed-point more closely, or by
using alternative modification functions. However, finding a modification func-
tion for which an approximation of sufficient quality can be found efficiently
remains an open question.
Now that we have an upper bound for the flow price of orientation and it turns
out that this bound is tight.

Theorem 2. For any ε > 0, there are undirected networks over time N =
(G, u, b, τ, T) in which B units of flow can be sent, but at most B/3 + ε units of

flow can be sent in any orientation
−→
N of N .

Proof. In order to show this, we consider the network in Fig. 4 with three sources
and sinks where each source has to send flow to a specific sink (due to capacities
and transit times) but the network topology prevents flow from more than one
source-sink pair being able to be send in any orientation.
Consider the undirected network over time N = (G, u, b, τ, T + ε) depicted in
Fig. 4, for some ε > 0, δ ∈ (0, 1). For ε ≤ δT , we cannot send flow from s1 to t2
within the time horizon, and we can only send ε/T flow from s1 to t1. Thus, we

11

have to orient {v3, v4} as (v3, v4) or lose the supply of s1 in the case of ε → 0.
Orienting {v3, v4} as (v3, v4) causes us to lose the demands of t1 and t2, though,
resulting in only one third of the flow being able to be sent.
Therefore let us now orient {v3, v4} as (v4, v3). Supply from s3 needs to go
through {s3, v2} at a rate of at most 1/T . Thus, if we were to route flow through
{s3, v2} and {v2, v4} we can send at most (T + ε− (1− δ)T)/T = ε/T + δ to v4
(and the sinks) within the time horizon. For δ, ε→ 0 this converges to 0 as well.
Since we already lost the supply of s1, we need the supply of s3 if we want to
send significantly more than one unit of flow. Therefore, we would have to orient
{v1, v2} as (v1, v2) to accomplish this. However, due to the capacity of 1/T on
{v1, v4} we can send at most 1+δ/T flow through this edge, and one unit of this
flow comes from s3, leaving only δ/T units for flow from s2. Thus, for δ, ε → 0
the flow we can send converges to one.
In the undirected network, we can send all supplies. The supply from s1 is sent
to t3, using {v3, v4} at time T . The supply from s2 is sent to t2, via {v1, v2} at
time 0, {v2, v4} and {v4, v3} at time (1− δ)T . The supply from s3 is sent to t1
by {v2, v1}, {v1, v4} and {v4, v3} during the time interval (0, T). This completes
the proof. ut

With these theorems, we have a tight bound for the flow price of orientation in
networks with arbitrarily many sources and sinks. In the case of a single source
and sink, we have a maximum flow over time problem and we can always find
an orientation in which we can send as much flow as in the undirected network.
This leaves the question about networks with either a single source or a single
sink open. However, if we use the knowledge that only one source (or sink) exists
in the analysis done in the proofs of Theorem 1 and Theorem 2, we achieve a
tight factor of 2 in these cases.

Theorem 3. Let N = (G, u, b, τ, T) be an undirected network over time with
a single source or sink, in which B units of flow can be sent within the time

horizon T . Then there exists an orientation
−→
N of N in which at least B/2 units

of flow can be sent within time horizon T , and there are undirected networks
over time for which this bound is tight.

Proof. For this proof, we can use most of the argumentation of the proof of
Theorem 1. The differences start only in the last part, where the differences in
flow value between the original network N and the network with capacitated
auxiliary edges N ′′ is considered. In the proof of Theorem 1, we partitioned the
sources and sinks, but now we have either a single source or a single sink which
does not need to be partitioned. Let us assume now that we have a single sink,
the case with a single source follows analogously. We partition the sources as
follows.

S+
1 :=

{
s+ ∈ S+

∣∣ us+ <∞
}
, S+

2 :=
{
s+ ∈ S+

∣∣ us+ =∞
}
,

We assume b(S+
1) < B/2, because otherwise there is nothing to show. This

implies that b(S+
2) ≥ B/2, however. We can now consider the network N ′ with

12

sb = 1

v2

u = 1/T

v1

v4
τ = (1− δ)T

v3
u = 1/T

Fig. 5. An undirected network with a single source where every orientation can send
at most one half of the flow possible in the undirected setting. Not specified transit
times and balances are 0 and not specified capacities are infinite.

the sources S+
1 removed and refer to the resulting network as N ′(S+

2 , S
−). Since

B units of flow can be sent in N (and therefore N ′ as well), we must be able to
send at least b(S+

2) units in N ′(S+
2 , S

−), since we still have all sinks available.
Because of b(S+

2) ≥ B/2, this proves the first part of the claim. For the second
part, the lower bound, consider the construction from Theorem 2.

If we restrict the network described there to s2, s3, v1, v2, v4 and set the balance
of v4 to −2, we can apply the same argumentation as in Theorem 2 to get a proof
for the case of a single sink. For the case of a single source, we do something
similar, but have to change something more. The result can be seen in Fig. 5;
the argumentation is analogous to Theorem 2. ut

3.2 Price in Terms of the Time Horizon

In this part, we examine by how much we need to extend the time horizon in
order to send as much flow in an orientation as in the undirected network. It
turns out that there are instances for which we have to increase the time horizon
by a factor that is linear in the number of nodes. This is due to the fact that we
have to send everything, which can force us to send some flow along very long
detours – this is similar to what occurs in [9]. For this reason it is not a good
idea to pay the price of orientation in time alone.

