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Deterministic Gathering with Crash Faults

Andrzej Pelc∗

Abstract

A team consisting of an unknown number of mobile agents, starting from different nodes of
an unknown network, have to meet at the same node and terminate. This problem is known
as gathering. We study deterministic gathering algorithms under the assumption that agents
are subject to crash faults which can occur at any time. Two fault scenarios are considered. A
motion fault immobilizes the agent at a node or inside an edge but leaves intact its memory at
the time when the fault occurred. A more severe total fault immobilizes the agent as well, but
also erases its entire memory. Of course, we cannot require faulty agents to gather. Thus the
gathering problem for fault prone agents calls for all fault-free agents to gather at a single node,
and terminate.

When agents move completely asynchronously, gathering with crash faults of any type is
impossible. Hence we consider a restricted version of asynchrony, where each agent is assigned
by the adversary a fixed speed, possibly different for each agent. Agents have clocks ticking at
the same rate. Each agent can wait for a time of its choice at any node, or decide to traverse an
edge but then it moves at constant speed assigned to it. Moreover, agents have different labels.
Each agent knows its label and speed but not those of other agents.

We construct a gathering algorithm working for any team of at least two agents in the
scenario of motion faults, and a gathering algorithm working in the presence of total faults,
provided that at least two agents are fault free all the time. If only one agent is fault free, the
task of gathering with total faults is sometimes impossible. Both our algorithms work in time
polynomial in the size of the graph, in the logarithm of the largest label, in the inverse of the
smallest speed, and in the ratio between the largest and the smallest speed.
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1 Introduction

1.1 The background

A team of at least two mobile entities, called agents, starting from different nodes of a network,

have to meet at the same node. This task is known as gathering, and it is called rendezvous if there

are two agents. Both gathering and rendezvous have been extensively studied in the literature

under different models. Mobile entities may represent software agents in computer networks, or

mobile robots, if the network is a labyrinth or a cave. The reason to meet may be to exchange

information or ground samples previously collected by the agents, or to split work in a future

task of network exploration or maintenance. The difficulty of the gathering problem, even in the

fault-free context, comes from the fact that agents usually do not have any canonical place to meet

that is chosen a priori. If agents execute an identical deterministic algorithm, then some symmetry

breaking mechanism must be used to enable meeting, as otherwise meeting would be impossible in

highly symmetric networks such as, e.g., rings, because agents would make the same moves, always

keeping the same distance between them, if they move at the same speed. Since we are interested

in deterministic gathering algorithms, we assume that symmetry is broken by assigning a different

label to each agent.

In this paper we study the gathering problem under the assumption that agents are subject to

crash faults which can occur at any time. Two types of such faults are considered. A motion fault

immobilizes the agent but leaves intact its memory at the time when the fault occurred. A total

fault immobilizes the agent and erases its entire memory. Of course, we cannot require faulty agents

to gather. Thus the gathering problem for fault-prone agents calls for all fault-free agents to gather

at a single node, and terminate.

When agents move completely asynchronously, gathering with crash faults of any type is impossible.

This can be seen already in a 3-node clique, each of whose nodes is initially occupied by an agent.

Suppose that the adversary lets move agent a at speed 1 but keeps agents b and c at their initial

nodes until agent a terminates. Since each of the agents b and c may have crashed after the last

visit of it by agent a, at some time agent a must stop at some node and terminate, i.e., declare

that all fault-free agents have met. This node is different from the starting node of b or of c. At

this time the adversary declares that agents b and c are fault-free and lets them go, which makes

gathering incorrect, as one of the agents b or c is not with a at the termination time.

Hence we consider a restricted version of asynchrony, similar to the one in [17], where each agent

is assigned by the adversary a fixed speed, possibly different for each agent. Agents have clocks

ticking at the same rate. Each agent can wait for a time of its choice at any node, or decide to

traverse an edge, but then it moves at constant speed assigned to it. Each agent knows its label

and speed but not those of other agents.
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1.2 The model and the problem

The network is modeled as a simple undirected connected graph. As it is often done in the literature

on rendezvous and gathering, we seek gathering algorithms that do not rely on the knowledge

of node labels, and can work in anonymous graphs as well. The importance of designing such

algorithms is motivated by the fact that agents may be unable to perceive labels of nodes, even

when such labels exist, because of limitations of perception faculties of the agents, or nodes may

refuse to reveal their labels, e.g., due to security or privacy reasons. It should be also noted that,

if nodes had distinct labels, agents might explore the graph and meet in the smallest node, hence

gathering would reduce to graph exploration. On the other hand, we make the assumption, standard

in the literature of the domain, that edges incident to a node v have distinct labels in {0, . . . , d−1},

where d is the degree of v. Thus every undirected edge {u, v} has two labels, which are called its

port numbers at u and at v. Port numbering is local, i.e., there is no relation between port numbers

at u and at v. Note that in the absence of port numbers, edges incident to a node would be

undistinguishable for agents and thus gathering would be often impossible, as the adversary could

prevent an agent from taking some edge incident to the current node. Also, the above mentioned

security and privacy reasons that may prevent nodes from revealing their labels, do not apply to

port numbers.

Agents start from different nodes of the graph. They cannot mark visited nodes or traversed edges

in any way. The adversary wakes up some of the agents at possibly different times. A dormant

agent is woken up by the first agent that visits its starting node. Agents do not know the topology

of the graph nor any bound on its size. They do not know the total number of agents. They have

clocks ticking at the same rate. The clock of each agent starts at its wakeup, and at this time the

agent starts executing the algorithm.

The adversary assigns two numbers to each agent: a positive integer called its label and a positive

real called its speed. All labels are different, and if the agent has speed α, it traverses each edge in

time 1/α. (We may represent edges as arcs of length 1 between points representing nodes.) Each

agent knows its label and its speed, but not those of other agents. During the execution of an

algorithm, an agent can wait at the currently visited node for a time of its choice, or it may choose

a port to traverse the corresponding edge. In the latter case, the agent traverses this edge at the

constant speed α assigned to it, thus getting to the other end of the edge after time 1/α.

When an agent enters a node, it learns its degree and the port of entry. When two or more agents

are at the same point in the graph (either at a node or inside an edge) at the same time, they

notice this fact and can exchange all information that is currently in their memory. We assume

that the memory of the agents is unlimited: from the computational point of view they are modeled

as Turing machines.

Agents are subject to crash faults which can occur at any time. We consider two fault scenarios.

A motion fault immobilizes the agent at a node or inside an edge but leaves intact its memory at

the time when the fault occurred. A more severe total fault immobilizes the agent as well, but also

erases its entire memory. An agent A meeting an agent B which incurred any crash fault knows

that B crashed. In the case of a motion fault of the crashed agent, A can read the entire memory
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of B frozen at the time of the crash. By contrast, an agent meeting an agent which incurred a total

fault cannot learn anything about it, not even its label. An agent that never crashes during the

execution of the gathering algorithm is called good.

The task of gathering is defined as follows. All good agents have to be at the same node and

terminate, i.e., declare that all good agents are at this node. (Since good agents located at the

same node can mutually read their memory, once one of them declares termination, all others can

do it as well, so we may guarantee that the declaration is simultaneous.) The aim of this paper is

the construction of deterministic gathering algorithms under both considered fault scenarios.

We assume that there is at least one good agent, otherwise gathering of good agents is accomplished

vacuously. The time of gathering is counted since the wakeup of the first good agent. Note that

counting time since the wakeup of the earliest agent does not make sense, because the adversary

can wake up an agent, crash it immediately, and then wait an arbitrarily long time before waking

up the second agent.

1.3 Our results

We construct a gathering algorithm working for any team of at least two agents in the scenario

of motion faults, and a gathering algorithm working in the presence of total faults, provided that

at least two agents are good. If only one agent is good, the task of gathering with total faults is

sometimes impossible.

The main challenge of our scenario is that agents may have different speeds, and at the same time

they are subject to crash faults. To the best of our knowledge, these two difficulties together were

never considered before in the context of gathering in networks: in [20], asynchronous rendezvous

was considered but only for functional agents, while in [10, 19], agents with Byzantine faults

were considered but only in the fully synchronous scenario, and [11] considered rendezvous of two

synchronous agents subject to transient delay faults.

In order to overcome this double difficulty, we adopt a combination of event-driven and time-driven

approach. At early stages of the gathering process, agents do not know any upper bound on the

size of the graph, and hence their decisions cannot rely on time-outs and must be event driven, i.e.,

they depend on meeting another agent with a specific memory content. By contrast, due to our

algorithm design, towards the end of gathering, when an agent is already at its final destination, it

knows an upper bound on the size of the graph, and it knows everything about other good agents,

hence it may compute a time bound after which all good agents must get together.

