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We prove that any polynomial-time α(n)-approximation algo-
rithm for the n-vertex metric asymmetric Traveling Salesper-
son Problem yields a polynomial-time O(α(C))-approximation
algorithm for the mixed and windy Capacitated Arc Routing
Problem, where C is the number of weakly connected com-
ponents in the subgraph induced by the positive-demand
arcs—a small number in many applications. In conjunction
with known results, we obtain constant-factor approximations
for C ∈ O(log n) and O(log C/log log C)-approximations in gen-
eral. Experiments show that our algorithm, together with
several heuristic enhancements, outperforms many previous
polynomial-time heuristics. Finally, since the solution quality
achievable in polynomial time appears to mainly depend on C
and since C = 1 in almost all benchmark instances, we pro-
pose the Ob benchmark set, simulating cities that are divided
into several components by a river.
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1 Introduction

Golden and Wong [25] introduced the Capacitated Arc Routing
Problem (CARP) in order to model the search for minimum-cost
routes for vehicles of equal capacity that are initially located in a
vehicle depot and have to serve all “customer” demands. Appli-
cations of CARP include snow plowing, waste collection, meter
reading, and newspaper delivery [12]. Herein, the customer
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demands require that roads of a road network are served. The
road network is modeled as a graph whose edges represent roads
and whose vertices can be thought of as road intersections. The
customer demands are modeled as positive integers assigned to
edges. Moreover, each edge has a cost for traveling along it.

Problem 1.1 (Capacitated Arc Routing Problem (CARP)).
Instance: An undirected graph G = (V, E), a depot vertex v0 ∈ V ,

travel costs c : E → N ∪ {0}, edge demands d : E → N ∪ {0},
and a vehicle capacity Q.

Task: Find a set W of closed walks in G, each corresponding
to the route of one vehicle and passing through the depot
vertex v0, and find a serving function s : W → 2E determining
for each closed walk w ∈ W the subset s(w) of edges served
by w such that
–
∑

w∈W c(w) is minimized, where c(w) :=
∑`

i=1 c(ei) for a
walk w = (e1, e2, . . . , e`) ∈ E`,

–
∑

e∈s(w) d(e) ≤ Q, and
– each edge e with d(e) > 0 is served by exactly one walk

in W.

Note that vehicle routes may traverse each vertex or edge of
the input graph multiple times. Well-known special cases of
CARP are the NP-hard Rural Postman Problem (RPP) [32],
where the vehicle capacity is unbounded and, hence, the goal
is to find a shortest possible route for one vehicle that visits
all positive-demand edges, and the polynomial-time solvable
Chinese Postman Problem (CPP) [18, 19], where additionally
all edges have positive demand.

1.1 Mixed and windy variants

CARP is polynomial-time constant-factor approximable [6, 31,
41]. However, as noted by van Bevern et al. [7, Challenge 5] in
a recent survey on the computational complexity of arc routing
problems, the polynomial-time approximability of CARP in
directed, mixed, and windy graphs is open. Herein, a mixed
graph may contain directed arcs in addition to undirected edges
for the purpose of modeling one-way roads or the requirement
of servicing a road in a specific direction or in both directions. In
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a windy graph, the cost for traversing an undirected edge {u, v}
in the direction from u to v may be different from the cost for
traversing it in the opposite direction (this models sloped roads,
for example). In this work, we study approximation algorithms
for mixed and windy variants of CARP. To formally state these
problems, we need some terminology related to mixed graphs.

Definition 1.2 (Walks in mixed and windy graphs). A mixed
graph is a triple G = (V, E, A), where V is a set of vertices,
E ⊆ {{u, v} | u, v ∈ V} is a set of (undirected) edges, A ⊆ V×V is
a set of (directed) arcs (that might contain loops), and no pair of
vertices has an arc and an edge between them. The head of an
arc (u, v) ∈ V × V is v, its tail is u.

A walk in G is a sequence w = (a1, a2, . . . , a`) such that, for
each ai = (u, v), 1 ≤ i ≤ `, we have (u, v) ∈ A or {u, v} ∈ E,
and such that the tail of ai is the head of ai−1 for 1 < i ≤ `. If
(u, v) occurs in w, then we say that w traverses the arc (u, v) ∈ A
or the edge {u, v} ∈ E. If the tail of a1 is the head of a`, then we
call w a closed walk.

Denoting by c : V × V → N ∪ {0,∞} the travel cost between
vertices of G, the cost of a walk w = (a1, . . . , a`) is c(w) :=∑`

i=1 c(ai). The cost of a set W of walks is c(W) :=
∑

w∈W c(w).

We study approximation algorithms for the following problem.

Problem 1.3 (Mixed and windy CARP (MWCARP)).
Instance: A mixed graph G = (V, E, A), a depot vertex v0 ∈ V ,

travel costs c : V × V → N ∪ {0,∞}, demands d : E ∪ A →
N ∪ {0}, and a vehicle capacity Q.

Task: Find a minimum-cost set W of closed walks in G, each
passing through the depot vertex v0, and a serving func-
tion s : W → 2E∪A determining for each walk w ∈ W the
subset s(w) of the edges and arcs it serves such that
–
∑

e∈s(w) d(e) ≤ Q, and
– each edge or arc e with d(e) > 0 is served by exactly one

walk in W.

For brevity, we use the term “arc” to refer to both undirected
edges and directed arcs. Besides studying the approximability
of MWCARP, we also consider the following special cases.

If the vehicle capacity Q in MWCARP is unlimited (that is,
larger than the sum of all demands) and the depot v0 is incident
to a positive-demand arc, then one obtains the mixed and windy
Rural Postman Problem (MWRPP):

Problem 1.4 (Mixed and windy RPP (MWRPP)).
Instance: A mixed graph G = (V, E, A) with travel costs c : V ×

V → N ∪ {0,∞} and a set R ⊆ E ∪ A of required arcs.
Task: Find a minimum-cost closed walk in G traversing all arcs

in R.

If, furthermore, E = ∅ in MWRPP, then we obtain the directed
Rural Postman Problem (DRPP) and if R = E ∪ A, then we
obtain the mixed Chinese Postman Problem (MCPP).

1.2 An obstacle: approximating metric asymmetric TSP

Aiming for good approximate solutions for MWCARP, we have
to be aware of the strong relation of its special case DRPP to the
following variant of the Traveling Salesperson Problem (TSP):

Problem 1.5 (Metric asymmetric TSP (4-ATSP)).
Instance: A set V of vertices and travel costs c : V×V → N∪{0}

satisfying the triangle inequality c(u, v) ≤ c(u,w) + c(w, v) for
all u, v,w ∈ V .

Task: Find a minimum-cost cycle that visits every vertex in V
exactly once.

Already Christofides et al. [11] observed that DRPP is a gen-
eralization of 4-ATSP. In fact, DRPP is at least as hard to
approximate as 4-ATSP: Given a 4-ATSP instance, one obtains
an equivalent DRPP instance by simply adding a zero-cost loop
to each vertex and by adding these loops to the set R of required
arcs. This leads to the following observation.

Observation 1.6. Any α(n)-approximation for n-vertex DRPP
yields an α(n)-approximation for n-vertex 4-ATSP.

Interestingly, the constant-factor approximability of 4-ATSP is a
long-standing open problem and the O(log n/ log log n)-approx-
imation by Asadpour et al. [2] from 2010 is the first asymptotic
improvement over the O(log n)-approximation by Frieze et al.
[24] from 1982. Thus, the constant-factor approximations for
(undirected) CARP [6, 31, 41] and MCPP [37] cannot be simply
carried over to MWRPP or MWCARP.

1.3 Our contributions

As discussed in Section 1.2, any α(n)-approximation for n-vertex
DRPP yields an α(n)-approximation for n-vertex 4-ATSP. We
first contribute the following theorem for the converse direction.

Theorem 1.7. If n-vertex 4-ATSP is α(n)-approximable in
t(n) time, then

(i) n-vertex DRPP is (α(C) + 1)-approximable in t(C) +

O(n3 log n) time,

(ii) n-vertex MWRPP is (α(C) + 3)-approximable in t(C) +

O(n3 log n) time, and

(iii) n-vertex MWCARP is (8α(C + 1) + 27)-approximable in
t(C + 1) + O(n3 log n) time,

where C is the number of weakly connected components in the
subgraph induced by the positive-demand arcs and edges.

The approximation factors in Theorem 1.7(iii) and Corollary 1.8
below are rather large. Yet in the experiments described in Sec-
tion 5, the relative error of the algorithm was always below 5/4.

