
Network Coding Algorithms for Multi-Layered Video Broadcast

Erika R. Bérczi-Kovács · Zoltán Király

Abstract In this paper we give network coding algorithms for multi-layered video streaming. The prob-
lem is motivated by video broadcasting in a communication network to users with varying demands. We
give a polynomial time algorithm for deciding feasibility for the case of two layers, and show that the
problem becomes NP-hard if the task is to maximize the number of satisfied demands. For the case of
three layers we also show NP-hardness of the problem. Finally, we propose a heuristic for three layers
and give experimental comparison with previous approaches.

Keywords network coding · multi-layered video streaming

1 Introduction

The appearance of new devices (smartphones, tablets, etc.) has highly increased user diversity in com-
munication networks. As a consequence, when watching a video stream, users may have very different
quality demands depending on the resolution capability of their devices.

Multi-resolution code (MRC) is one successful way to handle this diversity, encoding data into a base
layer and one or more refinement layers [8,1]. Receivers can request cumulative layers, and the decoding
of a higher layer always requires the correct reception of all lower layers (including the base layer). The
multi-layer multicast problem is to multicast as many valuable layers to as many receivers as possible.

In a multi-layered streaming setup, network coding was shown to be a successful tool for increasing
throughput compared to simple routing [4]. In their simple heuristic, Kim et al. [4] give a network coding
scheme based on restricting the set of layers that may be encoded at certain nodes.

This paper proposes algorithms for the multi-layered video streaming problem. We give an optimal
polynomial time algorithm for two layers when the goal is to send the base layer to every user, and within
this constraint to maximize the number of users receiving two layers. For the case of three or more layers
we show NP-hardness of the problem. Also, we show NP-hardness for the case of two layers when the
goal is to maximize the total number of transmitted useful layers. We also propose a heuristic for three

Erika R. Bérczi-Kovács
Department of Operations Research, Eötvös Loránd University
Budapest, Hungary
E-mail: koverika@cs.elte.hu

Zoltán Király
Department of Computer Science, Eötvös Loránd University
and MTA-ELTE Egerváry Research Group, Budapest, Hungary
E-mail: kiraly@cs.elte.hu

ar
X

iv
:1

71
2.

06
43

5v
1

 [
cs

.D
M

]
 1

8
D

ec
 2

01
7

2 Erika R. Bérczi-Kovács, Zoltán Király

layers and give experimental comparison between the best known heuristic due to Kim et al.[4] and our
approach.

The rest of the paper is organized as follows: Section 2 contains the problem formulation and some
definitions. In Section 3 we prove NP-hardness for some special cases of the problem. In Section 4, the
notion of feasible height function is introduced, and a sufficient condition for simultaneously satisfiable
receiver demands is given. In Section 5 we give an optimal algorithm for two layers. In Section 6 we
present a heuristic for three layers, and give some numerical results of experimental comparison.

2 Problem Formulation

A video stream is divided into k layers of equal size. At each time slot t, a set of messages M(t) =
{M1(t),M2(t), . . .Mk(t)} is generated, message Mi(t) belonging to layer i and represented by an element
of a finite field Fq of size q. The idea of network coding is to transmit linear combinations of messages on
the unit rate arcs. We will construct such linear network coding schemes, where these linear combinations
only combine messages from the same time slot, and the same coding scheme is applied for each message
set M(t), so the notation ’t’ will be omitted in the paper.

Let D = (V,A) be a directed acyclic graph with a single source node s and with unit capacity arcs.
We will consider this graph fixed, except in Section 3. For a node v ∈ V−s, let λ(s, v) denote the maximal
number of arc-disjoint paths from s to v. For a pair of nodes u, v ∈ V , a set X ⊂ V is a uv-set, if u /∈ X
and v ∈ X. For a set X of nodes let %(X) denote the number of entering arcs of X. Note that λ(s, v) ≥ k
if and only if %(X) ≥ k for every sv-set X. We assume that λ(s, v) ≥ 1 for every node in the graph. A
set X not containing s, and having %(X) = i is called an i-set.

The task is to multicast M = (M1,M2, . . .Mk) from s. A network code can be represented by the
vector of the coefficients c = (c1, . . . , ck) on each arc (where ci ∈ Fq). Let Fkq denote the k-dimensional

vector space over Fq, and let ei denote the ith unit vector. For a set S ⊆ Fkq of vectors, let 〈S〉 denote
the linear subspace spanned by S.

Definition 1 A linear network code of k messages over a finite field Fq is a mapping c : A → Fkq
which fulfills the linear combination property: c(uv) ∈ 〈{c(wu)| wu ∈ A}〉 for all u 6= s. We will use
the notation 〈c, u〉 = 〈{c(wu)| wu ∈ A}〉. The function c gives the coefficients of the messages on an
arc, that is, on arc a the message sent is the scalar product c(a) ·M. We say that a message Mi (or layer
i) has non-zero coefficient on an arc a, if c(a) ·ei 6= 0. A node v can decode message Mi (or layer i),
if ei ∈ 〈c, v〉. Hence, with abuse of notation, ei will be identified with message Mi and layer i throughout
the paper.

We remark here that if a node v can decode layer i by the above definition, then it really can decode
message Mi, as it gets all scalar products c(uv) ·M and ei ∈ 〈c, v〉, so it can easily calculate Mi = ei ·M.
Note also that simple routing can be regarded as a special case, where for each arc uv, c(uv) = ei for
some 1 ≤ i ≤ k.

Definition 2 In multi-resolution coding, for i > j we say that layer i is higher than layer j, and layer
j is lower than layer i. The height of a network code on an arc uv is the highest layer with non-zero
coefficient on that arc. For example, the first unit vector has height one and so on, ei has height i, and
vector (1, 0, 1, 0) has height 3. The height of c is denoted by hc : A→ N.

