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Abstract

Multi-depot routing problems arise in distribution logistics where a set of vehicles based at several depots
are used to serve a number of clients. Most variants of this problem have the basic requirement that the
route of each vehicle starts and ends at the same depot. This paper describes new inequalities, namely multi-
cut constraints (MCC), that enforce this requirement in mathematical programming formulations of multi-depot
routing problems. The MCCs are exponential in size, and are equivalent to a compact three-index formulation for
the problem in terms of the associated linear programming relaxations. The paper describes how a generalization
of the MCCs can be obtained, in a similar manner, by using a stronger version of the three-index formulation.
The connection between the compact and the exponential formulations implies a separation procedure based
on max-flow/min-cut computations, which has reduced complexity in comparison with a previously known set
of constraints described for the same purpose. The new inequalities are used in a branch-and-cut algorithm.
Computational results are presented for instances with up to 300 clients and 60 depots.

Keywords: multi-depot routing; branch-and-cut; separation; traveling salesman; integer linear programming;
reformulation.
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1 Introduction

Multi-depot routing problems (MDRPs) arise in serving a set of clients from at least two depots, with at least one
vehicle available at each depot, and where the aim is to minimize the total cost of the routing, often measured by
the total distance traveled by all the vehicles. The depot locations can either be fixed, or are alternatively chosen
from a potential set of locations. The two types of restrictions that are typically found in such problems are that
(i) each client is served in one and only one route, and (ii) each route contains exactly one depot. The latter set of
constraints require further elaboration. In particular, if a route does not contain a depot, it will be one of client
nodes alone and disconnected from the depots. Inequalities that prevent the formation of such routes are known
as subtour elimination constraints. Alternatively, if a route contains two or more depots, this implies that there
exists a vehicle traveling on a path between two different depots. When a vehicle needs to return to its home
base after the travel, as is typically required in MDRPs, any such paths that exist between pairs of depots will
not be acceptable. We refer to such paths as infeasible paths, and to inequalities that disallow such paths as path
elimination constraints.

Valid mathematical programming formulations for MDRPs need to include sets of constraints to prohibit both
subtours and infeasible paths. Whilst the literature on subtour elimination constraints is rich (see, e.g., Öncan
et al. 2009, Godinho et al. 2011, Roberti & Toth 2012, for surveys on the topic), this is not the case for path
elimination constraints within multi-depot routing problems. Earlier work on such constraints goes as far back
as Laporte et al. (1983) in the context of location-routing problems, who describe the so-called chain barring
constraints. Later, Laporte et al. (1986) build on the chain barring constraints, leading to an improved set of
path elimination constraints which have been further improved by Benavent & Mart́ınez-Sykora (2013). These
inequalities have also been used in a recent study by Sundar & Rathinam (2017). A slightly different set of path
elimination constraints, based on a new set of variables, was proposed by Belenguer et al. (2011).

Benavent & Mart́ınez-Sykora (2013) describe one type of an MDRP that is very similar to one of the variants
investigated in this paper. The authors present the multi-depot multiple TSP (MDMTSP) and study the related
polyhedron, where they show that the path elimination constraints used in their problem are facet-defining under
very mild conditions. In addition, they present the conditions under which inequalities that are facet-defining for
the TSP are also facet-defining for the MDMTSP. They also present a new set of comb-like inequalities that utilize
the multi-depot characteristic of the problem and prove that they are also facet-defining. All inequalities, along
with exact and heuristic separation algorithms, are used within a branch-and-cut algorithm for the MDMTSP
that allows them to solve instances of up to 280 nodes and 25 depots within 20 minutes of computational time.

This paper extends the line of work on inequalities that eliminate infeasible paths that might arise in multi-
depot routing problems. We study two main variants of the problem, one with fixed depots and the other where
depots can be chosen from within a set of candidate sites, both in their simplest setting. In particular, we do not
consider any additional constraints on, e.g., capacity or time, to be able to study the effect of the new inequalities
in isolation from the potential impact of any other additional constraint. The contributions of this paper are
as follows: (i) we propose new path elimination inequalities, called multi-cut constraints (MCCs), valid for both
variants of the problem and for extensions involving multiple vehicles per depot; (ii) using projection, we show the
connections between the basic version of the MCCs and a compact three-index formulation (i.e., with a polynomial
number of constraints and variables), and then present a generalization of the MCCs by using a stronger version
of the three-index formulation; (iii) we present theoretical and computational comparisons between the MCCs and
the existing path elimination constraints, and (iv) we describe a branch-and-cut algorithm that uses the MCCs
and present computational results on a variety of instances with up to 300 clients and 60 depots.

2 Routing Problems with Multiple Depots

The MDRP is defined on a directed graph G = (V,A), with a set V = {1, . . . , n} of nodes, a set A = {(i, j) : i, j ∈
V, i 6= j} of arcs, and a cost function c associated to each arc. To simplify the presentation, we will assume that
G is a complete graph, however, this is not required as the ensuing exposition can easily be adapted to incomplete
graphs by simply not considering the pairs (i, j) such that (i, j) /∈ A in the mathematical expressions. The node
set V is partitioned into a set D of potential depots (with |D| = p) and a set C of clients (with |C| = n − p).
There are kd vehicles available at each depot d ∈ D. The objective of the MDRP is to find a minimum cost set
of circuits such that each node in C is in one and only one circuit, and that at most kd circuits depart from and
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end at depot d ∈ D.
We consider two variants which arise depending on whether or not every depot must be part of a route, or

equivalently, at least one vehicle from each depot d ∈ D must be used. If the latter constraint is imposed, we
denote the resulting variant as Fixed-MDRP (F-MDRP), which requires that all depots must be used. Otherwise,
the former variant arises where additional decisions need to be taken as to whether a depot should be used, which
we denote as the Location-MDRP (L-MDRP). The L-MDRP is also known as the Location-Routing Problem
(see, e.g., Albareda-Sambola 2015) where there is often a fixed cost of using a depot, which we do not consider in
this study for reasons similar to excluding additional constraints, but such costs can easily be incorporated to the
models described in the ensuing exposition.

As the arcs between depots can never be used, the size of the arc set A can be reduced by removing every
arc that links two depots. In order to simplify the text, we will still refer to this “improved” arc set as A. In
addition, let Ac = {(i, j) ∈ A : i, j ∈ C, i 6= j} be the set of arcs between client nodes, and for all d ∈ D
let Ad = {(d, i) ∈ A : i ∈ C} ∪ {(i, d) ∈ A : i ∈ C} be the set of arcs with an endpoint in d. Note that
A = Ac ∪

(
∪d∈DAd

)
.

We first consider a single-vehicle version of the problem which means that every depot houses one vehicle,
which is assumed to have unlimited capacity (as in, e.g., parcel deliveries or postal distribution). In other words,
we assume that kd = 1 for every depot d ∈ D. In a later section we will show how to easily adapt the new
formulations to variants of the problem where kd > 1.

In the single-vehicle F-MDRP, the objective is to find a minimum cost set of exactly p disjoint circuits on
graph G such that:

• Each route starts at one of the depots and ends at the same depot, and

• Each client in C is visited exactly once.

In the single-vehicle version of the L-MDRP, the objective is to find a minimum cost set of at most p disjoint
circuits on graph G such that:

• Each route starts from and ends at the same depot (provided the vehicle at that depot is used), and

• Each client in C is visited exactly once.

Both problem variants can be formulated by using two sets of binary variables: variables xij indicating whether
or not arc (i, j) ∈ A is used in one of the circuits, and variables yd indicating whether or not the vehicle on depot
d ∈ D is used in one of the circuits. The following is a generic valid integer linear programming formulation of
the location variant of the problem:

Minimize
∑

(i,j)∈A

cijxij

subject to:
∑
j∈C

xdj = yd ∀d ∈ D (1)

∑
j∈C

xjd = yd ∀d ∈ D (2)

∑
j∈V

xij = 1 ∀i ∈ C (3)

∑
j∈V

xji = 1 ∀i ∈ C (4)

{(i, j) ∈ A : xij = 1} contains no circuit with zero depots (5)

{(i, j) ∈ A : xij = 1} contains no circuit with two or more depots (6)

xij ∈ {0, 1} ∀(i, j) ∈ A (7)

yd ∈ {0, 1} ∀d ∈ D. (8)

The fixed variant of the problem is obtained when we add constraints

yd = 1 ∀d ∈ D. (9)
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In this case, the variables yd can be eliminated from the model. We can also consider a mix of the fixed and
location variants by setting yd = 1 for a only a subset of D. For reasons of simplicity, we omit this variant in the
remainder of the text.

The system (1)–(4) and (7) is quite similar to the well-known assignment relaxation that appears in formula-
tions for the traveling salesman problem (TSP) and several of its variants. It is clear that any feasible solution of
the assignment relaxation is a set of disjoint circuits. In the case of the F-MDRP every node is included in one
such circuit whereas in the L-MDRP some depots may not be used in the solution. Such a solution, however, may
not be feasible for the variant being modeled, namely the F-MDRP or the L-MDRP, since it may include circuits
with no depots, or circuits with two or more depots. For this reason, the generic constraints (5) and (6) are used
to forbid such solutions, respectively. In the following sections we discuss modeling approaches that address both
situations.

Before initiating the discussion on sets of constraints to model (5) and (6) we introduce some notation to
simplify the presentation.

x(S) =
∑

i,j∈S, i 6=j

xij

x(S1, S2) =
∑

i∈S1,j∈S2, i 6=j

xij

y(D′) =
∑
d∈D′

yd.

For singleton subsets (of clients or depots), say I = {i}, we write i instead of {i}. We denote the linear
programming (LP) relaxation of a formulation F by FL, and use v(F ) to denote the optimal value of formulation
F . Finally, we use Px,y(P ) to denote the projection of a polyhedron P onto the space of the (x, y) variables.