We prove Theorem 1.7(i–ii) in Section 3 and Theorem 1.7(iii)
in Section 4. Given Theorem 1.7 and Observation 1.6, the
solution quality achievable in polynomial time appears to mainly
depend on the number C. The number C is small in several
applications, for example, when routing street sweepers and
snow plows. Indeed, we found C = 1 in all but one instance
of the benchmark sets mval and lpr of Belenguer et al. [4]
and egl-large of Brandão and Eglese [10]. This makes the
following corollary particularly interesting.

Corollary 1.8. MWCARP is 35-approximable in O(2CC2 +

n3 log n) time, that is, constant-factor approximable in polyno-
mial time for C ∈ O(log n).
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Corollary 1.8 follows from Theorem 1.7 and the exact O(2nn2)-
time algorithm for n-vertex 4-ATSP by Bellman [5] and Held
and Karp [30]. It is “tight” in the sense that finding polynomial-
time constant-factor approximations for MWCARP in general
would, via Observation 1.6, answer a question open since 1982
and that computing optimal solutions of MWCARP is NP-hard
even if C = 1 [7].

In Section 5, we evaluate our algorithm on the mval, lpr, and
egl-large benchmark sets and find that it outperforms many
previous polynomial-time heuristics. Some instances are solved
to optimality. Moreover, since we found that the solution quality
achievable in polynomial time appears to crucially depend on
the parameter C and almost all of the above benchmark instances
have C = 1, we propose a method for generating benchmark
instances that simulate cities separated into few components by
a river, resulting in the Ob benchmark set.

1.4 Related work

Several polynomial-time heuristics for variants of CARP are
known [4, 10, 25, 34] and, in particular, used for computing
initial solutions for more time-consuming local search and ge-
netic algorithms [4, 10]. Most heuristics are improved variants
of three basic approaches:

Augment and merge heuristics start out with small vehicle
tours, each serving one positive-demand arc, then succes-
sively grow and merge these tours while maintaining ca-
pacity constraints [25].

Path scanning heuristics grow vehicle tours by successively
augmenting them with the “most promising” positive-
demand arc [26], for example, by the arc that is closest
to the previously added arc.

Route first, cluster second approaches first construct a gi-
ant tour that visits all positive-demand arcs, which can
then be split optimally into subsegments satisfying capacity
constraints [3, 40].

The giant tour for the “route first, cluster second” approach
can be computed heuristically [4, 10], yet when computing it
using a constant-factor approximation for the undirected RPP,
one can split it to obtain a constant-factor approximation for
the undirected CARP [31, 41]. Notably, the “route first, cluster
second” approach is the only one known to yield solutions of
guaranteed quality for CARP in polynomial time. One barrier
for generalizing this result to MWCARP is that already approxi-
mating MWRPP is challenging (see Section 1.2). Indeed, the
only polynomial-time algorithms with guaranteed solution qual-
ity for arc routing problems in mixed graphs are for variants to
which Observation 1.6 does not apply since all arcs and edges
have to be served [15, 37].

Our algorithm follows the “route first, cluster second” ap-
proach: We first compute an approximate giant tour using
Theorem 1.7(ii) and then, analogously to the approximation
algorithms for undirected CARP [31, 41], split it to obtain The-
orem 1.7(iii). However, since the analyses of the approximation
factor for undirected CARP rely on symmetric distances be-
tween vertices [31, 41], our analysis is fundamentally different.
Our experiments show that computing the giant tour using The-
orem 1.7(ii) is beneficial compared to computing it heuristically
like Belenguer et al. [4] and Brandão and Eglese [10].

Notably, the approximation factor of Theorem 1.7 depends
on the number C of connected components in the graph in-
duced by positive-demand arcs. This number C is small in many
applications and benchmark data sets, a fact that inspired the de-
velopment of exact exponential-time algorithms for RPP which
are efficient when C is small [21, 28, 38, 39]. Orloff [35] noticed
already in 1976 that the number C is a determining factor for
the computational complexity of RPP. Theorem 1.7 shows that
it is also a determining factor for the solution quality achievable
in polynomial time.

In terms of parameterized complexity theory [14, 17], one can
interpret Corollary 1.8 as a fixed-parameter constant-factor ap-
proximation algorithm [33] for MWCARP parameterized by C.

2 Preliminaries

Although we consider problems on mixed graphs as defined in
Definition 1.2, in some of our proofs we use more general mixed
multigraphs G = (V, E, A) with a set V =: V(G) of vertices, a
multiset E =: E(G) over {{u, v} | u, v ∈ V} of (undirected) edges,
a multiset A =: A(G) over V × V of (directed) arcs that may
contain self-loops, and travel costs c : V × V → N ∪ {0,∞}. If
E = ∅, then G is a directed multigraph.

From Definition 1.2, recall the definition of walks in mixed
graphs. An Euler tour for G is a closed walk that traverses
each arc and each edge of G exactly as often as it is present
in G. A graph is Eulerian if it allows for an Euler tour. Let
w = (a1, a2, . . . , a`) be a walk. The starting point of w is the tail
of a1, the end point of w is the head of a`. A segment of w is a
consecutive subsequence of w. Two segments w1 = (ai, . . . , a j)
and w2 = (ai′ , . . . , a j′) of the walk w are non-overlapping if
j < i′ or j′ < i. Note that two segments of w might be non-
overlapping yet share arcs if w contains an arc several times.
The distance distG(u, v) from vertex u to vertex v of G is the
minimum cost of a walk in G starting in u and ending in v.

The underlying undirected (multi)graph of G is obtained by
replacing all directed arcs by undirected edges. Two vertices u, v
of G are (weakly) connected if there is a walk starting in u and
ending in v in the underlying undirected graph of G. A (weakly)
connected component of G is a maximal subgraph of G in which
all vertices are mutually (weakly) connected.

For a multiset R ⊆ V × V of arcs, G[R] is the directed multi-
graph consisting of the arcs in R and their incident vertices of G.
We say that G[R] is the graph induced by the arcs in R. For a
walk w = (a1, . . . , a`) in G, G[w] is the directed multigraph con-
sisting of the arcs a1, . . . , a` and their incident vertices, where
G[w] contains each arc with the multiplicity it occurs in w. Note
that G[R] and G[w] might contain arcs with a higher multiplicity
than G and, therefore, are not necessarily sub(multi)graphs of G.
Finally, the cost of a multiset R is c(R) :=

∑
a∈R ν(a)c(a), where

ν(a) is the multiplicity of a in R.

3 Rural Postman

This section presents our approximation algorithms for DRPP
and MWRPP, thus proving Theorem 1.7(i) and (ii). Section 3.1
shows an algorithm for the special case of DRPP where the
required arcs induce a subgraph with Eulerian connected com-
ponents. Sections 3.2 and 3.3 subsequently generalize this al-

3



gorithm to DRPP and MWRPP by adding to the set of required
arcs an arc set of minimum weight so that the required arcs
induce a graph with Eulerian connected components.

3.1 Special case: Required arcs induce Eulerian components

To turn α(n)-approximations for n-vertex 4-ATSP into (α(C)+1)-
approximations for this special case of DRPP, we use Algo-
rithm 3.1. The two main steps of the algorithm are illustrated
in Figure 3.1: The algorithm first computes an Euler tour for
each connected component of the graph G[R] induced by the
set R of required arcs and then connects them using an approxi-
mate 4-ATSP tour on a vertex set VR containing (at least) one
vertex of each connected component of G[R].

The following Lemma 3.1 gives a bound on the cost of the so-
lution returned by Algorithm 3.1. Algorithm 3.1 and Lemma 3.1
are more general than necessary for this special case of DRPP.
In particular, we will not exploit yet that they allow R to be a
multiset and VR to contain more than one vertex of each con-
nected component of G[R]. This will become relevant in Sec-
tion 3.2, when we use Algorithm 3.1 as a subprocedure to solve
the general DRPP.

Lemma 3.1. Let G be a directed graph with travel costs c,
let R be a multiset of arcs of G such that G[R] consists of C
Eulerian connected components, let VR ⊆ V(G[R]) be a vertex
set containing at least one vertex of each connected component
of G[R], and let T̃ be any closed walk containing the vertices VR.

If n-vertex 4-ATSP is α(n)-approximable in t(n) time, then
Algorithm 3.1 applied to (G, c,R) and VR returns a closed walk
of cost at most c(R) + α(|VR|) · c(T̃ ) in t(|VR|) + O(n3) time that
traverses all arcs of R.

Proof. We first show that the closed walk T returned by Algo-
rithm 3.1 visits all arcs in R. Since the 4-ATSP solution TVR con-
structed in line 1 visits all vertices VR, in particular v1, . . . , vC ,
so does the closed walk TG constructed in line 1. Thus, for each
vertex vi, 1 ≤ i ≤ C, T takes Euler tour Ti through the connected
component i of G[R] and, thus, visits all arcs in R.

