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The reload cost refers to the cost that occurs along a path

on an edge-colored graph when it traverses an internal ver-

tex between two edges of different colors. Galbiati et al.

[12] introduced the Minimum Reload Cost Cycle Cover prob-

lem, which is to find a set of vertex-disjoint cycles spanning

all vertices with minimum reload cost. They proved that this

problem is stronglyNP-hard and not approximable within 1/ǫ

for any ǫ > 0 even when the number of colors is 2, the reload

costs are symmetric and satisfy the triangle inequality. In

this paper, we study this problem in complete graphs hav-

ing equitable or nearly equitable 2-edge-colorings. By show-

ing the existence of a monochromatic cycle cover we prove

that the minimum reload cost is zero on complete graphs Kn

with an equitable 2-edge-coloring except possibly n = 4 or

with a nearly equitable 2-edge-coloring except possibly for

n ≤ 13. Furthermore, we provide a polynomial-time algo-

rithm that constructs a monochromatic cycle cover in com-

plete graphs Kn with an equitable 2-edge-coloring except

possibly for n = 4. This algorithm also finds a monochro-

matic cycle cover in complete graphs with a nearly equitable

2-edge-coloring except for some special cases.
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monochromatic cycle cover.

1 | INTRODUCTION

Edge-colored graphs can be used tomodel various network design problems. In thiswork, we consider an optimization

problem with the reload cost model. The reload cost occurs along a path on an edge-colored graph while traversing

an internal vertex via two consecutive edges of different colors. That is, the reload cost depends only on the colors

of the incident traversed edges. In addition, the reload cost of a path or a cycle on an edge-colored graph is the

sum of the reload costs that arise from traversing its internal vertices between edges of different colors. Because of

practical reasons, it is generally assumed that the reload costs are symmetric and satisfy the triangle inequality. The

reload cost concept is used in many areas such as transportation networks, telecommunication networks, and energy

distribution networks. For instance, in a cargo transportation network, each carrier can be represented by a color

and the reload costs arise only at points where the carrier changes, i.e., during transition from one color to another.

In telecommunication networks, the reload costs arise in several settings. For instance, switching among different

technologies such as cables, fibers, and satellite links or switching between different providers such as different com-

mercial satellite providers in satellite networks correspond to reload costs. In energy distribution networks, the reload

cost corresponds to the loss of energywhile transferring energy from one form to another one, such as the conversion

of natural gas from liquid to gas form.

Although the reload cost concept has significant applications in many areas, only few papers about this concept

have appeared in the literature. Wirth and Steffan [22], and Galbiati [10] studied the minimum reload cost diameter

problem, which is to find a spanning tree with minimum diameter with respect to reload cost. Amaldi et al. [1]

presented several path, tour, and flow problems under the reload cost model. They also focused on the problem of

finding a spanning tree that minimizes the total reload cost from a source vertex to all other vertices. The works

in [11, 13, 14, 16] focused on the minimum changeover cost arborescence problem, which is to find a spanning

arborescence rooted at a given vertex such that the total reload cost is minimized. The work in [15], on the other

hand, focused on problems related to finding a proper edge coloring of the graph so that the total reload cost is

minimized.

Galbiati et al. [12] introduced the Minimum Reload Cost Cycle Cover (MinRC3) problem, which is to find a set of

vertex-disjoint cycles spanning all vertices with minimum total reload cost. They proved that it is strongly NP-hard

and not approximable within 1/ǫ for any ǫ > 0 even when the number of colors is 2, the reload costs are symmetric

and satisfy the triangle inequality. In this work we focus on a special case of the MinRC3 problem, namely MinRC3 in

complete graphs. Our primary motivation is to avoid the feasibility issue, since a complete graph of any order has a

cycle cover. We first show that the MinRC3 problem is strongly NP-hard and is not approximable within 1/ǫ for any

ǫ > 0 for complete graphs, even when the reload costs are symmetric. We are then interested in the MinRC3 problem

in complete graphs having an equitable 2-edge-coloring, which is an edge-coloring with two colors such that for each

vertex v ∈ V (G ) , | |c1 (v ) | − |c2 (v ) | | ≤ 1, where ci (v ) is the set of edges with color i that are incident to v . To the best

of our knowledge, this paper is the first one focusing on the MinRC3 problem in a special graph class. In particular,

we present the first positive (polynomial-time solvability) result for this problem.

Feasibility of equitable edge-colorings received some attention in the literature. In 2008, Xie et al. [23] showed

that the problem of finding whether an equitable k -edge-coloring exists is NP-complete in general. Indeed, if k =

∆, where ∆ is the maximum degree of the given graph, then this problem becomes equivalent to the well-known

NP-completeproblem of classifyingClass-1 graphs. In 1994,Hiltonand deWerra [19] proved the following sufficiency
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condition on equitable k -edge-colorings: if k ≥ 2 and G is a simple graph such that no vertex in G has degree equal

to a multiple of k , then G has an equitable k -edge-coloring. In 1971, de Werra [6] found the following necessary and

sufficient condition to have an equitable 2-edge-coloring in a connected graph: a connected graphG has an equitable

2-edge-coloring if and only if it is not a connected graph with an odd number of edges and all vertices having an even

degree. Furthermore, a nearly equitable k -edge-coloring is an edge-coloring with k colors such that for each vertex

v ∈ V (G ) and for each pair of colors i , j ∈ {1, 2, ..., k }, | |ci (v ) | − |cj (v ) | | ≤ 2, where ci (v ) is the set of edges with

color i that are incident to v . The notion of nearly equitable edge-coloring was introduced in 1982 by Hilton and de

Werra [18], who also proved that for each k ≥ 2 any graph has a nearly equitable k -edge-coloring.