2.1 Eliminating circuits without any depot

In this section, we briefly describe inequalities that can be used in place of (5) to eliminate circuits with zero depots,
or, equivalently, client-only circuits. These inequalities have been widely studied in the context of the TSP and
its variants, and can be easily adapted for the MDRP. Consider the following subtour elimination constraints:

x(S) ≤ |S| − 1 ∀S ⊆ C, S 6= ∅. (10)

By using the assignment constraints (4), inequalities (10) can be equivalently written in cut form as follows:

x(D ∪ (C \ S) , S) ≥ 1 ∀S ⊆ C, S 6= ∅. (11)

Observe that in the case of the fixed variant, the subset S in the two previous constraints can be restricted to
|S| ≤ |C| − |D| since each depot must linked to at least one client node.

Although exponential in size, inequalities (10) (or (11)) can be combined with a cutting plane approach
provided that there exists a procedure for implicitly adding them to the formulation. In fact, it is well-known that
inequalities (11) can be separated in polynomial time by max-flow/min-cut computations (see, e.g., Ahuja et al.
1993). In addition, there exists a compact flow based formulation that is equivalent in terms of the corresponding
linear programming relaxation bound to the formulation involving the inequalities (11). Again, this is a direct
consequence of the max-flow/min-cut theorem and the corresponding flow based formulation is closely associated
to the separation routine for the cut inequalities.

The literature on the TSP and its variants is rich, and includes surveys (see, e.g., Öncan et al. 2009, Godinho
et al. 2011, Roberti & Toth 2012) on subtour elimination constraints and their equivalent flow based formulation,
as well as other types of constraints to deal with client-only circuits, both compact and exponential in size.
These surveys also include comparisons of polyhedra, and present different models with possibly weaker linear
programming relaxation bounds but which can be used to solve medium-sized problems for practical purposes.

Given the extensive research that exists on modeling approaches for eliminating client-only circuits in routing
problems, we will restrict our attention to those used to eliminate circuits with two or more depots, which are
more relevant to the multi-depot routing problems. Further details are given below.

4



2.2 Eliminating circuits with more than one depot

In this section we present several modeling approaches for eliminating paths between different depots, or, equiva-
lently, circuits with more than one depot, that is, approaches to model the generic inequalities (6).

2.2.1 Multi-cut inequalities

We start by presenting a new set of inequalities that involve only the x and the y variables.

Proposition 1. The following multi-cut constraints are valid for the MDRP and eliminate circuits with two or
more depots:

x(C \ S, d) + x(C \ S, S) + x(d, S) ≥ yd ∀d ∈ D, ∀S ⊆ C. (12)

Proof. Constraints (12) are clearly valid if yd = 0 or if S = C or S = ∅. Assume then that yd = 1, let S′ = C \ S
and consider first the situation where x(S′, d), x(S′, S) and x(d, S) are all 0. Due to the assignment constraints
(1) and (2), there must exist an arc connecting the depot d to a node in S′ (since x(d, S) = 0) and another arc
connecting a node in S to the depot d (because x(S′, d) = 0). But then, since x(S′, S) = 0 there is no way of
closing the circuit. To see why circuits with two or more depots are eliminated consider, without loss of generality,
that a circuit contains two depots, d1 and d2, from D (obviously, such that yd1 = yd2 = 1), and define S′ as the set
of client nodes which are in the path between depot d1 and depot d2. Thus, x(S′, d1) = x(d1, S) = x(S′, S) = 0
and so the inequality (12) for depot d1 is violated.

We will refer to inequalities (12) as 1-MCC. It is also easily shown that with these constraints alone we obtain
a valid representation of (6). We denote by F= the model defined by (1)–(4), (11), (12), (7) and (8).

Given the form in which inequalities (12) are presented, it might be more appropriate to view them as path
forcing constraints rather than path elimination constraints, in that they force paths to start and end at the same
depot. In Section 2.4, we will show an alternative form of these inequalities that is more typical of elimination
inequalities. We believe that this alternative representation is a unique characteristic of the cuts we present in
this paper.

2.2.2 Connections with a 3-index formulation

Arguably the most intuitive formulation to ensure circuits that only have one depot (i.e., routes starting from and
ending at the same depot) is based on binary variables zdij which have value 1 if arc (i, j) ∈ A is used in the circuit
of depot d, and 0 otherwise. Four such similar formulations are given by Albareda-Sambola et al. (2005), Bektaş
(2012), Fernández & Rodŕıguez-Pereira (2016) and by Hill & Voß (2016) for variants of multi-depot problems.
Clearly, an arc with an endpoint in a depot d ∈ D cannot be used in the circuit of depot d′ ∈ D \ {d} or else
we could have a path between depots d and d′, hence we can define variables zdij for any d ∈ D only for arcs

(i, j) ∈ Ac ∪Ad.
It is easy to see that the following relation between the “old” x variables and the “new” z variables holds:

zdij ≤ xij ∀d ∈ D, ∀(i, j) ∈ Ac ∪Ad. (13)

Consider the following constraints∑
j∈C

zddj = yd ∀d ∈ D (14)

∑
j∈C

zdjd = yd ∀d ∈ D (15)

∑
j∈d∪C

zdji =
∑

j∈d∪C
zdij ∀d ∈ D, ∀i ∈ C (16)

zdij ∈ {0, 1} ∀d ∈ D, ∀(i, j) ∈ Ac ∪Ad, (17)

and let (3I) denote the equation system (13)–(17), (7) and (8). It is easy to see that (13)–(17) is a valid
representation of (6). Furthermore, the constraints (17) can be relaxed to zdij ≥ 0 without violating the validity.
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This follows because we can view (3I) as a path model in a 3-layered graph where the set D is replicated into
set D̄, with each node d̄ ∈ D̄ being the copy of the original node d ∈ D. With respect to the arc set defined in
the new graph, the only difference is that arcs entering node d in the original graph now enter node d̄. In this
representation, a feasible circuit in the original graph corresponds to a path from a node d to its copy d̄, and hence
a feasible solution to the problem defined in the original graph corresponds to at most p paths (exactly p paths
in the F-MDRP variant) from each node in D to its copy in D̄ in this 3-layered graph.

To the best of our knowledge, this 3-layered graph approach was first proposed by Albareda-Sambola et al.
(2005), for a capacitated version of the L-MDRP. Later, Bektaş (2012) proposed a similar approach, albeit in a
stronger form (see the next subsection), for a more general version of the the fixed variant of the problem. The
whole system defined by (3I) can be viewed as a flow system guaranteeing that yd units of flow are sent from each
node d to its copy, the zdij variables can then be interpreted as indicating whether arc (i, j) is used to send flow
from node d to its copy, and this path interpretation shows that the integrality requirement on the z variables can
be relaxed.

Let (3I)L denote the LP relaxation of (3I), more precisely, obtained from (3I) by replacing constraints (17),
(7) and (8) with:

zdij ≥ 0 ∀d ∈ D, ∀(i, j) ∈ Ac ∪Ad (18)

xij ≥ 0 ∀(i, j) ∈ A (19)

yd ≥ 0 ∀d ∈ D. (20)

We can now relate the 1-MCC with the 3-index formulation as follows.

Proposition 2. Px,y((3I)L) is given by the 1-MCC inequalities (12), (19) and (20).

Proof. This follows from the max-flow/min-cut theorem. Given the interpretation of the (3I)L system in the
3-layered graph, we redefine variables zdid and xid as zd

id̄
and xid̄, respectively, where d̄ is the copy of node d ∈ D.

The max-flow/min-cut theorem indicates that for each depot d, yd units of flow are sent from d to its copy d̄ if
and only if every cut separating d from d̄ has capacity at least yd. This last constraint is x(d∪ (C \ S) , d̄∪S) ≥ yd
for S ⊆ C. Redefining the variables xid̄ into xid, we obtain the desired multi-cut inequalities (12).

2.2.3 A stronger 3-index formulation and generalization of the 1-MCC inequalities

The linear programming relaxation of the system (3I) can be strengthened by replacing constraints (13) with the
following, ∑

d∈D
zdij ≤ xij ∀(i, j) ∈ Ac (21)

zdij ≤ xij ∀(i, j) ∈ Ad, (22)

since any arc (i, j) ∈ Ac can only be used in at most one circuit given the requirement that the circuits for each
depot are disjoint. Let (S3I) denote the equation system (3I) with (21) and (22) replacing (13). Consider now
the following generalization of the 1-MCC inequalities.

x(C \ S,D′) + x(C \ S, S) + x(D′, S) ≥ y(D′) ∀D′ ⊆ D, ∀S ⊆ C. (23)

In the remainder of the paper, we denote the inequalities given above for sets D′, where |D′| = k, by k-MCC.
Their validity follows from similar arguments given for the case |D′| = 1. We also note that any k-MCC associated
to a depot subset D′ is stronger than the sum of m inequalities k1-MCC, . . . , km-MCC associated, respectively,
to depot subsets D1, ..., Dm, where Di ∩Dj = ∅, ∀i, j ∈ {1, . . . ,m}, i 6= j and ∪i=1,...,mDi = D′. As will be shown
next, the k-MCC inequalities can be derived from the stronger 3-index formulation providing an indirect proof of
their validity.

Proposition 3. Px,y((S3I)L) is contained in the polyhedron defined by the MCC inequalities (23), (19) and (20).

Proof. The proof of this Proposition follows from the max-flow/min-cut theorem and also from the fact that we
can view the (S3I) system in the 3-layered graph. Variables zdid (xid) are redefined as zd

id̄
(xid̄) as in the proof
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of Proposition 2. For each subset D′ ⊆ D, the max-flow/min-cut theorem says that y(D′) units of flow are sent
from D′ to the subset of the copies of the depots in D′, say D̄′, if and only if every cut separating D′ from D̄′ has
capacity at least y(D′). This last constraint is x(D′ ∪ C \ S, D̄′ ∪ S) ≥ y(D′) for S ⊆ C. Redefining the variables
xid̄ into xid, we obtain the desired generalized multi-cut inequalities (23).