A layer i is valuable for a node only if all lower layers can also be decoded at that node, i.e., for
every j ≤ i message Mj is decodable. The performance of a network code at a node v is the index of the
highest valuable layer for v. The performance function of c is denoted by pc : V → {0, 1, . . . , k}, where
p(v) = 0 denotes that layer 1 is not decodable at v.

A demand is a sequence of mutually disjoint subsets of V−s denoted by τ = (T1, T2, . . . , Tk). The set
of receiver nodes is the union of these request sets, denoted by T = T1 ∪ T2 ∪ . . . ∪ Tk. The nodes in Ti

Network Coding Algorithms for Multi-Layered Video Broadcast 3

request the first i layers. Given a demand τ , we can define a demand function dτ : V → {0, 1, . . . , k}
on the nodes in a straightforward way by setting dτ (v) = i if v ∈ Ti, and dτ (v) = 0 if v ∈ V \ T .

A network code is feasible for demand τ , if pc(v) ≥ dτ (v) for all v ∈ V , that is, for all i and j ≤ i,
every receiver node t ∈ Ti can decode Mj. If there exists a feasible network code for a demand, the demand
is called satisfiable.

3 Complexity Results

In this section we prove NP-hardness of some special cases of the multi-layered network coding problem.
Lehman and Lehman [6] showed NP-hardness for a more general network coding problem, where receivers
may demand any subset of the messages, and there can be multiple sources, accessing disjoint subsets of
the information demanded by the receivers. Here we prove NP-hardness for a special case of this problem,
when there is only one source in the graph, and demands of the receivers have a layered structure as
defined in the previous section 2.

Theorem 3 Given a directed acyclic graph D and a demand with three layers τ = (T1, ∅, T3), it is
NP-hard to decide, whether there exists a feasible network code for τ .

. . .

. . .

xn

cibiai

diC1 Ck

xi xi xn

s

t

Fig. 1: Reduction of 3-SAT to demand τ = (T1, ∅, T3).

Proof We reduce the well-known NP-complete 3-SAT problem [2] to our problem. Let S = (X,CL) be a
3-SAT instance, where X = {x1, . . . , xn} and CL = {C1, . . . , Cm} denote the set of variables and clauses,
respectively. We define a network coding problem on a digraph D corresponding to this instance. First
we create special nodes s, t with an arc st, and put t into T1. For each variable xi we add six nodes with
eleven arcs (see Figure 1), so that ai, bi, ci ∈ T1 and di ∈ T3. Nodes xi and xi correspond to literals. For
each clause Cj we add a node Cj , arcs sCj and tCj and arcs from every node corresponding to literals
of Cj . Each Cj is put into T3. We prove that this network coding problem has a feasible solution over
some finite field if and only if S can be satisfied. Suppose the above defined network coding problem
has a feasible network code c. Since t ∈ T1, hc(st) = 1 and for all Cj hc(tCj) = 1. Moreover, the arc
sCj can transmit any message from s, hence Cj can decode all three layers if and only if at least one
additional arc entering Cj has height greater than one. Note that such an arc can come only from a node
corresponding to a literal in Cj .

Claim 4 If the network coding problem has a feasible network code c, then for every variable xi, the
code c has height one on at least one of the arcs sxi and sxi.

4 Erika R. Bérczi-Kovács, Zoltán Király

Proof Let us assume indirectly that neither c(sxi) nor c(sxi) have height one. Since ai, bi, ci must be
able to decode the first layer, c(sai) ∈ 〈e1, c(sxi)〉, and c(sci) ∈ 〈e1, c(sxi)〉, and e1 ∈ 〈c(sxi), c(sxi)〉.
Hence we have

dim〈c(sai), c(sci), c(sxi), c(sxi)〉 = dim〈c(sxi), c(sxi)〉 ≤ 2,

that is, these four vectors cannot span a 3-dimensional space to transmit three layers to di. �

By the claim we can transform a solution of the network coding problem into an assignment of S by
assigning value ’true’ to a literal l if the height of c(sl) is at least two. Note that if for a variable xi both
sxi and sxi have height one, we can choose the value of xi arbitrarily to get a satisfying assignment.

Similarly we can get a feasible network code c for the network coding problem from a truth assignment
of S over any field. The corresponding vectors c(e) are the following. Let c(st) = (1, 0, 0), c(sCj) =
(1, 1, 1), and for any node u with only one incoming arc wu, all outgoing arcs carry c(wu). If xi is true, then
c(sai) = (0, 1, 0), c(sxi) = (1, 1, 0), c(sxi) = (1, 0, 0), c(sci) = (1, 1, 1), c(aidi) = (0, 1, 0), c(bidi) =
(1, 0, 0), c(cidi) = (1, 1, 1), and the code can be constructed symmetrically if xi is false. It is easy to
check that this c is indeed a feasible network code. ut

For the general case with k ≥ 3 layers we easily get the similar result by adding k − 3 new sCi and
sdj arcs for each i, j.

Corollary 5 For k ≥ 3 layers and demand τ = (T1, ∅, . . . , ∅, Tk), it is NP-hard to decide whether there
exists a feasible network code for τ .

Theorem 6 Given a directed acyclic graph D and a demand τ = (T1, T2) it is NP-hard to find a maximal
cardinality subset T ′1 of T1, so that for τ ′ = (T ′1, T2) there exists a feasible network code.

