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Abstract—In data-communication networks, network reliabil-
ity is of great concern to network operators and customers,
since (1) the connection requested by the customer should obey
the agreed-upon availability, otherwise the network operator
or service provider may face liability costs as stipulated in
the Service Level Agreement (SLA), and (2) it is important
to determine the most vulnerable parts of a network to gain
insight into where and how the network operator can increase
the network reliability.

In this paper, we first study the problem of establishing a
connection over at most k (partially) link-disjoint paths and for
which the availability is no less than § (0 < 6 < 1). We analyze
the complexity of this problem in generic networks, Shared-Risk
Link Group (SRLG) networks and multi-layer networks. We
subsequently propose a polynomial-time heuristic algorithm and
an exact Integer Non-Linear Program (INLP) for availability-
based path selection. The proposed algorithms and two existing
heuristic algorithms are compared in terms of acceptance ratio
and running time. Subsequently, in three aforementioned types
of networks, we study the problem of finding a (set of) network
cut(s) for which the failure probability of its links is biggest.

Index Terms—Availability, Routing, Survivability, SRLG net-
works, Multi-layer networks, Min-cut.

I. INTRODUCTION

Due to the importance of data-communication networks,
even short service disruptions may result in significant eco-
nomic loss. Hence, survivability mechanisms to protect con-
nections are called for. For instance, by allocating a pair of
link-disjoint paths (instead of only one unprotected path), data
are transported by the primary path, and upon link failure, can
be switched to the backup path.

Ideally, a survivability mechanism should also take into
account the reliability of links. For instance, if both primary
and backup paths contain links that have a high probability
to become unavailable, then proper protection cannot be
provided. Connection availability, a value between 0 and 1, is
therefore important and refers to the probability that a connec-
tion (including its survivability mechanism) is in the operating
state during the requested life-time of the connection.

However, a survivability mechanism that does not allow for
more than 2 link-disjoint paths for each connection may still
fail to satisfy the customer’s availability requirement and k >
2 link-disjoint paths may be needed. Obviously, the bigger k
is, the greater the availability of the connection could be, but
also the greater the resource consumption (e.g., bandwidth)
and hence price. This paper first deals with the Availability-
Based Path Selection (ABPS) problem, which is to establish a

connection over at most £ > 0 (fully or partially) link-disjoint
paths, for which the availability is at least § (0 < § < 1).

Apart from considering how to provide a reliable connection
to customers, it is also important for network operators to
determine the most vulnerable part of the network, i.e., a
subset of links with highest failure probability whose removal
will disconnect the network. The network operator could
then replace/strengthen those links in order to increase the
network reliability. Hence, this paper also tackles this so-called
Network Vulnerability Assessment (NVA) problem, which is
to find a set of network cuts for which the failure probability
of the links in a cut belonging to that set is highest.

Our key contributions are as follows:

e We consider the Availability-Based Path Selection
(ABPS) problem in generic networks, Shared-Risk Link
Group (SRLG) networks and multi-layer networks.

« We prove that, in general, the ABPS problem cannot be
approximated in polynomial time.

« We propose a polynomial-time heuristic algorithm and an
exact Integer Non-Linear Program (INLP) to solve the
ABPS problem.

e We compare, via simulations, the proposed algorithms
with two existing algorithms in terms of performance and
running time.

e We consider the Network Vulnerability Assessment
(NVA) problem in generic networks, SRLG networks and
multi-layer networks.

The remainder of this paper is organized as follows. Related
work is presented in Section II. Section III explains the
calculation of availability for different path types: unprotected
path, k fully link-disjoint and k partially link-disjoint. In
Section IV, we formally define the Availability-Based Path
Selection (ABPS) problem in generic networks and analyze
its complexity. In Section V and VI, we consider the ABPS
problem in SRLG networks and multi-layer networks, respec-
tively. Section VII presents our heuristic routing algorithm and
an exact INLP. Section VIII provides our simulation results. In
Section IX, we study the Network Vulnerability Assessment
problem in the three aforementioned types of networks. We
conclude in Section X.

II. RELATED WORK

Availability-aware routing under both static and dynamic
traffic demands has been extensively investigated [1], [2], [3],
[4], [5], [6]. When the traffic matrix is given in advance (static



traffic), Zhang et al. [3] present a mathematical model to com-
pute availability for different protection types (unprotected,
dedicated protection and shared protection) for a given static
traffic matrix. Furthermore, an Integer Linear Program (ILP)
and a heuristic algorithm are proposed to find availability-
aware paths. Tornatore et al. [4] address the availability design
problem: to accommodate a given traffic matrix by using
shared/dedicated protection paths. Song et al. [5] propose
an availability-guaranteed routing algorithm, where different
protection types are allowed. They define a new cost function
for computing a backup path when the unprotected path fails
to satisfy the availability requirement. She et al. [1] prove
that for dedicated protection, finding two link-disjoint paths
with maximal reliability (availability) is NP-hard. They also
propose two heuristics for that problem. Luo et al. [6] analyze
the problem of protection with different reliability, which is
to find one unprotected path or dedicated protection path such
that the cost of the whole path is minimized and the reliability
requirement is satisfied. They subsequently propose an exact
ILP as well as two approximation algorithms. However, the
reliability (availability) calculation in [6] is different from
the aforementioned papers, and assumes a single-link failure
model. Assuming each link in the network has a failure
probability (=1-availability), Lee and Modiano [2] minimize
the total failure probability of unprotected, partially link-
disjoint and fully link-disjoint paths by establishing INLPs.
They further transform the proposed INLPs to ILPs by using
linear approximations.

Different from the aforementioned articles, we target a more
general problem, which is to find at most k (fully or partially)
link-disjoint paths for which the availability requirement is
satisfied.

From the perspective of network reliability calculation,
assuming each link in the network is associated with a
failure probability value (=1-availability), Provan and Ball
[7] prove the problem of computing the probability that the
network stays connected is #P-complete!. Karger [9] pro-
poses a Fully Polynomial Randomized Approximation Scheme
(FPRAS) to solve this problem. There is also work focusing
on how to mathematically model the availability of various
network topologies or different protection segments/paths. Zou
et al. [10] investigate how to mathematically calculate the
availability of different types of network topologies, e.g.,
tree topology, double star, crown or triple star. Tornatore et
al. [11] mathematically model the availability of segment
protection (SP). In segment protection, a working path (WP)
can be partitioned into several working segments (WSs) and
each WS is protected by a backup segment (BS). Moreover,
they consider two SP cases, namely (1) overlap SP, where
different WSs can share the same link, and (2) no-overlap SP,
where WSs are fully link-disjoint. By expressing the dual-
link failure via a continuous time Markov chain, Mello et
al. [12] approximately estimate the (un)availability of the

1'Valiant [8] shows that problems in this class are at least as hard as NP-
complete problems.

shared protection path.

Regarding SRLG networks, Hu [13] proves that the problem
of finding 2 SRLG-disjoint paths is NP-hard. To solve it, Hu
[13] presents an exact ILP and Xu et al. [14] propose a trap-
avoidance heuristic algorithm. However, the SRLG-disjoint
routing problem is not the same as the one studied in this
paper, due to Eq. (11) in Section V. Hence, the algorithms in
[13] [14] cannot be used to effectively solve our problem.