It is still an open question as to whether we have a strict inclusion or an equality on the result of Proposition
3. The 3-index formulation can still be “strengthened” by observing that equality holds in both of the previous
inequalities (21) and (22) since, respectively, if an arc (i, j) ∈ Ac is used then it needs to be used in one and only
one of the circuits, and if an arc with an endpoint in a depot d ∈ D is used then it needs to be used in the circuit
of the same depot, that is, we can further strengthen the 3-index formulation by replacing the inequalities (21)
and (22) by: ∑

d∈D
zdij = xij ∀(i, j) ∈ Ac (24)

zdij = xij ∀(i, j) ∈ Ad. (25)

We conjecture that the LP bound does not improve by using equalities instead of inequalities. In fact, this is
easy to prove for the case of constraints (25). To see this, consider by contradiction an inequality (22), assume
that d ∈ D and suppose also that there exists i′ ∈ C such that zddi′ < xdi′ . Then, we obtain yd =

∑
i∈C z

d
di <∑

i∈C xdi = yd, where the first equality is given by constraints (14) and the second equality is given by constraints
(1). Thus, constraints (22) and (25) are equivalent.

Equivalence is still open with respect to replacing (21) with (24). In some computational experiments made,
the LP bounds obtained were the same with either sets of inequalities. The point of using the equality version of
these constraints is that we can eliminate the x variables from the model, and by redefining the zdij variables as

0-1 variables, we obtain a valid formulation for the problem involving only the zdij (and yd variables) as in the four
previous works by Albareda-Sambola et al. (2005), Bektaş (2012), Fernández & Rodŕıguez-Pereira (2016) and Hill
& Voß (2016).

2.2.4 Separation of the k-MCC inequalities

We now present a separation procedure for the k-MCC inequalities that is strongly associated with the previously
given relations between the flow systems (3I) and (S3I) and the new inequalities. Let (x′, y′) be the current
solution of the linear programming relaxation. Consider an MCC constraint associated with a subset of depots
D′ and let us build the corresponding 3-layered graph with an additional source node s and a target node t, new
arcs connecting s to every node in D′ and new arcs connecting the copies of the nodes in D′ to t. All the new
arcs have a flow capacity of 1, whereas all the remaining arcs (i, j) have a flow capacity that is equal to the value
of x′ij . The separation algorithm consists in checking whether a flow from the source s to the target t of value
y(D′) exists in the extended 3-layered graph or not. If the maximum flow is less than y(D′), then we have found
a violated MCC inequality which is identified by the corresponding minimum cut.

Observe that repeating this procedure for all subsets D′ does not lead to a polynomial-time algorithm, although
in practice it may not be as inefficient as one would expect, since typically MDRP instances involve few depots.
Also, as we shall show in the next subsection, we need not separate all the MCC inequalities since more than half
of them are redundant in the presence of the others. Finally, in such a procedure we can start by separating the
constraints associated to the cases where |D′| = 1, which would provide a polynomial-time algorithm. Observe
that, as pointed out before, the 1-MCC inequalities suffice in providing a valid representation of (6) and thus, the
separation of k-MCC inequalities for k > 1 is completely optional. In the computational results we evaluate the
potential usefulness of the more general MCC.

2.3 Properties of the multi-cut inequalities

This section presents two properties of the multi-cut inequalities, one related to the strength of the LP relaxation
of the main formulation using these inequalities, and another on a feature of these constraints that implies a
reduction in the number of inequalities that need to be separated. We start with the first result.
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Proposition 4. Consider an instance with symmetric costs and a solution (x∗, y∗) that satisfies the depot assign-
ment constraints (1) and (2). Then, there exists a solution (x′, y′) that satisfies (1), (2) and all MCC inequalities
(23), and has the same cost as (x∗, y∗).

Proof. Let (x′, y′) be defined as follows:

x′ij =
1

2
x∗ij +

1

2
x∗ji ∀(i, j) ∈ A

y′d = y∗d ∀d ∈ D.

Clearly, both (x∗, y∗) and (x′, y′) have the same objective function value since costs are symmetric (that is,
cij = cji) and we can easily see that (x′, y′) satisfies (1) and (2). Consider a subset of client nodes S ⊆ C and a
subset of depots D′ ⊆ D. Let S′ = C \ S. We have the following:

x′(S′, D′) + x′(S′, S) + x′(D′, S) =
1

2

(
x∗(S′, D′) + x∗(D′, S′) + x∗(S′, S) + x∗(S, S′) + x∗(D′, S) + x∗(S,D′)

)
=

1

2

(
x∗(C,D′) + x∗(D′, C) + x∗(S′, S) + x∗(S, S′)

)
=

1

2

(
y(D′) + y(D′) + x(S′, S) + x(S, S′)

)
≥ y(D′).

Note that x(D′, C) = y(D′) = x(C,D′) results from adding up inequalities (1) and (2) for every depot d ∈ D′,
and that both x(S′, S) and x(S, S′) are non-negative. Thus, we have proved that any MCC inequality (23) is
satisfied by the new solution (x′, y′).

The implication of Proposition 4 is that, for symmetric instances, v(F=
L ) remains the same irrespective of

whether F=
L includes the multi-cut inequalities or not. We note, however, that even in this case the MCC are

needed to provide a valid integer programming formulation for the problem, at least in what concerns the simpler
set given by the 1-MCC inequalities. We also note that this result only holds for symmetric instances. As will
be evidenced by the computational results, the multi-cut constraints may improve the value of F=

L in the case of
asymmetric instances.

Our second result concerns the redundancy of a subset of k-MCCs, which has implications on the reduction
of the computational effort needed to separate these inequalities. We start by presenting an equality that holds
for F=

L and is relevant for the proof of Proposition 5.

Lemma. The assignment constraints (1)–(4) imply the following equality:

x(C \ S,D1) + x(C \ S, S) + x(D1, S) + y(D \D1) = y(D1) + x(S,D \D1) + x(S,C \ S) + x(D \D1, C \ S),

∀S ⊆ C, ∀D1 ⊆ D. (26)

Proof. Let S′ = C \ S and D2 = D \D1. The proof is based on four valid equalities that are obtained by adding
the assignment constraints (1)–(4) for adequate subsets and then combining the resulting equalities.

i) by adding the assignment constraints (1) for d ∈ D1 and partitioning C into S and S′, we obtain x(D1, S) +
x(D1, S

′) = y(D1);

ii) similarly, by adding constraints (2) for d ∈ D2 we obtain x(S′, D2) + x(S,D2) = y(D2);

iii) by adding constraints (3) for i ∈ S′ and partitioning V into D1, D2, S and S′, we obtain x(S′, D1) +
x(S′, D2) + x(S′, S) + x(S′) = |S′|;

iv) similarly, by adding constraints (4) for i ∈ S′ we obtain x(D1, S
′) + x(D2, S

′) + x(S, S′) + x(S′) = |S′|.

By combining the two last equalities we obtain x(S′, D1) + x(S′, D2) + x(S′, S) = x(D1, S
′) + x(D2, S

′) +
x(S, S′). In this last equality we now use the first two equalities obtained under i) and ii) and replace x(S′, D2)
by y(D2)− x(S′, D1) and x(D1, S

′) by y(D1)− x(S,D2) to obtain (26).
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Proposition 5. In the presence of the assignment constraints (1)–(4), every |D|-MCC inequality is redundant and
for each subset S ⊆ C and each subset D1 ⊂ D, with |D1| = k, the corresponding k-MCC inequality is equivalent
to the (|D| − k)-MCC inequality written for S′ = C \ S and D2 = D \D1.

Proof. The first statement is a direct consequence of the equality (26) written for D1 = D and the fact that
x(S, S′) ≥ 0. From equality (26) we also obtain that ∀S ⊆ C, ∀D1 ⊂ D,

x(C \ S,D1) + x(C \ S, S) + x(D1, S) ≥ y(D1)

if and only if

x(S,D \D1) + x(S,C \ S) + x(D \D1, C \ S) ≥ y(D \D1).

The previous result indicates that, in practice, it suffices to separate only up to about half of the k-MCCs, as
those that are not separated will be implied by the ones that are. For example, for an instance with six depots,
we only need to search for violated 1-MCCs, 2-MCCs and half of the 3-MCCs. This reduction does not yield a
polynomial-time algorithm for separating all MCCs. However, and as pointed out before, in a branch-and-cut
procedure we can start by separating the 1-MCCs, which would provide a polynomial-time algorithm, and extend
the search to k-MCCs with k > 1 if we so decide. Finally, due to Proposition 4, this result is only interesting for
asymmetric instances.

2.4 Comparison of the MCC inequalities with existing inequalities

In this section, we investigate how the MCCs relate with similar sets of inequalities described earlier in the
literature. To the best of our knowledge, this work is the first to describe path elimination constraints on a directed
graph, using variables defined for arcs instead of edges. Previous studies describe formulations on undirected
graphs using edge variables only, in which the use of binary edge variables automatically excludes two-node cycles
(i.e., cycles with a depot and a client) unless suitable modifications are performed. In particular, Benavent &
Mart́ınez-Sykora (2013) use a variable uij , defined as binary for every pair i, j ∈ C to indicate whether the edge
{i, j} between clients i and j is used in the solution, and defined as {0,1,2} for every pair d ∈ D, i ∈ C indicating,
respectively, whether the edge linking depot d and client i is not used or if it is used once or twice, with the
latter case forming a two-node cycle. The edge variables in Benavent & Mart́ınez-Sykora (2013) can be related
with the directed variables xij through the equalities uij = xij + xji for every edge {i, j}. Observe that the
directed model satisfies the inequalities xij + xji ≤ 1 for i, j ∈ C, which are a subset of the subtour elimination
constraints (10), and thus the inequality uij ≤ 1 for i, j ∈ C is satisfied. This relation allows us to write the path
elimination constraints described by Benavent & Mart́ınez-Sykora (2013) using directed variables and therefore
allows a comparison with the new ones proposed in this work.