We analyze the cost c(T ). The closed walk T is composed of
the Euler tours Ti computed in line 1 and the closed walk TG

computed in line 1. Hence, c(T ) = c(TG) +
∑C

i=1 c(Ti). Since
each Ti is an Euler tour for some connected component i of G[R],
each Ti visits each arc of component i as often as it is contained
in R. Consequently,

∑C
i=1 c(Ti) = c(R).

It remains to analyze c(TG). Observe first that the distances in
the 4-ATSP instance (VR, c′) correspond to shortest paths in G
and thus fulfill the triangle inequality. We have c(TG) = c′(TVR )
by construction of the 4-ATSP instance (VR, c′) in line 1 and
by construction of TG from TVR in line 1. Let T̃ be any closed
walk containing VR and let T ∗VR

be an optimal solution for the
4-ATSP instance (VR, c′). If we consider the closed walk T̃VR

that visits the vertices VR of the 4-ATSP instance (VR, c′) in the
same order as T̃ , we get c′(T ∗VR

) ≤ c′(T̃VR ) ≤ c(T̃ ). Since the
closed walk TVR computed in line 1 is an α(|VR|)-approximate
solution to the 4-ATSP instance (VR, c′), it finally follows that
c(TG) = c′(TVR ) ≤ α(|VR|) · c′(T ∗VR

) ≤ α(|VR|) · c(T̃ ).
Regarding the running time, observe that the instance (VR, c′)

in line 1 can be constructed in O(n3) time using the Floyd-
Warshall all-pair shortest path algorithm [20], which dominates
all other steps of the algorithm except for, possibly, line 1. �

Lemma 3.1 proves Theorem 1.7(i) for DRPP instances I =

(G, c,R) when G[R] consists of Eulerian connected components:
Pick VR to contain exactly one vertex of each of the C connected
components of G[R]. Since an optimal solution T ∗ for I visits
the vertices VR and satisfies c(R) ≤ c(T ∗), Algorithm 3.1 yields
a solution of cost at most c(T ∗) + α(C) · c(T ∗).

3.2 Directed Rural Postman

In the previous section, we proved Theorem 1.7(i) for the spe-
cial case of DRPP when G[R] consists of Eulerian connected
components. We now transfer this result to the general DRPP.
To this end, observe that a feasible solution T for a DRPP in-
stance (G, c,R) enters each vertex v of G as often as it leaves.
Thus, if we consider the multigraph G[T ] that contains each arc
of G with same multiplicity as T , then G[T ] is a supermultigraph
of G[R] in which every vertex is balanced [16, 39]:

Definition 3.2 (Balance). We denote the balance of a vertex v
in a graph G as

balanceG(v) := indegG(v) − outdegG(v).

We call a vertex v balanced if balanceG(v) = 0.

Since G[T ] is a supergraph of G[R] in which all vertices are
balanced and since a directed connected multigraph is Eulerian if
and only if all its vertices are balanced, we immediately obtain
the below observation. Herein and in the following, for two
(multi-)sets X and Y , X ] Y is the multiset obtained by adding
the multiplicities of each element in X and Y .

Observation 3.3. Let T be a feasible solution for a DRPP in-
stance (G, c,R) such that G[R] has C connected components and
let R∗ be a minimum-cost multiset of arcs of G such that every
vertex in G[R ] R∗] is balanced. Then, c(R ] R∗) ≤ c(T ) and
G[R]R∗] consists of at most C Eulerian connected components.

Algorithm 3.2 computes an (α(C) + 1)-approximation for a
DRPP instance (G, c,R) by first computing a minimum-cost arc
multiset R∗ such that G[R ] R∗] contains only balanced vertices
and then applying Algorithm 3.1 to (G, c,R ] R∗). It is well
known that the first step can be modeled using the Uncapacitated
Minimum-Cost Flow Problem [11, 13, 16, 19, 22]:

Problem 3.4 (Uncapacitated Minimum-Cost Flow (UMCF)).
Instance: A directed graph G = (V, A) with supply s : V → Z

and costs c : A→ N ∪ {0}.
Task: Find a flow f : A → N ∪ {0} minimizing

∑
a∈A c(a) f (a)

such that, for each v ∈ V ,∑
(v,w)∈A

f (v,w) −
∑

(w,v)∈A

f (w, v) = s(v). (FC)

Equation (FC) is known as the flow conservation constraint:
For every vertex v with s(v) = 0, there are as many units of
flow entering the node as leaving it. Nodes v with s(v) > 0
“produce” s(v) units of flow, whereas nodes v with s(v) < 0
“consume” s(v) units of flow. For our purposes, we will use
s(v) := balanceG[R](v). UMCF is solvable in O(n3 log n) time [1,
Theorem 10.34].

Lemma 3.5. Let I := (G, c,R) be a DRPP instance such that
G[R] has C connected components, and let VR be a vertex set
containing exactly one vertex of each connected component
of G[R]. Moreover, consider two closed walks in G:
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(a) Input: Only required arcs R are shown,
vertices in VR are black.

T1 T2

T2

(b) Compute Euler tours Ti (dashed) for
each connected component of G[R].

T1 T2

T2

TG

(c) Add closed walk TG with the vertices
in VR to get a feasible solution T (dashed).

Figure 3.1: Steps of Algorithm 3.1 to compute feasible solutions for DRPP when all connected components of G[R] are Eulerian.

Algorithm 3.1: Algorithm for the proof of Lemma 3.1
Input: A directed graph G with travel costs c, a multiset R of arcs of G such that G[R] consists of C Eulerian connected

components, and a set VR ⊆ V(G[R]) containing at least one vertex of each connected component of G[R].
Output: A closed walk traversing all arcs in R.

1 for i = 1, . . . ,C do
2 vi ← any vertex of VR in component i of G[R];
3 Ti ← Euler tour of connected component i of G[R] starting and ending in vi;

4 (VR, c′)← 4-ATSP instance on the vertices VR, where c′(vi, v j) := distG(vi, v j);
5 TVR ← α(|VR|)-approximate 4-ATSP solution for (VR, c′);
6 TG ← closed walk for G obtained by replacing each arc (vi, v j) on TVR by a shortest path from vi to v j in G;
7 T ← closed walk obtained by following TG and taking a detour Ti whenever reaching a vertex vi;
8 return T ;

– Let T̃ be any closed walk containing the vertices VR, and

– let T̂ be any feasible solution for I.

If n-vertex 4-ATSP is α(n)-approximable in t(n) time, then
Algorithm 3.2 applied to I and VR returns a feasible solution of
cost at most c(T̂ ) + α(C) · c(T̃ ) in t(C) + O(n3 log n) time.

Proof. For the sake of self-containment, we first prove that Al-
gorithm 3.2 in line 2 indeed computes a minimum-cost arc set R∗

such that all vertices in G[R ] R∗] are balanced. This follows
from the one-to-one correspondence between arc multisets R′

such that G[R ] R′] has only balanced vertices and flows f
for the UMCF instance I′ := (G, balanceG[R], c): Each vertex v
has balanceG[R](v) more incident in-arcs than out-arcs in G[R]
and, thus, in order for balanceG[R]R′](v) = 0 to hold, R′ has
to contain balanceG[R](v) more out-arcs than in-arcs incident
to v. Likewise, by (FC), in any feasible flow for I′, there are
balanceG[R](v) more units of flow leaving v than entering v.

Thus, from a multiset R′ of arcs such that G[R ] R′] is bal-
anced, we get a feasible flow f for I′ by setting f (v,w) to the
multiplicity of the arc (v,w) in R′. From a feasible flow f
for I′, we get a multiset R′ of arcs such that G[R ] R′] is bal-
anced by adding to R′ each arc (v,w) with multiplicity f (v,w).
We conclude that the arc multiset R∗ computed in line 2 is a
minimum-cost set such that G[R ] R∗] is balanced: A set of
lower cost would yield a flow cheaper than the optimum flow f
computed in line 2.

We use the optimality of R∗ to give an upper bound on the
cost of the closed walk T computed in line 2. Since VR contains
exactly one vertex of each connected component of G[R], it con-
tains at least one vertex of each connected component of G[R ]
R∗]. Therefore, Algorithm 3.1 is applicable to (G, c,R ] R∗)

and, by Lemma 3.1, yields a closed walk in G traversing all arcs
in R]R∗ and having cost at most c(R]R∗) +α(|VR|) · c(T̃ ). This
is a feasible solution for (G, c,R) and, since by Observation 3.3,
we have c(R ] R∗) ≤ c(T̂ ), it follows that this feasible solution
has cost at most c(T̂ ) + α(C) · c(T̃ ).