Proof We prove the theorem by reducing to this problem the NP-hard Vertex Cover problem [2], which
is the following: given a graph G = (W,E), find a subset of the nodes X ⊆W of minimum size such that
X ∩{u, v} 6= ∅ for every uv ∈ E. Given an instance G = (W,E) of the vertex cover problem, we construct
an acyclic graph D and demand (T1, T2). First let D be a single node s. Then for every vertex w ∈W we
add a receiver tw ∈ T1 with an arc stw, while for every edge uv ∈ E we add a receiver tuv ∈ T2 with arcs
tutuv and tvtuv. For a given network code c, a receiver node tw ∈ T1 can decode the first layer if and only
if the height of the code on stw is one. A receiver node tuv ∈ T2 can decode both layers, only if on at least
one entering arc the code has height two. Let tvtuv be such an arc. Since the tail node tv has exactly one
entering arc stv, this arc must have height two also, hence tv does not receive the first layer in D. Let
T ′1 ⊆ T1 denote the set of nodes tw ∈ T1 for which the arc stw has height one, and let X ⊆W be the set
of nodes w ∈W for which stw has height two. It is easy to conclude that if the code is feasible for demand
(T ′1, T2) then X is a vertex cover. Conversely, from a vertex cover X ⊆ W let T0 = {tw ∈ T1 | w ∈ X}
and let T ′1 = T1 \ T0. Then we get a feasible network code for demand τ ′ = (T ′1, T2) with the following
properties: the network code has height two on arcs incident to nodes in T0, while on all other arcs it
has height one. For a fieldsize large enough (q ≥ |W |) we can choose a network code which is pairwise
linearly independent on arcs of type stw for tw ∈ T0. Such a network code is feasible for τ ′ because on
one hand, a receiver tw ∈ T ′1 has entering arc stw of height one, on the other hand, a receiver tuv ∈ T2
has either two entering arcs of height two with linearly independent codes or it has one entering arc of
height two and one of height one, which always transmit together two valuable layers to tuv. Hence X is
a minimal vertex cover if and only if demand (T ′1, T2) is satisfiable and T ′1 is maximal. ut

As a minimal mixed (vertices and edges) cover of the edges can be assumed to contain only vertices,
we also get the following.

Corollary 7 Given a network D, a demand τ = (T1, T2) and a number K, it is NP-hard to decide
whether there exists a network code satisfying at least K requests.

Network Coding Algorithms for Multi-Layered Video Broadcast 5

4 Tools for feasible network code construction

In [4] Kim et al. gave a simple randomized network coding algorithm for the multi-layered video streaming
problem. In their approach a function h : V → {0, 1, . . . , k} is determined, and then a randomized linear
network code c is sent in the network such that for each arc uv ∈ A, the highest layer with non-zero
coefficient in c(uv) is at most h(v). Their algorithm ensures that the first layer can be decoded at each
receiver with high probability, and some receivers may be able to decode more layers.

In this paper we give some (non-randomized) algorithms that are also based on restricting the highest
layer with non-zero coefficient, but in our approach restrictions may differ for arcs entering the same
node. In order to describe our algorithms, some further layer-related notions are needed.

Definition 8 A function f : A→ {0, 1, . . . , k} is a height function if there exists a finite field Fq and
a linear network code c over Fq with hc = f . Similarly we can define when a function g : V → {0, 1, . . . , k}
is a performance function, i.e., if there exists a linear network code c over Fq with pc = g. We say
that functions f : A→ {0, 1, . . . , k} and g : V → {0, 1, . . . , k} form a height-performance-pair if there
exists a network code c with hc = f and pc = g. Given a function f : A → {0, 1, . . . , k}, a function
g : V → {0, 1, . . . , k} is called a realizable extension of f , if they form a height-performance-pair. A
height function f is feasible for a demand τ if it has a realizable extension g such that g ≥ dτ .

4.1 Sufficient condition for feasible height functions

Our algorithms for feasible network code construction for a demand τ will always first find a function
f : A→ {0, 1, . . . , k} and then a realizable extension g such that g(v) ≥ dτ .

In this subsection we give a sufficient condition for a function f to be a height function (see Corollary
14). As we will see, this condition is also necessary for two layers, leading to a characterization for that
case. We use this characterization to get a new heuristic for three layers, with better performance than
earlier approaches.

In this section we assume that the reader is familiar with the classical algorithm of Jaggi et al. [3].
In their algorithm, they construct a feasible network code for a demand τ = (∅, . . . , ∅, Tk) by fixing k
arc-disjoint paths to every receiver and constructing the network code on the arcs one by one, in the
topological order of their tails. We say that an arc a is processed during the algorithm, if the network
code c(a) is defined. Jaggi et al. maintain that for every receiver, the span of the codes on the last
processed arcs on the fixed k paths remain the whole k-dimensional vector space. Their algorithm can be
easily generalized for multi-layer demands.

Definition 9 For a function f : A→ {0, 1, . . . , k}, a path P with arcs a1, a2, . . . , ar is called monotone,
if f(a1) ≤ f(a2) ≤ . . . ≤ f(ar). We define for such a monotone path min(P) = f(a1) and max(P)
= f(ar). The former min(P) is also called the value of the path.

Definition 10 Let a node v ∈ V−s, a function f : A→ {0, 1, . . . , k} and a function g : V → {0, 1, . . . , k}
be given. An i-fan of v consists of i pairwise arc-disjoint non-trivial (i.e., containing at least one arc)
monotone paths P1, . . . , Pi ending at v, where for all j ≤ i we have j ≤ min(Pj) ≤ max(Pj) ≤ i, and Pj
begins at a node vj with g(vj) ≥ min(Pj).

Definition 11 If a function f : A→ {0, 1, . . . , k} and a function g : V → {0, 1, . . . , k} is given in such
a way that

i, for every node v with g(v) > 0 there exists a g(v)-fan of v,
ii, for every arc vw, either f(vw) ≤ g(v), or there exists an incoming arc uv with f(uv) = f(vw),

then g is called a fan-extension of f . Let us call an arc uv free if f(uv) ≤ g(u). Note that every starting
arc of a path in a fan is free.

6 Erika R. Bérczi-Kovács, Zoltán Király

Theorem 12 A fan-extension g of a function f is always a realizable extension of f .

Proof If a node can decode the first i layers then it can also send any linear combination of these layers.

Claim If v has an i-fan then it also has an i-fan with exactly one free arc on each path.