To establish the connection, we start by observing that by using the assignment constraints (2) and (4), the
MCC inequalities (23) can be rewritten in packing form as follows:

x(D \D′, S) + x(S) + x(S,D′) ≤ |S| ∀D′ ⊆ D, ∀S ⊆ C. (27)

As previously pointed out, some of the constraints (27) are redundant. For simplicity, however, we assume the
entire set of MCC inequalities in the following exposition. Consider, now, the following weaker version of (27)

x(D \D′, i) + x(S) + x(j,D′) ≤ |S| ∀D′ ⊆ D, ∀i, j ∈ S ⊆ C, i 6= j, (28)

and add up the inequality (28) written for sets D′ and S with the same inequality written for sets D \D′ and the
same set S, where i and j are swapped. This operation results in the following inequality:

x(D \D′, i) + x(i,D \D′) + 2x(S) + x(j,D′) + x(D′, j) ≤ 2|S| ∀D′ ⊆ D, ∀i, j ∈ S ⊆ C, i 6= j. (29)

Clearly this constraint is redundant since it is obtained by adding two valid inequalities. In fact, we can even
observe that from an integer point of view, it does not even eliminate circuits with more than one depot. However,
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if |S| ≥ 3 we can reduce the right-hand side of constraint (29) to 2|S|− 1 and obtain the following valid inequality
for the problem:

x(D\D′, i)+x(i,D\D′)+2x(S)+x(j,D′)+x(D′, j) ≤ 2|S|−1 ∀D′ ⊆ D, ∀i, j ∈ S ⊆ C : |S| ≥ 3, i 6= j. (30)

The inequalities above, under the relation between the undirected variables u and the directed variables x,
correspond to the directed version of the path elimination constraints used by Benavent & Mart́ınez-Sykora (2013)
and the proof of their validity follows from arguments similar to the ones used for the undirected case, as in the
previously cited paper.

As observed above, the inequalities (30) are not valid when S = {i, j} and thus circuits of the type (d1, i, j, d2,
p, q, d1), in which d1 and d2 are depots and i, j, p and q are clients, are not guaranteed to be cut off. To prohibit
such solutions, we consider the following inequalities, that are also the directed version of similar inequalities for
the undirected case described in Benavent & Mart́ınez-Sykora (2013):

x(D \D′, i) + x(i,D \D′) + 3xij + 3xji + x(j,D′) + x(D′, j) ≤ 4 ∀D′ ⊆ D, ∀i, j ∈ C, i 6= j. (31)

One observation concerns particular circuits of the type σ̄ = (d1, i1, d2, i2, . . . , dm−1, im−1, dm, im, d1), that
is, infeasible circuits which alternate between a depot and a client. As has been shown in Laporte et al. (1986),
circuits of the type σ̄ are never optimal if we consider symmetric costs, since there always exists a feasible solution
that is cheaper or at most as costly. Here, we provide a proof for the sake of completeness. Consider a solution
σ1 that consists of m single-client return trips as (dj , ij , dj) for j ∈ {1, . . . ,m}. Consider now another solution
σ2, also consisting of m return trips, but now in the form (dj , ij−1, dj) for j ∈ {2, . . . ,m} and (d1, im, d1). We
claim that the cheapest of these two feasible solutions σ1 and σ2 is cheaper than the alternating circuit σ̄. Let c̄
be the cost of circuit σ̄, and c1, c2 be the costs of solutions σ1 and σ2, respectively. Since costs are symmetric,
then 2c̄ = c1 + c2. Suppose, without loss of generality, that c1 ≤ c2. Then 2c̄ ≥ 2c1, hence c̄ ≥ c1.

Infeasible depot-client alternating circuits are always eliminated by the 1-MCC inequalities (12) for single node
sets S. Whilst eliminating circuits of this type is redundant for symmetric instances, the 1-MCCs are needed in
the case of asymmetric instances, since solutions containing circuits of this type are not necessarily dominated by
the two alternative solutions with m return trips mentioned above.

The reason why we have included the constraints (30) and the version for two client sets (31) in this paper is
that they also provide a valid representation of (6) in the generic model but only in the case of symmetric cost
instances, since the infeasible depot-client alternating circuits are not eliminated by (30) nor (31). In addition, for
symmetric instances, and in contrast to what happens with the MCC inequalities (23) as shown by Proposition 4,
these inequalities may improve the LP bound of the F= model as our computational results shall show. In order
to solve asymmetric cost instances, inequalities (30) and (31) do not suffice, so an additional set of inequalities
(e.g, the 1-MCC inequalities (12) for single node sets S, as pointed out before) will need to be considered.

As a final conclusion to this section, we note that another set of undirected path elimination constraints is
presented by Belenguer et al. (2011), however they are based on a different set of binary variables to model two-
node cycles. For this reason, a direct comparison between their inequalities and inequalities (30) and (31) is not
straightforward and requires further investigation.

2.5 Variations

In this section, we look at two variations of the generic model, one where the depot assignment constraints are
relaxed, and the other to cater for multiple vehicles at each depot.

2.5.1 Analyzing the impact of the depot assignment constraints

This section is motivated by the formulations described in the two papers by Belenguer et al. (2011) and Benavent
& Mart́ınez-Sykora (2013) where no information is given on the value of the degree of the depot nodes. We first
observe that solutions composed by chains such as (d1, i1, . . . , im, d2), where d1 and d2 are two different depots and
i1, . . . , im are clients, are feasible for the models proposed by Belenguer et al. (2011) and Benavent & Mart́ınez-
Sykora (2013) without the path elimination constraints. However, such solutions are not feasible for the generic
model proposed in Section 2 without the path elimination constraints, since the assignment constraints (1) and
(2) require that, for each depot, the in-degree and the out-degree must be equal to one another.
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We observe that when S = C and S = ∅, the 1-MCC inequalities (12) are equivalent, respectively, to con-
straints: ∑

j∈C
xdj ≥ yd ∀d ∈ D (32)

∑
j∈C

xjd ≥ yd ∀d ∈ D. (33)

Therefore, when the 1-MCCs are used in model F=, it is possible to replace constraints (1) and (2) by the
following weaker set of constraints∑

j∈C
xdj ≤ yd ∀d ∈ D (34)

∑
j∈C

xjd ≤ yd ∀d ∈ D, (35)

and still obtain a valid model for the MDRP. In particular, we will refer to the model F= where (1) and (2) are
replaced by (34) and (35) as F≤.

The main observation for the formulation F≤ is that its LP relaxation without the 1-MCC inequalities (12)
admits paths that connect depots but that are not necessarily part of circuits, and the corresponding LP relaxation
bound may be weaker when compared with the LP relaxation bound given by model F=. This may lead to a
difference in the performance of each model within the branch-and-cut algorithm described in Section 3.

2.5.2 Extensions to the multi-vehicle case

In this section we show how to extend the models to the cases where some depots may have more than one vehicle
available to use, that is, kd > 1 for some d ∈ D.

For the F-MDRP variant, bearing in mind that at least one vehicle from each depot is needed, the decisions
in the multi-vehicle case would entail choosing between 1 and kd vehicles to use at each depot. To this end, the
binary yd variable would be changed to be a general integer, to indicate the number of vehicles used at depot
d ∈ D. The domain constraints for the y variables would then be changed as yd ∈ {1, . . . , kd}, ∀d ∈ D. As for
the L-MDRP variant, the new integrality requirements would be as yd ∈ {0, 1, . . . , kd}, ∀d ∈ D, as one would use
any number of vehicles between 0 and kd. In addition, for both variants, the depot assignment constraints (1)
and (2) are written in the same way but, owing to the new definition of the y variables, they now state that the
out-degree and the in-degree of each depot should be equal to the number of vehicles used from that depot.

For both variants, the 1-MCC inequalities (12) would be written in the same way and are still valid considering
the new definition of the y variables. Also, generalizations of the 1-MCC inequalities involving subsets of depots,
that is, the k-MCC inequalities (23), can also be adapted in a straightforward manner.

The relation between the 1-MCC inequalities (respectively, the k-MCC inequalities) and the 3-index formu-
lation (respectively, the stronger 3-index formulation) is also valid in the multi-vehicle per depot case, with the
difference that we can now have between 0 and kd paths (1 and kd paths in the F-MDRP variant) from each
depot d ∈ D to its replica d̄ ∈ D̄. Given the interpretation of the (3I)L (respectively, the (S3I)L) system in the
3-layered graph, we can once more use the max-flow/min-cut theorem to prove a result similar to Proposition 2
(respectively, Proposition 3). Additionally, given the new definition of the y variables, both Proposition 4 and
Proposition 5 are also valid, since their proofs depend only on the assignment constraints, which are unchanged
in terms of their mathematical expression, and not on the fact that the y variables were defined as 0-1 variables.

We omit the formal proofs in the multi-vehicle per depot case since our objective in this section is merely to
state that the new proposed path elimination constraints are still applicable in more general multi-depot routing
problems which may involve other sets of constraints (e.g., capacities) that may require the use of more than one
vehicle per depot.

3 Computational Results

This section describes computational experiments conducted to address the four aims listed below:
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i) To assess the performance of a branch-and-cut algorithm that uses the 1-MCC inequalities (12). We also
analyze the effect of imposing the 1-MCC inequalities (12) on the integer solutions.

ii) To compare the performance of F= with F≤ within the branch-and-cut algorithm.

iii) To evaluate the effect of introducing the k-MCC inequalities (23) for k > 1 on the LP relaxation bound for
asymmetric instances.

iv) To numerically compare the quality of the 1-MCC inequalities (12) with the quality of the inequalities (30)
and (31), in terms of LP relaxation bounds, for symmetric as well as asymmetric instances.

3.1 Instances

Three sets, A, B and C, of instances are used in the experiments. The first set A is a subset of the symmetric
benchmark location-routing problem instances available at http://prodhonc.free.fr/, also used by Benavent &
Mart́ınez-Sykora (2013), comprising a total of nine instances, six with 100 clients and with either 5 or 10 depots,
and three with 200 clients and 10 depots. In these instances, we are given coordinates for each node and, following
Benavent & Mart́ınez-Sykora (2013), the costs cij and cji are determined as the Euclidean distance between nodes
i and j multiplied by 100 and rounded up to the nearest integer. These instances are named as |C|-|D|-t, where
t = 1, 2, 3 indicates how the points are distributed, where 1 represents uniform distribution, and 2 and 3 denote
two and three clusters, respectively.