In this paper, we focus on theMinRC3 problem in complete graphs having an equitable or nearly equitable 2-edge-

coloring. Recall that the reload cost is zero between two edges of the same color. The reload cost of a monochromatic

cycle, i.e., a cycle having all edgeswith the same color, is clearly zero. We then investigate the existence of amonochro-

matic cycle cover in complete graphs having an equitable or nearly equitable 2-edge-coloring. In the literature, there

exist various results about covering a k -edge-colored graph with monochromatic subgraphs such as cycles, paths,

and trees (see [9, 17]). In 1983, Gyárfás [17] proved that the vertex set of any 2-edge-colored complete graph can

be covered by two monochromatic cycles that have different colors and intersect in at most one vertex. In 2010,

Bessy and Thomassé [2] proved that the vertex set of any 2-edge-colored complete graph can be partitioned into

two monochromatic cycles having different colors, i.e., it has a vertex-disjoint monochromatic cycle cover with two

different colors. However, unlike in the MinRC3 problem, a vertex (K1) and an edge (K2) are considered to be cycles

in almost all works in the literature (including [2]) about monochromatic cycle covers. Clearly, both a vertex and an

edge have zero reload cost, yet in this paper, we do not allow cycles to have less than three vertices.

We prove in this paper that except possibly for n ≤ 13 in a complete graph Kn with a nearly equitable 2-edge-

coloring, there exists a cycle cover that is either a monochromatic Hamiltonian cycle or consists of exactly two

monochromatic cycles on the same color with sizes differing by at most one; therefore, the value of the minimum

reload cost cycle cover is zero in such a case. In addition, we show that except possibly for n = 4 there exists a

monochromatic cycle cover in complete graphs Kn with an equitable edge coloring. Our constructive proof leads to a

polynomial-time algorithm to solve the MinRC3 problem on complete graphs with an equitable 2-edge coloring. Our

proof also leads to a polynomial-time algorithm to solve this problem on complete graphs with a nearly equitable

2-edge coloring except for some special cases.

2 | PRELIMINARIES

An undirected graph G = (V (G ), E (G )) is given by a pair of a vertex setV (G ) and an edge set E (G ) , which consists

of 2-element subsets {u ,v } ofV (G ) . An edge {u ,v } between two vertices u and v will be denoted by uv in short. In

this work, we consider only simple graphs, i.e., graphs without loops or multiple edges. The order of G is denoted by

|V (G ) | and the degree of a vertex v of G is denoted by d (v ) . In addition, δ (G ) and ∆(G ) denote the minimum and

maximum degree of G , respectively. When the graph G is clear from the context, we omit it from the notations and

writeV , E , δ and ∆.

Given two graphs G = (V ,E ) and G ′ = (V ′,E ′) , if G is isomorphic to G ′, we denote it by G ∼= G ′. We define the

unionG∪G ′ ofG andG ′ as the graph obtained by the union of their vertex and edge sets, i.e.,G∪G ′ = (V ∪V ′,E ∪E ′) .

WhenV andV ′ are disjoint, their union is referred to as the disjoint union and denoted by G + G ′. The join G ∨G ′ of

G and G ′ is the disjoint union of graphs G and G ′ together with all the edges joining V and V ′. Formally, G ∨ G ′ =

(V ∪V ′,E ∪ E ′ ∪ {V ×V ′ }) . The complement of a graph G = (V ,E ) is the graph G = (V ,E ) (the same vertex setV
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but whose edge set E consists of 2-element subsets ofV that are not in E ). That is, E ∩ E = ∅ and E ∪ E contains all

possible edges on the vertex set of G .

The closure of a graph G with n vertices, denoted by cl (G ) , is the graph obtained from G by repeatedly adding

edges between nonadjacent vertices whose degrees sum to at least n , until no such vertices exist. The degree sequence

of a graph G is the nondecreasing sequence of its vertex degrees. A graph is r-regular if all of its vertices have degree

r . We say that a graph H is an r-factor of a graph G whenV (H ) = V (G ) and H is r -regular. Notice here that a cycle

cover of a graph G is equivalent to a 2-factor of G .

An independent set in a graph G is a subset of pairwise nonadjacent vertices in V (G ) . A maximum independent

set is an independent set of largest size for a given graph G . The size of a maximum independent set is called the

independence number of G and is denoted by α (G ) . Besides, a clique of G is a subset of vertices of G whose induced

subgraph is a complete graph. The following lemma is used in our arguments:

Claim 1 For a graphG on n vertices with δ ≤ n/2 and ∆ ≤ n − δ , the independence number α of G satisfies the inequality

α ≤ n − δ and the equality holds only for the complete bipartite graph Kn−δ,δ with ∆ = n − δ .

Proof of Claim 1 Assume to the contrary that I is an independent set of G with size greater than n − δ and let J be

the remaining vertices inG , i.e., |I | > n−δ and |J | < δ . Each vertex in I can be adjacent only to the vertices in J since

I is an independent set in G . However, then each vertex in I has degree less than δ in G , which is a contradiction

since δ is the minimum degree. When |I | = n − δ and |J | = δ , each vertex in I must be adjacent to every vertex in J

to attain the minimum degree δ ; moreover, each vertex in J can be adjacent only to the vertices in I since ∆ ≤ n − δ .