Proof Let a′ be a free arc on a path Pj of a fan such that it is not the first arc a. Since P is monotone,
j ≤ f(a) ≤ f(a′), hence the fan resulting from replacing Pj by the subpath P ′j starting from a′ to v is
also an i-fan of v. �

Let us fix such a fan for every node v with g(v) > 0. First we define the network code c on arcs covered
by at least one fan. Let L denote the maximum number of fans an arc is covered by. Our algorithm
constructs a network code over any finite field Fq with q > L. Note that since |V | > L, q > |V | is always
sufficient. We modify the algorithm of Jaggi et al. [3] the following way: on free arcs of a fan we construct
the network code in increasing order of the f values on the arcs. Since the paths in a fan satisfy that
min(Pj) ≥ j and q > L, we can define the network code c so that for every fan, dim〈c(a1), . . . , c(aj)〉 = j
for all 1 ≤ j ≤ i, where aj is the first arc on path Pj . On non-free arcs we define the network code in
a topological order of their tails. When constructing the network code on a non-free arc uv, u 6= s, we
maintain that for every i-fan which contains uv, the span of codes on the last processed arcs on the i
paths remain the i-dimensional subspace of the first i layers. We use the following lemma to prove that
this is possible.

Lemma 13 [3] Let n ≤ q. Consider pairs (xi,yi) ∈ Fkq × Fkq with xi · yi 6= 0 for 1 ≤ i ≤ n. There exists
a linear combination b of vectors x1, . . . ,xn such that b · yi 6= 0 for 1 ≤ i ≤ n. ut

If vectors v1, . . . ,vn span the subspace of the first n layers, then for every vi, 1 ≤ i ≤ n there is a vector
yi in this subspace with vj · yi = 0, i 6= j and vj · yj 6= 0. We call yj a control vector of vj . Let
F1, . . . , F` denote the set of fans containing uv. Consider first F1, and suppose it is an i-fan. Let P1, . . . Pi
denote the paths of fan F1. For j = 1, . . . , i let aj denote the last processed arc of Pj , and let vj = c(aj).
After determining control vectors z1, . . . , zi, let x1 = vp and y1 = zp, where path Pp is the one that uses
arc uv. Clearly arc ap enters u, and x1 = c(ap). Let the tail of arc ap be denoted by w1. For the other fans
we similarly define x2,y2, . . . ,x`,y` and nodes w2, . . . w`. Let wu be an entering arc with f(wu) = f(uv).
Since uv is a non-free arc, such an arc exists. Define x`+1 = c(wu) and y`+1 = ef(u,v). Now let b be the
linear combination provided by Lemma 13 (for x1,y1, . . . ,xl+1,yl+1) and define c(uv) = b. The height of
c(uv) will be at most the height of arcs wiu, hence it remains under f(uv), because all Pj ’s are monotone.
As b · y`+1 = b · ef(uv) 6= 0, the height of uv is exactly f(uv). Finally, for arcs not covered by any fan
we can choose c arbitrarily within the height constraint. Because of property ii, in Definition 11, this can
also be done in the topological order of the tails of these arcs. ut

Corollary 14 If a function f : A→ {0, 1, . . . , k} has a fan-extension then f is a height function.

4.2 Maximal fan-extensions

In this subsection we prove a key property of fan-extensions.

Theorem 15 If a function f has a fan-extension, then it has a unique maximal fan-extension g∗, that
is g∗(v) ≥ g(v) for every fan-extension g of f and every node v.

First we start with a very important, though straightforward observation.

Proposition 16 Given a fan-extension g of a function f such that there exists an i-fan to a node v
with i > g(v), setting g(v) to i is also a fan-extension of f .

Network Coding Algorithms for Multi-Layered Video Broadcast 7

s

u

v

z w

x

1 2 3

2

3
2

1

s

t1

t2
t3

zxxu

zuxu

zssu

zusu

zuuv

zvuv

zssv

zvsv

u
v

zvvz

zzvz

zvvw

zwvw

z w

zssx

zxsx

x

Fig. 2: Auxiliary graph Dv,3.

Proof (Proof of Theorem 15)
Let g+ be a fan-extension for which

∑
v∈V g

+(v) is maximum and assume indirectly that there exists
another fan-extension g′ and a node v for which g′(v) > g+(v). We can assume that v is the first such
node in a topological order. From Proposition 16, increasing g+ on v to i = g′(v) would also give a
fan-extension, because the i-fan of v is also an i-fan for g+. ut

Theorem 17 The maximal fan-extension of a function f can be determined algorithmically.

Proof By Proposition 16, it is enough to prove that we can calculate the maximal fan-extension in a
topological order of the nodes. Assume that g is defined for any node before a node v ∈ V −s in that
order. In order to find monotone paths, we build auxiliary graphs (see Figure 2).

For 0 ≤ i ≤ k, let Dv,i = (V ′, A′) denote the following auxiliary graph of D: we delete all arcs with
f value greater than i. We add i extra nodes to the digraph: t1, . . . , ti. For every node u before v in the
topological order we change the tail of every outgoing arc uw from u to tf(uw) if g(u) ≥ f(uw) and we
define f(tf(uw)w) := f(uw). We replace every arc ux ∈ A′ by two new nodes zuux and zxux, and arcs zuuxz

x
ux

and zxuxx, and for each wu ∈ A′, if f(wu) ≤ f(ux), then add arc zuwuz
u
ux. For every vertex of the form

ztitix we also add arc tiz
ti
tix. Finally we add extra arcs: stj for 1 ≤ j ≤ i and i− 1 parallel copies of tjtj+1

for 1 ≤ j ≤ i− 1.

Lemma 18 There exists an i-fan to v ∈ V if and only if λDv,i
(s, v) = i.