The instances in set B are also symmetric, where the node coordinates have been generated by uniformly
placing as many points as needed in a 200 × 200 continuous grid. The set includes a total of 17 instances,
comprising nine with 100 clients, three with 200 clients and a five with 300 clients. For the first subset, we initially
generate an instance with 100 clients and 20 depots. Removing 10 depots from this instance gives rise to another
instance with 10 depots. Finally, a further removal of five depots results in an instance with five depots. The
construction is used to obtain a geographically interrelated set of instances with the same set of clients, and where
the depot locations have a nested structure. By repeating this process twice more, we obtain a total of nine
100-client instances. The same process has been used to generate three instances with 200 clients and either 10,
20 or 40 depots, and five instances with 300 clients and either 10, 20, 30, 40 or 60 depots. The instances with 100
clients are named as bgs-100-|D|-t, where t = 1, 2, 3 denotes the instance number, whereas the instances with 200
or 300 clients are named as bgs-|C|-|D|.

The instances in set C are asymmetric and are obtained by transforming the symmetric instances in set B.
The transformation consists in increasing or decreasing the cost of an arc (i, j) by a percentage pij ∈ [0.25, 0.75].
More precisely, for each edge {i, j}, we randomly choose either arc (i, j) or arc (j, i) with equal probability. The
cost of the chosen arc is increased, and the cost of the arc in the opposite direction is decreased by the specified
percentage. The instances in set C are named as the original symmetric instance from which they derive with an
added suffix “a”.

3.2 Description of the branch-and-cut algorithm

The branch-and-cut (B&C) algorithm operates on the generic formulation described in Section 2, within which
two sets of cuts, namely the subtour elimination constraints (11) and the 1-MCC inequalities (12), are separated.

In the B&C algorithm, in each node of the branch-and-bound tree, we first separate the subtour elimination
constraints (11) by using a standard heuristic procedure (see, e.g., Fischetti et al. 1997), which consists in finding
client-only connected components induced by the fractional solution x∗ by considering only the arcs (i, j) ∈ A
such that x∗ij > 0. If no heuristic subtour elimination constraints are found then we proceed by applying exact
separation algorithms. Both the subtour elimination and the 1-MCC constraints are separated exactly by using
standard algorithms (see, e.g., Ahuja et al. 1993) for the former and the procedure described in Section 2.2.4 for
the latter. A maximum of 20 inequalities of both types are added before re-optimizing the LP, including subtour
elimination constraints found with the heuristic procedure, but, if more than five violated inequalities (11) are
found, then the separation of 1-MCCs is skipped and the re-optimization phase begins immediately.

In the computational experiments related with evaluating the k-MCC inequalities for k > 1, the k-MCCs are
separated in an ascending order of k but, as in the standard branch-and-cut, the algorithm does not attempt
to separate a k-MCC if more than five violated (k − 1)-MCCs are found. The separation procedure used for
separating these inequalities was described in Section 2.2.4.
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In the computational experiments where inequalities (30) and (31) are used, the branch-and-cut functions in a
similar way but uses the separation algorithm described by Belenguer et al. (2011) and adapted for arc variables,
which will be discussed further in Section 3.5.

The B&C algorithm was ran on an Intel Core i7-4790 3.6GHz processor with 8GB of RAM, within which
CPLEX 12.6.1 Concert Technology for C++ was used. A time limit of 10800 seconds (three hours) has been
imposed on the solution time of each instance.

3.3 Evaluating the effect of the 1-MCC inequalities (12)

We now present computational results to assess the performance of the B&C, for both the F-MDRP and L-
MDRP, in solving the symmetric and asymmetric instances to optimality. In addition, we compare the integer
solutions obtained with and without 1-MCC inequalities, in order to study the impact of these inequalities on the
feasibility of the resulting solutions. Finally, we compare the performance of the B&C for both F= and F≤ so as
to analyze the effect of imposing additional information on the degree constraints of the depots, as was discussed
in Section 2.5.1. Due to the result given in Proposition 4 we divide this study in two subsections, one concerning
the symmetric instances and the other for the asymmetric instances.

3.3.1 Symmetric instances

The results for the sets A and B of instances are given in Table 1 for the F-MDRP and Table 2 for the L-MDRP.
Each table presents the results separately for formulations F= and F≤. The columns are divided into two groups,
one for the B&C without 1-MCCs, indicating that only the subtour elimination constraints (11) are separated,
and the other where the 1-MCCs were included in the B&C. For each instance, the columns LP and tL show the
linear programming relaxation bound of the corresponding formulation and the associated computation time, and
the columns OPT and t show the optimal value of the problem and the associated computational time. When the
instance was not solved within the 10800 second time limit, this is shown by a “*”, in which case the OPT column
shows the best lower and upper bounds obtained. The column named ‘Feas?’ indicates whether the solution
identified without the 1-MCCs is feasible with respect to the path elimination constraints. Finally, columns #CC
and #MC show the total number of subtour elimination constraints and 1-MCCs separated in the B&C tree,
respectively. The additional column DU in Table 2 shows the number of depots used in the optimal solution
identified by the algorithm.
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B&C without 1-MCCs B&C with 1-MCCs

Name LP tL #CC OPT t #CC Feas? LP tL #CC #MC OPT t #CC #MC

Using model F=

100-5-1 37506 0 191 38116 25 957 yes 37506 0 191 0 38116 46 1425 32
100-5-2 33679.5 0 167 33976 14 779 no 33679.5 0 167 0 34018 30 911 39
100-5-3 32622.5 0 139 32979 4 289 no 32622.5 0 139 0 33024 10 336 8
100-10-1 40847.5 0 159 41119 3 258 no 40847.5 0 159 7 41991 39 774 403
100-10-2 38529 1 77 38868 2 125 no 38529 0 77 0 39126 9 492 91
100-10-3 33015 0 241 33364 3 368 no 33015 1 241 0 33719 18 522 40
200-10-1 52834.5 5 292 53620 1981 2730 no 52834.5 1 292 2 53739 8283 3984 1489
200-10-2 46758.5 1 252 47354 2059 2479 no 46758.5 2 252 0 47441 5639 5472 506
200-10-3 47381.5 2 317 47669 191 1669 no 47381.5 2 317 4 47828 2414 4606 377
bgs-100-5-1 1578.5 0 196 1587 1 248 yes 1578.5 0 196 2 1587 1 248 0
bgs-100-10-1 1576 1 239 1582 1 281 no 1576 1 239 2 1597 8 365 187
bgs-100-20-1 1656.5 0 126 1669 4 283 no 1656.5 1 131 4 1687 45 508 679
bgs-100-5-2 1728.5 1 179 1744 9 416 yes 1728.5 0 179 2 1744 7 420 35
bgs-100-10-2 1754 0 207 1767 3 197 no 1754 0 207 2 1777 53 436 386
bgs-100-20-2 1779.5 0 99 1805 3 137 no 1779.5 0 99 10 1835 133 378 1767
bgs-100-5-3 1517 1 156 1553 45 1187 yes 1517 1 156 0 1553 43 1131 11
bgs-100-10-3 1513 0 123 1555 68 801 no 1513 0 123 0 1558 107 866 163
bgs-100-20-3 1563 1 94 1599 2 152 no 1563 0 94 4 1604 3 180 28
bgs-200-10 2290.75 4 432 2294 10 378 no 2290.75 4 415 7 2301 704 1395 568
bgs-200-20 2300.33 2 247 2311 35 519 no 2300.33 2 247 0 [2327, 2333] 10800* 2347 6365
bgs-200-40 2375.5 3 214 2397 83 373 no 2375.5 3 214 14 2417 7838 944 11464
bgs-300-10 2698.5 7 347 [2705, 2742] 10800* 8178 no 2698.5 7 350 2 [2708, 2767] 10801* 9200 1555
bgs-300-20 2715 5 294 [2722, 2773] 10800* 6919 no 2715 5 294 0 [2728, 2787] 10801* 6009 4493
bgs-300-30 2753 8 447 2773 8994 2304 no 2753 9 447 4 [2767, 2826] 10801* 3176 7863
bgs-300-40 2793 8 356 [2809, 2815] 10800* 1858 no 2793 11 356 4 [2808, 2861] 10802* 2000 11951
bgs-300-60 2882 10 298 2904 3358 962 no 2882 18 273 21 [2906, 2994] 10801* 1355 14863

Using model F≤

100-5-1 37190.5 0 207 37319 3 294 no 37506 1 265 9 38116 25 931 43
100-5-2 30456.5 0 158 30618 60 1556 no 33679.5 1 202 9 34018 31 937 52
100-5-3 31922 0 190 32087 2 235 no 32622.5 1 210 11 33024 3 398 14
100-10-1 39051.5 0 168 39142 3 384 no 40847.5 0 200 23 41991 254 795 934
100-10-2 30121 0 196 30392 22 706 no 38529 1 309 15 39126 18 678 117
100-10-3 31775 0 279 31775 1 199 no 33015 2 283 17 33719 36 673 88
200-10-1 52291.5 1 260 52690 3031 3331 no 52834.5 2 260 18 [53617, 53739] 10801* 3721 2178
200-10-2 38963.8 2 397 39137 360 2420 no 46758.5 4 531 16 [47314, 47441] 10800* 4092 444
200-10-3 44535.5 2 409 44983 7114 5605 no 47381.5 4 606 18 47828 1303 2702 158
bgs-100-5-1 1542 0 283 1552 5 433 no 1578.5 0 315 11 1587 2 288 8
bgs-100-10-1 1499.5 1 278 1501 3 482 no 1576 1 371 18 1597 27 632 400
bgs-100-20-1 1484.5 0 165 1486 1 150 no 1656.5 0 253 36 1687 26 551 459
bgs-100-5-2 1696.5 0 223 1698 1 248 no 1728.5 1 223 9 1744 21 814 55
bgs-100-10-2 1687.5 1 259 1692 1 220 no 1754 1 274 15 1777 33 462 291
bgs-100-20-2 1653.5 1 189 1657 1 188 no 1779.5 1 196 39 1835 74 403 1675
bgs-100-5-3 1508.5 0 135 1516 2 241 no 1517 0 140 7 1553 25 1369 10
bgs-100-10-3 1471 0 87 1471 0 0 no 1513 0 107 22 1558 41 806 146
bgs-100-20-3 1433.5 0 148 1438 1 123 no 1563 0 167 35 1604 5 193 139
bgs-200-10 2246.5 2 486 2259 3084 5223 no 2290.75 3 540 16 2301 620 1974 732
bgs-200-20 2224.5 4 499 2232 74 827 no 2300.33 4 541 30 2332 9320 2235 7424
bgs-200-40 2163.5 2 317 2168 53 548 no 2375.5 4 438 95 [2409, 2417] 10801* 1435 24137

*Not solved to optimality within the limit of three hours.