Hence, α = n − δ only when G is Kn−δ,δ with ∆ = n − δ as desired.

A cycle on n vertices is denoted by Cn . A cycle cover of a graph G is a collection of cycles such that every vertex

in G is contained in at least one such cycle. If the cycles of the cover have no vertices in common, the cover is

called vertex-disjoint. Unless otherwise stated, cycle covers are always assumed to be vertex-disjoint in this work. A

Hamiltonian cycle of a graph G is a cycle passing through every vertex of G exactly once, and a graph G containing a

Hamiltonian cycle is called Hamiltonian. Some fundamental results on hamiltonicity used in this paper are as follows:

Theorem 2 (Dirac [8]) IfG is a graph of order n ≥ 3 such that δ (G ) ≥ n/2, thenG is Hamiltonian.

Theorem 3 (Büyükçolak et al. [4]) Let G be a connected graph of order n ≥ 3 such that δ (G ) ≥ ⌊n/2⌋. Then G is

Hamiltonian unless G is a graph K ⌈n/2⌉ ∪ K ⌈n/2⌉ with one common vertex or a graph K ⌈n/2⌉ ∨ G ⌊n/2⌋ for odd n , where Gn is

a not necessarily connected simple graph on n vertices.

Theorem 4 (Bondy-Chvátal [3]) A graph G is Hamiltonian if and only if its closure cl (G ) is Hamiltonian.

Theorem 5 (Chvátal [5]) LetG be a simple graph with degree sequence (d1, d2, ..., dn ) , where d1 ≤ d2 ≤ · · · ≤ dn . If there

is no m < n/2 such that dm ≤ m and dn−m < n −m , then cl (G ) is a complete graph and thereforeG is Hamiltonian.

Theorem 6 (Nash-Williams [21]) Let G be 2-connected graph of order n with δ ≥ max{(n + 2)/3, α (G ) }. Then G is

Hamiltonian.

Theorem 7 (Moon-Moser [20]) LetG be a bipartite graph with two disjoint vertex setsV1 andV2 such that |V1 | = |V2 | = m .

Ifmin{d (u) + d (v ) | u ∈ V1,v ∈ V2,u and v are nonadjacent} ≥ m + 1, thenG is Hamiltonian.
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A k-edge-coloring of a graph G is an assignment of k colors to edges of G , which is represented by a mapping

χ : E (G ) → C, where C = {c1, c2, ..., ck } is a set of k colors. Given a k -edge-coloring of G with k colors c1, ..., ck ,

ci (v ) denotes the set of edges incident to v colored with ci for v ∈ V (G ) , where 1 ≤ i ≤ k . A reload cost function is a

function ρ : C × C → Î0 such that for all pairs of colors c1, c2 ∈ C,

1. c1 = c2 ⇒ ρ (c1, c2) = 0,

2. c1 , c2 ⇒ ρ (c1, c2) > 0.

The reload cost incurs at a vertex while traversing two consecutive edges of different colors and ρ (e1 , e2) =

ρ (χ (e1),χ (e2)) , where e1 and e2 are incident edges. The reload cost is said to be symmetric if ρ (e1 , e2) = ρ (e2 , e1)

and to satisfy the triangle inequality if ρ (e1 , e3) ≤ ρ (e1 , e2) + ρ (e2, e3) for mutually incident edges e1, e2 and e3.

The reload cost of a path is the sum of the reload costs that occur at its internal vertices, i.e., ρ (P ) = ρ (e1 , e2) +

ρ (e2, e3) + · · · + ρ (en−1, en ) , where P = (e1 − e2 − · · · − en ) is a path of length n − 1. The reload cost of a cycle is

ρ (C ) = ρ (e1 , e2) + ρ (e2 , e3) + · · · + ρ (en−1 , en ) + ρ (en , e1) , where C is a cycle consisting of edges e1, e2, . . . , en in this

cyclic order. Note that a monochromatic path or cycle, i.e., a path or cycle having all edges with the same color, clearly

has zero reload cost. Besides, the reload cost of a cycle cover is the sum of the reload costs of each cycle component

of the cycle cover, i.e., ρ (C) = ρ (C1) + ρ (C2) + ρ (C3) + · · · + ρ (Cn ) , where C = C1 + C2 + · · · + Cn .

TheMinimum Reload Cost Cycle Cover (MinRC3) problem is an optimization problemwhich aims to span all vertices

of an edge-colored graph by a set of vertex-disjoint cycles with minimum reload cost. Formally,

MinRC3 (G , C,χ , ρ)

Input: A graph G = (V ,E ) with an edge coloring function χ : E → C and a reload cost function ρ : C × C →

Î0.

Output: A cycle cover C of G .

Objective: Minimize ρ (C) .

The previous results on MinRC3 are as follows:

Theorem 8 (Galbiati et al. [12])MinRC3 is strongly NP-hard even if the number of colors is 2, the reload costs are sym-

metric, and satisfy the triangle inequality.

Corollary 9 (Galbiati et al. [12])MinRC3 is not approximable within 1/ǫ , for any ǫ > 0, even if the number of colors is 2,

the reload costs are symmetric, and satisfy the triangle inequality.