In generic networks, the (s,t) Min-Cut problem refers to
partitioning the network into two disjoint subsets such that
nodes s and ¢ are in different subsets and the total weight of
the cut links is minimized. According to [15], this problem can
be solved by finding the maximum flow from s to ¢. There is
also a lot of work on the Min-Cut problem with no specified
node pairs (s,t). An enumeration of classical algorithms to
solve the Min-Cut problem can be found in [16].

III. CONNECTION AVAILABILITY

The availability of a system is the fraction of time the
system is operational during the entire service time. Like [1],
[2], [3], we first assume that, in generic networks, the links’
availabilities are uncorrelated/independent. If a connection is
carried by a single (unprotected) path, its availability is equal
to the path availability; if it is protected by k > 2 disjoint
paths, the availability will be determined by these k protection
paths. The availability A; of a network component j can be
calculated as [10]:

MTTF
A; = 1
7 MTTF + MTTR 0
where MTTF represents Mean Time To Failure and MTTR
denotes Mean Time To Repair. We assume that the link
availability is equal to the product of availabilities of all its

components (e.g., amplifiers).

A. Link Failure Scenarios

For simplicity, suppose there are two (fully) link-disjoint
paths p; and po, and the availability of link [ is denoted as A;
(= 1 — failure probability), where 0 < A; < 1, then their
total availability A%, can be computed based on the following
scenarios:

« Single-link failure: Here it is assumed that all the links
in the network have very low failure probability. In this
context, a path p’s availability (denoted by A,) is equal
to its lowest traversed link availability (highest failure
probability), i.e., A, = min;e, A;. Using two disjoint
paths (which is a conventional survivability mechanism)
will therefore lead to a total connection availability of
1. However, this approach only works when all the links
are highly reliable. In Appendix A, we will address the
ABPS problem under the single-link failure scenario.

o Multiple link failures: This is a more general scenario
where at one certain point in time, several links in the
network may fail simultaneously. Hence, for a path p,
its availability A, should take into account all its links’
availabilities, i.e., A, = Hlep A;. Consequently, A% D=



1-(1—-A,)(1—A,,), which indicates the probability
that at least one path is available. In this paper, we assume
multiple link failures may occur.

B. End-to-End Path Availability

If a path p contains the links [y, l2, I3,..., l,,, and their
corresponding availabilities are denoted by A;,, A;,, Ai,...,
Ay, then the availability of this path (represented by A,) is
equal to’:

A=A, A, A, - Ay, )

If we take the —log of the link availabilities, finding the path
with the highest availability turns into a shortest path problem.

When, for a single connection, there are k£ > 2 link-disjoint
paths pi, pa,..., pr Wwith availabilities represented by A, ,
Ap,,.... Ap,, the connection availability calculation can be
divided into two cases, namely: (1) fully link-disjoint paths:
these k paths have no links in common, and (2) partially link-
disjoint paths: at least two of these k paths traverse at least one
same link. In case (1), the availability (represented by A’f, D)
is:

k k
AIIC?D:]-_H(l_A;Di):ZAPi_ Z Api'APj
i=1 i=1 0<i<j<k
k
> Ay Ay Ay e+ (D[4 B
0<i<j<u<k i=1

Fig. 1: Network with different link availability values.

If we use Eq. (3) to calculate the availability for the partially
link disjoint case, the availability of the overlapping links will
be counted more than once. To amend this, we use a new
operator o, which is defined as follows:

if 3X;, =Y
otherwise

Hf:l Xi

Hf:l Xi-Y @

Xl-Xz-“XkOY:{

where X1, Xo, ..., Xi and Y represent different link availabil-
ities. Therefore, the availability (represented by A% ) of k
partially link-disjoint paths can be calculated as follows:

2A network having node and link availabilities can be transformed to a
directed network with only link availabilities, as done in [17]. Therefore, we
assume the nodes have availability 1 in this paper.
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where [] is used to denote the o operations of different sets.
Let us use an example to describe the difference between case
(1) and case (2), where k is set to 2 for simplicity. In Fig.
1 where the link availability is labeled on each link, paths
s —a—tand s — b —t are fully link disjoint. According to
Eq. (3), their availability is equal to:

1— (1= Ay Ap)- (1= Ay - A)
Ay A+ Ay Ay — A2 Ay - A, ©6)

On the other hand, paths s —a —t and s —a — b —t are only
partially link disjoint. According to Eq. (5), the connection
availability can be calculated as follows:

1*(1*Au'Aw)o(1*Au'Av)
:Au'Aw+Au'Av_Au'Aw'Av (7)

The following theorem will formalize the intuitive notion that
if a set of paths p; with availabilities A, have overlapping
links that their total availability is less than when those paths
would have been fully link disjoint.

Theorem 1: For given A,,, where 1 < ¢ < k, A’}D >
Ak,

Proof: A proof by mathematical induction:

When k =2, A%, = A,, + Ay, — Ap, - Ap,, and A%, =
Ap + Ay, —Ap 0A,,. Since A, - Ay, > A, 0A,, according
to Eq. (4) when 0 < A, < 1, the theorem is correct for k = 2.

Assume when k = m the theorem is correct:
m m

i=1 1=1
When k=m+ 1, AP =1—(1—A4,,)- (1—A4,,) -
(1= 4p,) (1= 4p,,,) and AP =1—(1-Ap)o0 (1~
Ay, )o00(1—A, )o(1—A, .,). According to Eq. (8), we
have:
(1=Ap) - (1= Ap,) - (1=Ap,) - (1 =4p,.,)
S(I=Ap)o(l=Ap)ooo(l=4y,)-(1=4p,.,) )
Since (1—A4,,)-(1—-A )< (1—A4,,)0o(1—A4, ..),
we have:
(1 - Am) ° (1 - Apz) coo (1 - Apm) ’ (1 - A;Dm+1)
<= 4p)0 (1= Ap) 000 (1= 4p,) 0 (1= 4p,,..)
(10)

By merging Eq. (9) and Eq. (10), we ascertain that A’I?El >
AST. |

Pm+1



IV. ABPS PROBLEM AND COMPLEXITY
A. Problem Definition

Definition 1: Given a network represented by G(N, L)
where N represents the set of N nodes and £ denotes the set
of L links, and each link [ has its own availability value A;.
For a request represented by r(s,t,d), where s and ¢ denote
the source and destination, respectively, and § (0 < ¢ < 1)
represents the availability requirement, establish a connection
over at most k£ (partially) link-disjoint paths for which the
availability is at least .

A variant, called the Availability-Based Backup Path Selection
(ABBPS) problem, is defined as:

Definition 2: Given an existing primary path p from s to ¢
and a requested availability J, find at most k — 1 paths that are
fully or partially link-disjoint with p, such that the availability
of these k paths is no less than §.

B. Complexity Analysis

In this section, we study the complexity of the ABPS
problem in generic networks. For the case k = 1, by taking
the —log of the link availabilities, the ABPS problem turns
into a shortest path problem, which is polynomially solvable.