Finally, the running time of Algorithm 3.2 follows from the
fact that the minimum-cost flow in line 2 is computable in
O(n3 log n) time [1, Theorem 10.34] and that Algorithm 3.1
runs in t(C) + O(n3) time (Lemma 3.1). �

We may now prove Theorem 1.7(i).

Proof of Theorem 1.7(i). Let (G, c,R) be an instance of DRPP
and let VR be a set of vertices containing exactly one vertex of
each connected component of G[R]. An optimal solution T ∗

for I contains all arcs in R and all vertices in VR and hence, by
Lemma 3.5, Algorithm 3.2 computes a feasible solution T with
c(T ) ≤ c(T ∗) + α(C) · c(T ∗) for I. �

Before generalizing Algorithm 3.2 to MWRPP, we point out
two design choices in the algorithm that allowed us to prove
an approximation factor. Algorithm 3.2 has two steps: It first
adds a minimum-weight set R∗ of required arcs so that G[R ]
R∗] has Eulerian connected components. Then, these connected
components are connected using a cycle via Algorithm 3.1.

In the first step, it might be tempting to add a minimum-
weight set R′ of required arcs so that each connected component
of G[R] becomes an Eulerian connected component of G[R]R′].
However, this set R′ might be more expensive than R∗: Multiple
non-Eulerian connected components of G[R] might be contained
in one Eulerian connected component of G[R ] R∗].
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Algorithm 3.2: Algorithm for the proof of Lemma 3.5.
Input: A DRPP instance I = (G, c,R) such that G[R] has C connected components and a set VR of vertices, one of each

connected component of G[R].
Output: A feasible solution for I.

1 f ← minimum-cost flow for the UMCF instance (G, balanceG[R], c);
2 foreach a ∈ A(G) do add arc a with multiplicity f (a) to (initially empty) multiset R∗;
3 T ← closed walk computed by Algorithm 3.1 applied to (G, c,R ] R∗) and VR;
4 return T ;

In the second step, it is crucial to connect the connected
components of G[R ] R∗] using a cycle. Christofides et al.
[11] and Corberán et al. [13], for example, reverse the two
phases of the algorithm and first join the connected components
of G[R] using a minimum-weight arborescence or spanning
tree, respectively. This, however, may increase the imbalance
of vertices and, thus, the weight of the arc set R∗ that has to
be added in their second phase in order to balance the vertices
of G[R ] R∗].

Interestingly, the heuristic of Corberán et al. [13] aims to
find a minimum-weight connecting arc set so that the resulting
graph can be balanced at low extra cost and already Pearn and
Wu [36] pointed out that, in context of the (undirected) RPP,
reversing the steps in the algorithm of Christofides et al. [11]
can be beneficial.

3.3 Mixed and windy Rural Postman

In the previous section, we presented Algorithm 3.2 for DRPP in
order to prove Theorem 1.7(i). We now generalize it to MWRPP
in order to prove Theorem 1.7(ii).

To this end, we replace each undirected edge {u, v} in an
MWRPP instance by two directed arcs (u, v) and (v, u), where
we force the undirected required edges of the MWRPP instance
to be traversed in the cheaper direction:

Lemma 3.6. Let I := (G, c,R) be an MWRPP instance and
let I′ := (G′, c,R′) be the DRPP instance obtained from I as
follows:

– G′ is obtained by replacing each edge {u, v} of G by two
arcs (u, v) and (v, u),

– R′ is obtained from R by replacing each edge {u, v} ∈ R by
an arc (u, v) if c(u, v) ≤ c(v, u) and by (v, u) otherwise.

Then,

(i) each feasible solution T ′ for I′ is a feasible solution of the
same cost for I and,

(ii) for each feasible solution T for I, there is a feasible solu-
tion T ′ for I′ with c(T ′) < 3c(T ).

Proof. Statement (i) is obvious since each required edge of I
is served by T ′ in at least one direction. Moreover, the cost
functions in I and I′ are the same.

Towards (ii), let T be a feasible solution for I, that is, T is a
closed walk that traverses all required arcs and edges of I. We
show how to transform T into a feasible solution for I′. Let (u, v)
be an arbitrary required arc of I′ that is not traversed by T . Then,
I contains a required edge {u, v} and T contains arc (v, u) of I′.
Moreover, c(u, v) ≤ c(v, u). Thus, we can replace (v, u) on T by

the sequence of arcs (v, u), (u, v), (v, u). This sequence serves
the required arc (u, v) of I′ and costs c(v, u) + c(u, v) + c(v, u) ≤
3c(u, v). �

Using Lemma 3.6, it is easy to prove Theorem 1.7(ii).

Proof of Theorem 1.7(ii). Given an MWRPP instance I =

(G, c,R), compute a DRPP instance I′ := (G′, c,R′) as described
in Lemma 3.6. This can be done in linear time.

Let VR be a set of vertices containing exactly one vertex of
each connected component of G′[R′] and let T ∗ be an optimal
solution for I. Observe that T ∗ is not necessarily a feasible
solution for I′, since it might serve required arcs of I′ in the
wrong direction. Yet T ∗ is a closed walk in G′ visiting all
vertices of VR. Moreover, by Lemma 3.6, I′ has a feasible
solution T ′ with c(T ′) ≤ 3c(T ∗).

Thus, applying Algorithm 3.2 to I′ and VR yields a feasible
solution T of cost at most c(T ′) +α(C) · c(T ∗) ≤ 3c(T ∗) +α(C) ·
c(T ∗) due to Lemma 3.5. Finally, T is also a feasible solution
for I by Lemma 3.6. �

Remark 3.7. If a required edge {u, v} has c(u, v) = c(v, u), then
we replace it by two arcs (u, v) and (v, u) in the input graph G and
replace {u, v} by an arbitrary one of them in the set R of required
arcs without influencing the approximation factor. This gives a
lot of room for experimenting with heuristics that “optimally”
orient undirected required edges when converting MWRPP to
DRPP [13, 34]. Indeed, we will do so in Section 5.

4 Capacitated Arc Routing

We now present our approximation algorithm for MWCARP,
thus proving Theorem 1.7(iii). Our algorithm follows the “route
first, cluster second”-approach [3, 23, 31, 40, 41] and exploits
the fact that joining all vehicle tours of a solution gives an
MWRPP tour traversing all positive-demand arcs and the depot.
Thus, in order to approximate MWCARP, the idea is to first
compute an approximate MWRPP tour and then split it into
subtours, each of which can be served by a vehicle of capacity Q.
Then we close each subtour by shortest paths via the depot. We
now describe our approximation algorithm for MWCARP in
detail. For convenience, we use the following notation.

Definition 4.1 (Demand arc). For a mixed graph G = (V, A, E)
with demand function d : E ∪ A→ N ∪ {0}, we define

Rd := {a ∈ E ∪ A | d(a) > 0}

to be the set of demand arcs.

We construct MWCARP solutions from what we call feasible
splittings of MWRPP tours T .
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Definition 4.2 (Feasible splitting). For an MWCARP in-
stance I = (G, v0, c, d,Q), let T be a closed walk containing
all arcs in Rd and W = (w1, . . . ,w`) be a tuple of segments of T .
In the following, we abuse notation and refer by W to both the
tuple and the set of walks it contains.

Consider a serving function s : W → 2Rd that assigns to each
walk w the set s(w) of arcs in Rd that it serves. We call (W, s) a
feasible splitting of T if the following conditions hold:

(i) the walks in W are mutually non-overlapping segments
of T ,

(ii) when concatenating the walks in W in order, we obtain a
subsequence of T ,

(iii) each wi ∈ W begins and ends with an arc in s(wi),

(iv) {s(wi) | wi ∈ W} is a partition of Rd, and

(v) for each wi ∈ W, we have
∑

e∈s(wi) d(e) ≤ Q and, if i < `,
then
∑

e∈s(wi) d(e)+d(a) > Q, where a is the first arc served
by wi+1.

Constructing feasible splittings. Given an MWCARP in-
stance I = (G, v0, c, d,Q), a feasible splitting (W, s) of a closed
walk T that traverses all arcs in Rd can be computed in linear
time using the following greedy strategy. We assume that each
arc has demand at most Q since otherwise I has no feasible so-
lution. Now, traverse T , successively defining subwalks w ∈ W
and the corresponding sets s(w) one at a time. The traversal
starts with the first arc a ∈ Rd of T and by creating a sub-
walk w consisting only of a and s(w) = {a}. On discovery of a
still unserved arc a ∈ Rd \ (

⋃
w′∈W s(w′)) do the following. If∑

e∈s(w) d(e) + d(a) ≤ Q, then add a to s(w) and append to w the
subwalk of T that was traversed since discovery of the previous
unserved arc in Rd. Otherwise, mark w and s(w) as finished,
start a new tour w ∈ W with a as the first arc, set s(w) = {a}, and
continue the traversal of T . If no such arc a is found, then stop.
It is not hard to verify that (W, s) is indeed a feasible splitting.