A monochromatic cycle cover is composed of cycles such that the colors of the edges of a particular cycle are the

same; however, the colors of edges in different cycles may differ in general. In this work, we investigate the MinRC3

problem in equitably or nearly equitably 2-edge-colored complete graphs and prove that the minimum reload cost is

zero in such graphs except for some special cases by constructing a monochromatic cycle cover in a single color.

3 | MINRC3 IN COMPLETE GRAPHS

By Theorem 8 and Corollary 9, we already know that the MinRC3 problem is NP-hard in the strong sense and not

approximable within 1/ǫ for any ǫ > 0, even when the number of colors is 2. In the following theorem, we prove a

hardness result for complete graphs:
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Theorem 10 TheMinRC3 problem is stronglyNP-hard and not approximable within 1/ǫ for any ǫ > 0 for complete graphs

even if the reload costs are symmetric.

Proof The proof is by reduction from the problem itself. Given an instance I of MINRC3 (G , C,χ , ρ) , where G =

(V (G ), E (G )) , we construct an instance I ′ of MINRC3 (G ′, C′,χ ′, ρ′) as follows: G ′ = (V (G ), E (G ′)) is a complete

graph such that E (G ′) = E (G ) ∪ (∪uv<E (G )uv ) and C
′
= C ∪ (∪uv<E (G )χ (uv )) . For all uv < E (G ) and c ∈ C

′ \ χ (uv ) ,

we set ρ (χ (uv ), c) = ρ (c, χ (uv )) = M , where M is a very large integer. In other words, for every uv < E (G ) , χ (uv )

is a new color in G ′ having a very large reload cost value with all other colors in C′. This reduction shows that I is a

satisfiable instance of MINRC3 if and only if I ′ is a satisfiable instance of MINRC3 in complete graphs. Furthermore,

in the case where I is a satisfiable instance, we clearly have OPT (G ) = OPT (G ′) , where OPT (G ) and OPT (G ′)

denote the reload cost of an optimum solution of G and G ′, respectively. Let A′ be a 1/ǫ approximation algorithm for

the MinRC3 problem in complete graphs for some ǫ > 0. Then since A′ (I ′) ≤ (OPT (I ′)/ǫ) = OPT (I )/ǫ, I ′ is also a

1/ǫ approximation algorithm for the MinRC3 problem in general, contradicting Corollary 9. Hence, the theorem holds.

Having proved that MinRC3 is in general inapproximable within 1/ǫ for any ǫ > 0 in complete graphs, now we

investigate MinRC3 in complete graphs with equitable and nearly equitable 2-edge-colorings.

3.1 | Complete Graphs with Equitable 2-Edge-Coloring

Since a monochromatic cycle cover has zero reload cost, it is sufficient to show that there exists a partition of vertices

of a complete graph having an equitable 2-edge-coloring into monochromatic vertex-disjoint cycles.

The following lemma given in [6] implies the existence of an equitable 2-edge-coloring in complete graphs except

K4k+3, where k ≥ 0:

Lemma 11 [6] A connected graph G has an equitable 2-edge-coloring if and only if it is not a connected graph with odd

number of edges and all vertices having an even degree.

Corollary 12 A complete graph has an equitable 2-edge-coloring if and only if it is not a complete graph K4k+3 with k ≥ 0.

Now, we analyze the cases ofKn for even n and odd n separately. For odd n , by Corollary 12 it suffices to examine

complete graphs with order n = 4k + 1 . The following lemma shows that a complete graph K4k+1 having an equitable

2-edge-coloring has a monochromatic Hamiltonian cycle in both colors:

Lemma 13 For a complete graph K4k+1, where k ≥ 1, with an equitable 2-edge-coloring, there exists a monochromatic

cycle cover of the form C4k+1 for both colors; in other words, there exist monochromatic Hamiltonian cycles in both colors.

Proof Let χ be an equitable 2-edge-coloring in the complete graph K4k+1, k ≥ 1, with colors, say red and blue. In

an equitable 2-edge-coloring of K4k+1, each vertex is incident to 2k red edges and 2k blue edges. Consider the color

induced subgraphs K r
4k+1

and K b
4k+1

in K4k+1 for red and blue colors, respectively. Both K r4k+1 and K
b
4k+1

are 2k -regular

graphs on 4k + 1 vertices. Note that a 2k -regular graph on 4k + 1 vertices cannot be disconnected because otherwise

each component has to have at least 2k + 1 vertices, contradicting the specified order 4k + 1. Both K r
4k+1

and K b
4k+1

are connected 2k -regular graphs on 4k + 1 vertices. Hence, they have Hamiltonian cycles by Theorem 3 since they

are neither K2k+1 ∪ K2k+1 with one common vertex nor K̄2k+1 ∨ Gk . Therefore, there exists a monochromatic cycle

cover of the form C4k+1 in both colors, as desired.
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For even n ≥ 6, the following lemma shows that a complete graph Kn having an equitable 2-edge-coloring has a

monochromatic cycle cover with at most two cycles having the same size and the same color:

Lemma 14 For a complete graph K2k , k ≥ 3, with an equitable 2-edge-coloring, there exists a monochromatic cycle cover

in a single color of the form Ck + Ck or C2k . In particular, there exists a cycle cover Ck + Ck in a single color if K2k has a

disconnected or 1-connected color induced subgraph, and a Hamiltonian cycle C2k otherwise.