Proof Note that a monotone path P to v in D which has exactly one free arc, corresponds to a path in
Dv,i starting from tmin(P) and vice versa. Hence an i-fan corresponds to i paths in Dv,i, each starting
from a node tj for some j. Suppose indirectly that λDv,i

(s, v) < i, that is, there exists an sv set X ⊆ V ′
with %(X) < i. Since λDv,i

(s, ti) = i, ti /∈ X. Let j denote the greatest integer for which tj ∈ X. Since
for an i-fan at least i− j paths in the fan have value at least j + 1, paths in Dv,i corresponding to paths

8 Erika R. Bérczi-Kovács, Zoltán Király

of the fan enter X on at least i − j arcs. Also, there are j paths to tj in Dv,i using arcs between s and
t1, . . . , tj only, which are disjoint from the arcs of the fan. Hence there are at least i arcs entering X,
contradicting the assumption.

To prove the other direction, let P1, P2, . . . , Pi be i arc-disjoint sv paths in Dv,i. Note that {t1, . . . , ti}
is a cut set in Dv,i hence every path Pj must go through at least one of them. Since %({t1, . . . , tj}) = j,
at least i − j + 1 paths go through the set {tj+1, . . . , ti}, which correspond to paths in D with value at
least j + 1. ut

The maximal possible value of g(v) is the maximal i for which there exists an i-fan of v. Once g is
determined for every node, we can easily check property ii, in Definition 11 for f and g. ut

Lemma 18 shows that the existence of a fan is equivalent with a connectivity requirement in an
auxiliary graph.

Corollary 19 Given a function f : A → {0, 1, . . . , k} and a demand τ , we can check algorithmically
whether f has a fan-extension g such that g ≥ dτ by calculating the maximal fan-extension g∗ and
comparing it to dτ .

5 Characterizing feasible height functions for two layers

In this section we will prove that for two layers (k = 2), the feasible height functions can be characterized.
A demand is proper, if λ(s, ti) ≥ i for all i and all ti ∈ Ti. Being a proper demand is a natural necessary
condition for a demand to have a feasible network code, however, not always sufficient.

Theorem 20 A function f : A→ {1, 2} is a height function, feasible for a proper demand τ = (T1, T2),
if and only if for all arcs uv ∈ A, with u 6= s

1. if f(uv) = 2, then ∃wu ∈ A : f(wu) = 2,
2. if f(uv) = 1, then either ∃wu ∈ A : f(wu) = 1, or λ(s, u) ≥ 2,
3. for any receiver t ∈ T1 with λ(s, t) = 1, there is a 1-valued arc entering t, and
4. for any t ∈ T2 there is a 2-valued arc entering t.

Proof It is enough to prove sufficiency, necessity is straightforward. Let U ⊆ V −s denote the set of
special non-receiver nodes, where a node u is special, if all entering arcs are 2-valued, but it has a 1-
valued outgoing arc (by Property 2, we know that λ(s, u) ≥ 2). The set of receiver nodes t ∈ T for which
λ(s, t) = 1 is denoted by T ′1. As τ is proper, for each node in T ′2 = U ∪ T \ T ′1 there exist two arc disjoint
paths from s, hence, for T ′2 there exists a network code c feasible for demand τ2 = (∅, T ′2). If the field size
q is greater than |T ′2|, the code can be chosen to have height two on every arc, that is, the coefficient of
e2 is nonzero [3]. In order to be feasible for the original demand τ = (T ′1, T

′
2), we modify c the following

way: for every arc uv with f(uv) = 1 we set c(uv) = (1, 0).
We are left to prove that c remains a network code, and becomes feasible for demand τ .
The span of the incoming vectors can only change at nodes which have only 1-valued incoming arcs,

but in this case it has also only 1-valued outgoing arcs, so the network code has the linear combination
property (note that in special nodes the span of the incoming vectors remains two-dimensional). Using
Properties 3 and 4, the code clearly becomes feasible for demand τ . ut

Corollary 21 For two layers, a function f : A→ {0, 1, . . . , k} is a height function feasible for a demand
τ if and only if it has a fan-extension g with g(v) ≥ dτ for all v.

Proof We use the notations of the previous proof and define the extension g to be 2 on T ′2 and 1 on T ′1
and zero everywhere else. It is easy to see that for a receiver node t, if it is in T ′1, there is a path from

Network Coding Algorithms for Multi-Layered Video Broadcast 9

another terminal node containing 1-valued arcs only, that is, there exists a 1-fan to that node. If t is in
T ′2, either there are two edge disjoint paths of 2-valued arcs starting from receiver nodes both in T ′2 or
there is a path of 1-valued arcs from a node in T ′1 and a path of 2-valued arcs from a node in T ′2. Both
cases give a 2-fan for t. ut

5.1 Optimal algorithm for two layers

In this subsection we show that given the condition that all receiver nodes have to be able to decode the
first layer, there is a unique maximal set of nodes X in the graph such that demand τ ′ = (T \ X,X)
is satisfiable. We will give an algorithm for finding this maximal set, as well as constructing a feasible
network code.

Note that by Menger’s theorem, λ(s, v) equals the minimum of %(X), where X is an sv set.

Proposition 22 Let v ∈ V −s, λ(s, v) = i, and X,Y two i-sets with v ∈ X ∩ Y . Then X ∪ Y is also
an i-set.

Proof As %(X ∪ Y) + %(X ∩ Y) ≤ %(X) + %(Y), and %(X ∪ Y), %(X ∩ Y) ≥ i, the claim follows. ut

From the claim we get that for every vertex v ∈ V−s there is a unique maximal λ(s, v)-set containing
v.

Given a proper demand τ = (T1, T2), the following algorithm gives a feasible height function for
τ ′ = (T1, T

′
2) where T ′2 is the unique maximal subset of T2, such that a feasible network code for τ ′ exists.

As a by-product, it also decides whether demand τ is satisfiable or not. Having this height function, one
can easily get a feasible network code for τ ′ along the lines of the previous subsection. We remark that
this code will also be feasible for τ ′′ = (T1 ∪ (T2 \ T ′2), T ′2), in other words every receiver will get at least
the base layer. We will also prove, that any fieldsize q > |T1|+ |T2| will be enough for this network code.