While our main focus is feasibility, and we do not attempt time optimization, both our algorithms

work in time polynomial in the size of the graph, in the logarithm of the largest label, in the inverse

of the smallest speed, and in the ratio between the largest and the smallest speed.
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1.4 Related work

The rendezvous problem for two agents was first introduced in [30]. An excellent survey of ran-

domized rendezvous in various scenarios can be found in [4], cf. also [2, 3, 5, 8, 24]. Deterministic

rendezvous in networks was surveyed in [28]. In many papers rendezvous was considered in a

geometric setting: an interval of the real line, see, e.g., [8, 9, 23], or the plane, see, e.g., [6, 7]).

For the problem of deterministic rendezvous in networks, modeled as undirected graphs, attention

concentrated on the study of the feasibility of rendezvous, and on the time required to achieve this

task, when feasible. For example, deterministic rendezvous with agents equipped with tokens used

to mark nodes was considered, e.g., in [27]. Deterministic rendezvous of two agents that cannot

mark nodes but have unique labels was discussed in [16, 25, 31]. All these papers were concerned

with the time of rendezvous in arbitrary graphs, under the synchronous scenario. In [16] the authors

showed a rendezvous algorithm polynomial in the size of the graph, in the length of the shorter

label and in the delay between the starting time of the agents. In [25, 31] rendezvous time was

polynomial in the first two of these parameters and independent of the delay.

Memory required by the agents to achieve deterministic rendezvous was studied in [22] for trees and

in [13] for general graphs. Memory needed for randomized rendezvous in the ring was discussed,

e.g., in [26].

Apart from the synchronous model used in the above papers, several authors investigated asyn-

chronous rendezvous in the plane [12, 21] and in network environments [14, 15, 17]. In the latter

scenario the agent chooses the edge which it decides to traverse but the adversary controls the

speed of the agent. Under this assumption rendezvous in a node cannot be guaranteed even in very

simple graphs, and hence the rendezvous requirement is relaxed to permit the agents to meet inside

an edge. In particular, the main result of [20] is an asynchronous rendezvous algorithm working in

an arbitrary graph at cost (measured by the number of edge traversals) polynomial in the size of

the graph and in the logarithm of the smaller label. The scenario of possibly different fixed speeds

of the agents, that we use in the present paper, was introduced in [17], but agents were assumed

fault free.

Gathering more than two agents was studied in the plane [1, 12, 17, 21], and in networks [18, 19, 32].

In [18] agents were assumed anonymous (and hence gathering was not always possible), and in

[19, 32] they were equipped with distinct labels.

Gathering many agents subject to faults was considered in [1] in the scenario of anonymous agents in

the plane, and in [10, 11, 19] in graphs. In [1] agents were anonymous but the authors assumed their

powerful sensorial capabilities: an agent could see all the other agents in the plane. In [10, 11, 19]

the synchronous model was used. In [11] the faults were assumed relatively benign and transient:

the adversary could delay the move of an agent for a few rounds. By contrast, the faults in [10, 19]

were of the most severe type, they were Byzantine, and hence, in order to achieve gathering, some

restrictive upper bound on the number of Byzantine agents had to be imposed. To the best of

our knowledge, the problem of gathering in networks, under the challenging scenario when agents

are not synchronous, and are at the same time subject to permanent faults, was never considered
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before.

2 Preliminaries

Throughout the paper, the number of nodes of a graph is called its size and is denoted by n.

In this section we present three procedures from the literature, that will be used (after suitable

modifications) as building blocks in our algorithms. The aim of the first two procedures is graph

exploration, i.e., visiting all nodes and traversing all edges of the graph by a single agent. The first

procedure, based on universal exploration sequences (UXS), is a corollary of the result of Reingold

[29]. Given any positive integer n, it allows the agent to traverse all edges of any graph of size at

most n, starting from any node of this graph, using at most P (n) edge traversals, where P is some

non-decreasing polynomial. (The original procedure of Reingold only visits all nodes, but it can be

transformed to traverse all edges by visiting all neighbors of each visited node before going to the

next node.) After entering a node of degree d by some port p, the agent can compute the port q

by which it has to exit; more precisely q = (p + xi) mod d, where xi is the corresponding term of

the UXS.

A trajectory is a sequence of nodes of a graph, in which each node is adjacent to the preceding one.

Given any starting node v, we denote by R(n, v) the trajectory obtained by Reingold’s procedure.

The procedure can be applied in any graph starting at any node, giving some trajectory. We say

that the agent follows a trajectory if it executes the above procedure used to construct it. This

trajectory will be called integral, if the corresponding route covers all edges of the graph. By

definition, the trajectory R(n, v) is integral, if it is obtained by Reingold’s procedure applied in any

graph of size at most n, starting at any node v.

The second procedure, described in [20], allows an agent to traverse all edges and visit all nodes

of any graph of size at most k provided that there is a unique token located on an extended edge

u − v (for some adjacent nodes u and v) and authorized to move arbitrarily on it. An extended

edge is defined as the edge u− v augmented by nodes u and v. (It is well known that a terminating

exploration, even of all anonymous rings of unknown size by a single agent without a token, is

impossible.) In our applications the roles of the token and of the exploring agent will be played by

agents. This procedure was called ESST in [20], for exploration with a semi-stationary token, as

the token always remains on the same extended edge (even if it can move arbitrarily inside it). For

completeness, we quote verbatim the description of the procedure from [20]. The following notion

is used in this description. Let m be a positive integer. An application of R(2m,u) to a graph G

at some node u is called clean, if all nodes in this application are of degree at most m− 1.

Procedure ESST

The procedure proceeds in phases i = 3, 6, 9, 12 . . . . In any phase i, the agent first applies R(2i, v)

at the node v in which it started this phase. Let (u1, . . . , ur+1) be the trajectory R(2i, v) (v = u1
and r = P (2i)). Call this trajectory the trunc of this phase. If it is not clean, or if no token is

seen, the agent aborts phase i and starts phase i+ 3. Otherwise, the agent backtracks to u1, and
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applies R(i, uj) at each node uj of the trunc, interrupting a given execution of R(i, uj) when it sees

a token, every time recording the code of the path from uj to this token. This code is defined as

the sequence of ports encountered while walking along the path. (If, for some j, the token is at

uj , then this code is an empty sequence.) After seeing a token, the agent backtracks to uj, goes to

uj+1 and starts executing R(i, uj+1). For each node uj of the trunc, if at the end of R(i, uj) either

no token is seen during the execution of R(i, uj), or the agent has recorded at least i
3 different

codes in phase i, then the agent aborts phase i and starts phase i+3 (in the special case where the

agent decides to abort phase i while traversing an edge, phase i + 3 starts at the end of this edge

traversal). Otherwise, upon completion of phase i, it stops as soon as it is at a node.

The following theorem was proved in [20]:

Theorem 2.1 There exists a non-decreasing polynomial ρ such that procedure ESST terminates

in every graph G of size n after ρ(n) steps. Upon its termination, all edges of G are traversed by

the agent.

We will use the following corollary of the above theorem.

Corollary 2.1 Consider the procedure ESST performed in some n-node graph G. There exists a

polynomial π(n) and integers πi, for all i ≤ π(n), such that the number of phases of ESST is at

most π(n), the number of steps in phase i is at most πi, and all numbers πi are polynomial in n.

The third procedure, that will be called Meeting, is the main rendezvous algorithm from [20]. It

works for an arbitrary graph of unknown size, under the general asynchronous model, where, in

consecutive steps, the agent chooses the port number that it decides to use, and the adversary pro-

duces any continuous movement of the agent on the respective edge, subject only to the constraint

that it ends at the other endpoint of the chosen edge.

Procedure Meeting guarantees the meeting of two agents with distinct labels at cost polynomial in

the size of the graph and in the logarithm of the smaller label. The following theorem was proved

in [20]:

Theorem 2.2 There exists a polynomial Π(x, y), non decreasing in each variable, such that if two

agents with different labels L1 and L2 execute Procedure Meeting in a graph of size n, then their

meeting is guaranteed by the time one of them performs Π(n,min(logL1, logL2)) edge traversals.

The above theorem guarantees that two agents with different labels L1 and L2 executing Proce-

dure Meeting under our present scenario will meet after a total of Π(n,min(logL1, logL2)) edge

traversals, even if one of them crashes during the execution of this procedure. This is due to the

fact that a walk of an agent under our scenario (at any constant speed and with a possible crash)

is an admissible behavior of the agent under the scenario from [20], where the adversary can hold

an agent idle for an arbitrary finite time.
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We will use the following notation. For a positive integer x, by |x| we denote the length of its binary

representation, called the length of x. Hence |x| = ⌊log x⌋+1. All logarithms are with base 2. For

two agents, we say that the agent with larger (smaller) label is larger (resp. smaller). The length

(i.e., the logarithm) of the largest label is denoted by Λ, the smallest speed of any agent is denoted

by ǫ, and the largest speed of any agent is denoted by κ. For any trajectory T = (v0, . . . , vr), we

denote by T the reverse trajectory (vr, . . . , v0).