Proof Let χ be an equitable 2-edge-coloring of the complete graph K2k with red and blue colors. In an equitable

2-edge-coloring of K2k , each vertex is incident to either k red edges and k − 1 blue edges or k blue edges and k − 1

red edges. We consider the subgraphs K r
2k

and K b
2k

in K2k induced by red and blue colors, respectively. For both of

them, the minimum degree is at least k − 1 and the maximum degree is at most k ; i.e., k − 1 ≤ δ ≤ ∆ ≤ k .

Note that the only disconnected graph on 2k vertices with δ ≥ k − 1 is the disjoint union of two Kk , i.e., Kk + Kk ,

which is a (k − 1)-regular graph. Let K r
2k

be a disconnected graph on 2k vertices with δ ≥ k − 1; i.e., K r
2k
∼= Kk + Kk .

Since both components of K r
2k

are complete graphs, K r
2k

has a cycle cover of the form Ck + Ck . On the other hand,

K b
2k

is a complete bipartite graph Kk ,k since it is the complement of Kk + Kk . Clearly, Kk ,k has a Hamiltonian cycle by

Theorem 2. In this case, we therefore have a monochromatic cycle cover in both induced subgraphs K r
2k

and K b
2k
.

We now suppose that both K r
2k

and K b
2k

are connected graphs with δ ≥ k − 1 and ∆ ≤ k . Assume that both K r
2k

and K b
2k

are regular graphs, i.e., k − 1 ≤ δ = ∆ ≤ k for both graphs. Hence, one of the graphs is a k -regular graph on

2k vertices, whereas the other is a (k − 1)-regular graph on 2k vertices. By Theorem 2, there is a Hamiltonian cycle

on the k -regular graph on 2k vertices. Therefore, in the case where color induced subgraphs are regular, we have a

monochromatic cycle cover of the form C2k in the k -regular subgraph induced by one of the colors.

We then consider the case where both K r
2k

and K b
2k

are connected and are not regular graphs. In other words,

both of them have δ = k −1 and ∆ = k . Let the degree sequences of K r
2k

and K b
2k

be (r1, r2, ..., r2k ) and (b1, b2, ..., b2k ) ,

respectively, where r1 ≤ r2 ≤ · · · ≤ r2k and b1 ≤ b2 ≤ · · · ≤ b2k . Since δ = k − 1 and ∆ = k for both graphs, we

have k − 1 ≤ ri , bi ≤ k for 1 ≤ i ≤ 2k . Notice that at least half of the vertices in one of the induced subgraphs K r
2k

and K b
2k

have degree k , since these subgraphs are complements of each other. Without loss of generality (w.l.o.g.),

assume that at least half of the vertices of K r
2k

have degree k , i.e., ri = k for i ≥ k + 1. Let us consider the degrees of

the remaining vertices, i.e., vertices of degree k − 1, in K r
2k
:

1. Assume that the number of vertices having degree k − 1 is less than k − 1, i.e., rk−1 = k . Then the closure of K r
2k

is a complete graph; therefore, by Theorem 4 K r
2k

has a Hamiltonian cycle.

2. Assume that the number of vertices having degree k − 1 is at least k − 1, i.e., rk−1 = k − 1. If there exists a

pair of nonadjacent vertices u and v both having degree k , then the closure of K r
2k

must contain the edge uv by

definition. The degrees of u and v become k +1 and then they must be adjacent to all other vertices in the closure

of K r
2k
. Iteratively adding edges between nonadjacent vertices whose degrees sum to at least n = 2k , we obtain

the complete graph K2k as the closure of K r
2k
. Then, K r

2k
has a Hamiltonian cycle by Theorem 4. Otherwise, i.e.,

there is no pair of nonadjacent vertices both having degree k , then all vertices having degree k are adjacent to

each other. It follows that the vertices of degree k form a clique of size k or k + 1 in K r
2k

depending on the value

of rk . If the vertices of degree k form a clique of size k + 1 in K r
2k
, i.e., rk = k , it contradicts the fact that K r

2k
is a

connected graph. Then, there are k vertices having degree k − 1 in K r
2k
, i.e., rk = k − 1. Hence, we deduce that

there are k vertices having degree k in K r
2k

and these vertices form a clique of size k in K r
2k
. It implies that all

vertices having degree k − 1 in K b
2k

form an independent set of size k in K b
2k
. Besides, k must be even in order

to satisfy the relation 2E (K r
2k
) =

∑
2k
i=1 d (vi ) = k (2k − 1) for vi ∈ V (K

r
2k
) . That is, k ≥ 4. By Lemma 1, we have

α ≤ n − δ = 2k − (k −1) = k +1 in K b
2k
. We then observe that the set of k vertices of degree k −1 in K b

2k
is indeed
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a maximum independent set of size k in K b
2k
, i.e., α = k in K b

2k
. Otherwise, i.e., α = k + 1 then ∆ = k + 1, which is

a contradiction.