Theorem 4. There are undirected networks over time N = (G, u, b, τ, T + 1)
with either a single source or a single sink in which B units of flow can be sent
within a time horizon of T , but it takes a time horizon of at least (n− 1)/4 · T
to send B units of flow in any orientation

−→
N of N . This bound also holds if G

is a tree with multiple sources and sinks.

Proof. We define a family of undirected networks over time Nk by

V (Nk) := {s0, v0, vk, tk, t} ∪ {si, ti, vi, wi | i = 1, . . . , k − 1} ,
E(Nk) := {{s0, v0} , {vk−1, vk} , {vk, tk} , {tk, t}}

∪ {{si, wi} , {ti, wi} , {wi, vi} , {vi, vi−1} , {ti, t} | i = 1, . . . , k − 1} .

13

s0

b = (nT)0

v0 v1
τ = T

w1

s1

b = (nT)1

t1

u = (nT)0

v2
τ = T

w2

s2

b = (nT)2

t2

u = (nT)1

τ = T

. . .

vk
τ = T

tk

t

b = −
∑k−1

i=0 (nT)i

Fig. 6. An undirected network with a single sink where every orientation requires a
time horizon that is larger by a factor of at least (n− 1)/4 compared to the undirected
setting. Not specified transit times and balances are 0 and not specified capacities are
infinite.

We define capacities, transit times and balances for this network by

ue :=

{
(nT)i−1 e = {wi, ti}
∞ else

, τe :=

{
T e = {vi, vi−1}
0 else

,

bv :=


(nT)i v = si

−
∑k−1
i=0 (nT)i v = t

0 else

.

Fig. 6 depicts such a network Nk. It is possible to fulfill all supplies and demands
in time T + 1 in the undirected network, if we route the supply of source si
through vi, vi+1, wi+1 and ti+1 to t. However, this requires using the {vi, wi}-
edges in both directions. If we orient a {vi, wi} edge as (vi, wi), we can only
route the supply of si via wi and ti to t, which requires nT time units, due to
the supply of si and the capacity of {wi, ti}. If we orient all {vi, wi} edges as
(wi, vi), we have to route the supply from s0 via v0, v1, . . . , vk and tk to t, which
requires kT time units. By construction of the network, we have k = (n− 1)/4,
which proves the claimed factor.
A similar construction can be employed in networks with a single source and
multiple sinks (see Fig. 7). If we want to show the result for graphs G that are
trees, we can remove t and shift the demand to the nodes ti, i = 1, . . . , k and
give node ti a demand of −(nT)i−1. ut

A similar bound can be obtained for trees with unit capacities. Consider the
instance depicted in Fig. 8. In the undirected network, we can send the supply
from a source si to the sink ti within the time horizon of T+1. In any orientation,

14

s0

v0 v1
τ = T

w1

s1

u = (nT)k−2

t1

b = −(nT)k−1

v2
τ = T

w2

s2

u = (nT)k−3

t2

b = −(nT)k−2

τ = T

. . .

vk
τ = T

tk

b = −(nT)0

s

b =
∑k−1

i=0 (nT)i

Fig. 7. An undirected network with a single source where every orientation requires a
time horizon that is larger by a factor of at least (n− 1)/4 compared to the undirected
setting. Not specified transit times and balances are 0 and not specified capacties are
infinite.

s1

+1

t1

−1

s2

+1

t2

−1

s3

+1

tk−1

−1

sk

+1

tk

−1

τ = T τ = T τ = T

Fig. 8. An undirected network with unit capacities where all supplies and demands
can be fulfilled within a time horizon of T + 1. However, any orientation requires a
time horizon of at least kT + 1. Not specified transit times and balances are 0.

we have to use the supply of a source si, 1 < i ≤ k to fulfill the demand of sink
ti−1. This forces us to use the supply of s1 to fulfill the demand of tk, which
takes at least kT + 1 time units.

3.3 Price in Terms of Flow and Time Horizon

We have seen now that the price of orientation is 3 with regard to the flow value,
and Ω(n) with regard to the time horizon. We can improve on these bounds
if we allow to pay the price of orientation partly in terms of flow value and
partly in terms of the time horizon. This is possible by combining the reduction
to maximum flows over time from Theorem 1 with the concept of temporally
averaged flows (see , e. g., [5]).

15

s t

Fig. 9. The modified network consisting of the original network (white) and the newly
introduced nodes (black) and auxiliary edges (dashed).

Theorem 5. Let N = (G, u, b, τ, T) be an undirected network over time, in
which B units of flow can be sent within the time horizon T . Then there exists

an orientation
−→
N of N in which at least B/2 units of flow can be sent within time

horizon 2T . The orientation and a transshipment over time with this property
can be obtained in polynomial time.