The algorithm. Algorithm 4.1 constructs an MWCARP solu-
tion from an approximate MWRPP solution T containing all
demand arcs and the depot v0. In order to ensure that T con-
tains v0, Algorithm 4.1 assumes that the input graph has a de-
mand loop (v0, v0): If this loop is not present, we can add it
with zero cost. Note that, while this does not change the cost of
an optimal solution, it might increase the number of connected
components in the subgraph induced by demand arcs by one.
To compute an MWCARP solution from T , Algorithm 4.1 first
computes a feasible splitting (W, s) of T . To each walk wi ∈ W,
it then adds a shortest path from the end of wi to the start of wi

via the depot. It is not hard to check that Algorithm 4.1 indeed
outputs a feasible solution by using the properties of feasible
splittings and the fact that T contains all demand arcs.

Remark 4.3. Instead of computing a feasible splitting of T
greedily, Algorithm 4.1 could compute a splitting of T into
pairwise non-overlapping segments that provably minimizes the
cost of the resulting MWCARP solution [4, 31, 40, 41]. Indeed,
we will do so in our experiments in Section 5. For the analysis
of the approximation factor, however, the greedy splitting is
sufficient and more handy, since the analysis can exploit that

two consecutive segments of a feasible splitting serve more than
Q units of demand (excluding, possibly, the last segment).

The remainder of this section is devoted to the analysis of the
solution cost, thus proving the following proposition, which,
together with Theorem 1.7(ii), yields Theorem 1.7(iii).

Proposition 4.4. Let I = (G, v0, c, d,Q) be an MWCARP in-
stance and let I′ be the instance obtained from I by adding a
zero-cost demand arc (v0, v0) if it is not present.

If MWRPP is β(C)-approximable in t(n) time, then Algo-
rithm 4.1 applied to I′ computes a (8β(C + 1) + 3)-approxima-
tion for I in t(C + 1) + O(n3) time. Herein, C is the number of
connected components in G[Rd].

The following lemma follows from the fact that the concatena-
tion of all vehicle tours in any MWCARP solution yields an
MWRPP tour containing all demand arcs and the depot.

Lemma 4.5. Let I = (G, v0, c, d,Q) be an MWCARP instance
with (v0, v0) ∈ Rd and an optimal solution (W∗, s∗). The closed
walk T and its feasible splitting (W, s) computed in lines 3 and 3
of Algorithm 4.1 satisfy c(W) ≤ c(T ) ≤ β(C)c(W∗), where C is
the number of connected components in G[Rd].

Proof. Consider an optimal solution (W∗, s∗) to I. The closed
walks in W∗ visit all arcs in Rd. Concatenating them to a
closed walk T ∗ gives a feasible solution for the MWRPP in-
stance I′ = (G, c,Rd) in line 3 of Algorithm 4.1. Moreover,
c(T ∗) = c(W∗). Thus, we have c(T ) ≤ β(C)c(T ∗) in line 3. More-
over, by Definition 4.2(i), one has c(W) ≤ c(T ). This finally
implies c(W) ≤ c(T ) ≤ β(C)c(T ∗) = β(C)c(W∗) in line 3. �

For each wi ∈ W, it remains to analyze the length of the shortest
paths from v0 to wi and from wi to v0 added in line 3 of Algo-
rithm 4.1. We bound their lengths in the lengths of an auxiliary
walk A(wi) from v0 to wi and of an auxiliary walk Z(wi) from wi

to v0. The auxiliary walks A(wi) and Z(wi) consist of arcs of W,
whose total cost is bounded by Lemma 4.5, and of arcs of an op-
timal solution (W∗, s∗). We show that, in total, the walks A(wi)
and Z(wi) for all wi ∈ W use each subwalk of W and W∗ at most
a constant number of times. To this end, we group the walks
in W into consecutive pairs, for each of which we will be able to
charge the cost of the auxiliary walks to a distinct vehicle tour
of the optimal solution.

Definition 4.6 (Consecutive pairing). For a feasible split-
ting (W, s) with W = (w1, . . . ,w`), we call

W2 := {(w2i−1,w2i) | i ∈ {1, . . . , b`/2c}}

a consecutive pairing.

We can now show, by applying Hall’s theorem [29], that each
pair traverses an arc from a distinct tour of an optimal solution.

Lemma 4.7. Let I = (G, v0, c, d,Q) be an MWCARP instance
with an optimal solution (W∗, s∗) and let W2 be a consecu-
tive pairing of some feasible splitting (W, s). Then, there is
an injective map φ : W2 → W∗, (wi,wi+1) 7→ w∗ such that
(s(wi) ∪ s(wi+1)) ∩ s∗(w∗) , ∅.

Proof. Define an undirected bipartite graph B with the partite
sets W2 and W∗. A pair (wi,wi+1) ∈ W2 and a closed walk w∗ ∈
W∗ are adjacent in B if (s(wi)∪ s(wi+1))∩ s∗(w∗) , ∅. We prove
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Algorithm 4.1: Algorithm for the proof of Proposition 4.4.
Input: An MWCARP instance I = (G, v0, c, d,Q) such that (v0, v0) ∈ Rd and such that G[Rd] has C connected components.
Output: A feasible solution for I.
/* Compute a base tour containing all demand arcs and the depot */

1 I′ ← MWRPP instance (G, c,Rd);
2 T ← β(C)-approximate MWRPP tour for I′ starting and ending in v0;
/* Split the base tour into one tour for each vehicle */

3 (W, s)← a feasible splitting of T ;
4 foreach w ∈ W do
5 close w by adding shortest paths from v0 to s and from t to v0 in G, where s, t are the start and endpoints of w, respectively;

6 return (W, s);
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Figure 4.1: Illustration of Definition 4.8. Dotted lines are ancil-
lary lines. Thin arrows are walks. The braces along the bottom
show a consecutive pairing of walks wi−1, . . . ,wi+2. Bold arcs
are pivot arcs. Here, p(i) is exactly the pair that contains wi

and q(i) is the next pair.

that B allows for a matching that matches each vertex of W2

to some vertex in W∗. To this end, by Hall’s theorem [29], it
suffices to prove that, for each subset S ⊆ W2, it holds that
|NB(S )| ≥ |S |, where NB(S ) :=

⋃
v∈S NB(v) and NB(v) is the set

of neighbors of a vertex v in B. Observe that, by Definition 4.2(v)
of feasible splittings, for each pair (wi,wi+1) ∈ W2, we have
d(s(wi) ∪ s(wi+1)) ≥ Q. Since the pairs serve pairwise disjoint
sets of demand arcs by Definition 4.2(iv), the pairs in S serve a
total demand of at least Q · |S | in the closed walks NB(S ) ⊆ W∗.
Since each closed walk in NB(S ) serves demand at most Q, the
set NB(S ) is at least as large as S , as required. �

In the following, we fix an arbitrary arc in (s(wi) ∪ s(wi+1)) ∩
s∗(w∗) for each pair (wi,wi+1) ∈ W2 and call it the pivot arc
of (wi,wi+1). Informally, the auxiliary walks A(wi), Z(wi) men-
tioned before are constructed as follows for each walk wi. To
get from the endpoint of wi to v0, walk along the closed walk T
until traversing the first pivot arc a, then from the head of a to v0
follow the tour of W∗ containing a. To get from v0 to wi, take the
symmetric approach: walk backwards on T from the start point
of wi until traversing a pivot arc a and then follow the tour of W∗

containing a. The formal definition of the auxiliary walks A(w)
and Z(w) is given below and illustrated in Figure 4.1.

Definition 4.8 (Auxiliary walks). Let I = (G, v0, c, d,Q) be an
MWCARP instance, (W∗, s∗) be an optimal solution, and W2 be
a consecutive pairing of some feasible splitting (W, s) of a closed
walk T containing all arcs Rd and v0, where W = (w1, . . . ,w`).

Let φ : W2 → W∗ be an injective map as in Lemma 4.7 and,
for each pair (wi,wi+1) ∈ W2, let

A∗(wi,wi+1) be a subwalk of φ(wi,wi+1) from v0 to the tail of
the pivot arc of (wi,wi+1),

Z∗(wi,wi+1) be a subwalk of φ(wi,wi+1) from the head of the
pivot arc of (wi,wi+1) to v0.