Let us consider the spanning bipartite subgraph K̃ b
2k

ofK b
2k

with the partite setsV1 andV2 , which consist of vertices

of degree k − 1 and k in K b
2k
, respectively. Notice that |V1 | = |V2 | = k and there is no edge among the vertices of

V1 in K b2k . Hence,K̃
b
2k

is obtained by removing all edges among the vertices ofV2 in K b2k , i.e., all edges among the

vertices having degree k . Furthermore, K̃ b
2k

contains k (k − 1) = k 2 − k edges since the vertices ofV1 have degree

k −1 in K̃ b
2k
, whereas K b

2k
contains k 2 − k /2 edges since the vertices ofV2 have degree k in K b

2k
. It means that K̃ b

2k

is obtained by removing exactly k /2 edges, which join the vertices of degree k , from K b
2k

where k is even. Hence,

one can observe that there is no isolated vertex ofV2 in K̃ b2k since the vertices ofV1 form a maximum independent

set in K b
2k
. Notice that the vertices in partite setV2 have minimum degree at least k /2 in K̃ b

2k
since we remove at

most k /2 edges from a vertex of degree k in K b
2k
. Hence, there is no leaf vertex ofV2 in K̃ b2k since k ≥ 4. It follows

that for any nonadjacent vertices u ∈ V1 and v ∈ V2 , we have min{d (u) + d (v ) } = (k − 1) + k /2 ≥ k + 1 in K̃ b
2k

where k ≥ 4. Since |V1 | = |V2 | = k , K̃ b2k has a Hamiltonian cycle C2k by Theorem 7 , which is also a Hamiltonian

cycle in K b
2k
. In this case, we therefore have a monochromatic cycle cover of the form C2k in K b2k .

We now combine Corollary 12, Lemmata 13 and 14 in the following way:

Theorem 15 For n ≥ 5, a complete graph Kn with an equitable 2-edge-coloring has a monochromatic cycle cover in a

single color with at most two cycles. In particular, such a graph contains two cycles of the same size and the same color, or

a monochromatic Hamiltonian cycle.

By Theorem 15, we obtain the first main result of this section as follows:

Corollary 16 For n ≥ 5, the solution of theMinRC3 problem equals zero for Kn having an equitable 2-edge-coloring.

Remark In K4 with an equitable 2-edge-coloring, the only case where the solution of the MinRC3 problem is nonzero

is when both colors induce a path on three edges.

3.2 | Complete Graphs with a Nearly Equitable 2-Edge-Coloring

We now analyze the MinRC3 problem in complete graphs having a nearly equitable 2-edge-coloring. Note that every

equitable 2-edge-coloring is indeed a nearly equitable 2-edge-coloring. Then, we only need to study the MinRC3

problem in complete graphs having a nearly equitable 2-edge-coloring that is not an equitable 2-edge-coloring, say a

sharp nearly equitable 2-edge-coloring.

In the following lemma, we prove that a complete graph K2k , where k ≥ 2, cannot have a sharp nearly equitable

2-edge-coloring.

Lemma 17 In a complete graph K2k , where k ≥ 2, any nearly equitable 2-edge-coloring is indeed an equitable 2-edge-

coloring.

Proof Assume that in the complete graph K2k we have a sharp nearly equitable 2-edge-coloring with colors red and

blue. That is, there exist a vertex v such that | |r (v ) | − |b (v ) | | = 2, implying that the degree of v is even. However, this

contradicts the fact that the degree of v is 2k − 1 in K2k .
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By Corollary 12, we see that the complete graph K4k+3 cannot have an equitable 2-edge-coloring. On the other

hand, in 1982 Hilton and de Werra [18] proved the following:

Lemma 18 [18] Any graphG has a nearly equitable edge-coloring with r colors, where r ≥ 2.

In the following lemma, we show that a complete graph K2k+1, where k ≥ 1, may have a sharp nearly equitable

2-edge-coloring.

Lemma 19 For each k ≥ 1, there exists a complete graph K2k+1 with a sharp nearly equitable 2-edge-coloring.

Proof By Lemma18 and Corollary 12, we deduce that complete graphsK4k+3 have a nearly equitable 2-edge-coloring,

but do not have an equitable 2-edge-coloring. Thus, any nearly equitable 2-edge-coloring is sharp in K4k+3. In a

complete graph K4k+1, we can obtain a sharp nearly equitable 2-edge-coloring as follows: let χ be an equitable 2-

edge-coloring of K4k+1 with colors red and blue; that is, each vertex of K4k+1 is incident to 2k red edges and 2k blue

edges. We define a new 2-edge-coloring ψ by interchanging the color of an edge, say from red to blue. It is easy to

see that ψ is a sharp nearly equitable 2-edge-coloring since two vertices of K4k+1 are incident to 2k − 1 red edges and

2k + 1 blue edges.

In the following, we prove that for odd n ≥ 13, any complete graph Kn having a sharp nearly equitable 2-edge-

coloring has a monochromatic cycle cover with at most two cycles of sizes ⌊n/2⌋ and ⌈n/2⌉ with a single color. Note

here that if the complete graph K2k+1, for k ≥ 2, has a nearly equitable 2-edge-coloring that is also an equitable

2-edge-coloring, then by Lemma 13 there exists a monochromatic Hamiltonian cycle C2k+1.

Lemma 20 For a complete graph K2k+1, k ≥ 6, having a sharp nearly equitable 2-edge-coloring, there exists a monochro-

matic cycle cover in a single color of the form Ck+1 + Ck or C2k+1. In particular, there exists a cycle cover Ck+1 + Ck in a

single color if K2k+1 has a subgraph of the form Kk+1 + Kk induced by a color, and a Hamiltonian cycle C2k+1 otherwise.