Proof. In order to prove this claim, we will create a modified network with a
larger time horizon in which we can send a temporally repeated flow which uses
each edge in only one direction. This gives us then an orientation with the desired
properties. Consider the network N ′ = (G′, u′, b′, τ ′, 2T) defined by

V (G′) := V (G) ∪ {s, t} ,
E(G′) := E(G) ∪ {{s, v} | bv > 0} ∪ {{v, t} | bv < 0} ,

u′e :=


bv
T e = {s, v}
−bv
T e = {v, t}
ue else

, τ ′e :=

{
τe e ∈ E(G)

0 else
,

b′v :=


0 v ∈ V (G)

B v = s

−B v = t

.

An illustration can be found in Fig. 9. We know that there is a transshipment
over time f that sends B flow units within time T in N . We can decompose this
transshipment into flow along a family of paths P with τP < T for all P ∈ P
and interpret f as sending flow into paths P ∈ P at a rate of fP (θ) at time θ.
Now consider a transshipment over time f ′ that is defined by sending flow into

the same paths as f , but at an averaged rate of f ′P (θ) := 1
T

∫ T
0
fP (ξ) dξ for a

path P and a time θ ∈ [0, T). Since all paths P ∈ P have τP < T , f ′ sends its
flow within a time horizon of 2T . f ′ sends B flow units as well, since we just
averaged flow rates and the averaging guarantees that the capacities of the edges
e ∈ E(G′) \E(G) are not violated. We conclude that a maximum flow over time
in N ′′ := (G′, u′, τ ′, s, t, 2T) has a value of at least B.
Now we compute a maximum flow over time in N ′′ using the Ford-Fulkerson
algorithm [7]. This algorithm computes a temporally repeated maximum flow

16

over time f ′′ which uses each edge in only one direction. We can transform f ′′

into a transshipment over time f∗ for N by cutting off the edges of E(G′)\E(G).
Due to u′{s,v} = bv/T , u′{v,t} = −bv/T and the time horizon of 2T , the resulting

flow over time f∗ satisfies supplies and demands b′′ with 0 ≤ b′′v ≤ 2bv for
v ∈ V (G) with bv > 0 and 0 ≥ b′′v ≥ 2bv for v ∈ V (G) with bv < 0. Thus, 1/2f∗

sends at least B/2 flow units in 2T time and uses each edge in only one direction
without violating the balances b. Furthermore, this can be done in polynomial
time, since the transformation and the Ford-Fulkerson algorithm are polynomial.
This concludes the proof. ut

Earliest Arrival Flows. We now have tight bounds for the flow and time price
of orientation for maximum or quickest flows over time. However, for application
in evacuations, it would be nice if we could analyze the price of orientation for
so-called earliest arrival flows as well, as they provide guarantees for flow being
sent at all points in time. Unfortunately, we can create instances where not
even approximate earliest arrival contraflows exist, because the trade-off between
different orientations becomes too high.

Earliest arrival flows are special quickest flows that maximize the number of flow
units that have reached a sink at each point in time simultaneously. This is an
objective that is very desirable in evacuation management, if the exact amount
of available time is not clear in the planning stage. It is not clear that these flows
exist in general, because they try to maximize multiple objectives at once – for
each time point for which we try to maximize the flow value, we get an objective.
Earliest arrival flows always exist if only one sink is present, as was first proven
by Gale [8]. For multiple sinks, that is usually not the case if the sinks have a
finite demand (see Figure 10), but approximations are still possible [2, 9].

sb = 2 v
τ = 0

t1 b = −1

τ = 0

t2 b = −1

τ = 1

Fig. 10. A directed network with source s and sinks t1, t2 and unit capacities. Supplies
and demands and transit times are as specified. Maximizing the flow value at time 1
requires fulfilling the demand of t1 first. In this case, no flow arrives at t2 before time
2. However, if we want to maximize the flow value at time 2, we fulfill the demand of
t2 first. In this case, no flow arrives at the sinks before time 1, but all demands are
fulfilled by time 2 (whereas the first strategy only does so at time 3).

For every time θ ∈ R+, let f∗θ be a maximum flow over time with time horizon
θ. We define p(θ) := |f∗θ |θ and refer to the values p(θ) as the earliest arrival

17

pattern. An earliest arrival flow is a flow over time f which simultaneously
satisfies |f |θ = p(θ) for all points in time θ ∈ [0, T), respectively.
An α-time-approximate earliest arrival flow is a flow over time f that achieves at
every point in time θ ∈ [0, T), respectively, at least as much flow value as possible
at time θ/α, i. e., |f |θ ≥ p

(
θ
α

)
. A β-value-approximate earliest arrival flow is a

flow over time f that achieves at every point in time θ ∈ [0, T), respectively, at

least a β-fraction of the maximum flow value at time θ, i. e., |f |θ ≥ p(θ)
β .