3 Gathering with motion faults

In this section we construct our gathering algorithm working in the presence of motion faults. The

algorithm works for any team of at least two agents, at least one of which is good. If the team may

consist of a single agent that is good, gathering with termination is impossible, e.g., in rings: a

single agent would have to stop and declare termination at some point, while there could be another

good agent far away in the ring, not being able to affect the history of the first agent; hence in the

latter scenario, the first agent would incorrectly declare gathering with termination as well.

We first describe the high-level idea of the algorithm, skipping the details, and then proceed with

the detailed description.. To facilitate the exposition, we introduce six states in which an agent

can be: cruiser, explorer, token, finder, recycled explorer and gatherer, and describe the

goals that an agent achieves in each of these states.

Algorithm Gathering with motion faults

An agent starts executing the algorithm in state cruiser. The goal in this state is to meet another

agent, using procedure Meeting. After meeting another agent in state cruiser, agents break

symmetry using their labels: the larger agent becomes an explorer, the smaller becomes a token.

The token stays put, if they met at a node, and it continues the current edge traversal and waits

at its endpoint, if they met inside an edge. The explorer tries to find an upper bound on the

size of the graph. This is done using a modification of procedure ESST , where the agent in state

token is used as the semi-stationary token. However, a crucial change to this procedure has to be

made. It must be modified in a way to permit the token to realize that the explorer crashed,

if this is the case. To this end, after each phase of ESST , the explorer returns to the token,

which permits the latter to use a time-out mechanism (based on the explorer’s speed that the

token learned) that would signal a crash of the explorer. If the token realizes that the explorer

crashed, it transits to state finder and tries to meet the crashed explorer. It then transits to

state recycled explorer, performs ESST with this crashed explorer as token, in order to learn

the size of the graph.

After learning the size of the graph, an agent transits to state gatherer. In this state, an agent

uses procedure Meeting to meet all other agents, both good and crashed. It uses the upper bound

on the size of the graph to estimate the time after which it can be certain to have met all other

agents. This is not straightforward, as the agent does not yet know the speeds of all agents, and

it has to establish the sufficient time of performing procedure Meeting on the basis of currently

available information. When meeting another agent, a gatherer records its label, speed and a path
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towards the starting node of this agent. After meeting all agents, a gatherer goes to the starting

node of the smallest agent. Then it uses a time-out mechanism, based on the knowledge of speeds

of the other agents. It knows that until some time bound, all other good agents should also be at

this node. Then the agent terminates, declaring that gathering of all good agents is accomplished.

The main difficulty of the algorithm design is a combination of event driven and time driven ap-

proach. Since at various stages of the algorithm execution the agent has still incomplete knowledge

about the graph and about other agents, it cannot rely on time-outs at the early stages. For exam-

ple, before transiting to state gatherer the agent does not know any upper bound on the size of the

graph, and hence all transitions must be event driven, e.g., meeting another agent in a given state.

By contrast, towards the end of the execution, when the agent is already at its final destination, it

knows an upper bound on the size of the graph, and it knows everything about other good agents,

hence it may compute a time bound after which all good agents must get together.

We now give a detailed description of the algorithm, explaining the actions of the agents in each

of the six states. In the following description, the executing agent is called A, has label L and

speed θ. We assume that at every meeting, agents mutually learn their memory states. This is for

convenience only: it will be seen that, in fact, much less information needs to be transferred.

State cruiser

Upon wakeup, agent A is in this state. It performs procedure Meeting until one of the following

four events happens:

1. it meets another agent in state cruiser,

2. it meets a crashed agent B in state token,

3. it meets an agent C in state finder or recycled explorer

4. it meets an agent B in state gatherer.

In the first case, let L1, . . . , Lk be the labels of agents in state cruiser that A met in the first

meeting (simultaneous meeting of many agents is possible). Let L′ = min(L,L1, . . . , Lk). If L = L′,

agent A transits to state token, otherwise agent A transits to state explorer, and considers the

agent with label L′ as its token.

In the second case, agent A transits to state explorer, and considers agent B as its token.

In the third case, agent A learns from C the label of the culprit B of C (see the description of state

token). Agent A adopts B as its culprit and transits to state finder.

In the fourth case, agent A completes the currently executed edge traversal, adopts the upper

bound m on the size of the graph from agent B, and transits to state gatherer.

State explorer

Agent A executes the modified procedure ESST , starting at the node of meeting with its token,

or, if the meeting occurred inside an edge, completing the current traversal and starting at the cor-
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responding endpoint. The procedure is modified in the following way: after each phase (completed

or aborted) agent A backtracks to its token following the trajectory T , where T is the trajectory

followed in this phase of ESST . Thus the number of phases in the modified Procedure ESST is

the same as in ESST , and phase i of the modified procedure takes 2πi steps (cf. Corollary 2.1).

Upon completion of the procedure, the agent traversed all edges of the graph, knows it, and adopts

the total number of traversals m as an upper bound on the size of the graph. Agent A gives the

integer m to its token and transits to state gatherer.

State token

Agent A considers all agents that it met when they were in state cruiser at the moment of the

first meeting (and that transited to state explorer upon this meeting) as its explorers. Agent A

continues its current edge traversal and waits until one of the following two events happens for each

of its explorers. Either an explorer completes the modified procedure ESST giving agent A an

upper bound m on the size of the graph, or an explorer B is not back after the scheduled time

at most 2πi/β in some phase i, where β is the speed of B (learned by A). Notice that there may

be potentially two different upper bounds given to A by explorers that successfully completed

the modified procedure ESST because these explorers may start at different endpoints of the

edge where they met their token, if the meeting occurred inside an edge. When one of the above

events occurs for every explorer of the agent A, there are two cases. The first case is when at

least one explorer managed to complete the modified procedure ESST and gave an upper bound

to A. In this case, agent A adopts the minimum of the (possibly two) obtained upper bounds as its

upper bound and transits to state gatherer. The second case is when all explorers of A failed to

successfully complete the procedure (because they all crashed). Agent A learns this and adopts the

(crashed) explorer B with the smallest label among all its explorers as its culprit. Agent A transits

to state finder.

State finder

Agent A continues its current edge traversal to the endpoint v1 (if it is at a node v1 when transiting

to state finder, it skips this action). Then A executes procedures R(i, vi), for i = 1, 2, ..., one after

another, where vi+1 is the node where R(i, vi) ended, until it finds its culprit. Agent A transits to

state recycled explorer.

State recycled explorer

Agent A executes procedure ESST with its culprit as token. (Here there is no need to modify

procedure ESST because the culprit is crashed anyway, so it could not realize that agent A crashed

if this happened). Upon completion of ESST , agent A adopts the number of steps in this procedure

as an upper bound m on the size of the graph. Agent A transits to state gatherer.

State gatherer

In this state, agent A knows an upper bound m on the size of the graph. Before describing the

actions of the agent in this state, we define two procedures.

Procedure Ball(w)
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The procedure consists of traversing all paths of length 2, starting at node w, each time returning

to node w.

The next procedure uses procedure Ball.

Procedure R∗(m, v)

Follow the trajectory R(m, v), at each visited node w executing procedure Ball(w) before going to

the next node of the trajectory.

In state gatherer, agent A starts by executing the procedure R∗(m, v), where v is the node in

which A transited to this state. Recall that θ is the speed of the agent, and let c be the number

of edge traversals performed by agent A in the execution of this procedure. Let γ = θ
c
. We will

show that, upon completion of R∗(m, v), agent A has achieved the following two goals: it met all

agents whose speed is less than γ, and it learned that all agents are awake. It also follows that at

this time, agent A learned the lower bound δ = min(γ, ǫ) on the speeds of all agents, where ǫ is the

minimum speed of all agents.

Next, agent A executes procedure Meeting for time τ = 2Π(ν, log L)/δ+3ρ(ν)/δ +
∑ν

i=1 P (i)/δ +

ν2P (ν)/δ, where ν = 2ρ(m). Call this period of time the red period of agent A.

We will show that after this time, agent A has met all the agents, and hence it knows their labels,

their speeds, and the path to the starting node of each of them. Moreover, it knows the largest

upper bound µ on the size of the graph, among those adopted by all the agents. Agent A goes to

the starting node of the agent whose label is the smallest, and starts its final waiting period.

Let ν∗ = 2ρ(µ). ν∗ is an upper bound on the values of ν calculated by all agents. Let δ∗ be

the minimum of the values of δ calculated by all agents. Let φ = 21ρ(ν∗)/δ∗ + 7
∑ν∗

i=1 P (i)/δ
∗ +

8Π(ν∗,Λ)/δ∗+8(ν∗)2P (ν∗)/δ∗. We will show that the value φ is an upper bound on the termination

of the red periods of all agents.

The final waiting period of agent A has length τ ′ = φ+ 2φκ/ǫ.

Notice that this final waiting period has the same length for all agents, as it does not depend on

the label and the speed of an individual agent. Agent A can calculate this waiting time because,

as we will show, when it starts it, it knows all parameters concerning other agents.

We will prove that after this time all good agents must also be at the starting node of the smallest

agent, and that agent A learns this fact. After waiting time τ ′ (or at the time when some other

agent declares gathering, if this happens earlier), agent A declares that all good agents are gathered,

and terminates.