Let Z be the set of maximal 1-sets which contain at least one node from T . For a set Zi ∈ Z, let
I(Zi) denote the set of arcs with head or tail in Zi.

Claim 23 The sets Zi are pairwise disjoint and so are the sets I(Zi). �

Let Z denote the set of nodes not reachable from s in D′ = (V,A\
⋃
i I(Zi)). It is obvious that if every

receiver in T can decode the first layer, then no receiver in Z can decode two layers. Let T ′2 = T2 \Z. For
an arc uv ∈ A, let f(uv) be the following. If uv ∈ I(Z), then f(uv) = 1, otherwise let f(uv) = 2.

Theorem 24 Function f is realizable for τ ′′ = (T1 ∪ (T2 \ T ′2), T ′2). In addition, any finite field of size
q > |T | can be chosen for the network code (where T = T1 ∪ T2).

Proof By the definition of Z, it is clear that Constraint 1 of Theorem 20 is fulfilled. Suppose that f(uv) = 1
for an arc with u 6= s and there are no 1-valued arcs entering u. We need to prove that λ(s, u) ≥ 2.

Suppose that this is not the case, thus there is an su set X ⊂ V with %(X) = 1. Since uv ∈ I(Z) but
none of the arcs entering u is in I(Z), it follows that v ∈ Z and u /∈ Z. Hence v ∈ Zi for some i, but then
X ∪ Zi would be a subset with in-degree one, contradicting the maximality of Zi.

For the second statement, using the proof of Theorem 20, it is enough to show that the size of the
set U of special non-receiver nodes defined there is not greater than the number of terminals that have
demand one in τ ′′. We claim moreover that |U | ≤ |T ∩ Z|. Every u ∈ U is a tail of an arc entering some
Zi, and for every Zi there is only one entering arc. Since each of the pairwise disjoint sets Zi contains at
least one terminal from T ∩ Z, we are done. ut

We note that this algorithm has a more-or-less obvious implementation in time O(|A|) using BFS. We
do not detail it here, because a more general algorithm given in the next section will also do the job.

10 Erika R. Bérczi-Kovács, Zoltán Király

6 Three layers

6.1 Heuristics for 3 layers

In this subsection we give a new network coding algorithm for three layers. We prove that given a receiver
set T , the algorithm sends the first layer to every receiver and within this constraint, the unique maximal
set of receivers gets at least two layers, while some receivers may get three layers. Because of its properties
we call our heuristic 2-Max.

Step 1 Let W1 denote the union of maximal 1-sets which contain at least one node from T . In Section
4 it was proved that if all receivers get the first layer, a receiver v cannot get more than one layer if and
only if it is cut by W1 from s, that is, if there is no directed path from s to v in V \W1. Let W 1 ⊇ W1

denote the set of nodes cut from s by W1. We set T1 = T ∩W 1. We define a set of pseudo receivers U
which contains nodes not in W 1 but having an outgoing arc entering W 1.

Step 2 Similarly to the first case, let W2 denote the maximal 2-sets which contain a receiver or a
pseudo receiver. Let W 2 ⊆ V \W 1 denote the set of nodes only reachable from s through W 1 ∪W2. We
set T2 = (T ∪ U) ∩W 2.

Note that for determining sets W 1 and W 2 we can use the distributed algorithm presented in Sub-
section 6.2.

Step 3 We define a function f : A → {1, 2, 3} on D which is 1 on I(W 1), 2 on I(W 2) \ I(W 1) and
3 otherwise. Let T ∗ = U ∪ T . We proceed on the nodes of T ∗ \ T1 in a fixed a topological order and
decrease f on some arcs from 3 to 2. Let v denote the next node to be processed. We take a cost function
c : A → {0, 1} which is 1 on 3-valued arcs and 0 everywhere else. Then we take the set of nodes X ⊆ T
reachable from s on 3-valued arcs and increase c to |A| on an s-arborescence (a directed tree in which
every node except s has in-degree 1) of 3-valued arcs spanning X. Since v /∈W 1, there are two arc-disjoint
paths P1 and P2 from T ∗ ∪ {s} to v so that P2 does not start in T1. Moreover, it can be assumed that
the inner nodes of these paths do not intersect T ∗.

Case I There are two edge-disjoint paths from T ∗ ∪ {s} to v, such that both avoid T1. Let us take a
minimum cost pair of paths P1 ∪ P2 described above according to the cost function c. Then we decrease
f on the 3-valued arcs of P1 and P2.

Case II No such pair exists. We take a minimum cost P1 ∪ P2 from T ∗ ∪ {s} to v according to the
cost function c. Then we decrease f on the 3-valued arcs of P1 ∪ P2.

Step 4 Finally, we check in the topological order of the nodes, whether every 3-valued outgoing arc
has a 3-valued predecessor, and if not, we decrease its value to 2.

Theorem 25 Let T1 be the set of receivers that can get at most 1 layer, and let T2 be the set of receivers
and pseudo receivers that can get at most 2 layers, as described by the algorithm above. The function f
constructed has a realizable extension for demand τ = (T1, T

′
2, T

′
3) for which T2 ⊆ T ′2 and (T ′2∪T ′3) ⊇ T \T1.

Heuristic 2-Max sends at least one layer to each receiver and within this constraint it sends at least two
layers to the maximum number of receivers. ut

The running time of the algorithm is O(|V |(|A|+ |V | log |V |)), because steps 1, 2 and 4 require time
O(|A|), and the processing of a node in step 3 requires time |A|+|V | log |V | applying Suurballe’s algorithm
as a subroutine for minimum cost arc-disjoint path pairs [9].

We remark that for more than 3 layers a network code can be determined by a straightforward
generalization of the heuristic for which the number of valuable layers is 1, 2 or k at each receiver. A
more refined network code, including intermediate performance values too, is the scope of future work.