In practice, orienting road networks is an important aspect of evacuation man-
agement. In terms of evacuations, earliest arrival flows (or approximations of
them) are very desirable, as they provide optimal routings independently of the
time that is available. The contraflow versions of these problems ask for an ori-

entation
−→
N of N and a flow over time f in

−→
N , such that |f |θ = p(θ), |f |θ ≥ p

(
θ
α

)
and |f |θ ≥ p(θ)

β , respectively, for all θ. Notice that p refers to the earliest arrival
pattern of the undirected network in this case.
We are able to show that earliest arrival flows and the approximations developed
in [2, 9] do not exist in this setting.

Theorem 6. There are undirected networks over time N = (G, u, b, τ) for which
an earliest arrival flow exists, but that do not allow for an earliest arrival con-
traflow. This also holds for α-time- and β-value-approximative earliest arrival
contraflows for α < T/2 and β < U , where T and U are the largest transit time
and capacity in the network.

Proof. Consider the network depicted in Fig. 11. We can orient the edge {v1, v2}

s

v2
u = U

τ = T/2

v1

u = 1
τ = 1

u = Uτ = 0 t

u = 1
τ = 1

u = U

τ = T/2

Fig. 11. An undirected network with source s and sink t and capacities and transit
times as specified.

as (v2, v1) and have flow arriving with a rate of Uε starting at time 2T . However,
we have no flow arriving before time T + 1 using this orientation. If we use the
orientation (v1, v2) instead, we can have flow arrive at time 2, but at a rate of 1
instead of U . For U � T , this trade-off makes it impossible to find an earliest
arrival contraflow.
For α-time-approximative earliest arrival flows, we can choose U = 2T 2 + T .
This yields an instance where no α < T -approximation is possible. Sending flow
at a rate of 1 using the orientation (v1, v2) results in U flow units being sent
until time 2T 2 + T + 2 (or with a rate of 2, it takes T 2 + 3/2T + 1). However,

18

using the orientation (v2, v1), we could have sent them by time 2T + 1. Sending
flow at a rate of U using the orientation (v2, v1) results in no flow units being
sent until time T + 1, but flow could have been sent as early as time 2 using
the other orientation. This yields the non-approximability result for α-time-
approximations.
For β-value-approximations, we need to use the orientation (v1, v2) to have some
flow arrive starting at time 2. However, using the other orientation allows us to
send flow at a rate of U , yielding a ratio that converges to U , which concludes
the proof. ut

4 Complexity Results

Furthermore, we can show non-approximability results for several contraflow
over time problems. More specifically, we can show that neither quickest con-
traflows nor maximum contraflows over time can be approximated better than
a factor of 2, unless P = NP . Maximum flows over time and quickest flows
can also be defined for the case of multiple commodities. In this case we replace
the supplies and demands b by supplies and demands bi for all commodities
i = 1, . . . , k. Each commodity has to fulfill its own flow conservation constraints,
and supply from one commodity can only be used for the demands of the same
commodity. However, the capacities of the network are shared by all commodi-
ties. This generalization leads to maximum multicommodity (contra)flow over
time, quickest muticommodity (contra)flow problems. In this setting it can also
be interesting to maximize the minimal fraction of flow of each commodity to
its total demand. This is referred to as concurrent multicommodity (contra)flow
over time problem. For multicommodity contraflows over time, we can even show
that maximum multicommodity concurrent contraflows and quickest multicom-
modity contraflows cannot be approximated at all, even with zero transit times,
unless P = NP .

Theorem 7. The quickest contraflow problem cannot be approximated better
than a factor of 2, unless P = NP .

Proof. Rebennack et. al [18] showed the NP-hardness of this problem. The re-
duction technique they provide can also be used to show a non-approximability
claim, if we modify the transit times used in their reduction. We give a brief
sketch of their reduction technique, which is based on the SAT problem. We
construct an instance for the quickest contraflow problem from an instance for
the 3-SAT problem with ` clauses c1, . . . , c` over k variables x1, . . . , xk as follows.

1. For each clause ci, we create a source c+1 and a sink c−1 with a supply and
demand of 1 and -1, respectively.

2. For each variable xi, we create four nodes: x1i and x2i for its unnegated
literal, and x̄1i , x̄

2
i for its negated literal. These nodes get neither supplies

nor demands. Furthermore, we create a source si and a sink ti with a supply
and demand of 1, respectively. Finally, we create edges

{
x1i , x

2
i

}
,
{
x̄1i , x̄

2
i

}
,

19

{
si, x

2
i

}
,
{
si, x̄

2
i

}
with a transit time of τ2 and edges

{
ti, x

1
i

}
,
{
ti, x̄

1
i

}
with

a transit time of τ1.
3. For each clause ci = xi1 ∨ xi2 ∨ x̄i3 we create edges

{
c+i , x

1
i1

}
,
{
c+i , x

1
i2

}
,{

c+i , x̄
1
i3

}
with a transit time of τ1 and edges

{
c−i , x

2
i1

}
,
{
c−i , x

2
i2

}
,
{
c−i , x̄

2
i3

}
with a transit time of τ2.

All capacities are infinite. Fig. 12 depicts such a construction.