The proof of correctness and the performance analysis of Algorithm Gathering with motion

faults are split into a series of lemmas.

Lemma 3.1 By the time Π(n,Λ)/ǫ some agents must meet.

Proof. Let D be the earliest woken good agent (or one of them, if there are several such agents),
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and let LD be its label. By Theorem 2.2, D must meet some agent by the time when D performs

Π(n, logLD) edge traversals executing procedureMeeting in state cruiser, if no other agents have

met before. This must happen by the time Π(n, logLD)/ǫ ≤ Π(n,Λ)/ǫ. �

Let S0 be the earliest woken good agent. (If there are more such agents, we denote by S0 any of

them.) By definition, time is counted since the wakeup of agent S0, i.e., its wakeup time is set to

0.

Lemma 3.2 By the time 6ρ(n)/ǫ+2
∑n

i=1 P (i)/ǫ+2Π(n,Λ)/ǫ some agent transits to state gatherer.

Proof. Let t1 be the time when the first meeting occurred. This was necessarily a meeting of

agents in state cruiser. First suppose that one of these agents, call it F , was good. If F transits

to state explorer upon this meeting, then by the time t1+2ρ(n)/ǫ agent F completes the modified

procedure ESST , and transits to state gatherer. If F transits to state token upon this meeting,

then by the time t1+2ρ(n)/ǫ agent F either learns an upper bound on the size of the graph (because

some of its explorers completed the modified procedure ESST ) and transits to state gatherer,

or it learns that all its explorers crashed. In the latter case, agent F transits to state finder,

finds its culprit B within an additional time
∑n

i=1 P (i)/ǫ (because within this time it traverses all

edges of the graph), transits to state recycled explorer, then within an additional time ρ(n)/ǫ,

it completes procedure ESST with B as token, learns an upper bound on the size of the graph,

and transits to state gatherer. Hence, if one of the agents participating in the first meeting was

good, then this agent must transit to state gatherer by the time t1 + 3ρ(n)/ǫ+
∑n

i=1 P (i)/ǫ.

It remains to consider the case, when none of the agents participating in the first meeting was

good. If the agent T that transited to state token at the first meeting did not crash by the time

t1 + 3ρ(n)/ǫ +
∑n

i=1 P (i)/ǫ, then the above argument shows that it transits to state gatherer by

this time. Hence we may assume that this agent crashed by the time t1 + 3ρ(n)/ǫ +
∑n

i=1 P (i)/ǫ.

Let t2 be the time when agent S0 transits from state cruiser to some other state. This happened

because of one of the four events in the definition of state cruiser.

If in time t2 agent S0 met another agent in state cruiser, then it transited to state gatherer by

the time t2 + 3ρ(n)/ǫ+
∑n

i=1 P (i)/ǫ, in view of the argument above.

If in time t2 agent S0 met a crashed agent in state token, then it transited to state explorer,

and by the time t2 + 2ρ(n)/ǫ it completes the modified procedure ESST , and transits to state

gatherer.

If in time t2 agent S0 met an agent C in state finder or recycled explorer then it learns from

C the label of the culprit B of C, adopts B as its culprit and transits to state finder. It finds its

culprit B within an additional time
∑n

i=1 P (i)/ǫ, transits to state recycled explorer, then within

an additional time ρ(n)/ǫ it completes procedure ESST with B as token, learns an upper bound

on the size of the graph, and transits to state gatherer by the time t2 + ρ(n)/ǫ+
∑n

i=1 P (i)/ǫ.

If in time t2 agent S0 met an agent in state gatherer, then it learns from it an upper bound on

the size of the graph, and immediately transits to state gatherer.
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Hence, in all cases, agent S0 transits to state gatherer by the time t2 +3ρ(n)/ǫ+
∑n

i=1 P (i)/ǫ. We

now estimate the time t2 when agent S0 transits from state cruiser to some other state. By our

assumption, agent T crashed by the time t1 + 3ρ(n)/ǫ +
∑n

i=1 P (i)/ǫ. In the moment of crashing,

it could be either still in the state token, or in state finder or in state recycled explorer

(otherwise, it would transit to state gatherer before crashing, and the lemma is proved). Consider

the time t1 +3ρ(n)/ǫ+
∑n

i=1 P (i)/ǫ+Π(n,Λ)/ǫ. If by this time agent S0 is still in state cruiser,

then by this time it must meet agent T in one of these states because S0 performed at least Π(n,Λ)

edge traversals executing procedure Meeting, while T was still. Hence S0 must transit from state

cruiser to some other state by this time. It follows that t2 ≤ t1+3ρ(n)/ǫ+
∑n

i=1 P (i)/ǫ+Π(n,Λ)/ǫ.

Finally, we have t1 ≤ Π(n,Λ)/ǫ, by Lemma 3.1. We conclude that some agent transits to state

gatherer by the time t2 + 3ρ(n)/ǫ +
∑n

i=1 P (i)/ǫ ≤ t1 + 3ρ(n)/ǫ +
∑n

i=1 P (i)/ǫ + Π(n,Λ)/ǫ +

3ρ(n)/ǫ+
∑n

i=1 P (i)/ǫ ≤ 6ρ(n)/ǫ + 2
∑n

i=1 P (i)/ǫ+ 2Π(n,Λ)/ǫ. �

Let m be the upper bound on the size of the graph, adopted by the first agent that transited to

state gatherer.

Lemma 3.3 Let S be a good agent, and let t be its waking time. By the time t + 9ρ(n)/ǫ +

3
∑n

i=1 P (i)/ǫ + 3Π(n,Λ)/ǫ + 2m2P (m)/ǫ agent S transits to state gatherer.

Proof. Let t′ be the time when the first agent, call it H, transits to state gatherer. In view of

Lemma 3.2, we have t′ ≤ 6ρ(n)/ǫ+2
∑n

i=1 P (i)/ǫ+2Π(n,Λ)/ǫ. Let m be the upper bound on the

size of the graph, adopted by agent H. In the execution of procedure R∗(m, v) agent H performed

c ≤ 2m2P (m) edge traversals. Hence by the time t′+2m2P (m)/ǫ, it completed procedure R∗(m, v)

and started procedure Meeting, if it did not crash before. Hence agent S must transit from state

cruiser to some other state by the time t+t′+2m2P (m)/ǫ+Π(n,Λ)/ǫ. Indeed, if it did not transit

by the time t + t′ + 2m2P (m)/ǫ + Π(n,Λ)/ǫ, then it performed at least Π(n,Λ) edge traversals

executing procedure Meeting while agent H was also executing this procedure, or else H crashed

in the meantime. Hence S must have met H and transited to state gatherer.

Let t2 be the time when agent S transits from state cruiser to some other state. It follows from

the above that t2 ≤ t + t′ + 2m2P (m)/ǫ + Π(n,Λ)/ǫ. By the argument from the proof of Lemma

3.2, agent S must transit to state gatherer by the time t2 + 3ρ(n)/ǫ +
∑n

i=1 P (i)/ǫ. Hence agent

S must transit to state gatherer by the time

t2 + 3ρ(n)/ǫ+
n∑

i=1

P (i)/ǫ ≤

t+ t′ + 2m2P (m)/ǫ+Π(n,Λ)/ǫ+ 3ρ(n)/ǫ+
n∑

i=1

P (i)/ǫ ≤

t+ 6ρ(n)/ǫ+ 2
n∑

i=1

P (i)/ǫ + 2Π(n,Λ)/ǫ + 2m2P (m)/ǫ +Π(n,Λ)/ǫ + 3ρ(n)/ǫ+
n∑

i=1

P (i)/ǫ =
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t+ 9ρ(n)/ǫ+ 3
n∑

i=1

P (i)/ǫ + 3Π(n,Λ)/ǫ + 2m2P (m)/ǫ.

�

Let µ be the largest of the upper bounds on the size of the graph adopted by any agent.

Lemma 3.4 By the time 9ρ(n)/ǫ+ 3
∑n

i=1 P (i)/ǫ+ 3Π(n,Λ)/ǫ+ 4µ2P (µ)/ǫ all agents are woken

up.

Proof. In view of Lemma 3.3, agent S0 transits to state gatherer by the time 9ρ(n)/ǫ +

3
∑n

i=1 P (i)/ǫ+3Π(n,Λ)/ǫ+2µ2P (µ)/ǫ. Hence, by the time 9ρ(n)/ǫ+3
∑n

i=1 P (i)/ǫ+3Π(n,Λ)/ǫ+

4µ2P (µ)/ǫ, agent S0 completed procedure R∗(m1, v), where v is the node at which S0 transited to

state gatherer. Hence it traversed all edges of the graph, an thus all agents are woken up by this

time. �

Lemma 3.5 All good agents transit to state gatherer by the time 18ρ(n)/ǫ + 6
∑n

i=1 P (i)/ǫ +

6Π(n,Λ)/ǫ + 6µ2P (µ)/ǫ.