Theorem 2: The ABPS problem is NP-hard for £ > 2.

Proof: The case for partially link-disjoint paths can be
reduced to the case of fully link-disjoint paths by a transfor-
mation such as in Fig. 2. More specifically, if we assume that
all links in Fig. 2, except for (s, s’) and (¥, t), have availability
less than ¢, then no link, except for (s, s’) and (¢',¢), can be
an unprotected link in the solution of the ABPS problem for
the partially link disjoint case from s to t. Hence, solving the
fully link-disjoint ABPS problem from s’ to ¢’ is equivalent
to solving the partially link-disjoint ABPS problem from s to
t. We therefore proceed to prove that the fully link disjoint
variant for k¥ = 2 is NP-hard. The proof for £ > 2 follows
analogously from the proof for k = 2.

Fig. 2: Reduction of ABPS problem from partially link disjoint
to fully link disjoint.

We first introduce the NP-hard 3SAT problem [18] and
then reduce the ABPS problem to it. The 3SAT problem is
defined as: There is a boolean formula C; ACs A...C,,,, where
C; denotes the i-th clause. Each clause contains 3 variables
with an OR relation. The question is whether there is a truth
assignment to the variables that simultaneously satisfies all m
clauses. Given a 3SAT instance, the graph construction follows
similarly to [1]. Assume there are n variables in the 3SAT
instance. First, we create a lobe for each variable x;, which is
shown in Fig. 3, where g; represents the number of occurrences
of variable x; in all the clauses. The availability value for each
link is also shown in Fig. 3, where 0 < b < 1. For each clause

Fig. 4: Lobes for all clauses.

C; two nodes y; and z; are created and a link connects z; and
Yi+1 with availability of 1, where 0 < ¢ < m. We assume
that s = 21 and ¢ = x,, ;. Moreover, we draw a link (s,y;)
with availability a and a link (z,,, t) with availability 1, where
0 <b< 5 < 1. Fig. 4 depicts this process.

To relate the clause and variables in the constructed graph,
we add the following links: (i) links (y;,u}) and (v}, 2;) are
added if the k-th occurrence of variable x; exists in clause
Cj; or (i) links (y;,u.) and (v}, z;) are added if the k-th
occurrence of variable x; exists with a negation in the clause
C;. For instance, a network corresponding to 3SAT instance
(501 /\IEQ Af;l) \ (fl /\IQ /\1’3) V (1’2 /\Ig /\174) \Y (fl /\fg /\1'4)
is shown in Fig. 5. Based on the constructed graph, which

Fig. 5: Constructed graph that corresponds to (z1 Axa AZ4)V
(Ty ANz Axg) V (22 Az Axg) V (T1 AT A zg).

corresponds to a given 3SAT instance, we are asked to solve
the ABPS problem for k£ = 2 and § = a + b? — ab?, where ¢
is the sum of occurrences for each variable in all the clauses,
ie., ¢ =", ¢;.. Because one shortest path can at most have
availability a, which is less than §, we have to find 2 link-
disjoint paths. Next, we will prove that the fully link disjoint
variant of the ABPS problem is NP-hard.

3SAT to ABPS: If there exists a truth assignment that
satisfies all the clauses, then each clause j has (at least) one
variable with true or (negated) false assignment to make this
clause true. Therefore, an upper subpath y; —u} —vi —z;—y;+1
or a lower subpath y; —uj, — 0}, — z; — y;4+1 will be selected.



By concatenating these m subpaths with s — y; and z,, — ¢
we obtain one path (denoted by p;) with availability a. Since
each variable only has one truth assignment, p; cannot traverse
both the upper subpath and lower subpath in the same lobe.
Subsequently, we can get another fully link-disjoint path ps:
For each lobe ¢ (corresponding to variable x;), ps traverses
the upper (lower) subpath with availability of b% if p; goes
through the link of lower (upper) subpath. The availability
of py is b? = b2i=1% therefore p; and p, together have
availability of a + b? — ab?, which satisfies the requirement 4.
ABPS to 3SAT: If there are two fully link-disjoint paths
from s to t with availability no less than a + b7 — ab?, then
one path must have availability a. To understand this, assume
that none of the two paths has availability a; without loss
of generality, we denote one path has availability of a°b®,
where ¢ can be either 0 or 1 indicating whether link (s, ;)
has been traversed, and e > 0 is the number of links that have
availability b. Since there exists only one link with availability
a, the other link-disjoint path has availability a'bf, where ¢’ is
either 0 or 1 meaning whether link (s, ;) has been traversed
and ¢ +c¢ < 1, and f > 0 is the number of links which
have availability b. Hence, the availability of these two paths
is ab® + abf —at bt < b+b<a <4, when b < g.
Based on this analysis, there must exist one path p; from
s to t with availability a, which goes through (s,y;) and
(2m,t) and the other links with availability of 1. To satisfy
the availability requirement, there must also exist another fully
link-disjoint path p, from s to t with availability of no less
than b?. For each lobe, ps should traverse either the upper
subpath or the lower subpath, otherwise p; and po cannot
be fully link disjoint. Therefore, ps will traverse the (entire)
lower subpath if p; goes through link (u},v}) in the upper
subpath, and traverse the (entire) upper subpath if p; goes
through link (%, ) in the lower subpath for each lobe z;.
That is to say, p; cannot simultaneously traverse one link in
the upper subpath and another link in the lower subpath for
each same lobe. Consequently, p; either goes via an upper
subpath y; — u} — v} — 2; — y;+1 to set variable z; to true or
via a lower subpath y; — 1}, — U}, — z; —y;+1 to set variable ;
to false for clause j, where ¢ = 1,2,...,m and 5 = 1,2,...,m.
Hence, all the m clauses can be simultaneously satisfied. H
Theorem 3: The ABBPS problem is NP-hard for k > 2.

Proof: For k > 3, the ABBPS problem is equivalent to

the ABPS problem for k£ — 1 fully or partially link-disjoint
paths, and hence NP-hard. In Appendix B, we prove that the

ABBPS problem is also NP-hard for k = 2. |
We proceed to study the approximability of the ABPS
problem.

Theorem 4: The ABPS problem for & > 2 cannot be
approximated to arbitrary degree in polynomial time, unless
P=NP.

Proof: We can check in polynomial time whether a single
path can accommodate the requested availability. Hence, the
theorem is equivalent to: for a request r(s,t,d) and any
constant number d > 1, there is no polynomial-time algorithm
that can find at least 2, but at most k, fully or partially link-

disjoint paths from s to ¢ with availability at least %. We prove
the theorem for the fully link disjoint variant® of the ABPS
problem for k = 2.