For each walk wi ∈ W with i ≥ 3 (that is, wi is not in the first
pair of W2), let

p(i) be the index of the pair whose pivot arc is traversed first
when walking T backwards starting from the starting
point of wi,

A′(wi) be the subwalk of T starting at the end point of
A∗(w2p(i)−1,w2p(i)) and ending at the start point of wi,
and

A(wi) be the walk from v0 to the start point of wi following
first A∗(w2p(i)−1,w2p(i)) and then A′(wi).

For each walk wi ∈ W with i ≤ ` − 3 (that is, wi is not in the last
pair of W2, where w` might not be in any pair if ` is odd), let

q(i) be the index of the pair whose pivot arc is traversed first
when following T starting from the end point of wi,

Z′(wi) be the subwalk of T starting at the end point of wi and
ending at the start point of Z∗(w2q(i)−1,w2q(i)), and

Z(wi) be the walk from the end point of wi to v0 following
first Z′(wi) and then Z∗(w2q(i)−1,w2q(i)).

We are now ready to prove Proposition 4.4, which also concludes
our proof of Theorem 1.7.

Proof of Proposition 4.4. Let I = (G, v0, c, d,Q) be an MWRPP
instance and (W∗, s∗) be an optimal solution. If there is no
demand arc (v0, v0) in I, then we add it with zero cost in order
to make Algorithm 4.1 applicable. This clearly does not change
the cost of an optimal solution but may increase the number of
connected components of G[Rd] to C + 1.

In lines 3 and 3, Algorithm 4.1 computes a tour T and its
feasible splitting (W, s), which works in t(C + 1) + O(n3) time
by Theorem 1.7(ii). Denote W = (w1, . . . ,w`). The solution
returned by Algorithm 4.1 consists, for each 1 ≤ i ≤ `, of a
tour starting in v0, following a shortest path to the starting point
of wi, then wi, and a shortest path back to v0.

For i ≥ 3, the shortest path from v0 to the starting point of wi

has length at most c(A(wi)). For i ≤ ` − 3, the shortest path
from the end point of wi to v0 has length at most c(Z(wi)). This
amounts to

∑`
i=3 c(A(wi)) +

∑`−3
i=1 c(Z(wi)). To bound the costs
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Figure 4.2: Illustration of the situation in which a maximum number of five different walks in W traverse the same pivot arc (the
bold arc of wi) in their respective auxiliary walks.

of the shortest paths attached to wi for i ∈ {1, 2, ` − 2, ` − 1, `},
observe the following. For each i ∈ {1, 2}, the shortest paths
from v0 to the start point of wi and from the end point of w`−i

to v0 together have length at most c(T ). The shortest path from
the end point of w` to v0 has length at most c(T ) − c(W). Thus,
the solution returned by Algorithm 4.1 has cost at most

∑̀
i=1

c(wi) +
∑̀
i=3

c(A(wi)) +

`−3∑
i=1

c(Z(wi)) + 3c(T ) − c(W)

=
∑̀
i=3

c(A(wi)) +

`−3∑
i=1

c(Z(wi)) + 3c(T )

= 3c(T ) +

+
∑̀
i=3

c(A∗(w2p(i)−1,w2p(i))) +

`−3∑
i=1

c(Z∗(w2q(i)−1,w2q(i))) +

(S1)

+
∑̀
i=3

c(A′(wi)) +

`−3∑
i=1

c(Z′(wi)). (S2)

Observe that, for a fixed i, one has p(i) = p( j) only for j ≤ i + 2
and q(i) = q( j) only for j ≥ i − 2. Moreover, by Lemma 4.7
and Definition 4.8, if p(i) , p( j), then A∗(w2p(i)−1,w2p(i)) and
A∗(w2p( j)−1,w2p( j)) are subwalks of distinct walks of W∗. Simi-
larly, Z∗(w2q(i)−1,w2q(i)) and Z∗(w2q( j)−1,w2q( j)) are subwalks of
distinct walks of W∗ if q(i) , q( j). Hence, sum (S1) counts each
arc of W∗ at most three times and is therefore bounded from
above by 3c(W∗).

Now, for a walk wi, let Ai be the set of walks w j such that
any arc a of wi is contained in A′(w j) and let Zi be the set of
walks such that any arc a of wi is contained in Z′(w j). Observe
that A′(w j) and Z′(w j) cannot completely contain two walks
of the same pair of the consecutive pairing W2 of W since, by
Lemma 4.7, each pair has a pivot arc and A′(w j) and Z′(w j) both
stop after traversing a pivot arc. Hence, the walks inAi∪Zi can
be from at most three pairs of W2: the pair containing wi and
the two neighboring pairs. Finally, observe that wi itself is not
contained inAi ∪Zi. Thus,Ai ∪Zi contains at most five walks
(Figure 4.2 shows a worst-case example). Therefore, sum (S2)
counts every arc of W at most five times and is bounded from
above by 5c(W).

Thus, Algorithm 4.1 returns a solution of cost 3c(T )+5c(W)+

3c(W∗) which, by Lemma 4.5, is at most 8c(T ) + 3c(W∗) ≤
8β(C + 1)c(W∗) + 3c(W∗) ≤ (8β(C + 1) + 3)c(W∗). �

5 Experiments

Our approximation algorithm for MWCARP is one of many
“route first, cluster second”-approaches, which was first applied
to CARP by Ulusoy [40] and led to constant-factor approxima-
tions for the undirected CARP [31, 41]. Notably, Belenguer et al.
[4] implemented Ulusoy’s heuristic [40] for the mixed CARP
by computing the base tour using path scanning heuristics. Our
experimental evaluation will show that Ulusoy’s heuristic can
be substantially improved by computing the base tour using our
Theorem 1.7(ii).

For the evaluation, we use the mval and lpr benchmark sets
of Belenguer et al. [4] for the mixed (but non-windy) CARP and
the egl-large benchmark set of Brandão and Eglese [10] for
the (undirected) CARP. We chose these benchmark sets because
relatively good lower bounds to compare with are known [9, 27].
Moreover, the egl-large set is of particular interest since it
contains large instances derived from real road networks and
the mval and lpr sets are of particular interest since Belenguer
et al. [4] used them to evaluate their variant of Ulusoy’s heuristic
[40], which is very similar to our algorithm.

In the following, Section 5.1 describes some heuristic en-
hancements of our algorithm, Section 5.2 interprets our experi-
mental results, and Section 5.3 describes an approach to trans-
form instances of existing benchmark sets into instances whose
positive-demand arcs induce a moderate number of connected
components.

5.1 Implementation details

Since our main goal is evaluating the solution quality rather than
the running time of our algorithm, we sacrificed speed for sim-
plicity and implemented it in Python.1 Thus, the running time
of our implementation is not competitive to the implementations
by Belenguer et al. [4] and Brandão and Eglese [10].2 However,

1Source code available at http://gitlab.com/rvb/mwcarp-approx
2We do not provide running time measurements since we processed many

instances in parallel, which does not yield reliable measurements.
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it is clear that a careful implementation of our algorithm in C++

will yield competitive running times: The most expensive steps
of our algorithm are the Floyd-Warshall all-pair shortest path
algorithm [20], which is also used by Belenguer et al. [4] and
Brandão and Eglese [10], and the computation of an uncapaci-
tated minimum-cost flow, algorithms for which are contained in
highly optimized C++ libraries like LEMON.3

In the following, we describe heuristic improvements over
the algorithms presented in Sections 3 and 4, which were de-
scribed there so as to conveniently prove upper bounds rather
than focusing on good solutions.

5.1.1 Joining connected components

We observed that, in all but one instance of the egl-large,
lpr, and mval benchmark sets, the set of positive-demand arcs
induce only one connected component. Therefore, connecting
them is usually not necessary and the call to Algorithm 3.1 in
Algorithm 3.2 can be skipped completely. If not, then, contrary
to the description of Algorithm 3.1, we do not arbitrarily select
one vertex from each connected component and join them using
an approximate 4-ATSP tour as in Algorithm 3.1 or using an
optimal 4-ATSP tour as for Corollary 1.8.

Instead, using brute force, we try all possibilities of choosing
one vertex from each connected component and connecting them
using a cycle and choose the cheapest variant. If the positive-
demand arcs induce C connected components, then this takes
O(nC · C! + n3) time in an n-vertex graph. That is, for C ≤ 3,
implementing Algorithm 3.1 in this way does not increase its
asymptotic time complexity.

5.1.2 Choosing service direction

The instances in the egl-large, lpr, and mval benchmark sets
are not windy. Thus, as pointed out in Remark 3.7, when com-
puting the MWRPP base tour, we are free to choose whether to
replace a required undirected edge {u, v} by a required arc (u, v)
or a required arc (v, u) (and adding the opposite non-required arc)
without increasing the approximation factor in Theorem 1.7(ii).