YES-Instance → Routable in time τ1 + 2τ2. We derive an orientation from an
assignment for the SAT problem that fulfills all clauses. If variable xi is set
to 1 in the assignment, we orient

{
x1i , x

2
i

}
as (x1i , x

2
i) and

{
x̄1i , x̄

2
i

}
as (x̄2i , x̄

1
i).

Otherwise, we orient
{
x1i , x

2
i

}
as (x2i , x

1
i) and

{
x̄1i , x̄

2
i

}
as (x̄1i , x̄

2
i). All other

edges are oriented away from the sources or towards the sinks, respectively. A
clause source c+i with a fulfilled literal xi can send 1 flow unit along c+i →
x1i → x2i → c−i , and each variable source si can send 1 flow unit to its sink via
si → x2i → x1i → ti if xi = 0 and si → x̄2i → x̄1i → ti otherwise. This takes
τ1 + 2τ2 time units.

NO-Instance → Not routable in time < 2τ1. We set t2 = 0, as above. If we
want to send everything in a time < 2τ1, we can only use paths containing at
most one τ1 edge. It follows that supply from the clause sources needs to go
to a clause sink, via an (x1i , x

2
i) or (x̄1i , x̄

2
i) edge. Similar, each variable sink ti

needs to get its flow from a variable source and requires an (x2i , x
1
i) or (x̄2i , x̄

1
i)

oriented edge, if we want to be faster than 2τ1. Having both edges oriented as
(x2i , x

1
i) and (x̄2i , x̄

1
i) does not help more than having only one of them oriented

that way – we will now assume without loss of generality, that only one of the
edges is oriented that way. We can derive an assignment from the orientation
of these edges. If we have (x2i , x

1
i) in our orientation, we set xi = 0 and xi = 1

otherwise. However, no assignment fulfills all clauses, therefore we have to send
clause supplies to variable demands, which takes 2τ1.
Thus, if we are able to approximate the quickest contraflow problem within a
factor of 2τ1

τ1+2τ2
, then we can distinguish between YES and NO instances of the

3-SAT problem. For τ2 = 0, this yields the result. ut

Theorem 8. The maximum contraflow over time problem cannot be approxi-
mated better than a factor of 2, unless P = NP .

Proof. The following reduction is inspired by [15]. Consider an instance of the
PARTITION-problem, given by integers a1, . . . , an with

∑n
i=1 ai = 2L for

some integer L > 0. We create an instance for the maximum contraflow over
time problem as follows:

1. We create n + 1 nodes v1, . . . , vn+1, two sources s1, s2 and two terminals
t1, t2. The sources have each a supply of 1, the sinks each a demand of −1.

2. We create 2(n+ 1) edges ei = {vi, vi+1}, e′i = {vi, vi+1} with a transit time
of ai for ei and a transit time of 0 for e′i, edges {s1, v1}, {t2, v1} with a transit
times of L+ 1 and edges {s2, vn+1}, {t1, vn+2} with a transit times of 0. All
edges have unit capacities.

20

x11 x21

x̄11 x̄21

x12 x22

x̄12 x̄22

x1k x2k

x̄1k x̄2k

c+1+1

c+2+1

c+`+1

c−1 −1

c−2 −1

c−` −1

t1−1 s1 +1

tk−1 sk +1

...
......

Fig. 12. The quickest contraflow instance derived from the SAT instance. Edges with
a transit time of τ1 are dashed, edges with a transit time of τ2 are solid. s2 and t2 and
several clause-edges are not shown.

3. We set the time horizon to 2L+ 2.

The resulting instance is depicted in Fig. 13.

YES-Instance → total flow value of 2. If the PARTITION-instance is a YES-
instance, there exists a subset of indices I ⊆ {1, . . . , n} such that

∑
i∈I Ai = L.

Thus, we can orient the edges so that two disjoint v1-vn+1- and vn+1-v1-paths
with a length of L are created, which gives us two disjoint paths from s1 to t1
and s2 to t2 with transit time 2L+ 1, respectively, that are sufficient to send all
supplies within the time horizon of 2L+ 2.

NO-Instance → total flow value of 1. Notice that we cannot send any flow from
s1 to t2 within the time horizon of 2L + 2. If the PARTITION-instance is a
NO-instance, then we cannot get a v1-vn+1- and a vn+1-v1-path with a length
L, so only the demands of one of the two commodities can be fulfilled. ut
Theorem 9. Unless P = NP , the maximum multicommodity concurrent con-
traflow problem over time cannot be approximated by time or value. This holds
even in the case with zero transit times.

Proof. Consider an instance of 3-SAT, given by a set of ` clauses C = {c1, . . . , c`}
on k variables x1, . . . , xk. We create a corresponding instance of the maximum
concurrent contraflow problem as follows:

21

v1 v2 v3 vn vn+1

a1

0

a2

0

an

0

s1

1

s2

1

t1

−1

t2

−1
L+ 1L+ 1 00. . .