Proof. Let S be a good agent and let t be its waking time. By Lemma 3.3, S transits to state

gatherer by the time t + 9ρ(n)/ǫ + 3
∑n

i=1 P (i)/ǫ + 3Π(n,Λ)/ǫ + 2µ2P (µ)/ǫ. By Lemma 3.4,

t ≤ 9ρ(n)/ǫ+3
∑n

i=1 P (i)/ǫ+3Π(n,Λ)/ǫ+4µ2P (µ)/ǫ. Hence S transits to state gatherer by the

time 18ρ(n)/ǫ + 6
∑n

i=1 P (i)/ǫ+ 6Π(n,Λ)/ǫ + 6µ2P (µ)/ǫ. �

Lemma 3.6 Any good agent S meets all other agents by the time it executes its red period. This

happens by the time 21ρ(ν)/δ + 7
∑ν

i=1 P (i)/δ + 8Π(ν,Λ)/δ + 8ν2P (ν)/δ.

Proof. Let m(S) be the upper bound on the size of the graph, adopted by agent S, let θ be the

speed of this agent, and let L be its label. After executing procedure R∗(m(S), v), where v is the

node where S transited to state gatherer, agent S traversed all edges, and hence it knows that all

other agents are woken up. During the execution of R∗(m, v) agent S makes c ≤ 2m(S)2P (m(S))

edge traversals. Also, during this execution, agent S traverses all directed paths of length 2 in the

graph. Let γ = θ
c
, and consider an agent S′ whose speed is less than γ. The time c/θ during which

agent S makes the c edge traversals executing procedure R∗(m(S), v) is too short for agent S′ to

make even one full edge traversal. Hence, regardless of the trajectory followed by agent S′, it can

be in at most two incident edges during this time. Since agent S traverses all such couples of edges,

it must meet agent S′ during the execution of R∗(m(S), v). It follows that after the completion of

procedure R∗(m(S), v), agent S either learns the minimum speed ǫ of all agents (if there exists an

agent with speed less than γ) or it learns that γ is a lower bound on the speed of all the agents (if
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there is no agent with speed less than γ). Set δ to ǫ in the first case and to γ in the second case.

Notice that, upon completion of procedure R∗(m(S), v), agent S learns the value of δ.

Consider any good agent S′′, with label L′′, whose speed is at least γ. Upon completion of procedure

R∗(m(S), v) at time t1, agent S executes procedure Meeting and agent S′′ is already woken up.

We will prove that agent S meets agent S′′ by the time t1 + τ . We may assume that by the time

t2 = t1+Π(m(S), log L)/δ, agent S′′ transited from state cruiser to some other state, for otherwise

it would execute procedure Meeting during the time when S performed at least Π(m(S), log L)

edge traversals executing this procedure, and hence the agents would meet, in view of Theorem 2.2.

This transition of agent S′′ happened because of one of the four events in the definition of state

cruiser.

If agent S′′ met another agent in state cruiser, then it either transited to state explorer or to

state token. If S′′ transits to state explorer upon this meeting, then by the time t2 + 2ρ(n)/γ

agent S′′ completes the modified procedure ESST , and transits to state gatherer. If S′′ transits to

state token upon this meeting, then by the time t2+2ρ(n)/γ agent S′′ either learns an upper bound

on the size of the graph (because some of its explorers completed the modified procedure ESST )

and transits to state gatherer, or it learns that all its explorers crashed. In the latter case, agent

S′′ transits to state finder, finds its culprit B within an additional time
∑n

i=1 P (i)/γ (because

within this time it traverses all edges of the graph), transits to state recycled explorer, then

within an additional time ρ(n)/γ, it completes procedure ESST with B as token, learns an upper

bound on the size of the graph, and transits to state gatherer. Hence, if agent S′′ met an agent

in state cruiser, then S′′ must transit to state gatherer by the time t2 +3ρ(n)/γ +
∑n

i=1 P (i)/γ.

If agent S′′ met a crashed agent in state token, then it transited to state explorer, and by the

time t2 + 2ρ(n)/γ it completes the modified procedure ESST , and transits to state gatherer.

If agent S′′ met an agent C in state finder or recycled explorer then it learns from C the label

of the culprit B of C, adopts B as its culprit and transits to state finder. It finds its culprit

B within an additional time
∑n

i=1 P (i)/γ, transits to state recycled explorer, then within an

additional time ρ(n)/γ it completes procedure ESST with B as token, learns an upper bound on

the size of the graph, and transits to state gatherer by the time t2 + ρ(n)/γ +
∑n

i=1 P (i)/γ.

If agent S′′ met an agent in state gatherer, then it learns from it an upper bound on the size of

the graph, and immediately transits to state gatherer.

Hence, in all cases, agent S′′ transits to state gatherer by the time t3 = t2+3ρ(n)/γ+
∑n

i=1 P (i)/γ ≤

t1 +Π(m(S), log L)/δ + 3ρ(m(S))/δ +
∑m(S)

i=1 P (i)/δ.

Let m(S′′) be the upper bound on the size of the graph adopted by agent S′′ and let v′′ be the

node at which S′′ transited to state gatherer. Upon the transition, agent S′′ executes procedure

R∗(m(S′′), v′′) within time at most m(S′′)2P (m(S′′))/γ and then starts its own red period execut-

ing procedureMeeting. By the time t4 = t3+m(S′′)2P (m(S′′))/γ+Π(m(S), log L)/δ agent S must

meet agent S′′ because either S performed at least Π(m(S), log L) edge traversals executing proce-

dureMeeting, while S′′ also executed procedureMeeting, or S′′ performed at least Π(m(S), log L′′)

edge traversals executing procedure Meeting, while S also executed procedure Meeting.
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Hence by the time t4, agent S must meet every good agent whose speed is at least γ. Note that

if agent S′′ is not good and (possibly) crashed at some point, its behavior (standing still since the

crash) is also a possible behavior of an asynchronous agent during procedure Meeting, and hence

S must meet every agent whose speed is at least γ by time t4, if S was still executing procedure

Meeting.

Since S already met all agents whose speed is less than γ by the time t1, we conclude that by the

time t4 agent S must meet all agents, if it executed procedure Meeting during its red period for a

sufficiently long time.

Consider agent S upon completion of procedure R∗(m(S), v). Agent S knows δ and knows some

upper bound on the largest upper bound µ on the size of the graph adopted by any agent. Indeed,

any agent T adopts as its upper bound the number of edge traversals in its execution of procedure

ESST . This number is at most 2ρ(n). Hence it is at most ν = 2ρ(m(S)), which S knows. Thus

µ ≤ ν.

It follows that t4 = t3+m(S′′)2P (m(S′′))/γ+Π(m(S), log L)/δ ≤ t1+Π(m(S), log L)/δ+3ρ(m(S))/δ+∑m(S)
i=1 P (i)/δ+m(S′′)2P (m(S′′))/γ+Π(m(S), log L)/δ ≤ t1+2Π(ν, logL)/δ+3ρ(ν)/δ+

∑ν
i=1 P (i)/δ+

ν2P (ν)/δ = t1 + τ .

Hence by the end of its red period in time t1 + τ , agent S meets all the agents. Since agent S

transits to state gatherer by the time 18ρ(n)/ǫ+6
∑n

i=1 P (i)/ǫ+6Π(n,Λ)/ǫ+6µ2P (µ)/ǫ, in view

of Lemma 3.5, we have t1 ≤ 18ρ(n)/ǫ + 6
∑n

i=1 P (i)/ǫ + 6Π(n,Λ)/ǫ + 6µ2P (µ)/ǫ + ν2P (ν)/δ ≤

18ρ(ν)/δ + 6
∑ν

i=1 P (i)/δ + 6Π(ν,Λ)/δ + 7ν2P (ν)/δ.

Since τ = 2Π(ν, logL)/δ + 3ρ(ν)/δ +
∑ν

i=1 P (i)/δ + ν2P (ν)/δ, the end of the red period of agent

S occurs by the time 21ρ(ν)/δ + 7
∑ν

i=1 P (i)/δ + 8Π(ν,Λ)/δ + 8ν2P (ν)/δ. �

Let ν∗ = 2ρ(µ). ν∗ is an upper bound on the values of ν calculated by all agents. Let δ∗ be

the minimum of the values of δ calculated by all agents. Let φ = 21ρ(ν∗)/δ∗ + 7
∑ν∗

i=1 P (i)/δ
∗ +

8Π(ν∗,Λ)/δ∗ + 8(ν∗)2P (ν∗)/δ∗. The value φ is an upper bound on the termination of the red

periods of all agents.

Lemma 3.7 By the time φ+ 2φκ/ǫ any good agent S is at the starting node of the smallest agent

Smin and starts its final waiting period.

Proof. Let T be the trajectory of agent S until the end of its red period, and let T ′ be the

trajectory of agent Smin until the first meeting with agent S. The length of each of the trajectories

T and T ′ is at most φκ. After meeting all agents, agent S knows both these trajectories. Hence it

can backtrack to the meeting point and then backtrack to the starting node of agent Smin. This

takes at most 2φκ edge traversals, and hence it takes time at most 2φκ/ǫ. Hence by the time

φ+ 2φκ/ǫ agent S is at the starting node of the smallest agent and starts its final waiting period.