We thus implemented several heuristics for choosing what we
call the service direction of the undirected edge {u, v}. Some of
these heuristics choose the service direction independently for
each undirected edge, similarly to Corberán et al. [13], others
choose it for whole undirected paths and cycles, similarly to
Mourão and Amado [34].

We now describe these heuristics in detail. To this end, let
G denote our input graph and R be the set of required arcs.

EO(R) assigns one of the two possible service directions to
each undirected edge uniformly at random.

EO(P) replaces each undirected edge {u, v} ∈ R by an
arc (u, v) ∈ R if balanceG[R](v) < balanceG[R](u), by
an arc (v, u) ∈ R if balanceG[R](v) > balanceG[R](u), and
chooses a random service direction otherwise.

EO(S) randomly chooses one endpoint v of each undirected
edge {u, v} ∈ R and replaces it by an arc (u, v) ∈ R if
balanceG[R](v) < 0 and by (v, u) ∈ R otherwise.

3http://lemon.cs.elte.hu/

Herein, “EO” is for “edge orientation”. The “R” in parentheses
is for “random”, the “P” for “pair” (since it levels the balances
of pairs of vertices), and the “S” is for “single” (since it mini-
mizes | balance(v)| of a single random endpoint v of the edge).

In addition, we experiment with three heuristics that do not
orient independent edges but long undirected paths. Herein, the
aim is that a vehicle will be able to serve all arcs resulting from
such a path in one run.

First, the heuristics repeatedly search for undirected cycles
in G[R] and replace them by directed cycles in R. When no
undirected cycle is left, then the undirected edges of G[R] form
a forest. The heuristics then repeatedly search for a longest undi-
rected path in G[R] and choose its service direction as follows.

PO(R) assigns the service direction randomly.

PO(P) assigns the service direction by leveling the balance of
the endpoints of the path, analogously to EO(P).

PO(S) assigns the service direction so as to minimize
| balance(v)| for a random endpoint v of the path, analo-
gously to EO(S).

Generally, we observed that these heuristics first find three or
four long paths with lengths from 5 up to 15. Then, the length
of the found paths quickly decreases: In most instances, at least
half of all found paths have length one, at least 3/4 of all found
paths have length at most two.

We now present experimental results for each of these six
heuristics.

5.1.3 Tour splitting

As pointed out in Remark 4.3, the MWRPP base tour initially
computed in Algorithm 4.1 can be split into pairwise non-
overlapping subsequences so as to minimize the total cost of the
resulting vehicle tours. To this end, we apply an approach of
Beasley [3] and Ulusoy [40], which by now can be considered
folklore [4, 31, 41] and works as follows.

Denote the positive-demand arcs on the MWRPP base tour
as a sequence a1, . . . , a`. To compute the optimal splitting, we
create an auxiliary graph with the vertices 1, . . . , ` + 1. Between
each pair (i, j) of vertices, there is an edge whose weight is the
cost for serving all arcs ai, ai+1, . . . , a j−1 in this order using one
vehicle. That is, its cost is∞ if the demands of the arcs in this
segment exceed the vehicle capacity Q and otherwise it is the
cost for going from the depot v0 to the tail of ai, serving arcs ai

to a j−1, and returning from the head of a j−1 to the depot v. Then,
a shortest path from vertex 1 to ` + 1 in this auxiliary graph
gives an optimal splitting of the MWRPP base tour into mutually
non-overlapping subsequences.

Additionally, we implemented a trick of Belenguer et al.
[4] that takes into account that a vehicle may serve a seg-
ment ai, . . . , ak, ak+1 . . . , a j−1 by going to the tail of ak+1, serving
arcs ak+1 to a j−1, going from the head of a j−1 to the tail of ai,
serving arcs ai to ak, and finally returning from the head of ak

to the depot v0. Our implementation tries all such k and assigns
the cheapest resulting cost to the edge between the pair (i, j) of
vertices in the auxiliary graph.

Of course one could compute the optimal order for serving
the arcs of a segment ai, . . . , a j−1 from the depot v0, but this
would again be the NP-hard DRPP.
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5.2 Experimental results

Our experimental results for the lpr, mval, and egl-large
instances are presented in Tables 5.1 and 5.2. We grouped
the results for the lpr and mval instances into one table and
subsection since our conclusions about them are very similar.
We explain and interpret the tables in the following.

5.2.1 Results for the lpr and mval instances

Table 5.1 presents known results and our results for the lpr and
mval instances. Each column for our results was obtained by
running our algorithm with the corresponding service direction
heuristic described in Section 5.1.2 on each instance 20 times
and reporting the best result. The number 20 has been chosen
so that our results are comparable with those of Belenguer et al.
[4], who used the same number of runs for their path scanning
heuristic (column PSRC) and their “route first, cluster second”
heuristic (column IURL), which computes the base tour using
a path scanning heuristic and then splits it using all tricks de-
scribed in Section 5.1.3. Columns LB and UB report the best
lower and upper bounds computed by Belenguer et al. [4] and
Gouveia et al. [27] (usually not using polynomial-time algo-
rithms). Finally, column IM shows the result that Belenguer
et al. [4] obtained using an improved variant of the “augment
and merge” heuristic due to Golden and Wong [25].

Table 5.1 shows that our algorithm with the EO(S) service
direction heuristic solved three instances optimally, which other
polynomial-time heuristics did not. The EO(P) heuristic solved
one instance optimally, which also other polynomial-time heuris-
tics did not. Moreover, whenever no variant of our algorithm
finds the best result, then some variant yields the second best.
It is outperformed only by IM in 26 out of 49 instances and
by IURL in only one instance. Apparently, our algorithm out-
performs PSRC and IURL. Notably, IURL differs from our
algorithm only in computing the base tour heuristically instead
of using our Theorem 1.7(ii). Thus, “route first, cluster second”
heuristics seem to benefit from computing the base tour using
our MWRPP approximation algorithm.

Remarkably, when our algorithm yields the best result using
one of the service direction heuristics described in Section 5.1.2,
then usually other service direction heuristics also find the best
or at least the second best solution. Thus, the choice of the
service direction heuristic does not play a strong role. Indeed,
we also experimented with repeating our algorithm 20 times on
each instance, each time choosing the service direction heuristic
randomly. The results come close to choosing the best heuristic
for each instance.

5.2.2 Results for the egl-large instances

Table 5.2 reports known results and our results for the
egl-large benchmark set. Again, each column for our results
was obtained by running our algorithm with the corresponding
service direction heuristic described in Section 5.1.2 on each
instance 20 times. The column LB reports lower bounds by
Bode and Irnich [9], the column UB shows the upper bound that
Brandão and Eglese [10] obtained using their tabu-search algo-
rithm (which generally does not run in polynomial time). The
column PS shows the cost of the initial solution that Brandão
and Eglese [10] computed for their tabu-search algorithm using

a path scanning heuristic. Brandão and Eglese [10] implemented
several polynomial-time heuristics for computing these initial
solution. Among them, “route first, cluster second” approaches
and “augment and merge” heuristics. In their work, path scan-
ning yielded the best initial solutions. In Table 5.2, we see that
our algorithm clearly outperforms it. Moreover, we see that es-
pecially our PO service direction heuristics are successful. This
is because the egl-large instances are undirected and, thus,
contain many cycles consisting of undirected positive-demand
arcs that can be directed by our PO heuristics without increasing
the imbalance of vertices.

5.3 The Ob benchmark set

Given our theoretical work in Sections 3 and 4, the solution
quality achievable in polynomial time appears to mainly depend
on the number C on connected components in the graph induced
by the positive-demand arcs. However, we noticed that widely
used benchmark instances for variants of CARP have C = 1. In
order to motivate a more representative evaluation of the quality
of polynomial-time heuristics for variants of CARP, we provide
the Ob set of instances derived from the lpr and egl-large
instances with C from 2 to 5. The approach can be easily used
to create more components.

The Ob instances4 simulate cities that are divided by a river
that can be crossed via a few bridges without demand. The
underlying assumption is that, for example, household waste
does not have to be collected from bridges. We generated the
instances as follows.

As a base, we took sufficiently large instances from the lpr
and egl-large sets (it made little sense to split the small mval
or lpr instances into several components). In each instance, we
chose one or two random edges or arcs as “bridges”. Let B be the
set of their end points. We then grouped all vertices of the graph
into clusters: For each v ∈ B, there is one cluster containing
all vertices that are closer to v than to all other vertices of B.
Finally, we deleted all but a few edges between the clusters, so
that usually two or three edges remain between each pair of
clusters. The demand of the edges remaining between clusters is
set to zero, they are our “bridges” between the river banks. The
intuition is that, if one of our initially chosen edges or arcs (u, v)
was a bridge across a relatively straight river, then indeed every
point on u’s side of the river would be closer to u than to v.
We discarded and regenerated instances that were not strongly
connected or had river sides of highly imbalanced size (three
times below the average component size). Figure 5.1 shows
three of the resulting instances.