Network Coding Algorithms for Multi-Layered Video Broadcast 11

6.2 A connectivity algorithm for determining maximal 1-sets and 2-sets

Goals: we are going to give a distributed, linear time algorithm for the following problems:

– Determine λ(s, v) for all v, but if it is ≥ 3 then only this fact should be detected.
– For each v with λ(s, v) = 1 determine the incoming arc of the unique maximal 1-set containing v.
– For each v with λ(s, v) = 2 determine the incoming arcs of the unique maximal 2-set containing v.

We assume that ∗ is a special symbol which differs from all arcs.
During the algorithm each node v (except s) waits until it hears messages along all incoming arcs,

then it calculates λ(s, v), and the 3 messages m1(v),m2(v),m3(v) it will send along all outgoing arcs.
The algorithm starts with s sending m1(s) := m2(s) := m3(s) := ∗ along all outgoing arcs.
We need to describe the algorithm for an arbitrary node v ∈ V −s. First v waits until hearing the

messages on the set of incoming arcs denoted by IN(v) = {a1, . . . , ar}. When on an arc ai it hears a ∗,
it replaces it by ai. Let the messages arrived (after these replacements) on arc ai be mi

1,m
i
2,m

i
3. Then

v examines the set M1(v) = {mi
1}ri=1. If |M1(v)| = 1 then v sets λ(s, v) := 1 and m1(v) := m2(v) :=

m3(v) := m1
1, otherwise it sets m1(v) := ∗.

Next v examines the set M2(v) =
⋃r
i=1{mi

2,m
i
3}. If |M2(v)| = 2 then it sets {m2(v),m3(v)} = M2(v),

and if λ(s, v) was not set to 1 before, it sets it to 2.
Let us call an entering arc aj important for v, if mj

1 /∈
⋃

1≤i≤r,i 6=j{mi
2,m

i
3}, and let Iv denote the set

of important arcs for v. If |M2(v)| > 2, then v next examines the set M ′2(v) =
⋃
i∈Iv{m

i
2,m

i
3}∪

⋃
i/∈Iv{m

i
1},

and if |M ′2(v)| = 2, then it makes the same steps with M ′2(v) as described before with M2(v).
Finally, if both |M ′2(v)| and |M2(v)| are greater than 2 and λ(s, v) was not set to 1, v examines M1(v)

again, and if |M1(v)| ≤ 2, then it sets {m2(v),m3(v)} = M1(v), and it sets λ(s, v) to 2.
If they were not set before, let m2(v) := m3(v) := ∗ and λ(s, v) = 3.
An sv cut is a set of arcs, which intersects every sv path.

Claim 26 Let v ∈ V −s. Each of the sets M1(v), M2(v) and M ′2(v), whenever defined, contains an sv
cut.

Proof For an arc a, let us call an arc set an a-arc-cut if it intersects every directed path from s ending
with a. Note that the arc a itself is an a-arc-cut, and the union of arc-cuts for all the entering arcs
of a node v form an sv cut. Also, for an arc uv, an su cut forms a uv-arc-cut. To prove the claim,
inductively we can assume, that on an arc uv either m1(uv) = ∗ or m1(uv) is an su cut, and also either
set {m2(uv),m3(uv)} = {∗} or is an su cut. In all cases, after the replacement, node v hears along arc
uv an m1 that forms a uv-arc-cut and m2,m3 that form also a uv-arc-cut, proving the claim. �

Theorem 27 For every node v ∈ V −s, the algorithm correctly calculates λ(s, v). If λ(s, v) = 1 then
m1(v) is the incoming arc of the unique maximal sv set with %(X) = 1. If for the arc uw entering this
set X we have λ(s, u) = 2, then {m2(v),m3(v)} = {m2(u),m3(u)}. If λ(s, v) = 2 then m2(v),m3(v) is
the pair of incoming arcs of the unique maximal sv set with %(X) = 2.

Proof First suppose that λ(s, v) ≥ 3. By Claim 26, |M1(v)| ≥ 3, |M2(v)| ≥ 3. and |M ′2(v)| ≥ 3. Conse-
quently in this case node v correctly concludes λ(s, v) ≥ 3 and it will send ∗s as messages.

Now suppose λ(s, v) = 1, and let X denote the unique maximal set with s 6∈ X, v ∈ X, %(X) = 1,
and let uw be the unique arc entering X. In this case clearly m1(w) = uw (otherwise m1(w) would be an
arc e entering another set Y with u ∈ Y and %(Y) = 1, but then X ∪ Y would be a bigger set with one
incoming arc). It is easy to see that now along every arc inside X the first message is also uw, so only
this message arrives at v as first message and then v correctly sets λ(s, v) = 1. Also, if λ(s, u) = 2, then
inductively we may assume that |{m2(u),m3(u)}| = 2 hence M2(z) remains this set for every node only
reachable from u, including v.

12 Erika R. Bérczi-Kovács, Zoltán Király

Finally suppose λ(s, v) = 2, and let X denote the unique maximal sv set with %(X) = 2, and let uw
and u′w′ be the two arcs entering X. Note that λ(s, u), λ(s, u′) > 1, otherwise X would not be maximal.
That is, m1(u) = m1(u′) = ∗. By Claim 26, |M1(v)| ≥ 2, so v does not set λ(s, v) to one.

As D is acyclic with a unique source s, and every node is reachable from s, the subgraph of D spanned
by X either contains one source, say w, or contains two sources: w and w′ (a source must be the head of
an entering arc).

Case I w = w′. As w is the source of G[X], we have %(w) = 2, so |M1(w)| = 2 and {m2(w),m3(w)} =
{uw, u′w}. Therefore every node x inside X has M2(x) = {uw, u′w}. As |M2(v)| = 2, v sets λ(s, v) = 2.