�
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Lemma 3.8 By the time 2φ+4φκ/ǫ all good agents are at the starting node of the smallest agent,

all of them know it, and correctly declare that gathering is completed.

Proof. We first show that at the beginning of its final waiting period, every good agent can

compute the length τ ′ = φ + 2φκ/ǫ of this period. Indeed this value depends on five parameters:

Λ, κ, ǫ, ν∗ and δ∗. At the beginning of its final waiting period, every good agent has met all agents

and knows all their parameters. Hence it can compute the largest length Λ of all labels, the largest

speed κ, and the smallest speed ǫ. It learns all values δ computed by all agents, and finds their

minimum δ∗. It learns all values ν computed by all agents, and finds their maximum ν∗. Hence it

can compute φ and finally τ ′.

In view of Lemma 3.7, by the time φ + 2φκ/ǫ, every good agent is at the starting node of the

smallest agent and starts its final waiting period. Hence at the end of its final waiting period,

which has the same length τ ′ = φ + 2φκ/ǫ, every good agent knows that all good agents started

their final waiting period. Hence every good agent correctly declares that gathering is completed

by the time 2φ+ 4φκ/ǫ. �

We are now ready to prove the main result of this section.

Theorem 3.1 Algorithm Gathering with motion faults is a correct algorithm for the task of

gathering with motion faults. It works in time polynomial in the size n of the graph, in the length

Λ of the largest label, in the inverse of the smallest speed ǫ, and in the ratio r between the largest

and the smallest speed.

Proof. The correctness of the algorithm follows immediately from Lemma 3.8. It remains to verify

that the time 2φ + 4φκ/ǫ is polynomial in n, Λ, 1/ǫ and r. Since r = κ/ǫ, it is enough to verify

that φ = 21ρ(ν∗)/δ∗ + 7
∑ν∗

i=1 P (i)/δ
∗ + 8Π(ν∗,Λ)/δ∗ + 8(ν∗)2P (ν∗)/δ∗ is polynomial in n, Λ and

1/ǫ.

The upper bound m on the size of the graph, calculated by each agent, is at most 2ρ(n), in view

of Lemma 2.1. Since ρ is a polynomial, it follows that m is polynomial in n, and so is µ. Hence

ν∗ = 2ρ(µ) is also polynomial in n.

Since the value γ computed by each agent is θ
c
, where θ is the speed of the agent and c ≤ µ2P (µ),

it follows that 1/γ is polynomial in n and in 1/ǫ. Hence the value 1/δ computed by each agent is

polynomial in n and in 1/ǫ, and thus so is 1/δ∗.

It follows that 21ρ(ν∗)/δ∗ is polynomial in n and in 1/ǫ. Since P is a polynomial, it follows that

7
∑ν∗

i=1 P (i)/δ
∗ and 8(ν∗)2P (ν∗)/δ∗ are polynomial in n and in 1/ǫ. Since Π is a polynomial, it

follows that 8Π(ν∗,Λ)/δ∗ is polynomial in n, Λ, and 1/ǫ. Hence φ is polynomial in n Λ, and 1/ǫ.

�
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4 Gathering with total faults

In this section we construct a gathering algorithm in the scenario of total faults, where an agent

meeting a crashed agent cannot learn anything about it: all crashed agents look identical. We first

show that in the presence of these more severe faults, gathering may be impossible if only one agent

is good. (Gathering in this case means that this agent should stop and declare that all good agents

are with it, i.e., that it is the only good agent.) This is in contrast with the motion faults scenario,

in which our algorithm worked correctly for any team of at least two agents, even if only one agent

was good.

Proposition 4.1 Gathering with total faults cannot be guaranteed if there may be only one good

agent.

Proof. Consider the class of rings of size 4k, for all positive integers k, with port numbers 0 and

1 at every edge. This port numbering orients the rings. Suppose that there exists an algorithm A

that accomplishes the gathering in this class of rings. In the ring of size 4, the adversary places

agents in two antipodal nodes and crashes them immediately. Moreover, it places a good agent in

one of the remaining nodes, assigning it the speed 1. If this single good agent executing A has label

1, it must stop after t1 steps and declare that it is the unique good agent. If it has label 2, it must

stop after t2 steps and declare that it is the unique good agent.

Consider the ring of size 4(t1 + t2), in which the adversary places agents at every second node, and

crashes them immediately. Moreover, it places two good agents at two antipodal nodes that are

not yet occupied, assigns speed 1 to each of them, assigns label 1 to one of them, label 2 to the

other, and starts them simultaneously. Consider the agent with label 1 executing the algorithm for

t1 steps, and the agent with label 2 executing the algorithm for t2 steps. By this time, these agents

cannot meet because initially they are at distance 2(t1 + t2). Hence the history of each of them

is the same as in the ring of size 4. Consequently, since the algorithm A is deterministic, each of

them must make the same decision as in the ring of size 4 where it was the unique good agent,

i.e., stop and declare gathering (declare that it is the unique good agent). Since in the considered

scenario there are at this time two good agents at different nodes, algorithm A is incorrect. �

Hence, in the rest of this section, we assume that there are at least two good agents. This means

that the task of gathering with total faults is on the one hand more difficult because a good agent

cannot learn anything from a crashed agent, but on the other hand it is easier because a good agent

can rely on the existence of another good agent, and plan its moves accordingly.

As before, we first describe the high-level idea of the algorithm, pointing out the differences with

respect to the Algorithm Gathering with motion faults, and then proceed with the detailed

description. We will now have only four states in which an agent can be: cruiser, explorer,

token, and gatherer.

Algorithm Gathering with total faults
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An agent starts executing the algorithm in state cruiser. The goal in this state is to meet another

agent, using procedure Meeting. However, as opposed to the previous algorithm, an agent in

state cruiser executes this procedure until meeting another agent in state cruiser or gatherer,

ignoring all meetings with agents in states token or explorer and ignoring meetings with crashed

agents. As opposed to the previous scenario, we can afford to ignore these meetings because there

are at least two good agents.

After meeting an agent in state cruiser, agents break symmetry using their labels: the larger

agent becomes an explorer, the smaller becomes a token. The explorer tries to find an upper

bound on the size of the graph. This is done using the modified procedure ESST , where the agent

in state token is used as the semi-stationary token. Now there are two modifications of ESST .

One is as before, returning to the token after each phase, and it is made for the same reason. The

second modification is that when the explorer meets a crashed agent, it returns to the token to

verify if this token did not crash. This has to be done because all crashed agents look the same, so

the explorer must be sure that the crashed agent it met is not its own crashed token. If the token

survived until the return, the explorer goes again to the place where it interrupted exploration

and continues it. Whenever the explorer realizes that its token crashed, or the token realizes

that all its explorers crashed, it transits back to state cruiser. (Now trying to find a crashed

explorer would be impossible, as it cannot be recognized.) If exploration succeeds, the explorer

and the token learn an upper bound on the size of the graph and transit to state gatherer. If a

cruiser meets a gatherer, it adopts its upper bound on the size of the graph and transits to state

gatherer.

After learning the size of the graph, an agent transits to state gatherer. In this state, an agent

behaves similarly as in the previous algorithm: it first executes procedure R∗ to meet all slow

agents, and then procedure Meeting to meet the remaining good agents. The latter is done using

the learned upper bound on the size of the graph to estimate the time after which the agent can be

certain to have met all other good agents. However, there is an additional difficulty to be overcome.

At the end of this period of executing Meeting in state gatherer (we will call it again the red

period), an agent must be certain that all good agents identify the same agent at whose starting

node they will gather. Now this is more difficult because one agent can meet the agent with the

smallest label before it crashed, and another agent may meet it after it crashed, and hence may

be unable to learn the smallest label. Hence, the red period of all agents must be sufficiently long

to ensure that all agents learned (possibly indirectly) the labels, speeds and routes to the initial

positions of the same subset of agents. Then they can correctly choose the same (smallest) agent

in the subset (even if by this time it already crashed) and meet at its starting node. The actions

of a good agent after its red period are similar as for gathering with motion faults.

We now give a detailed description of the algorithm, explaining the actions of the agents in each

of the four states. In the following description, the executing agent is called A, has label L and

speed θ.

State cruiser

Upon wakeup, agent A is in this state. It performs procedure Meeting until it meets another agent
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in state cruiser or an agent in state gatherer.

In the first case, let L1, . . . , Lk be the agents in state cruiser that A met in the first meeting,

and suppose that it did not meet any agent in state gatherer during this meeting (simultaneous

meeting of many agents is possible). Let L′ = min(L,L1, . . . , Lk). If L = L′, agent A transits to

state token, otherwise agent A transits to state explorer, and considers the agent with label L′

as its token.