Table 1: Evaluating the branch-and-cut for symmetric instances (F-MDRP)
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B&C without 1-MCCs B&C with 1-MCCs

Name LP tL #CC OPT t #CC Feas? LP tL #CC #MC OPT t DU #CC #MC

Using model F=

100-5-1 37190.5 0 207 37943 22 943 yes 37190.5 1 207 0 37943 22 4 943 0
100-5-2 30456.5 0 137 30832 6 374 yes 30456.5 0 137 0 30832 6 2 374 0
100-5-3 31922 0 190 32850 20 1346 yes 31922 0 190 0 32850 24 4 1346 0
100-10-1 39051.5 1 268 39608 10 730 yes 39051.5 0 268 0 39608 20 5 820 1
100-10-2 30121 0 189 30641 25 921 yes 30121 0 189 0 30641 30 2 1135 4
100-10-3 31775 0 281 32521 3 420 yes 31775 0 281 0 32521 4 5 420 0
200-10-1 52291.5 2 334 53047 2182 4172 yes 52291.5 2 334 0 53047 1253 5 4672 9
200-10-2 38963.8 2 386 39663 6574 8858 yes 38963.8 3 386 0 39663 5221 4 7856 2
200-10-3 44535.5 4 456 45289 4452 5541 yes 44535.5 3 456 0 45289 4078 3 4893 1
bgs-100-5-1 1542 0 315 1569 148 2379 yes 1542 1 315 0 1569 117 2 1798 10
bgs-100-10-1 1499.5 0 273 1524 19 934 yes 1499.5 0 273 0 1524 20 6 934 2
bgs-100-20-1 1484.5 0 264 1509 6 599 yes 1484.5 0 264 0 1509 5 9 516 1
bgs-100-5-2 1696.5 1 328 1705 1 283 yes 1696.5 0 328 0 1705 1 1 283 0
bgs-100-10-2 1687.5 1 293 1702 6 310 yes 1687.5 0 293 0 1702 2 2 310 0
bgs-100-20-2 1653.5 0 216 1695 13 1059 yes 1653.5 1 216 0 1695 9 5 605 5
bgs-100-5-3 1508.5 0 133 1553 56 2672 yes 1508.5 0 133 0 1553 58 5 2672 0
bgs-100-10-3 1471 0 125 1530 121 3293 yes 1471 0 125 0 1530 124 7 3293 0
bgs-100-20-3 1433.5 0 165 1494 18 745 yes 1433.5 0 165 0 1494 14 12 609 2
bgs-200-10 2246.5 3 358 2266 4928 9700 yes 2246.5 2 358 0 2266 5997 3 10502 42
bgs-200-20 2224.5 2 419 2250 1536 5074 yes 2224.5 3 419 0 2250 1110 7 4272 8
bgs-200-40 2163.5 1 249 2211 8284 10941 yes 2163.5 1 249 0 2211 8134 16 10805 55
bgs-300-10 2663.5 21 638 [2678, 2823] 10800* 12111 yes 2663.5 22 638 0 [2675, 2826] 10800* 3 11074 6
bgs-300-20 2645 18 549 [2665, 2807] 10801* 9810 yes 2645 17 549 0 [2666, 2870] 10802* 8 9604 33
bgs-300-30 2631 13 632 [2664, 2713] 10801* 9874 no 2631 12 632 0 [2664, 2717] 10802* 12 10137 48
bgs-300-40 2622.5 9 417 [2662, 2693] 10801* 11704 yes 2622.5 9 417 0 [2662, 2693] 10802* 11 10036 84
bgs-300-60 2610.5 9 394 [2653, 2682] 10934* 6138 no 2610.5 9 394 0 [2650, 2729] 10802* 16 5834 89

Using model F≤

100-5-1 37190.5 1 207 37319 23 692 no 37190.5 1 207 6 37943 15 4 1026 7
100-5-2 30456.5 0 159 30618 48 1165 no 30456.5 0 164 6 30832 11 2 740 6
100-5-3 31922 1 189 32087 2 124 no 31922 0 189 8 32850 49 4 1797 14
100-10-1 39051.5 1 168 39142 3 397 no 39051.5 0 168 14 39608 37 5 910 19
100-10-2 30121 1 218 30392 25 775 no 30121 0 218 6 30641 54 2 1177 11
100-10-3 31775 1 277 31775 2 200 no 31775 1 277 9 32521 24 5 718 18
200-10-1 52291.5 2 257 52690 1304 1397 no 52291.5 3 257 18 [52831, 53086] 10800* 6 13296 124
200-10-2 38963.8 1 412 39137 81 836 no 38963.8 3 412 5 39663 8580 4 10104 24
200-10-3 44535.5 2 411 44983 1113 4037 no 44535.5 3 411 5 45289 2932 3 4671 22
bgs-100-5-1 1542 1 315 1552 3 442 no 1542 1 292 4 1569 72 2 1416 11
bgs-100-10-1 1499.5 0 275 1501 2 224 no 1499.5 0 261 10 1524 20 6 1102 17
bgs-100-20-1 1484.5 0 217 1486 1 202 no 1484.5 0 215 16 1509 11 9 968 34
bgs-100-5-2 1696.5 0 217 1698 1 292 no 1696.5 1 218 5 1705 3 1 377 5
bgs-100-10-2 1687.5 0 268 1692 2 227 no 1687.5 0 258 10 1702 3 2 380 14
bgs-100-20-2 1653.5 0 241 1657 1 236 no 1653.5 0 241 25 1695 84 5 1651 41
bgs-100-5-3 1508.5 0 144 1516 1 184 no 1508.5 0 144 6 1553 34 5 1217 11
bgs-100-10-3 1471 0 90 1471 1 89 no 1471 1 83 13 1530 116 7 3644 19
bgs-100-20-3 1433.5 1 166 1438 0 127 no 1433.5 0 166 23 1494 13 12 649 36
bgs-200-10 2246.5 2 447 2259 450 2209 no 2246.5 3 447 7 2266 6735 3 12480 42
bgs-200-20 2224.5 3 341 2232 80 710 no 2224.5 4 356 15 2250 5452 7 9648 99
bgs-200-40 2163.5 1 248 2168 40 525 no 2163.5 5 278 38 [2192, 2219] 10801* 15 7838 167

*Not solved to optimality within the limit of three hours.

Table 2: Evaluating the branch-and-cut for symmetric instances (L-MDRP)

There are three main sets of implications of the results for symmetric instances:

• We initially restrict our attention to the results obtained with model F=, reported in the upper half of
Tables 1 and 2. A comparison of the LP bounds of model F= with and without 1-MCCs supports the
theoretical result of Proposition 4, both for the F-MDRP and the L-MDRP. Additionally, when compared
purely in terms of value, the optimal solutions identified with 1-MCC inequalities (12) are not very different
from those obtained without the use of the 1-MCC inequalities. However, as the column ‘Feas?’ indicates,
most of the former sets of solutions are not feasible for the F-MDRP. This is rather obvious given that path
elimination constraints are an integral part of the model to ensure feasibility. The situation, however, is
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rather different for the L-MDRP, where every solution obtained without the 1-MCCs is feasible, excluding
two of the instances with 300 clients (although these remain unsolved, hence we cannot be sure that the
optimal solution will not be also feasible). This can be explained by the fact that the model will not choose
to use all available depots, and only select those that are sufficiently distant from one another, reducing the
likelihood that circuits containing two depots or more will be formed. Nevertheless, separating the 1-MCC
inequalities can be seen to improve the solution time to optimality even when the instances are feasible
without the use of these inequalities. This is evident from the results shown for instances 200-10-1, 200-10-2,
200-10-3, bgs-200-20 and bgs-200-40, for which the solution time to optimality decreased by up to about
30% with the use of the 1-MCC inequalities. Finally, as for the L-MDRP instances, we observe the expected
behavior of reduction of the cost when more depots are allowed.

• We now analyze the results obtained with model F≤ reported in the lower half of the tables. In this case, we
find that all the solutions obtained without the use of the 1-MCC inequalities yield path-infeasible solutions.
In addition, the B&C usually identifies additional 1-MCCs in comparison to model F=, particularly for
instances with 200 clients. The discussion provided earlier in Section 2.5.1 explains the reasons behind
these findings, in particular that the relaxed depot assignment constraints allow infeasible paths that are
not contained in circuits, and that feasible (and optimal) solutions cannot be obtained without enforcing
the 1-MCCs. The conclusion is that providing more information on the degree of the depots prevents the
formation of many path-infeasible solutions, and avoids the use of many (or in some cases all) path elimination
constraints that would otherwise be needed. However, the degree information itself cannot guarantee that
optimal solutions obtained without path elimination constraints would be path-feasible, as will be seen in
the case of asymmetric instances.