We will use a proof by contradiction and assume a
polynomial-time approximation algorithm A exists for any
d > 1. In the constructed graph based on the given 3SAT
instance in Fig. 5 (also using the same notation and condi-
tions), assume 6 = a + b? — ab?, so algorithm A can find two
fully link-disjoint paths with availability at least 2+2°—ab",
Next, we prove that when 0 < b < %, except for an exact
solution, there exists no solution with availability no less than
w. If the exact solution is not achieved by algorithm
A, according to our previous analysis, then one path must
have availability of a®0® and the other path has availability
of a®bf. Therefore, the availability of these two paths is
equal to a®b® + abf — a“t<'b*Tf . For a given d, we have
b +acbf —at bt <b+b=2b< % when0<b< &
and 0 < a < 1. Therefore, under 0 < b < g3, except for
an exact solution, any two fully link-disjoint paths cannot
have availability less than W. To fulfill the assumption,
algorithm A has to find two link-disjoint paths with availability
a+b?—ab?. In this context, the fully link disjoint variant of the
ABPS problem for k£ = 2 can be solved exactly in polynomial
time, which is a contradiction. |

V. SHARED-RISK LINK GROUPS

In this section, we assume two types of
failures/availabilities, namely Shared-Risk Link Group
(SRLG) failures and single link failures/availabilities. A
Shared-Risk Link Group (SRLG) [16] reflects that a certain
set/group of links in a network will fail simultaneously. For
instance, in optical networks, several fibers may reside in the
same duct and a cut of the duct would cut all fibers in it.
One duct in this context corresponds to one distinct SRLG.
If each link is a single member of an SRLG, then no SRLGs
exist. Hence the ABPS problem in SRLG networks includes
as a special case the ABPS problem in generic networks as
discussed in the previous section. Each link can belong to
one or more SRLGs, and the links in the same SRLG will
simultaneously fail when the corresponding SRLG fails. The
probability of this happening (or not) is the SRLG failure
(availability) probability. We assume there are g SRLGs in the
network G(N, £), and that the failure probability of the i-th
SRLG (represented by srlg;) is denoted by 7;, for 1 < i < g.
For a particular link [ € £, we denote by SR! the set of
all SRLGs to which [ belongs. Different from [2], where
all SRLG events are assumed to be mutually exclusive, we
assume that multiple SRLG events may occur simultaneously.
The availability of a single path should incorporate the SRLG
availabilities as well as the link availabilities. Consequently,
the availability of path p can be calculated as:

II a-=]JA

;5719 NPF#D lep

QY

3The partially link disjoint variant follows analogously.



where I
i;87lg; Np#AD
the traversed SRLGs, while ], » Ay is the availability of path

p under the condition that all its traversed SRLGs do not fail.

For example, in Fig. 6, suppose there are three SRLGs in
the network with failure probabilities 0.1, 0.4 and 0.2, respec-
tively, and all the links have availability 0.9. We calculate the
availability of path s — a — b — ¢, which traverses 2 SRLGs
(srlgy and srlgs): The probability that both srlg; and srigs
do not fail is (1 — 0.1) x (1 — 0.2). Under this condition,
all the links on path s — a — b — t have availability 0.9
and therefore path s —a — b — ¢ has a total availability of
(1—-0.1) x (1 —0.2) x (0.9)% = 0.52488.

(1 —m;) in Eq. (11) is the contribution of all

srlgs

srlg;

Fig. 6: Availab111ty calculation in an SRLG network.

Next, we will prove that the single path variant of the ABPS
problem in SRLG networks is NP-hard. To that end, we first
introduce the Minimum Color Single-Path (MCSiP) problem,
which is NP-hard [19]. Given a network G(\/, £), and given
the set of colors C = {c1,c¢2,...,cq} Where g is the total
number of colors in G, and given the color {¢;} of every link
l € L, the Minimum Color Single-Path (MCSiP) problem is
to find a path from source node s to destination node ¢ that
uses the least amount of colors.

Theorem 5: The ABPS problem is NP-hard in SRLG net-
works even for k = 1.

Proof: Assume we have a network where all the links
have availability 1 when their SRLGs do not fail, and that there
are ¢ SRLGs with the same failure probability *. Hence, a
path’s availability is only determined by the number of SRLGs
it traverses. If we denote one SRLG by one particular color,
then the single-path ABPS problem in SRLG networks can be
reduced to the MSCiP problem. ]

VI. MULTI-LAYER NETWORKS

In multi-layer (e.g., IP-over-WDM) networks or overlay
networks, the abstract links in the logical layer are mapped to
different physical links in the physical layer. In this context,
two or more abstract links that contain the same physical
links may have correlated availabilities or failure probabilities.
Moreover, usually only the links in the logical layer are known
in multi-layer networks.

Let us first consider the example of multi-layer networks
shown in Fig. 7. In Fig. 7(a), the availability is labeled on
each link in the physical layer, and the links in the logical
layer are mapped to the links in the physical layer with the
greatest availability. Suppose we want to find a most reliable
unprotected path from s to ¢ in Fig. 7(a). Since we are only
aware of the links in the logical layer, we find that the most

reliable path’s availability is 0.72 - 0.4 = 0.288. However,
the optimal solution is path s-b-f with availability 0.45 in
the physical layer. The reason is that (s,a) and (a,t) in the
logical layer share the same link (s, b), which leads to a lower
availability value. Fig. 7(b) shows a similar example with
Fig. 7(a), except that each link in the physical layer has one
additional wavelength number. In the absence of wavelength
conversion, it is required that the lightpath occupies the same
wavelength on all links it traverses, which is referred to as the
wavelength-continuity constraint in WDM-enabled networks.
Now, suppose we want to find the most reliable lightpath from
s to t, that obeys the wavelength-continuity constraint. Clearly,
if we are only aware of the links in the logical layer, the result
is path s-a-t with availability 0.8-0.45 = 0.36. However, since
this path is mapped to the path s-a-b-t in the physical layer,
it violates the wavelength-continuity constraint. The optimal
solution is path s-a-t in the physical layer via wavelength \;.
Its availability is 0.8 - 0.3 = 0.24.
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Fig. 7: A multi-layer network example.

For any two links / and m in the logical layer of a multi-
layer network, we denote their availabilities by A; and A,,,
respectively. Let us use ® as the actual joint availability value
of these two links, and then we derive that A; ® A,,, can be
greater than A;- A,,, (Fig. 7(a)), or less than A;- A,,, (Fig. 7(b)),
or equal to A;- A,,. For the latter case, we say that [ and m are
uncorrelated, otherwise we say that [ and m are correlated: if
A ©A, > A;- Ay, I and m are “increasing correlated,” else [
and m are “decreasing correlated.” Analogously, the operator



® can be used for more than two links. Next, we will prove the
NP-hardness of the ABPS problem for £k = 1 in multi-layer
networks.

Theorem 6: The ABPS problem is NP-hard in multi-layer
networks even for k = 1.

Proof: When all the links are uncorrelated in multi-
layer networks, the ABPS with & = 1 problem is solvable
polynomial time. SRLG networks can be regarded as a special
case of increasing correlation in multi-layer networks, since
the links that share at least one common SRLG group (denote
this link set by L£’) will have a greater availability than

IT (@ —m)-A;|. Since the single-path ABPS
leL’ \i;srlg;Nl#£D
problem in SRLG networks is NP-hard, as we proved in
Theorem 5, the single-path ABPS problem in multi-layer
networks is also NP-hard.
|

VII. HEURISTIC AND EXACT ALGORITHMS
A. Heuristic Algorithm

Algorithm 1 MMA(G, s,t,0,k,I)

1: Find one shortest path p;, return it if the availability
requirement is satisfied, otherwise go to Step 2.