Fig. 13. The maximum contraflow over time problem instance.

d−1

−1

d
−
1

−1

d+1

2

x11 x11

x21 x21

Variable x1

x−1

∗
x−1

∗

d−2

−1

d
−
2

−1

d+2

2

x12 x12

x22 x22

Variable x2

x−2

∗
x−2

∗

. . .

d−k

−1

d
−
k

−1

d+k

2

x1k x1k

x2k x2k

Variable xk

x−k

∗
x−k

∗

c1 = x1 ∨ x2 ∨ xk
3

c2 = x1 ∨ x2 ∨ xk
3

c` = . . .
3

Fig. 14. The maximum multicommodity concurrent flow problem instance.

1. For each clause ci we create a node ci,

2. for each variable xi, create nodes x1i , x
2
i , x

1
i , x

2
i ,x
−
i ,x−i , d−i , d

−
i and d+i .

3. For a clause ci = xi1 ∨ xi2 ∨ xi3 we create edges
{
ci, x

1
i1

}
,
{
ci, x

1
i2

}
and{

ci, x
1
i3

}
,

4. for each variable xi, create edges
{
d+i , x

2
i

}
,
{
d+i , x

2
i

}
,
{
x1i , d

−
i

}
,
{
x1i , d

−
i

}
,{

x2i , x
−
i

}
,
{
x2i , x

−
i

}
,
{
x1i , x

2
i

}
and

{
x1i , x

2
i

}
.

5. Capacities are set to ` for each edge and transit times to 0.

6. There is a commodity for each variable xi, with a supply of 2 at d+i and

demands of −1 at d−i , d
−
i . Furthermore, there is a commodity for each clause

ci = xi1 ∨ xi2 ∨ xi3 , with a supply of 3 at the clause node ci and a demand
of −1 at x−i1 , x−i2 and x−i3 .

Notice that the resulting network – an example of which is depicted in Fig. 14 –
has `+ 9k nodes and 3`+ 8k edges, which is polynomial in the size of the 3-SAT
instance.

22

YES-Instance → 1
3 -concurrent flow value. If the 3-SAT instance is a YES-

instance, then there is a variable assignment xi ∈ {0, 1}, i = 1, . . . , k fulfilling
all clauses. We use this assignment to define an orientation of the edges in our
network. If a variable xi is assigned a value of 0, we orient the edge

{
x1i , x

2
i

}
as (x2i , x

1
i) and

{
x1i , x

2
i

}
as (x1i , x

2
i); if xi is assigned the value 1, we orient edge{

x1i , x
2
i

}
as (x2i , x

1
i) and

{
x1i , x

2
i

}
as (x1i , x

2
i). All other edges are oriented away

from sources and towards sinks. Notice that:

1. Each clause commodity of a clause ci = xi1 ∨ xi2 ∨ xi3 can send flow to the
nodes x1i1 , x

1
i2
, x1i3 .

2. Each clause is satisfied by our assignment, so there is a literal in each clause
that is true.

3. For this literal xi, there is an edge directed from x1i to x2i (or x1i to x2i ,
respectively).

4. By construction of the instance, there is a demand for this clause commodity
in x−i , which can be reached from x2i (or x̄−i and x̄2i , respectively).

Therefore we can fulfill as much demand of a clause commodity as it has satisfied
literals in our assignment, which is at least 1. Thus, we have a concurrent flow
value of 1

3 for these commodities. Now we need to consider the variable com-
modities. Since our assignment can only set xi to either 1 or 0, one of the edges{
x1i , x

2
i

}
and

{
x1i , x

2
i

}
has been oriented as (x2i , x

1
i) or (x2i , x

1
i), respectively, in

each variable block. This creates a path to send one flow unit of each variable
commodity, giving us a concurrent flow value of 1

2 for them, yielding a total
concurrent flow value of 1

3 .

Positive concurrent flow value → YES-Instance. In order to have a positive
concurrent flow value, at least one of the edges

{
x1i , x

2
i

}
and

{
x1i , x

2
i

}
needs

to be oriented as (x2i , x
1
i) or (x2i , x

1
i) in each variable block – otherwise there

is no way to route any flow from the variable commodity. Thus, we can define
an assignment by setting xi = 0 if

{
x1i , x

2
i

}
has been oriented as (x2i , x

1
i) and

xi = 1 otherwise. Notice that if
{
x1i , x

2
i

}
is oriented as (x2i , x

1
i), there is no flow

reaching x−i (the edges adjacent to d+i cannot be used to reach x−i , or no flow of
the variable commodity could be sent). But since we have a positive concurrent
flow value, there is flow from every clause commodity reaching one of its sinks.
Such flow has – by construction of the network – to travel through the block of
one of the variables contained in the clause. More specifically, it has to traverse
the (x1i , x

2
i) or (x1i , x

2
i) edge, depending on whether the variable appears negated

in the clause or not. Thus, this flow travels through an edge representing an
fulfilled literal of its clause in the assignment derived from the edge orientation.
Thus, the instance has a satisfying assignment, making it a YES-instance. ut

Theorem 10. The quickest multicommodity contraflow problem cannot be ap-
proximated, unless P = NP . This holds even in the case of zero transit times.