Note that this approach can yield instances where C exceeds
the number of clusters since deleting edges between the clusters
may create more connected components in the graph induced
by the positive-demand arcs. The approach straightforwardly
applies to generating instances with even larger C: One simply
chooses more initial “bridges”.

As a starting point, Table 5.3 shows the number C, a lower
bound (LB) computed using an ILP relaxation of Gouveia et al.
[27], and the best upper bound obtained using our approximation
algorithm for each of the Ob instances using any of the service
direction heuristics in Section 5.1.2. The “ob-” instances were

4Available at http://gitlab.com/rvb/mwcarp-ob and named after the
river Ob, which bisects the city Novosibirsk.
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Table 5.1: Known results [4, 27] and our results for the lpr and mval instances. See Section 5.2.1 for a description of the table.
The best polynomial-time computed upper bound is written in boldface, the second best is underlined, names of instances solved
optimally by our algorithms are also written in boldface.

Known results Our results
Instance LB UB PSRC IM IURL EO(R) EO(P) EO(S) PO(R) PO(P) PO(S)

lpr-a-01 13 484 13 484 13 600 13 597 13 537 13 484 13 484 13 484 13 484 13 484 13 484
lpr-a-02 28 052 28 052 29 094 28 377 28 586 28 225 28 381 28 356 28 239 28 381 28 356
lpr-a-03 76 115 76 155 79 083 77 331 78 151 77 019 76 783 76 964 76 951 76 783 76 820
lpr-a-04 126 946 127 352 133 055 128 566 131 884 130 470 130 137 130 255 130 198 130 171 130 186
lpr-a-05 202 736 205 499 215 153 207 597 212 167 210 328 209 980 210 265 210 235 210 139 210 344
lpr-b-01 14 835 14 835 15 047 14 918 14 868 14 869 14 869 14 835 14 835 14 835 14 835
lpr-b-02 28 654 28 654 29 522 29 285 28 947 28 749 28 689 28 689 28 757 28 790 28 727
lpr-b-03 77 859 77 878 80 017 80 591 79 910 78 428 78 745 78 853 78 645 78 810 78 743
lpr-b-04 126 932 127 454 133 954 129 449 132 241 130 024 130 024 130 024 130 076 130 024 130 024
lpr-b-05 209 791 211 771 223 473 215 883 219 702 217 024 216 769 216 459 217 079 216 639 216 659
lpr-c-01 18 639 18 639 18 897 18 744 18 706 18 943 18 695 18 732 18 708 18 752 18 752
lpr-c-02 36 339 36 339 36 929 36 485 36 763 37 177 36 649 36 856 36 723 36 711 36 662
lpr-c-03 111 117 111 632 115 763 112 462 114 539 115 399 114 438 114 888 114 336 114 335 114 290
lpr-c-04 168 441 169 254 174 416 171 823 173 161 174 088 172 089 172 902 172 637 172 172 172 365
lpr-c-05 257 890 259 937 268 368 262 089 266 058 266 637 263 989 264 947 264 911 264 263 264 665

Instance LB UB PSRC IM IURL EO(R) EO(P) EO(S) PO(R) PO(P) PO(S)

mval1A 230 230 243 243 231 245 230 238 234 239 234
mval1B 261 261 314 276 292 298 285 285 307 307 307
mval1C 309 315 427 352 357 367 362 362 367 372 370
mval2A 324 324 409 360 374 397 353 324 369 369 368
mval2B 395 395 471 407 434 431 424 424 424 424 424
mval2C 521 526 644 560 601 621 622 592 600 624 594
mval3A 115 115 133 119 128 131 129 125 122 121 121
mval3B 142 142 162 163 150 151 148 151 149 147 147
mval3C 166 166 191 174 192 194 190 189 194 200 200
mval4A 580 580 699 653 684 648 622 645 651 647 647
mval4B 650 650 775 693 737 709 687 709 690 674 682
mval4C 630 630 828 702 740 750 721 736 714 722 722
mval4D 746 770 1015 810 905 875 871 852 872 879 870
mval5A 597 597 733 686 683 672 619 652 614 649 644
mval5B 613 613 718 677 677 687 662 685 653 653 654
mval5C 697 697 809 743 811 788 773 778 783 804 783
mval5D 719 739 883 821 855 859 840 854 845 840 836
mval6A 326 326 392 370 367 348 347 348 344 351 350
mval6B 317 317 406 346 354 345 331 354 351 343 347
mval6C 365 371 526 402 444 455 435 435 461 454 454
mval7A 364 364 439 381 390 428 386 411 404 398 398
mval7B 412 412 507 470 491 474 435 463 460 460 454
mval7C 424 426 578 451 504 507 474 483 489 482 482
mval8A 581 581 666 639 651 648 635 635 639 627 641
mval8B 531 531 619 568 611 616 582 592 596 598 600
mval8C 617 638 842 718 762 799 737 729 776 764 779
mval9A 458 458 529 500 514 503 486 493 496 490 498
mval9B 453 453 552 534 502 518 504 503 503 523 506
mval9C 428 429 529 479 498 509 468 488 485 479 474
mval9D 514 520 695 575 622 627 603 610 612 613 608
mval10A 634 634 735 710 705 669 663 661 667 658 659
mval10B 661 661 753 717 714 708 687 693 703 703 698
mval10C 623 623 751 680 714 709 689 697 698 695 687
mval10D 643 649 847 706 760 778 739 763 775 743 722
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Table 5.2: Known results [9, 10] and our results for the egl-large instances. See Section 5.2.2 for a description of the table. The
best polynomial-time computed upper bound is written in boldface.

Known results Our results
Instance LB UB PS EO(R) EO(P) EO(S) PO(R) PO(P) PO(S)

egl-g1-A 976 907 1 049 708 1 318 092 1 258 206 1 181 928 1 209 108 1 153 029 1 158 233 1 141 457
egl-g1-B 1 093 884 1 140 692 1 483 179 1 367 979 1 306 521 1 328 250 1 293 095 1 308 350 1 297 606
egl-g1-C 1 212 151 1 282 270 1 584 177 1 523 183 1 456 305 1 463 009 1 432 281 1 424 722 1 430 841
egl-g1-D 1 341 918 1 420 126 1 744 159 1 684 343 1 609 822 1 609 537 1 586 294 1 601 588 1 580 634
egl-g1-E 1 482 176 1 583 133 1 841 023 1 829 244 1 769 977 1 780 089 1 716 612 1 748 308 1 755 700
egl-g2-A 1 069 536 1 129 229 1 416 720 1 372 177 1 276 871 1 304 618 1 263 263 1 249 293 1 255 120
egl-g2-B 1 185 221 1 255 907 1 559 464 1 517 245 1 410 385 1 449 553 1 398 162 1 405 916 1 404 533
egl-g2-C 1 311 339 1 418 145 1 704 234 1 661 596 1 594 147 1 597 266 1 538 036 1 532 913 1 544 214
egl-g2-D 1 446 680 1 516 103 1 918 757 1 812 309 1 728 840 1 741 351 1 695 333 1 694 448 1 704 080
egl-g2-E 1 581 459 1 701 681 1 998 355 1 962 802 1 883 953 1 908 339 1 851 436 1 861 134 1 861 469

(a) ob-egl-g2-E (b) ob-lpr-b-03 (c) ob2-lpr-b-05

Figure 5.1: Three instances from the Ob benchmark set.

generated by choosing one initial bridge, the “ob2-” instances
were generated by choosing two initial bridges.

6 Conclusion

Since our algorithm outperforms many other polynomial-time
heuristics, it is useful for computing good solutions in instances
that are still too large to be attacked by exact, local search, or
genetic algorithms. Moreover, it might be useful to use our
solution as initial solution for local search algorithms.

Our theoretical results show that one should not evaluate
polynomial-time heuristics only on instances whose positive-
demand arcs induce a graph with only one connected component,
because the solution quality achievable in polynomial time is
largely determined by this number of connected components.
Therefore, it would be interesting to see how other polynomial-
time heuristics, which do not take into account the number of
connected components in the graph induced by the positive-
demand arcs, compare to our algorithm in instances where this
number is larger than one.

Finally, we conclude with a theoretical question: It is easy
to show a 3-approximation for the Mixed Chinese Postman
problem using the approach in Section 3.3, yet Raghavachari
and Veerasamy [37] showed a 3/2-approximation. Can our
(α(C) + 3)-approximation for MWRPP in Theorem 1.7(ii) be
improved to an (α(C) + 3/2)-approximation analogously?
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