2ps 1, H<p, P+ H, P+ (and Q « 0

3: While ps < k

4: P+ H

5. For each path ap € P

6: P, < P and counter < 0

7: While counter < I do

8: Randomly remove one link (u,v) € ap and find
one shortest path i, from u to v.

9: If it succeeds then

10: Replace (u,v) with ¥,,_,, in ap, denote it as ap’

11: P,. Remove(ap), Py,. Add(ap’), ap + ap’

12: Find another link-disjoint path py with Pj.

13: Return {ps2} U P, if ¢ is met.

14: For each link (u,v) € ap’

15: If its availability is at least § then

16: Q. Add((u,v))

17: while (Q # 0) do

18: (u,v) + EXTRACT-MIN(Q)

19: Find a path p3 which shares (u,v) with ap’.

20: If (p3s ¢ Py) and {p3} U P, satisfy § then

21: Return {p3} U P,

22: else H < Max_Availability{H, {ps} U Py}

23: counter < counter + 1.

24: ps<+ps+1

Our heuristic, called Min-Mins Algorithm (MMA) to solve
the ABPS problem in generic networks, SRLG networks and
multi-layer networks, is presented in Algorithm 1. Since we
want to use as least (and no more than k) link-disjoint paths
to satisfy the requested availability, we gradually increase the
number of paths.

The pseudo code to solve the ABPS problem in multi-layer
networks is similar to the one for generic networks, except
for the path availability calculation. Also, the pseudo code to
solve the ABPS problem in SRLG networks is similar to the
one in generic networks, and we will specify the differences
later. In what follows, we explain each step of the heuristic
algorithm. We assign link [ € £ with the weight of —log(A;)
(—log([ ;e gp (1 —m;) - Ay) for SRLG networks) in MMA. If
a shortest path (represented by p;) in Step 1 fails to satisfy
the availability requirement, we keep it as the initial path
flow. In Step 2, we use ps to record the number of already
found link-disjoint paths. Initially ps is set to 1. H stores
the already found ps link-disjoint paths, and it is initially
assigned p;. While ps is no greater than k, Steps 3-24 continue
finding a solution. In Step 4, we assign to P the already found
paths . Based on P, from Step 5 to Step 23, we each time
select one path ap from path set P. We also use a variable,
denoted by counter in Algorithm 1, to record the number
of iterations. Initially, counter is set to 0. As long as the
number of iterations is less than an input value I, Steps 7-23
proceed finding a solution based on ap and path set P,. The
(sub)path from u to v found by the algorithm is denoted by
Yy—y- In Step 8, we randomly remove one link (u,v) from
ap, and we apply a shortest path algorithm from w to v to
obtain a path ,,_,,. By concatenating subpath v,,_,,, and the
links of path ap except for (u,v), we obtain a new path ap’.
Further, by substituting ap with ap’ in P,, we have a new path
set P,. After that, the algorithm tries to find P,’s fully link-
disjoint path in Step 12. When solving the ABPS problem in
SRLG networks, since each SRLG only contributes once to
the path availability calculation, the link I’s weight is set to
—log(ILicgsr\srey (1 — i) - Ay) before running a shortest
path algorithm in Step 12 (also the same for Step 19), where
SR¢ are the common traversed SRLGs between link [ and
path set Py. If it fails to find ps or {p2} U P, cannot satisfy
the availability requirement, the algorithm tries to find a path
which is partially link disjoint with ap’ (in Steps 13-22). The
general idea is that we first use a queue () to store the links in
ap’ whose availability is no less than ¢ in Steps 14-16. After
that, as long as () is not empty in Steps 17-22, each time
the link with the greatest availability in @ is extracted as the
unprotected link (represented by (u,v)), and then we remove
all the links traversed by ap’ except for (u,v). Subsequently,
we find one shortest path ¢,_,, from s to u (if it exists),
and find another shortest path v,_,; from v to ¢ (if it exists).
By concatenating s, (u,v) and t),_,+, we can get a new
path ps3, which is partially link disjoint with ap’. If @ and b
denote different sets of k£ > 1 link-disjoint paths, the function
Max_Availability(a, b) in Step 22 returns the one with greater
availability.

The time complexity of MMA can be computed as follows.
Step 1 has a time complexity of O(N log N + L). From Step
3 to Step 24, there are at most O(I)+O(2)+---+O(kI) =
O(k?I) iterations before the algorithm terminates. Steps 14-
16 have a time complexity of O(N) since a path contains
at most V — 1 links and therefore Steps 17-22 consume



O(N(Nlog N + L)) time. Finally, the whole time complexity
of MMA is O(k*IN (N log N + L)).

B. Exact INLP Formulation

In this subsection, we present an exact Integer Non-Linear
Program (INLP) to solve the ABPS problem in generic, SRLG
and multi-layer networks. We first solve the ABPS problem in
generic networks and start by explaining the required notation
and variables.

INLP notation:

r(s,t,9): Traffic request, with source s, destination ¢ and
requested availability J.

A, ; : Availability of link (4, j).

g : The total number of SRLGs.

;% : The failure probability of the m-th SRLG if link (i, j)
belongs to it, otherwise it is 0.

INLP variable:

P/": Boolean variable equal to 1 if link (4, j) is traversed
by path u (1 < u < k) for request r; 0 otherwise.

Flow conservation constraints:

1, 1=35
2P Y RE=q CLoist (Y
(i,5)EL (ji)eLl 0, otherwise

VieN 1<u<k

Availability constraint:

S T1 (1B AL -

u=1(i,j)eL

S T min (1 PI o+ P A1 =PI+ P Auy)
1<u<v<k (i,j)EL

+»--+(1)’”’1< 11

(i,j)€L 12}2k(1 - Pf,}u ! Pf,’juAi,J)> = w

When both the flow conservation constraint (Eq. (12)) and
the availability constraint (Eq. (13)) are satisfied, an optimal
solution is found by the INLP, otherwise there is no solution.
There is no objective (needed) in the proposed INLP, but one
could include the objective of minimizing the number of paths
(or links) used. Eq. (12) accounts for the flow conservation
for each of the at most k paths. For a particular u!" path
(1 < u < k), it ensures that (i) for the source node s of
request r, the outgoing traffic for each request is 1; (ii) for
the destination node ¢ of request r, the incoming traffic is 1;
and (iii) for an intermediate node which is neither source nor
destination, its incoming traffic is equal to the outgoing traffic.
Eq. (13) ensures that either the found single unprotected path
or the (partially) link-disjoint paths should have availability no
less than 6, according to the availability calculation of & link-
disjoint paths in Egs. (3) and (5). Since the overlapped link’s
availability in the partially link-disjoint calculation according
to Eq. (5) can only be counted once, we take the minimum
value of the variables P, for each link and then take the
product over all the links for (partially) link-disjoint paths.
We also note that Eq. (13) can simultaneously calculate the
availability of the fully link disjoint variant, partially link

disjoint variant and the unprotected variant. For instance when
k =2, Eq. (13) becomes:

,1 ,1 ,2 -2
II (=Pl + Py Aig) + 11 (1= Py + P A j)—

()L ()L
[ min =Pl + POl A 1= PI2+ PR2A) >0 (14)
(i,5)€L

When P[,’jl = PLT]2 for all (4,5) € £, Eq. (14) is equal to

[I a-rf+Pia) >0
(i,5)EL
or
[[ a-P7+P7A) =0

(.5)eL
which is the availability constraint for a single unprotected
path.
To solve the ABPS problem in SRLG networks,

we need to slightly modify Eq. (13) (and keep flow
conversation constraints Eq. (12) the same) by using
k
L i (1 i - P )
the left side of Eq. (13), which is the non-failure probability of
the SRLGs which at most k link-disjoint paths have traversed.
In multi-layer networks, the availability of a subset of
links may not be equal to the product of their availabilities.
Therefore, we need one more function f( L ), which can return
the joint availability of a subset of links L in multi-layer
networks. The parameter of this function is a 0/1 link vector
which contains L elements, where 1 denotes the link is present
to be calculated and 0 means it is not. Consequently, to solve
the ABPS problem in multilayer networks exactly, we could
replace the operator [[ with f() in Eq. (13), and keep all
the other notation and constraints the same as for the generic
networks case.

to multiply

VIII. SIMULATION RESULTS

A. Simulation Setup

Fig. 8: USA carrier backbone network.

We conduct simulations on two networks, one is USANet,
displayed in Fig. 8, which is a realistic carrier backbone
network consisting of 24 nodes and 43 links, and the other
is GEANT, shown in Fig. 9, which is the pan-European
communications infrastructure serving Europe’s research and



Fig. 9: GEANT pan-European research network.

education community consisting of 40 nodes and 63 links. The
simulation deals with the ABPS problem in generic, SRLG and
multi-layer networks. For generic networks, we assume the
availability of fiber links is distributed among the set {0.99,
0.999, 0.9999}, with a proportion of 1:1:2. Based on the same
link availabilities, in SRLG networks we assume that there are
in total 5 SRLG events with the failure probabilities 0.001,
0.002, 0.003, 0.004 and 0.005, respectively. Each link has
randomly been assigned to at most 3 SRLG events. Based
on the same (individual) link availabilities as for generic
networks, in multi-layer networks, % of links are increasing
correlated, and it follows that 4, ® A,, ©® - - - ® A, =
max(A;, A, -, Ap); % of links are decreasing correlated,
and it follows that A;® A, ©---© A, = (A;- Ay -+ A%
and the other % of links are uncorrelated. For all these three
networks, since we want to compare the ability of finding paths
for the algorithms, the capacity is set to infinity. We vary the
number of traffic requests from 100 to 1000. The source and
destination of each request are randomly selected, and each
request has infinite holding time. The requested availability
includes two cases: (i) general availability requirement case:
the availability is randomly distributed among the set {0.98,
0.99, 0.995, 0.997, 0.999}; (ii) high availability requirement
case: the availability is randomly distributed among the set
{0.9995, 0.9996, 0.9997, 0.9998, 0.9999}, by which we want
to challenge the algorithm to find feasible paths under more
difficult conditions. Considering the practical time complexity
and the existing proposed algorithms that only focus on finding
two link-disjoint paths, we choose k = 2. We set I in MMA
to be [logN] in these two networks (5 in USANet and 6
in GEANT, respectively). Under the same weight allocation
with our algorithm, we compare the proposed heuristic MMA
and exact INLP with two heuristics: Two-step Reliability
Algorithm (TRA) and Maximal-Reliability Algorithm (MRA),
which are proposed in [1]. TRA first calculates a shortest path,
and then calculates (if it exists) another shortest path after
removing the links traversed by the first path. MRA applies

Suurballe’s algorithm [20] to calculate a pair of two link-
disjoint paths that have minimum weight. Both algorithms
first apply a shortest path algorithm to check whether an
unprotected path solution exits. The simulation is run on a
desktop PC with 3.00 GHz CPU and 4 GB memory. We use
IBM ILOG CPLEX 12.6 to implement the proposed INLP and
C# to implement the heuristic algorithms.

B. Results

We first evaluate the performance of the algorithms in terms
of Acceptance Ratio (AR) in generic networks. Acceptance
ratio (AR) is defined as the percentage of the number of
accepted requests over all the requests. We first analyze the
general availability requirement case: In USANet, all the
algorithms achieved an AR of 1. We therefore omit the figure
of the general availability performance for USANet. However,
this is not the case for the GEANT topology. From Fig. 10(a),
we can see that the performance of all algorithms is under
0.95. Since GEANT is not as well connected as USANet is,
some nodes in GEANT only have degree one (e.g., nodes
3, 8, etc.), if a one-degree node becomes the source or the
destination of a certain request, the request can only be served
by partial protection (or a single unprotected path). In this
context, a feasible path may not exist in GEANT, which will
result in blocking. In terms of performance, the INLP achieves
the highest AR. On the other hand, MMA shows a higher AR
than the other two heuristics TRA and MRA (Fig. 10(a)).

For the high availability requirement scenario (shown in
Figs. 10(b) and 10(c)), as expected, the AR of all these
algorithms is lower than in the general availability requirement
case. In this scenario, the INLP requires more time to find a
solution, especially when a solution does not exist. In order to
let the INLP return the result in a reasonable time, we set the
time limit for it to serve one request to 50 minutes. Due to this
reason, we can see that INLP has the lowest AR in USANet
and often second highest AR in GEANT. Meanwhile, MMA
still has the highest AR in most of the cases.

The time limit for the INLP is even more constraining in the
case of SRLG networks, leading to a very poor performance
for SRLG networks. We have therefore omitted the results
of the INLP in SRLG networks. Since the optimal solution
rarely exists in the high availability requirement case, we only
provide the simulation results for the heuristic algorithms in
the general availability requirement case. Moreover, to have a
fair comparison, we compare our algorithms with MRA and
a modified TRA [2], which is a heuristic routing algorithm
proposed for probabilistic SRLG networks. Its main idea is
that after finding the first shortest path, the remaining link
weights should be adjusted (We slightly change its link weight
adjustment to be the same with the Step 12 of MMA for a
fairer comparison), and then to find another link-disjoint short-
est path. Fig. 11 shows that the proposed heuristic algorithm
MMA still achieves higher AR than these two algorithms.

Similar to SRLG networks, the exact INLP in multi-layer
networks is very time consuming. We therefore omit the results
of the INLP in multi-layer networks. Fig. 12 provides the
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Fig. 11: AR of the heuristic algorithms in SRLG networks for
general availability requirement.

results for all three heuristics in the two networks for both
general and high availability requirement scenarios. It can be
seen that MMA achieves the highest AR compared to the other
two heuristics.

TABLE I: Running times per request for four algorithms (ms).