In the second case, agent A completes the currently executed edge traversal, adopts the upper bound

m on the size of the graph from the agent in state gatherer, and transits to state gatherer.

State explorer

Agent A executes the following procedure ESST ∗ that results from procedure ESST using the two

above mentioned modifications.

Procedure ESST ∗

The agent executes the consecutive steps of the modified procedure ESST , as in Algorithm

Gathering with motion faults. Call these steps green. When the agent makes a green step

after which it sees a crashed agent, it goes back to its token following the trajectory T , where T

is the trajectory consisting of all green steps made in the current phase until this point. (If the

meeting with the crashed agent was inside an edge, agent A completes the current edge traversal

and then follows T ). If the token is crashed, agent A transits to state cruiser. Otherwise it

follows trajectory T getting back to the crashed agent. All these steps from the crashed agent to

the token and back are called blue. Then the agent makes the next (green) step of the modified

procedure ESST , as in Algorithm Gathering with motion faults.

Upon completion of procedure ESST ∗, the agent traversed all edges of the graph, knows it, and

adopts the total number of edge traversals m as an upper bound on the size of the graph. Agent

A gives the integer m to its token and transits to state gatherer.

Note that for every green step made in phase i of procedure ESST ∗, the agent made less than 2gi
blue steps, where gi is the total number of green steps in phase i. Hence the total number of steps

made by the agent in phase i is at most 3g2i . Since gi = 2πi, the total number of steps in phase i

is at most 12π2i .

State token

Agent A considers all agents that it met when they were in state cruiser at the moment of the

first meeting (and that transited to state explorer upon this meeting) as its explorers. Agent A

continues its current edge traversal and waits until one of the following two events happens for each

of its explorers. Either an explorer completes procedure ESST ∗ giving agent A an upper bound

m on the size of the graph, or an explorer B is not back after the scheduled time at most 12π2i /β

in some phase i, where β is the speed of B (learned by A). As before, there may be potentially two

different upper bounds given to A by explorers that successfully completed procedure ESST ∗.

When one of the above events occurs for every explorer of the agent A, there are two cases. The

first case is when at least one explorer managed to complete procedure ESST ∗ and gave an upper
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bound to A. In this case, agent A adopts the minimum of the (possibly two) obtained upper bounds

as its upper bound on the size of the graph and transits to state gatherer. The second case is

when all explorers of A failed to successfully complete the procedure (because they all crashed).

Agent A learns this and transits to state cruiser.

State gatherer

In this state, agent A knows an upper bound m on the size of the graph. It starts by executing

the procedure R∗(m, v), where v is the node in which A transited to this state (see the description

of state gatherer in Section 3). Recall that θ is the speed of the agent, and let c be the number

of edge traversals performed by agent A in the execution of this procedure. Let γ = θ
c
. As before,

upon completion of R∗(m, v), agent A has achieved the following two goals: it met all agents whose

speed is less than γ, and it learned that all agents are awake. It also follows that at this time, agent

A learned the lower bound δ = min(γ, α) on the speeds of all good agents, where α is the minimum

speed of all non-crashed agents it met.

Next, agent A executes procedure Meeting for time τ = 4νΠ(ν, logL)/δ+12νρ2(ν)/δ+ ν2P (ν)/δ,

where ν = 12ρ2(m). Call this period of time the red period of agent A. During its red period,

agent A maintains a bag containing data of each agent that agent A met or about which it heard.

For each agent in the bag, data concerning it are: its label, its speed, the route to its starting

node, and the lowest speed of any agent it is aware of. Moreover, for an agent in the bag in state

gatherer, the data includes also its adopted upper bound on the size of the graph and the lower

bound δ calculated by this agent. In the beginning of the red period the bag of A consists of the

data for agents that A met previously, and that were not yet crashed by the time of the meeting.

Whenever A meets a non-crashed agent B, it adds the content of the bag of B to its own bag. At

each step, agent A updates the routes to the starting node of each agent in its bag, hence at each

step these are routes from the current node.

We will show that at the end of its red period, the bag of each good agent contains the data of

the same subset Σ of agents (some of which may have already crashed by this time), and that this

subset contains all good agents.

Let m∗ be the largest bound m calculated by any agent from the set Σ. Hence ν∗ = 12ρ2(m∗) is

an upper bound on the values of ν calculated by all agents from the set Σ. Let δ∗ be the minimum

over all values δ and all speeds that appear in the common bag of agents from the set Σ. Let

ψ = (12ν∗ + 1)Π(ν∗,Λ∗)/δ∗ + 108ν∗ρ2(ν∗)/δ∗ + 5(ν∗)2P (ν∗)/δ∗. We will show that ψ is an upper

bound on the termination time of red periods of all agents in the set Σ. Let κ∗ be the largest speed

that appears in the common bag of agents from the set Σ. Note that at the end of its red period,

each good agent can compute ν∗, Λ∗, δ∗, κ∗ and ψ, looking at the content of its bag. Agent A goes

to the starting node of the agent whose label is the smallest in its bag, and starts its final waiting

period of length τ ′ = ψ + 2ψκ∗/δ∗.

Notice that this final waiting period has the same length for all good agents, as it does not depend

on the label and the speed of an individual agent. Agent A can calculate this waiting time because,

when it starts it, it knows all parameters concerning all agents in its bag.
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Similarly as before, we will prove that after the final waiting period, all good agents must be

at the same node, which is the starting node of the smallest agent in the bag of each of them,

and that agent A learns this fact. After waiting time τ ′ (or at the time when some other agent

declares gathering, if this happens earlier), agent A declares that all good agents are gathered, and

terminates.

The proof of correctness and the performance analysis of Algorithm Gathering with total faults

are split into a series of lemmas. Let ǫ∗ be the minimum speed of any agent that any good agent

ever becomes aware of. Let Λ∗ be the length of the longest label of any agent that any good agent

ever becomes aware of. (There may exist very slow agents with speed smaller than ǫ∗, or agents

with very long labels, longer than Λ∗ that crash before meeting any other agent, and thus, in the

model of total faults, no good agent would be aware of such a low speed or long label.)

Lemma 4.1 By the time 2n(2Π(n,Λ∗)+24ρ2(n))/ǫ∗ some good agent must transit to state gatherer.

Proof. Consider the earliest woken good agent S0 and some other good agent S. By the time

Π(n,Λ∗)/ǫ∗, agent S must be woken up, for otherwise, agent S0 would meet it and wake it up

because it would perform at least Π(n,Λ∗) edge traversals executing procedure Meeting. Until

one of these agents transits to state gatherer, each of them must be in one of the states cruiser,

explorer, or token. In state cruiser, an agent executes procedureMeeting, and in state explorer

or token it is involved in procedure ESST ∗, either as an explorer or as a token. Each execution of

ESST ∗ in which a good agent is involved lasts at most the time 12ρ2(n)/ǫ∗. Hence before transiting

to state gatherer, a good agent executes procedureMeeting in state cruiser with interruptions of

duration at most 12ρ2(n)/ǫ∗. There can be at most n such interruptions by the time a good agent

transits to state gatherer because the only reason for transiting from state explorer or token to

state cruiser is a crash of some new agent, and there are at most n agents altogether. By the time

n(2Π(n,Λ∗)+24ρ2(n))/ǫ∗ after the wakeup of agent S (if no good agent transited to state gatherer

before) there must be a period of length at least Π(n,Λ∗)/ǫ∗ when both agents S and S0 execute

procedureMeeting. Hence they must meet because each of them performed at least Π(n,Λ∗) edge

traversals executing this procedure. Then one of them transits to state explorer, and the other

one to state token. Since they are both good, after an additional time at most 12ρ2(n)/ǫ∗, they

both transit to state gatherer. This happens by the time 2n(2Π(n,Λ∗) + 24ρ2(n))/ǫ∗. �

Let m be the upper bound on the size of the graph, adopted by the first good agent that transited

to state gatherer.

Lemma 4.2 By the time 4n(2Π(n,Λ∗)+ 24ρ2(n))/ǫ∗ +2m2P (m)/ǫ∗ +Π(n,Λ∗)/ǫ∗ all good agents

transit to state gatherer.

Proof. Let S be the first good agent that transited to state gatherer. In view of Lemma

4.1, this happened by the time 2n(2Π(n,Λ∗) + 24ρ2(n))/ǫ∗. After an additional time at most

2m2P (m)/ǫ∗, agent S completed procedure R∗, and started its red period. Also, after this time, all
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agents are woken up. Consider any other good agent S′. After time 2n(2Π(n,Λ∗) + 24ρ2(n))/ǫ∗ +

2m2P (m)/ǫ∗+2n(2Π(n,Λ∗)+24ρ2(n))/ǫ∗, agent S executes procedureMeeting in state gatherer

and agent S′ executes procedureMeeting in state cruiser (if it has not transited to state gatherer

before). Hence, after an additional time at most Π(n,Λ∗)/ǫ∗ they must meet, and agent S′ transits

to state gatherer. �

Lemma 4.3 By the end of its red period a good agent S knows that the bags of all good agents con-

tain the data of the same subset Σ of agents, and that subset Σ contains all good agents. This hap-

pens by the time 4ν(2Π(ν,Λ∗)+24ρ2(ν))/ǫ∗+4ν2P (ν)/ǫ∗+Π(ν,Λ∗)/ǫ∗+4νΠ(ν,Λ∗)/δ+12νρ2(ν)/δ+

ν2P (ν)/δ.