Proof. Consider an instance of 3-SAT, given by a set of ` clauses C = {c1, . . . , c`}
on k variables x1, . . . , xk. We create a corresponding instance of the quickest
multicommodity contraflow problem as follows:

23

d−1

− 1
2
(C2 + C)

d
−
1

− 1
2
(C2 + C)

d+1

C

d̂+1
C2

x11 x11

x21 x21

Variable x1

d−2

− 1
2
(C2 + C)

d
−
2

− 1
2
(C2 + C)

d+2

C

d̂+2
C2

x12 x12

x22 x22

Variable x2 . . .

d−k

− 1
2
(C2 + C)

d
−
k

− 1
2
(C2 + C)

d+k

C

d̂+k
C2

x1k x1k

x2k x2k

Variable xk

c1 = x1 ∨ x2 ∨ xk

1

c2 = x1 ∨ x2 ∨ xk

1

c` = . . .

1

c−

u = 1

u = `

u = C

u = C2

Fig. 15. The quickest multicommodity contraflow flow problem instance.

1. We create a super sink c− and for each clause ci we create a node ci,

2. for each variable xi, we create nodes x1i , x
2
i , x

1
i , x

2
i , d
−
i , d

−
i , d+i and d̂+i .

3. For each clause ci = xi1 ∨ xi2 ∨ xi3 we create edges
{
ci, x

1
i1

}
,
{
ci, x

1
i2

}
and{

ci, x
1
i3

}
,

4. for each variable xi, we create edges
{
d+i , x

2
i

}
,
{
d+i , x

2
i

}
,
{
x1i , d

−
i

}
,
{
x1i , d

−
i

}
,{

x2i , c
−},

{
x2i , c

−},
{
x1i , x

2
i

}
,
{
x1i , x

2
i

}
,
{
d̂+i , d

−
i

}
and

{
d̂+i , d

−
i

}
.

5. Capacities are set to C2 for edges leaving d̂+i , to C for the other edges
completely inside a variable block, to 1 for edges entering a variable block
and ` for all other edges,

6. supplies are 1 for each clause node ci, C for each d+i node, C2 for each d̂+i
node and zero for all other nodes,

7. demands are − 1
2 (C2 +C) for each d−i , d

−
i . There is a commodity for the four

di nodes of each variable, and each clause node has supply of an own com-
modity, and the supersink gets a demand of −1 for each clause commodity.

Notice that the resulting network – an example of which is depicted in Fig. 15 –
has `+ 8k + 1 nodes and 3`+ 10k edges, which is polynomial in the size of the
3-SAT instance.

YES-Instance → 1 time unit required. If the 3-SAT instance is a YES-instance,
then there is a variable assignment xi ∈ {0, 1}, i = 1, . . . , k fulfilling all clauses.
We use this assignment to define an orientation of the edges in our network. If
a variable xi is assigned a value of 0, we orient the edge

{
x1i , x

2
i

}
as (x2i , x

1
i)

and
{
x1i , x

2
i

}
as (x1i , x

2
i); if xi is assigned the value 1, we orient edge

{
x1i , x

2
i

}
as

(x2i , x
1
i) and

{
x1i , x

2
i

}
as (x1i , x

2
i). All other edges are oriented away from sources

and towards sinks. Notice that:

24

1. Each clause commodity of a clause ci = xi1 ∨ xi2 ∨ xi3 can send flow to the
nodes x1i1 , x

1
i2
, x1i3 .

2. Each clause is satisfied by our assignment, so there is a literal in each clause
that is true.

3. For this literal xi, there is an edge directed from x1i to x2i (or x1i to x2i ,
respectively).

4. By construction of the instance, there is a demand for this clause commodity
in c−, which can be reached from x2i / x2i .

Therefore we can fulfill the demand of a clause commodity if it has satisfied
literals in our assignment, which it does. Now we need to consider the variable
commodities. Since our assignment can only set xi to either 1 or 0, one of the
edges

{
x1i , x

2
i

}
and

{
x1i , x

2
i

}
has been oriented as (x2i , x

1
i) or (x2i , x

1
i), respectively,

in each variable block. This creates a path to send C flow units from d+i to one

of its sinks, and the remaining demands can be covered by supply from d̂+i . Since
the transit times are zero, all of this can be done in 1 time unit.

NO-instance → Θ(C`) time units required. In a NO-instance, there is no variable
assignment that satisfies all clauses. This means that we need either to orient{
x1i , x

2
i

}
as (x1i , x

2
i) and

{
x1i , x

2
i

}
as (x1i , x

2
i), or we need to have a clause com-

modity use the wrong edge in a variable block (i. e., the one of the literal not
contained in the clause). If we do the former, this means that we have to route
the C units of supply from d+i over c−, which requires at least C/(2`) time units
because of the capacities. If we do the latter, we need to switch either the direc-
tion of one of the outgoing edges of d̂+i , once again causing at least C time units
to be necessary or we need to switch the direction of one of the incoming edges
to the variable block, with a similar result. ut

Further research. There are at least two major avenues for further research
on this topic: firstly, to replace the use of Brouwer’s theorem in Theorem 1
by an efficient, constructive algorithm, and secondly, to study models where the
orientation of edges can be changed repeatedly. This is motivated by areas which
have streets with reversible lanes that are designed to switch their orientation
regularly, for example during rush hours.