Networks INLP MMA | MRA | TRA
USA Generic (General 6) 10190 0.187 | 0.128 | 0.127
GEANT Generic (General §) 29896 0.558 | 0.143 | 0.142
USA Generic (High 9) 79764 0.224 | 0.147 | 0.146
GEANT Generic (High 9) 135181 0.679 | 0.162 | 0.160
USA SRLG (General ¢) >3.6-107 | 0.461 | 0.136 | 0.161
GEANT SRLG (General 6) >3.6-107 | 0.663 | 0.167 | 0.196
USA Multi-layer (General §) >3.6-107 | 0.857 | 0.135 | 0.141
GEANT Multi-layer (General §) | >3.6.107 | 1.378 | 0.175 | 0.181
USA Multi-layer (High 9) >3.6-107 | 1.136 | 0.157 | 0.162
GEANT Multi-layer (High 6) >3.6-107 | 1.679 | 0.262 | 0.223

Finally, in Table I, we present the (average) running times
per request for these four algorithms in generic, SRLG and
multi-layer networks. It shows that the INLP is significantly
more time consuming than the three polynomial-time heuris-
tics. On the other hand, MMA has only a slightly higher
running time than MRA and TRA, but it pays off by having
a higher AR as shown in Figs. 10-12. Another observation is
that, for the same algorithm in the same network, the running
time is higher for the high availability requirement case than

in the general availability requirement case.

IX. NETWORK VULNERABILITY ASSESSMENT
A. Problem Definition and Complexity Analysis

Finding the most vulnerable part of a network as well as
the previously considered problem of availability-based path
selection are both important elements for network robustness.
In this section, we study the (s,f) Network Vulnerability
Assessment (NVA) problem. That is, find one or a set of
(equal-weight) network cuts whose failure probability of the
links in the cut is highest. A network cut refers to a set
of links, whose removal will result in the disconnection of
the network. Formally, the NVA problem can be defined as
follows:

Definition 3: The (s,t) Network Vulnerability Assessment
(NVA) problem: Given is a network G(N/, £), and each link
l € L is associated with a failure probability f; = 1 — A;.
Given a source s and a target ¢, find an s — ¢ cut C for which
[I,cc fi is maximized. In case there are multiple cuts of
highest weight all of them should be returned.

When the node pair (s,t) is not specified, we denote this
problem as the NVA problem, which can be solved by solving
the (s,t) NVA problem at most N — 1 times. Therefore, these
two problems share the same hardness.

We use — log(f;) for the weight of link [ in the network. In
generic networks, the NVA problem can be solved by finding
all the min-cuts in O(L?N + N2L) time according to [21].
On the other hand, we will prove that the NVA problem in
SRLG networks is NP-hard. Recall that in SRLG networks,
introduced in Section V, two types of failures/availabilities
should be incorporated, namely Shared-Risk Link Group
(SRLG) failures and single link failures/availabilities, therefore
the probability that all the links belonging to path p fail
simultaneously (denoted by F'(p)) can be calculated as:

[1— H (1—m)] +Hfl— [1— H (1_7Ti)] 'Hfl

i387lg; Np#D lep i;87mlg; Np#D lep

(15)
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Fig. 12: AR of heuristics in multi-layer networks: (a)-(b) general availability requirement; (c)-(d) high availability requirement.

Please note that Eq. (15) is different from the failure proba-
bility of a path in SRLG networks: 1—Eq. (11).

Before we prove the NP-hardness of the NVA problem,
let us first study the Maximum Color Path Selection (MCPS)
problem. Contrary to the MCSiP problem, the MCPS problem
is to find a single path such that it uses the largest amount of
colors.

Theorem 7: The Maximum Color Path Selection (MCPS)
problem is NP-hard.

Proof: We distinguish two cases, namely, (1) all the links
have exclusive colors, i.e., there does not exist any color that is
shared/overlapped by two or more links, and (2) two or more
links may contain the same color(s).

Case (1): The MCPS problem is equivalent to the NP-hard
Longest Path problem [18], which is to find a path from s to
t such that its weight is maximized.

© @b - O

Links (a,b) and (c,d) together contain totally g distinct colors.

Fig. 13: Reduction of the MCPS problem to the Disjoint
Connecting Paths problem.

Case (2): We first introduce the Disjoint Connecting Paths
problem [18]. Given a network G(N/, £), and a collection of
disjoint node pairs (s1, t1), (s2, t2), ..., (S2, t,), does GG contain
z mutually link-disjoint paths, one connecting s; and t¢; for
each i, 1 <+ < 2? This problem is proved NP-hard when z >
3, and we reduce the MCPS problem to it. In Fig. 13, assume
that there are in total g colors and links (a, b) and (¢, d) share
0 < & < g common colors, but they together contain g distinct
colors. Except for these two links, the other links are assigned
0 < y < g colors, but there does not exist two or more links
containing ¢ distinct colors. In this context, finding a path
from s to ¢ with the largest amount of colors is equivalent to
finding three mutually link-disjoint paths between three node
pairs (s,a), (b,c) and (d,t).

|

Theorem 8: The Network Vulnerability Assessment (NVA)

problem in SRLG Networks is NP-hard.

Fig. 14: Example network.

Fig. 15: Reduction of the (s,t) NVA problem in SRLG
networks to the MCPS problem.

Proof: 1t is equivalent to prove that the (s,t) NVA problem
is NP-hard.

In Fig. 14, assume all link availabilities are 1 and all
links have non-zero SRLG failure probabilities, except for
links (x;,x;41) and (z;, z;+1) which have 0 SRLGs, where
1 < i < n — 1. Assume there are ¢ SRLG events in total,
and each SRLG event occurs with a probability of %. In this
context, for a path p without links (z;,2;11) and (z;, zi+1),
according to Eq. (15), F(p) can be calculated as:

1-(1- l)m
9

where m is the total number of distinct SRLGs traversed by
p. Therefore, to maximize Eq. (16) one needs to maximize
m, i.e., to find a path with the greatest probability that all its
traversed links fail simultaneously. This is equivalent to finding
a path having the largest number of distinct SRLGs. We want
to solve the (x1,21) NVA problem. Based on Fig. 14, we first

(16)



derive Fig. 15 with the same nodes except that we add one
more node s. We regard s = y, and ¢t = y,,. The link weight
in Fig. 15 is set as follows: (y;—1, ;) and (y;—1,2;) have 0
SRLGs, while (z;,z;) and (z;,y;) have the same SRLGs as
in Fig. 14, where 1 <17 < n. In Fig. 15, we are asked to solve
the MCPS problem from the source s to the destination t.

Since we want to find a cut that separates x; and 21, any
cuts in the form of (x;,y;) and (y;, 2z;), where 1 <4 < n are
not part of the optimal solution. Moreover, considering the
link in the form of (z;,z;41) or (y;,y;+1) has 0 SRLGs and
single link availability 1, which means its availability is 1 or
failure probability is 0, it cannot lead to the optimal solution
as well. Based on the above observations, any feasible cut
C should contain one link either (z;,y;) or (y;,z;), for all
1 <4 < n. We prove in the following that the (s,t) NVA
problem in Fig. 14 can be reduced to the MCPS problem in
Fig. 15 in polynomial time, where, for simplicity, we assume
only one optimal cut exists in the (s,t) NVA problem.