Proof. Consider a good agent S with label L which started its red period at time t. Suppose that

m is the upper bound on the size of the graph, adopted by agent S. Agent S knows the lower bound

δ on the speeds of all good agents, and knows some upper bound on the largest upper bound µ on

the size of the graph adopted by any agent. Indeed, any agent T adopts as its upper bound the

number of edge traversals in its execution of procedure ESST ∗. This number is at most 12ρ2(n).

Hence it is at most ν = 12ρ2(m), which S knows. Thus µ ≤ ν.

Agent S knows that by the time t all agents are woken up. Hence it knows that by the time

t+ν(Π(ν, logL)/δ+Π(ν, log L)/δ+12ρ2(ν)/δ), all good agents transited to state gatherer. Indeed,

consider a good agent S′ that has not yet transited to state gatherer. Hence, after time t, it

executes procedure Meeting in state cruiser, with possible interruptions by being involved in

procedure ESST ∗, either in state explorer or in state token. Each period when S′ executes

Meeting in state cruiser (between interruptions) lasts at most time Π(ν, logL)/δ because by

this time S′ would meet agent S. Each interruption when S′ executes procedure ESST ∗ in state

explorer can last time at most 12ρ2(ν)/δ because S′ has speed at least δ. Each interruption when

S′ executes procedure ESST ∗ in state token can last at most time Π(ν, logL)/δ because during

such interruption agent S′ is inside a single edge and hence it would meet agent S. Since there are

less than ν interruptions, as each of them is due to a crash of some agent, and there are at most ν

agents, we conclude that S knows that by the time t+ν(Π(ν, logL)/δ+Π(ν, logL)/δ+12ρ2(ν)/δ),

all good agents transited to state gatherer.

Hence S knows that by the time t′ = t+ ν(Π(ν, logL)/δ + Π(ν, logL)/δ + 12ρ2(ν)/δ) + ν2P (ν)/δ

every good agent completed the procedure R∗ and started its red period. Consider the time

t′′ = t′ + ν(2Π(ν, log L)/δ). The time segment of length ν(2Π(ν, log L)/δ) that starts at time t′ can

be divided into ν time segments of length 2Π(ν, log L)/δ. In at least one of them no agent crashes.

This segment is divided into two segments I1 and I2, each of length Π(ν, logL)/δ. Let Σ be the

set of agents that have not crashed by the beginning of segment I1. During the time segment I1
agent S meets all agents from the set Σ, and hence its bag at the end of I1 is the union of the bags

of all the agents from Σ. During segment I2 agent S meets again all agents from the set Σ, and

hence the bag of each of them at the end of segment I2 is equal to the bag of agent S. After the

end of segment I2 the bags of agents do not change. The set Σ contains all good agents. We have

t′′ = t+ τ , where τ is the length of the red period of agent S. Hence by the end of the red period
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of agent S, i.e., by the time t′′, agent S knows that the bags of all good agents contain the data of

the same subset Σ of agents, and that subset Σ contains all good agents. Since t ≤ 4ν(2Π(ν,Λ∗) +

24ρ2(ν))/ǫ∗ + 4ν2P (ν)/ǫ∗ +Π(ν,Λ∗)/ǫ∗ and τ ≤ 4νΠ(ν,Λ∗)/δ + 12νρ2(ν)/δ + ν2P (ν)/δ, the time

estimate in the lemma follows. �

Let m∗ be the largest bound m calculated by any agent from the set Σ. Hence ν∗ = 12ρ2(m∗) is

an upper bound on the values of ν calculated by all agents from the set Σ. Let δ∗ be the minimum

over all values δ and all speeds that appear in the common bag of agents from the set Σ. Hence

δ∗ ≤ ǫ∗. Let ψ = (12ν∗+1)Π(ν∗,Λ∗)/δ∗+108ν∗ρ2(ν∗)/δ∗+5(ν∗)2P (ν∗)/δ∗. It follows from Lemma

4.3 that ψ is an upper bound on the termination of red periods of all agents from the set Σ. (Note

that if an agent from the set Σ crashed before completing its red period, this red period could not

extend beyond the time established in Lemma 4.3 for good agents.) Let κ∗ be the largest speed

that appears in the common bag of agents from the set Σ.

Lemma 4.4 By the time ψ + 2ψκ∗/δ∗ any good agent S is at the starting node of the smallest

agent S∗ from the set Σ, and starts its final waiting period.

Proof. Let T be the trajectory of agent S until the end of its red period, and let T ′ be the

trajectory from the initial node of agent S∗ to some node x of the trajectory T , learned by agent

S from its bag. (Notice that agent S∗ might have crashed and this trajectory may sometimes be

learned by agent S indirectly.) The length of each of the trajectories T and T ′ is at most ψκ∗. After

the end of its red period, agent S knows both these trajectories. Hence it can backtrack to node x

and then backtrack to the starting node of agent S∗. This takes at most 2ψκ∗ edge traversals, and

hence it takes time at most 2ψκ∗/δ∗. Hence by the time ψ + 2ψκ∗/δ∗ agent S is at the starting

node of agent S∗ and starts its final waiting period. �

Lemma 4.5 By the time 2ψ + 4ψκ∗/δ∗ all good agents are at the starting node of the smallest

agent from the set Σ, all of them know it, and correctly declare that gathering is completed.

Proof. We first show that at the beginning of its final waiting period, every good agent can

compute the length τ ′ = ψ+2ψκ∗/δ∗ of this period. Indeed this value depends on four parameters:

Λ∗, κ∗, ν∗ and δ∗. At the beginning of its final waiting period, every good agent can compute these

parameters from its bag (that is the same for all good agents). Hence it can compute ψ and finally

τ ′.

In view of Lemma 4.4, by the time ψ + 2ψκ∗/δ∗, every good agent is at the starting node of the

smallest agent S∗ from the set Σ, and starts its final waiting period. Hence at the end of its final

waiting period, which has the same length τ ′ = ψ + 2ψκ∗/δ∗, every good agent knows that all

good agents started their final waiting period. Hence, by the time 2ψ+4ψκ∗/δ∗, every good agent

correctly declares that gathering is completed. �
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We are now ready to prove the main result of this section.

Theorem 4.1 Algorithm Gathering with total faults is a correct algorithm for the task of

gathering with total faults. It works in time polynomial in the size n of the graph, in the length Λ

of the largest label, in the inverse of the smallest speed ǫ, and in the ratio r between the largest and

the smallest speed.

Proof. The correctness of the algorithm follows immediately from Lemma 4.5. It remains to verify

that the time 2ψ + 4ψκ∗/δ∗ is polynomial in n, Λ, 1/ǫ and r.

We have κ∗ ≤ κ. The value 1/δ computed by each agent is polynomial in n and in 1/ǫ, and thus

so is 1/δ∗. Hence κ∗/δ∗ is polynomial in r = κ/ǫ, in n and in 1/ǫ. Thus it is enough to verify that

ψ = (12ν∗ + 1)Π(ν∗,Λ∗)/δ∗ + 108ν∗ρ2(ν∗)/δ∗ + 5(ν∗)2P (ν∗)/δ∗ is polynomial in n, Λ and 1/ǫ.

The upper bound m on the size of the graph, calculated by each agent, is at most 12ρ2(n). Since

ρ is a polynomial, it follows that m is polynomial in n, and so is m∗. Hence ν∗ = 12ρ2(m∗) is also

polynomial in n.

We have Λ∗ ≤ Λ, and hence each of the three summands in ψ are polynomial in n, Λ and 1/ǫ

because Π, ρ and P are polynomials. Hence ψ is polynomial in n, Λ and 1/ǫ. �

5 Conclusion

Our algorithm for motion faults works for any team of at least two agents, regardless of the number

of faulty agents, and our algorithm for total faults works for any team of agents, containing at

least two good agents; the latter is necessary. Hence, in terms of feasibility of gathering with crash

faults, our results are optimal.

We showed that the time of our algorithms is polynomial in the size n of the graph, in the length Λ

of the largest label, in the inverse of the smallest speed ǫ, and in the ratio r between the largest and

the smallest speed. Optimizing this polynomial seems to be out of the reach at present, as even the

optimal rendezvous time of two good agents is not known for arbitrary graphs. However, it remains

open if the time of gathering with crash faults really has to depend on all four above parameters.

The dependence on n and on 1/ǫ seems natural. The time of gathering should somehow depend on

the labels as well, but maybe it could depend on the length of the smallest label (as it is the case

for rendezvous without faults) and not the largest. The most problematic seems the dependence

on the ratio between the largest and the smallest speed. Is this dependence necessary?
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