Acknowledgements. We thank the anonymous reviewers for their helpful com-
ments.

References

1. A. Arulselvan, M. Groß, and M. Skutella. Graph orientation and flows over time.
In H.-K. Ahn and C.-S. Shin, editors, Algorithms and Computation – 25th In-
ternational Symposium, ISAAC 2014, volume 8889 of Lecture Notes in Computer
Science, pages 741–752. Springer, 2014.

2. N. Baumann and E. Köhler. Approximating earliest arrival flows with flow-
dependent transit times. Discrete Applied Mathematics, 155:161–171, 2007.

25

3. F. Boesch and R. Tindell. Robbins’s theorem for mixed multigraphs. The American
Mathematical Monthly, 87:716–719, 1980.

4. R. E. Burkard, K. Dlaska, and B. Klinz. The quickest flow problem. Mathematical
Methods of Operations Research, 37:31–58, 1993.

5. L. Fleischer and M. Skutella. Quickest flows over time. SIAM Journal on Com-
puting, 36:1600–1630, 2007.

6. L. K. Fleischer and É. Tardos. Efficient continuous-time dynamic network flow
algorithms. Operations Research Letters, 23:71–80, 1998.

7. L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, New Jersey, 1962.

8. D. Gale. Transient flows in networks. Michigan Mathematical Journal, 6:59–63,
1959.

9. M. Groß, J.-P. W. Kappmeier, D. R. Schmidt, and M. Schmidt. Approximating
earliest arrival flows in arbitrary networks. In L. Epstein and P. Ferragina, editors,
Algorithms – ESA 2012, volume 7501 of Lecture Notes in Computer Science, pages
551–562. Springer Berlin Heidelberg, 2012.

10. M. Hausknecht, T.-C. Au, P. Stone, D. Fajardo, and T. Waller. Dynamic lane re-
versal in traffic management. In 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pages 1929–1934, 2011.

11. M. D. Hirsch, C. H. Papadimitriou, and S. A. Vavasis. Exponential lower bounds
for finding brouwer fix points. Journal of Complexity, 5:379–416, 1989.

12. B. Hoppe and É. Tardos. The quickest transshipment problem. Mathematics of
Operations Research, 25:36–62, 2000.

13. B. E. Hoppe. Efficient Dynamic Network Flow Algorithms. PhD thesis, Cornell
University, 1995.

14. S. Kim and S. Shekhar. Contraflow network reconfiguration for evaluation plan-
ning: A summary of results. In Proceedings of the 13th Annual ACM International
Workshop on Geographic Information Systems, pages 250–259, 2005.

15. B. Klinz and G. J. Woeginger. Minimum cost dynamic flows: The series parallel
case. Networks, 43:153–162, 2004.

16. E. Köhler, R. H. Möhring, and M. Skutella. Traffic networks and flows over time.
In J. Lerner, D. Wagner, and K. A. Zweig, editors, Algorithmics of Large and Com-
plex Networks: Design, Analysis, and Simulation, volume 5515 of Lecture Notes in
Computer Science, pages 166–196. Springer, 2009.

17. C. H. Papadimitriou. On the complexity of the parity argument and other ineffi-
cient proofs of existence. Journal of Computer and System Sciences, 48:498–532,
1994.

18. S. Rebennack, A. Arulselvan, L. Elefteriadou, and P. M. Pardalos. Complexity
analysis for maximum flow problems with arc reversals. Journal of Combinatorial
Optimization, 19:200–216, 2010.

19. H. E. Robbins. A theorem on graphs, with an application to a problem of traffic
control. The American Mathematical Monthly, 46:281–283, 1939.

20. M. Skutella. An introduction to network flows over time. In W. Cook, L. Lovász,
and J. Vygen, editors, Research Trends in Combinatorial Optimization, pages 451–
482. Springer, 2009.

21. S. A. Tjandra. Dynamic network optimization with application to the evacuation
problem. PhD thesis, Technical University of Kaiserslautern, 2003.

22. H. Tuydes and A. Ziliaskopoulos. Network re-design to optimize evacuation con-
traflow. In Proceedings of the 83rd Annual Meeting of the Transportation Research
Board, Washington, DC, 2004.

26

23. H. Tuydes and A. Ziliaskopoulos. Tabu-based heuristic approach for optimization
of network evacuation contraflow. Transportation Research Record, 1964:157–168,
2006.

24. B. Wolshon. One-way-out: Contraflow freeway operation for hurricane evacuation.
Natural Hazards Review, 2:105–112, 2001.

25. B. Wolshon, E. Urbina, and M. Levitan. National review of hurricane evacua-
tion plans and policies. Technical report, LSU Hurricane Center, Louisiana State
University, Baton Rouge, Louisiana, 2002.

27