Proof Let χ be a sharp nearly equitable 2-edge-coloring of the complete graph K2k+1 with colors red and blue. Since

all vertices of K2k+1 have even degree 2k , | |r (v ) | − |b (v ) | | is either 0 or 2. Notice that there must be at least one

vertex v with | |r (v ) | − |b (v ) | | = 2 since χ is a sharp nearly equitable 2-edge-coloring. Indeed, by the proof of Lemma

19 there exist at least two vertices u and v such that | |r (u) | − |b (u) | | = | |r (v ) | − |b (v ) | | = 2.

We consider the subgraphs K r
2k+1

and K b
2k+1

induced by red and blue edges, respectively, in K2k+1. For both of

them, the minimumdegree is at least k −1 and themaximum degree is at most k +1; i.e., δ ≥ k −1 and ∆ ≤ k +1. In the

case where both K r
2k+1

and K b
2k+1

are regular graphs, i.e., without loss of generality (k −1)-regular and (k +1)-regular

graphs, respectively, by Theorem 2 we have a Hamiltonian cycle in the (k + 1)-regular graph K b
2k+1

. Therefore, we

have a monochromatic cycle cover of the form C2k+1 in this case.

We then suppose that neither K r
2k+1

nor K b
2k+1

are regular graphs, i.e., we have δ , ∆ for both subgraphs. Then

we have two cases for the minimum degree, namely δ = k − 1 or δ = k .

Case 1: Assume that δ = k for one of K r
2k+1

and K b
2k+1

, say K r
2k+1

. If K r
2k+1

is disconnected, then each component

has to have at least k +1 vertices, which contradicts the order being 2k + 1. Hence, such a graph has to be connected.

Moreover, K r
2k+1

has ∆ = k + 1 because it is not regular. Thus, K r
2k+1

is a connected graph with δ = k and ∆ = k + 1

on 2k + 1 vertices. By Theorem 3, K r
2k+1

has a Hamiltonian cycle if it is neither the union of two complete graphs

Kk+1 with one common vertex nor the join of an independent set of size k + 1 with any graph Gk with order k . First,

K r
2k+1

cannot be the union of two complete graphs Kk+1 with one common vertex since ∆ = k +1. Therefore, assume

that K r
2k+1

is the the join of an independent set of size k + 1 with some graph Gk . Since ∆ = k + 1, Gk has to be an
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independent set; therefore, K r
2k+1

is isomorphic to the complete bipartite graph Kk+1,k . Since K r2k+1 has odd order,

a Hamiltonian cycle of it is an odd cycle, which contradicts the fact that it is a bipartite graph. Indeed, K r
2k+1

cannot

have any cycle cover in this case since any cycle cover in K r
2k+1

has to have at least one odd cycle. Therefore, K r
2k+1

has a Hamiltonian cycle unless it is isomorphic to Kk+1,k . In the case when K r
2k+1

is isomorphic to Kk+1,k , consider

K b
2k+1

, i.e., the complement of Kk+1,k . Observe that K b
2k+1

is the disjoint union of two complete graphs Kk+1 and Kk

with δ = k − 1 and ∆ = k ; hence, there exists a monochromatic cycle cover of the form Ck+1 +Ck in K b2k+1. Therefore,

we have a monochromatic cycle cover of the form either C2k+1 or Ck+1 + Ck in this case. In particular, there exists a

monochromatic cycle cover Ck+1 + Ck if K2k+1 has a subgraph Kk+1 + Kk induced by one of the colors.

Case 2: Assume that δ = k − 1 for both K r
2k+1

and K b
2k+1

. Then, both of them have ∆ = k + 1 since they are

complements of each other in K2k+1. Assume that such a graph is disconnected. Since δ = k −1, each component has

at least k vertices. Since ∆ = k + 1, at least one component has k + 2 vertices. Then the order of the graph has to be

at least 2k + 2, contradiction. Therefore, a graph with δ = k − 1 and ∆ = k + 1 on 2k + 1 vertices has to be connected.

Thus, both K r
2k+1

and K b
2k+1

are connected graphs with δ = k − 1 and ∆ = k + 1.

Case 2a : Assume that at least one of K r
2k+1

and K b
2k+1

has connectivity 1; that is, there exists a cut vertex x , say in

K r
2k+1

. Then, the subgraph K r
2k+1

− x has exactly two components since each component has to have at least k − 1

vertices and k ≥ 6. Then K r
2k+1
− x has two components A and B such that k − 1 ≤ |A |, |B | ≤ k + 1 and |A | + |B | = 2k .

Hence, we have δ ≥ k − 2 and ∆ ≤ k for both A and B . We now consider two disjoint and complementary cases:

• Assume that |A | = k − 1 and |B | = k + 1. Then A is the complete graph Kk−1 all of whose vertices are adjacent to

x in K r
2k+1

, since δ (K r
2k+1
) = k − 1. That is, we have a complete subgraph Kk in K r2k+1, and hence a cycle Ck that

consists of all vertices of A and x . On the other hand, B is then a subgraph with δ ≥ k − 2 on k +1 vertices. Since

k ≥ 6, by Theorem 2, B has a Hamiltonian cycle Ck+1. This altogether constitutes a monochromatic cycle cover

of the form Ck + Ck+1.