(s,t) NVA to MCPS: An optimal solution of the (s,t) NVA
problem should be composed of either (x;,y;) or (y;,z2;),
where 1 < i < n. Let Cny 4 reflect the set of links in the
optimal solution. Because Cyy 4 has the largest amount of
distinct SRLGs, Cny 4 together with (s, 1) or (s, z1) forms
a path from s to ¢ with the maximum number of SRLGs.

MCPS to (s,t) NVA: Let Ry;cps denote the set of links
in the optimal solution of the MCPS problem. Because
Rprcps has the largest amount of SRLGs, let Cyya =
Ryops\{(yi, zi+1), (Yi, zi+1)}. Considering that the links
(yi,xi+1) and (yi,z;+1) have 0 SRLGs, Cnya also has
the largest amount of SRLGs. Therefore solving the MCPS
problem yields a solution to the (s,t) NVA problem. ]

Theorem 9: The NVA problem in multi-layer networks is
NP-hard.

Proof: For any two links [ and m in a multi-layer network,
we have that 4,0 A, =(1—-fi))O1—fn)=1—fm—fi+
fi ©® fm. Similar to Theorem 6, we can also prove that it is
NP-hard to find one path from the source to the destination in
multi-layer networks such that the probability that all its links
fail is maximized. Subsequently, we can prove that the NVA
problem in multi-layer networks is NP-hard, which follows
analogously with Theorem 8. We therefore omit the details.

|

X. CONCLUSION

The availability of a connection represents how reliably a
connection can carry data from a source to a destination. In
this paper, we have first studied the Availability-Based Path
Selection (ABPS) problem, which is to establish a connection
over at most k (fully or partially) link-disjoint paths, such that
the total availability is no less than § (0 < § < 1). We have
proved that, in general, the ABPS problem is NP-hard and
cannot be approximated in polynomial time for £ > 2, unless
P=NP. We have further proved that in SRLG networks and
multi-layer networks, even the single-path (k = 1) variant of
the ABPS problem is NP-hard.

We have proposed a polynomial-time heuristic algorithm
and an exact INLP to solve the ABPS problem in generic
networks, SRLG networks and multi-layer networks. Via simu-
lations, we have found that our heuristic algorithm outperforms
two existing algorithms in terms of acceptance ratio with only
slightly higher running time. On the other hand, the running
time of the exact INLP is significantly larger (by several
orders of magnitude) than the running time of the heuristic
algorithms.

Finally, we have proved that the Network Vulnerability
Assessment (NVA) problem, which is to find a cut of the
network for which the failure probability of all its links is
highest, is solvable in polynomial time in generic networks, but
NP-hard to solve in SRLG networks and multi-layer networks.
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APPENDIX A
SINGLE-LINK FAILURE

In this section, we assume that only 1 link in the network
can fail at a time. Apart from that, we also assume that two
successive failures occur with a time difference longer than
the traversal time of any path in the network.

For this scenario, we present a polynomial-time algorithm
to solve the ABPS problem. More specifically, in Algorithm
2, when k£ = 1, in Steps 1-2, we eliminate the links with
availability less than 4, such that we obtain a new graph G’
where each link has availability at least 6. Subsequently, by
running Dijkstra’s shortest path algorithm on G’ from s to t,
we can solve the ABPS problem for k£ = 1.

When k£ > 2, if the optimal solution consists of & fully
link-disjoint paths, then 2 fully link-disjoint paths also exist
and under the single-link failure scenario have availability is
1, which is optimal. Hence, by applying Suurballe’s algorithm
[20] in Step 3, the solution can be found, if it exists.

When the optimal solution consists of k partially link-
disjoint paths, then 2 partially link-disjoint paths are also
enough. The reason is that the availability of partially link-
disjoint paths is decided by one unprotected link (say [).
Hence, it suffices to find £ = 2 partially link-disjoint paths.
In Steps 4-5, for each link (u,v) whose availability is no less
than J, we create another (parallel) link between u and v with
the same availability. After that, we call Suurballe’s algorithm
[20] from s to t. Since in the optimal solution the unprotected
link has availability at least §, by creating the parallel links
whose availability is at least d, the paths p; and p, returned by
Suurballe’s algorithm [20] are two “fully” link-disjoint paths.
After that, if p; and py traverse the parallel links, we then
merge these two links into one link. This kind of link reflects
the unprotected link in the optimal solution. On the other hand,
the links whose availability is less than § are protected in
the returned solution because of the correctness of Suurballe’s
algorithm. Therefore, an optimal solution can be found by
algorithm 2.

APPENDIX B
HARDNESS OF THE ABBPS PROBLEM FOR K=2

For some variants, like the fully link disjoint case, the
ABBPS problem is polynomially solvable*, however it is NP-
hard in its general setting.

Theorem 10: The partially link-disjoint ABBPS problem
for £ = 2 is NP-hard.

Proof: We provide a proof for when k = 2. As it is shown
in Fig. 16, assume we are given a path (denoted by GP) s-a-b-
c-d-t with the availability labeled on each link and all the other

4Trivially, by looking for an unprotected path with maximum availability
in the network where all the links from the primary path are excluded.

Algorithm 2 ABPSSingleLinkFailure(G, s, t, d, k)

1: Eliminate the links with availability less than 6 on G,
thereby obtaining a new graph G'.

2: Run Dijkstra’s algorithm on G’ from s to ¢. If the solution
is found then return the result; Else if £ > 1, continue;
Otherwise output there is no solution.

3: Run Suurballe’s algorithm [20] on G from s to ¢. Return
the result if the solution is found, otherwise continue.

4: Create another (parallel) link between u and v with the
same availability A, ), for each (u,v) € Lif A, ) > 6.
The graph is denoted as G”'.

5: Run Suurballe’s algorithm [20] on G” from s to ¢. Return
the result if the solution is found, otherwise output there
is no solution.

0.8 10.61 0.5

Fig. 16: Reduction of the ABBPS problem with partially link
disjoint paths to the Disjoint Connecting Paths problem.

links have an availability of 1. We now want to find a partially
link-disjoint path with GP such that their combined availability
is no less than 1. Since the requested availability is 1, only link
(a,b) and link (¢, d) can be unprotected in an optimal solution.
Suppose that when link (a, b) is eliminated, there do not exist
paths from node s to nodes b, ¢, d and ¢, and when link (c, d)
is eliminated, there are no paths from node b to nodes d and
t. In this context, to solve the partially link-disjoint ABBPS
problem for k = 2, both (a, b) and (¢, d) should be unprotected
in the optimal solution. This is equivalent to finding three
pairs of link-disjoint paths between node pairs (s,a), (b,c)
and (d, t) (i.e., the Disjoint Connecting Paths problem). Hence,
solving the partially link-disjoint ABBPS problem for k& = 2
yields a solution to the NP-hard Disjoint Connecting Paths
problem. [ ]