• When models F= and F≤ are compared in terms of the strength of the LP relaxation, it can be seen that,
in the case of the F-MDRP, the LP bounds provided by the former are substantially better when 1-MCCs
are not separated. This is also an indication that model F= permits a significantly less number of infeasible
solutions, particularly as the LP value of model F= without 1-MCC inequalities is generally larger than the
optimal value of model F≤ without 1-MCC inequalities. This, for example, is evidenced across all instances
in the case of the F-MDRP. Nevertheless, these observations do not necessarily suggest that the B&C based
on model F≤ should not be considered. In fact, the B&C based on model F≤ slightly outperformed the B&C
based on model F= in some cases (e.g., instance 200-10-3). However, the results suggest that, on average,
the B&C based on model F= seems to be the best option for solving both the F-MDRP and the L-MDRP.
For this reason, we did not try to solve the instances with 300 clients using the B&C based on model F≤.

In conclusion, the performance of the B&C approach is such that it is able to solve all the symmetric instances
tested here with 100 clients and up to 20 depots within a minute of computation time. As for the instances with
200 clients and up to 40 depots, the B&C based on model F= is able to solve all instances within the time limit
of three hours, except for the instance bgs-200-20 in the F-MDRP case, which is, however, solved by the B&C
based on model F≤. Finally, we were unable to solve any of the instances with 300 clients and up to 60 depots
within the time limit.

3.3.2 Asymmetric instances

This section reports the results obtained on the set C of instances, separately for the F-MDRP in Table 3 and for
the L-MDRP in Table 4, much in the same way as in the previous section.
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B&C without 1-MCCs B&C with 1-MCCs

Name LP tL #CC OPT t #CC Feas? LP tL #CC #MC OPT t #CC #MC

Using model F=

bgs-100-5-1a 898.241 2 1048 911 4 1100 no 898.349 3 1058 2 912 10 1470 38
bgs-100-10-1a 908.78 3 960 915 9 1329 no 911.35 4 964 25 921 15 1446 60
bgs-100-20-1a 948.75 1 811 953 3 635 no 969.471 3 843 113 979 19 749 942
bgs-100-5-2a 967.833 1 471 979 7 1300 no 967.948 1 475 4 980 8 1021 65
bgs-100-10-2a 986.5 1 431 992 3 559 no 988.778 1 450 13 998 8 778 176
bgs-100-20-2a 1033.75 0 403 1036 3 682 no 1055.8 2 429 195 1066 10 778 477
bgs-100-5-3a 917.25 6 1486 927 7 1241 no 917.25 6 1486 0 928 6 1219 8
bgs-100-10-3a 924.083 2 942 933 6 1070 no 939.419 3 986 53 955 46 1628 591
bgs-100-20-3a 947.6 2 1023 952 4 734 no 981.054 11 1056 351 994 70 984 2969
bgs-200-10a 1311.29 1 94 1315 5 210 no 1319.7 4 153 38 1325 19 355 62
bgs-200-20a 1340 1 105 1346 6 247 no 1348.97 6 112 82 1361 196 705 1558
bgs-200-40a 1464.58 2 77 1468 4 113 no 1492.26 53 135 709 1504 507 315 4840
bgs-300-10a 1631.12 6 201 [1642, 1651] 10802* 7570 no 1632.95 13 222 24 [1643, 1660] 10801* 12299 1543
bgs-300-20a 1647.35 9 285 1661 2064 2848 no 1656.83 42 339 120 [1668, 1696] 10801* 6696 10526
bgs-300-30a 1667.01 6 203 1679 547 1205 no 1681.12 74 255 431 [1695, 1720] 10802* 2686 15495
bgs-300-40a 1689.03 4 113 1697 196 682 no 1709.94 122 204 772 [1718, 1753] 10802* 1840 15993
bgs-300-60a 1764.83 4 79 1770 29 179 no 1802.05 1043 159 3213 [1815, 1821] 10803* 861 17823

Using model F≤

bgs-100-5-1a 864.602 0 563 877 13 1765 no 898.349 1 598 9 912 5 851 30
bgs-100-10-1a 851.972 1 774 856 4 871 no 911.35 2 836 39 921 6 940 45
bgs-100-20-1a 839.5 4 1152 846 6 1048 no 969.471 9 1186 143 979 24 1176 578
bgs-100-5-2a 939.25 0 403 945 3 403 no 967.948 1 451 11 980 8 857 95
bgs-100-10-2a 929.9 1 491 932 2 483 no 988.778 1 638 27 998 5 716 82
bgs-100-20-2a 915.167 1 761 917 3 864 no 1055.8 5 1041 222 1066 18 1097 723
bgs-100-5-3a 891.548 3 1188 898 9 1340 no 917.25 3 1232 7 928 15 1684 35
bgs-100-10-3a 882.854 3 1102 888 8 1086 no 939.419 6 1173 85 955 62 2033 786
bgs-100-20-3a 858.667 9 1760 860 21 2274 no 981.054 26 1939 428 994 103 2591 3019
bgs-200-10a 1284.23 1 119 1291 8 342 no 1319.7 5 205 57 1325 36 463 106
bgs-200-20a 1273.75 2 118 1279 10 242 no 1348.97 9 221 143 1361 487 1208 3733
bgs-200-40a 1266.91 1 137 1274 18 457 no 1492.26 78 255 1235 1504 1246 415 7628

*Not solved to optimality within the limit of three hours.

Table 3: Evaluating the branch-and-cut for asymmetric instances (F-MDRP)
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B&C without 1-MCCs B&C with 1-MCCs

Name LP tL #CC OPT t #CC Feas? LP tL #CC #MC OPT t DU #CC #MC

Using model F=

bgs-100-5-1a 865 0 597 879 5 747 yes 865 1 597 0 879 5 2 747 0
bgs-100-10-1a 856.25 1 712 872 11 1420 no 856.25 1 712 0 873 20 4 1914 17
bgs-100-20-1a 848.847 6 1420 859 14 1817 no 848.847 6 1420 0 861 25 11 2223 17
bgs-100-5-2a 948.542 1 620 954 4 884 yes 948.542 0 620 0 954 5 1 884 0
bgs-100-10-2a 945.367 1 556 952 5 805 yes 945.367 1 556 0 952 5 3 805 0
bgs-100-20-2a 931 1 704 933 3 722 no 931 2 704 2 933 4 6 751 17
bgs-100-5-3a 893.417 2 978 904 12 1914 yes 893.417 1 978 0 904 13 2 1934 4
bgs-100-10-3a 890.917 2 1167 904 23 2684 yes 890.917 3 1167 0 904 28 3 2541 33
bgs-100-20-3a 871.067 27 2550 878 24 2502 no 871.067 29 2550 0 879 30 7 2774 21
bgs-200-10a 1291.88 1 138 1296 5 207 no 1291.88 1 138 0 1296 5 4 211 3
bgs-200-20a 1290.14 1 145 1295 6 299 no 1290.14 2 145 2 1295 5 6 282 1
bgs-200-40a 1288.33 1 122 1293 5 235 no 1288.33 1 122 0 1293 12 8 308 6
bgs-300-10a 1609.54 11 311 1626 10590 6648 no 1609.54 10 311 3 [1624, 1627] 10800* 2 6641 50
bgs-300-20a 1604.09 11 252 1621 4556 4257 no 1604.09 9 249 6 1622 10387 5 5729 100
bgs-300-30a 1599.22 7 224 1616 8380 3802 no 1599.22 10 224 5 [1614, 1617] 10800* 8 5604 399
bgs-300-40a 1593.11 6 227 1606 420 1172 no 1593.11 16 249 8 1606 799 11 1596 71
bgs-300-60a 1582.98 6 184 1591 134 487 no 1583.37 21 237 18 1592 533 16 883 249

Using model F≤

bgs-100-5-1a 864.602 1 721 877 6 1045 no 865 1 734 4 879 11 2 1366 8
bgs-100-10-1a 851.972 2 920 856 3 853 no 856.25 2 940 9 873 25 4 2289 40
bgs-100-20-1a 839.5 4 1044 846 6 1165 no 848.847 4 1078 29 861 11 11 1445 39
bgs-100-5-2a 939.25 1 306 945 2 464 no 948.542 0 362 6 954 3 1 666 6
bgs-100-10-2a 929.9 1 646 932 2 612 no 945.367 2 776 12 952 4 3 872 14
bgs-100-20-2a 915.167 4 1341 917 2 542 no 931 6 1458 33 933 3 6 613 40
bgs-100-5-3a 891.548 4 1321 898 9 1529 no 893.417 4 1327 4 904 15 2 1937 6
bgs-100-10-3a 882.854 6 1389 888 6 1171 no 890.917 6 1448 17 904 24 3 2245 27
bgs-100-20-3a 858.667 7 1585 860 14 1884 no 871.067 7 1649 34 879 26 7 2397 67
bgs-200-10a 1284.23 1 116 1291 16 469 no 1291.88 3 235 16 1296 11 4 353 21
bgs-200-20a 1273.75 1 116 1279 7 270 no 1290.14 4 324 35 1295 13 6 422 38
bgs-200-40a 1266.91 2 127 1274 10 297 no 1288.33 5 265 59 1293 20 8 501 59

*Not solved to optimality within the limit of three hours.

Table 4: Evaluating the branch-and-cut for asymmetric instances (L-MDRP)

The results show that most of the observations made for the symmetric instances also apply here. One exception
is the difference in the LP relaxation bounds obtained by the B&C with and without 1-MCC inequalities for the
F-MDRP, which is expected given that Proposition 4 does not hold in the case of asymmetric instances. In
particular, for 10 out of the 17 F-MDRP instances tested with the B&C based on model F=, the LP bound
obtained with the 1-MCC inequalities is larger than the optimal integer value obtained without them. This is the
same for all instances tested with the formulation F≤. However, the LP bound values obtained with and without
1-MCC inequalities do not show any difference for the L-MDRP, when tested with formulation F=, except in
instance bgs-300-60a.

In addition, and in slight contrast to the observations made for symmetric instances on the integer solutions
obtained without the use of 1-MCCs for the L-MDRP variant, there were four out of nine instances with 100
clients, three out of three instances with 200 clients and five out of five instances with 300 clients where the
solution obtained is not feasible with respect to the 1-MCCs.