Case II w 6= w′. Let X1 denote the set of vertices x ∈ X only reachable from one of w and w′. It
follows that λ(s, x) = 1 for all x ∈ X1 hence every x ∈ X1 has M1(x) = {uw} or {u′w′}. If node v is a
source of G[X \X1], then M1(v) = uw, u′w′. For a node v ∈ X \X1 with entering arcs from X1 and also
from X \X1, it holds that {uw, u′w′} ⊆M2(v), since an entering arc a not coming from X1 is important
for v and it carries {uw, u′w′} in {m2(a),m3(a)}. An arc b coming from X1 carries uw or u′w′ in m1(b),
so b is not important. Hence M ′2 = {uw, u′w′}. Finally for a node v ∈ X \X1 with all entering arcs from
X \X1, clearly M2 = {uw, u′w′}. ut

The running time of the algorithm is O(|A|).

6.3 Experimental results

We compared our heuristic 2-Max for three layers with the heuristic of Kim et al. which they called
minCut [4].

We generated random acyclic networks with given number of nodes and given arc densities. Then
we chose some nodes as receivers with a given probability. Finally for every receiver t we calculated
i = min(3, λ(s, t)) and put t randomly into one of the sets T1, . . . , Ti.

The comparison is not easy, because there is no obvious objective function that measures the quality
of the solutions. Generally we can say that none of the algorithms outperformed the other. To illustrate
this we show an example, which was run on random networks with 551 nodes and 2204 arcs and with
probability 0.1 for selecting receivers. We describe only the number of nodes in T3 receiving 1,2, or 3
layers (see Figure 3).

For making more precise comparison, we had to define a realistic objective function. As both heuristics
carry the base layer to every receiver, we did not give a score for these. The objective function we chose
is 2 · r22 + 1.8 · r23 + 2.7 · r33, where r22 is the number of receivers in T2 that received two layers, r23 is the
number of receivers in T3 that received two layers, and r33 is the number of receivers in T3 that received
three layers. The ideology behind this is the following. A receiver with demand two is absolutely satisfied
if it receives two layers. A receiver with demand three is a little bit less satisfied if it receives two layers,
but much more happy than one receiving only one layer. And a receiver receiving three layers is 1.5 times
satisfied than one receiving only two.

We made series of random inputs with varying number of nodes. For each node number we generated
10 inputs, calculated the scores defined above, and averaged, this score makes one point in the graphs
shown. Implementations were carried out with LEMON C++ library [7].

7 Conclusion

In this paper we investigated the multi-layered multicasting problem proposed by Kim et al. [4]. We proved
NP-hardness for some very special cases of the problem, including demand τ = (T1, T2), if we want to
maximize the number of satisfied receivers. For two layers we gave a network coding algorithm which is
optimal if the task is to send at least one layer to every receiver and two layers to as many receivers as

Network Coding Algorithms for Multi-Layered Video Broadcast 13

Fig. 3: Comparison on one specific example for users with demand 3.

 60

 70

 80

 90

 100

 110

 120

 300 350 400 450 500 550 600 650

T
o
ta

l
w

e
ig

h
t
o
f
u
s
e
fu

l
la

y
e
rs

Number of nodes

MinCut

2-Max

Fig. 4: Comparison of weighted performances with varying number of nodes.

possible. For three or more layers we gave a sufficient condition for a function f : A→ {0, 1, . . . , k} to be
a feasible height function for a demand, and showed that this condition can be checked algorithmically,
and is sharp for the case of two layers. Also, we presented a heuristic for three layers called 2-Max, which
not only ensures that all terminals can decode the base layers, but also carries the second layer to the
maximum number of receivers. The comparison of the heuristics analyzed shows that on some average of
the inputs our new heuristic outperforms the other with a peremptorily chosen objective. But on a given
input it is hard to predict which heuristic gives the best output, so we propose to run both, and choose
the better (regarding to the objective in question).

14 Erika R. Bérczi-Kovács, Zoltán Király

Acknowledgment

We would like to thank Júlia Pap for her valuable comments about the paper. This research was supported
by grant no. K 109240 from the National Development Agency of Hungary, based on a source from the
Research and Technology Innovation Fund.

References

1. Michelle Effros, Universal multiresolution source codes, IEEE Transactions on Information Theory 47, no. 6, pp. 2113–
2129. (2001)

2. Michael R. Garey, David S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.
H. Freeman & Co. New York, NY, USA ISBN:0716710447 (1979)

3. Sidharth Jaggi, Peter Sanders, Philip A. Chou, Michelle Effros, Sebastian Egner, Kamal Jain, and Ludo M. G. M.
Tolhuizen, Polynomial time algorithms for multicast network code construction., IEEE Transactions on Information
Theory, pp. 1973–1982. (2005)

4. MinJi Kim, Daniel Enrique Lucani, Xiaomeng Shi, Fang Zhao, and Muriel Médard, Network coding for multi-resolution
multicast, INFOCOM, pp. 1810–1818. (2010)

5. Zoltán Király, Erika R. Kovács, A Network Coding Algorithm for Multi-Layered Video Streaming, International Sym-
posium on Network Coding, NETCOD 2011 Proceedings. pp. 1-7. (2011)

6. April Rasala Lehman, Eric Lehman, Complexity classification of network information flow problems, SODA ’04,
pp. 142–150. (2004)

7. LEMON, Library for Efficient Modeling and Optimization in Networks, http://lemon.cs.elte.hu/trac/lemon (2012)
8. Nachum Shacham, Multipoint communication by hierarchically encoded data, INFOCOM, pp. 2107–2114. (1992)
9. Suurballe, J.W.; Disjoint paths in a network., Networks, 1974, 125-145.

http://lemon.cs.elte.hu/trac/lemon

	1 Introduction
	2 Problem Formulation
	3 Complexity Results
	4 Tools for feasible network code construction
	5 Characterizing feasible height functions for two layers
	6 Three layers
	7 Conclusion