3.4 Evaluating the effect of the k-MCCs

In this section, we report our computational experience with using the more general k-MCC inequalities (23) for
k > 1 to further improve the LP bounds provided by model F= with the B&C on instances with 100 clients. Due
to Proposition 4, we have only tested the asymmetric instances in set C. The results are shown in Table 5 for the
F-MDRP variant and Table 6 for the L-MDRP variant, where the k-MCC inequalities were separated for up to
k = 5.
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B&C with 1-MCCs B&C with k-MCCs up to k = 5
Name OPT LP t LP t
bgs-100-5-1a 912 898.349 3 898.349 0
bgs-100-10-1a 921 911.35 4 911.438 15
bgs-100-20-1a 979 969.471 3 969.762 819
bgs-100-5-2a 980 967.948 1 967.948 1
bgs-100-10-2a 998 988.778 1 988.778 17
bgs-100-20-2a 1066 1055.8 2 1055.8 894
bgs-100-5-3a 928 917.25 6 917.25 1
bgs-100-10-3a 955 939.419 3 939.633 13
bgs-100-20-3a 994 981.054 11 983.133 762

Table 5: Comparison results of the 1-MCC inequalities with the k-MCC inequalities up to k = 5 (F-MDRP)

B&C with 1-MCCs B&C with k-MCCs up to k = 5
Name OPT LP t LP t
bgs-100-5-1a 879 865 1 865 0
bgs-100-10-1a 873 856.25 1 856.25 10
bgs-100-20-1a 861 848.847 6 848.847 652
bgs-100-5-2a 954 948.542 0 948.542 0
bgs-100-10-2a 952 945.367 1 945.367 11
bgs-100-20-2a 933 931 2 931 931
bgs-100-5-3a 904 893.417 1 893.417 1
bgs-100-10-3a 904 890.917 3 890.917 16
bgs-100-20-3a 879 871.067 29 871.067 653

Table 6: Comparison results of the 1-MCC inequalities with the k-MCC inequalities up to k = 5 (L-MDRP)

The results show that only minor improvements in the LP bounds were obtained for the F-MDRP, namely for
instances bgs-100-10-1a, bgs-100-20-1a, bgs-100-10-3a and bgs-100-20-3a, and no improvements in the case of the
L-MDRP. The latter result is not surprising, given the earlier results with the 1-MCCs. The computational time
requirements to solve the LP with k-MCCs with up to k = 5 increases considerably with the number of depots,
which is expected.

The results speak in favor of not using generalizations in the form of k-MCCs for k ≥ 2. In particular, the
results suggest that there seems to be no computational benefit in terms of the LP bounds and reduction in the
time to solve the instances to optimality. It would therefore suffice to use 1-MCCs which have reduced separation
complexity and provide just as good bounds as their generalizations.

3.5 Comparing the 1-MCC with inequalities (30) and (31)

The discussion in Section 2.4 suggests that there should not be any dominance relationship between the 1-MCC
inequalities (12) and the inequalities (30) and (31), at least in the space of the directed x variables. In this
section, we compare the LP bounds obtained using the formulation F= by using either the 1-MCC inequalities
(12) or using the inequalities (30) and (31), for both he F-MDRP and the L-MDRP. For the comparison within
asymmetric instances, and for reasons explained at the end of Section 2.4, we have added the 1-MCC inequalities
(12) for single node sets S to the inequalities (30) and (31) in order to obtain a valid formulation. Table 7 presents
the comparison results for the F-MDRP variant and Table 8 for the L-MDRP. In our experiments, we used exact
separation for the two sets of inequalities.
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With ineq. (30)–(31) With 1-MCCs
Name OPT LP t LP t
100-5-1 38116 37560.5 3 37506 0
100-5-2 34018 33681.1 2 33679.5 0
100-5-3 33024 32622.5 1 32622.5 0
100-10-1 41991 41178.8 4 40847.5 0
100-10-2 39126 38680.7 4 38529 0
100-10-3 33719 33111.3 4 33015 1
200-10-1 53739 52847.8 37 52834.5 1
200-10-2 47441 46758.5 73 46758.5 2
200-10-3 47828 47454.2 86 47381.5 2
bgs-200-10 2301 2290.97 120 2290.75 4
bgs-200-20 2332 2306.97 103 2300.33 2
bgs-200-40 2417 2384.19 190 2375.5 3
bgs-100-5 1587 1579.5 3 1578.5 0
bgs-100-10 1597 1580.2 5 1576 1
bgs-100-20 1687 1660.75 4 1656.5 1
bgs-100-5-1a 912 898.241 1 898.349 3
bgs-100-10-1a 921 910.456 3 911.35 4
bgs-100-20-1a 979 958.188 4 969.471 3
bgs-100-5-2a 980 967.902 2 967.948 1
bgs-100-10-2a 998 988.689 2 988.778 1
bgs-100-20-2a 1066 1045.87 6 1055.8 2
bgs-100-5-3a 928 917.25 2 917.25 6
bgs-100-10-3a 955 935.762 4 939.419 3
bgs-100-20-3a 994 975.28 6 981.054 11
bgs-200-10a 1325 1317.62 75 1319.7 4
bgs-200-20a 1361 1346 90 1348.97 6
bgs-200-40a 1504 1479.14 195 1492.26 53

Table 7: Comparison results of the 1-MCC inequalities with inequalities (30) and (31) (F-MDRP)
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With ineq. (30)–(31) With 1-MCCs

Name OPT LP t LP t

100-5-1 37943 37199.6 4 37190.5 1
100-5-2 30832 30456.5 2 30456.5 0
100-5-3 32850 31933.5 2 31922 0
100-10-1 39608 39078.5 4 39051.5 0
100-10-2 30641 30127.8 3 30121 0
100-10-3 32521 31860.8 4 31775 0
200-10-1 53047 52300.8 53 52291.5 2
200-10-2 39663 38963.8 55 38963.8 3
200-10-3 45289 44546.4 90 44535.5 3
bgs-200-10 2266 2246.5 92 2246.5 2
bgs-200-20 2250 2225 182 2224.5 3
bgs-200-40 2211 2168.21 307 2163.5 1
bgs-100-5 1569 1544 2 1542 1
bgs-100-10 1524 1500 2 1499.5 0
bgs-100-20 1509 1486 3 1484.5 0
bgs-100-5-1a 879 865 1 865 1
bgs-100-10-1a 873 856.25 2 856.25 1
bgs-100-20-1a 861 848.847 2 848.847 6
bgs-100-5-2a 954 948.542 2 948.542 0
bgs-100-10-2a 952 945.367 1 945.367 1
bgs-100-20-2a 933 931 3 931 2
bgs-100-5-3a 904 893.417 2 893.417 1
bgs-100-10-3a 904 890.917 2 890.917 3
bgs-100-20-3a 879 871.067 2 871.067 29
bgs-200-10a 1296 1291.88 29 1291.88 1
bgs-200-20a 1295 1290.14 49 1290.14 2
bgs-200-40a 1293 1288.33 46 1288.33 1

Table 8: Comparison results of the 1-MCC inequalities with inequalities (30) and (31) (L-MDRP)

The results concerning the symmetric instances indicate that there are improvements in the LP bound, in some
cases significant, when inequalities (30) and (31) are used. This is the case for both variants of the problem, and is
in contrast to using the 1-MCC inequalities (12). These results also suggest that for sparser instances with only a
few client nodes linked to the depots, the previously known inequalities (30) could be more advantageous. However,
the exact separation procedure used to identify violated inequalities (30) and (31) is more time-consuming than
the separation procedure for finding violated 1-MCC inequalities. More precisely, if MF is the complexity of
the max-flow algorithm, then separating the 1-MCC inequalities has a worst-case computational complexity of
O(MF × |D|), since one max-flow has to be calculated for each depot, whereas separating inequalities (30) and
(31) has a worst-case computational complexity of O(MF × |C|2), since a max-flow has to be calculated for each
pair of clients. In fact, the expression defining inequalities (30) and (31), even suggests that a max-flow has to be
calculated for each pair of clients and each subset of depots. However, the exact separation procedure described
in Belenguer et al. (2011) indicates a clever way of determining, for all inequalities associated to a given pair of
client nodes i and j, the most violated inequality, if any exists, for all subsets of depots. This strategy was also
used in our computational experiment.

For asymmetric instances we observe the opposite situation, but quite surprisingly, only for the F-MDRP
instances. For the L-MDRP instances, the two sets of inequalities provide the same bounds.

A word of caution on the results above is in order. As previously pointed out, the comparison was done
using exact separation, leading to the suggestion that the multi-cut constraints prove to be much easier and
computationally more efficient on average to separate. The comparative findings may change, however, if other
bespoke separation routines were to be devised and used for each of the set of inequalities, as was done by Benavent
& Mart́ınez-Sykora (2013) for inequalities (30) and (31).

4 Conclusions

Although multi-depot routing problems have long been studied, those that investigate the problem in its simplest
setting are few and far between. Our study belongs to the latter category. In this paper, we have described new
path elimination constraints for multi-depot routing problems, with and without location considerations, studied
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their properties and connections between existing inequalities, and presented computational results to numerically
assess their relative strength. The results suggest that the basic version of the multi-cut constraints, namely
1-MCCs, are computationally efficient and effective.

Through computational experiments, we have offered some insight into the nature of the problem and the way
in which it is formulated. In particular, whilst the path elimination constraints are needed to ensure feasibility
of the resulting solutions, we empirically showed that the way that the depot assignment constraints are modeled
significantly affects the number of path elimination constraints required within the B&C algorithm, as well as the
time spent to solve the problem to optimality.

We have also provided a generalization of the 1-MCC inequalities, namely the k-MCCs, however computational
results do not indicate that they are computationally effective. Nevertheless, it is still an open question as to
whether there might be other classes of instances, or variants of multi-depot problems, for which the more general
k-MCCs might yield more significant improvements both in the LP relaxation bounds or in the computational
times, in which case more efficient separation procedures for these constraints may be needed.
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