• Assume that |A | = |B | = k . Since δ ≥ k − 2 for both A and B and k ≥ 6, both A and B have a Hamiltonian cycle

Ck . Besides, since |A | = |B | = k , all vertices in A and B have degree at most k in K r
2k+1

. Then, the only vertex

having maximum degree k + 1 in K r
2k+1

is the cut vertex x . It follows that x is adjacent to at least ⌈(k + 1)/2⌉

vertices of either A or B , say A. Since x is adjacent to more than half of the vertices of A, x must be adjacent to

two consecutive vertices y1 and y2 of the Hamiltonian cycle Ck in A. By using the path y1 − x − y2 instead of the

edge y1 − y2 in Ck , we can construct a cycle Ck+1 covering all vertices of A and x in K r
2k+1

.

Therefore, in this case we have a monochromatic cycle cover of the form Ck + Ck+1.

Case 2b: Assume that both subgraphs K r
2k+1

and K b
2k+1

have connectivity at least 2. Recall that δ = k −1 and ∆ = k +1.

Let αr and αb be the independence numbers of K r
2k+1

and K b
2k+1

, respectively. By Lemma 1, αr and αb must be strictly

less than n − δ = (2k + 1) − (k − 1) = k + 2 because neither of K r
2k+1

and K b
2k+1

can be the complete bipartite graph

Kk+2,k−1 since ∆ = k + 1. We now consider the following disjoint and complementary cases:

• Assume that at least one of αr and αb is less than or equal to the minimum degree δ = k −1, say αr ≤ k −1. Then,

since k ≥ 6, we have k − 1 = δ ≥ max{(n + 2)/3, k − 1} = max{(2k + 1 + 2)/3,αr }. Therefore, by Theorem 6,

K r
2k+1

has a Hamiltonian cycle.

• Assume that αr = αb = k . Then, there exists an independent set of size k and a clique of size k in K r
2k+1

. Let us

partition the vertices of K r
2k+1

into the sets V1 , which is an independent set of size k , and V2, which consists of

the remaining k + 1 vertices. All vertices except possibly one vertex of the clique of size k must lie inV2 sinceV1

is an independent set in K r
2k+1

. Then, each vertex of this clique lying inV2, i.e., at least k − 1 vertices, is adjacent
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to at most three vertices inV1 since its degree is at most k +1. Hence, the number of edges joining the vertices of

V1 andV2 is at most 3(k −1) +2k = 5k −3 by counting edges leavingV2 , and at least k (k −1) = k 2− k by counting

edges leaving V1. Since the inequality k 2 − k > 5k − 3 always holds when k ≥ 6, i.e., the minimum number of

edges leavingV1 is greater than the maximum number of edges leavingV2 when k ≥ 6, we have a contradiction.

Therefore, we cannot have αr = αb = k .

• Assume that one of αr and αb is k + 1 and the other is k , say αr = k + 1 and αb = k . Then, there exists an

independent set of size k + 1 and a clique of size k in K r
2k+1

. Let us partition the vertices of K r
2k+1

into the

sets V1 , which is an independent set of size k + 1, and V2 , which consists of the remaining k vertices. Since all

vertices except possibly one vertex of the clique of size k must lie in V2, each vertex of this clique lying in V2 is

adjacent to at most three vertices inV1 . Hence, the number of edges joining the vertices ofV1 andV2 is at most

3(k − 1) + (k + 1) = 4k − 2 by counting edges leavingV2 , and at least (k + 1) (k − 1) = k 2 − 1 by counting edges

leavingV1 . Since the inequality k 2 − 1 > 4k − 2 always holds when k ≥ 6, we have a contradiction.

• Assume that αr = αb = k + 1. In a similar way to the previous cases, there exists an independent set of size k + 1

and a clique of size k + 1 in both K r
2k+1

and K b
2k+1

. Let us partition the vertices of K r
2k+1

into the setsV1 , which

is an independent set of size k + 1, and V2, which consists of the remaining k vertices. Since all vertices except

exactly one vertex of the clique of size k + 1 must lie inV2, each vertex of this clique lying inV2 is adjacent to at

most two vertices inV1 . Hence, the number of edges joining the vertices ofV1 andV2 is at most 2k by counting

edges leavingV2, and at least k (k −1) +k = k 2 by counting edges leavingV1. Note here that at least one vertex of

V1 is adjacent to all vertices inV2 . Since the inequality k 2 > 2k always holds when k ≥ 6, we have a contradiction.

Therefore, at least one of α r and αb must be less than or equal to the minimum degree δ = k − 1. Hence, in this case

we have a monochromatic cycle cover of the form C2k+1 where k ≥ 6.

By combining Lemmata 17 and 20, we obtain the following result:

Theorem 21 A complete graph Kn with n ≥ 13 and a nearly equitable 2-edge-coloring has a monochromatic cycle cover in

a single color with at most two cycles, which have sizes ⌊n/2⌋ and ⌈n/2⌉.

Hence, we obtain the second main result of this section as follows:

Corollary 22 The solution of theMinRC3 problem equals zero for complete graphs with at least 13 vertices and a nearly

equitable 2-edge-coloring.

4 | ALGORITHM FOR MINRC3

In this sectionwe present an algorithm referred to as theMonochromaticCycleCoverAlgorithm (MCCA), which, given a

complete graph Kn with a 2-edge-coloring, returns either a monochromatic cycle cover C or “NONE". AlthoughMCCA

may in general return “NONE" for a complete graph with a 2-edge-coloring χ , we will show that except possibly

on a complete graph with four vertices, it returns a monochromatic cycle cover if χ is an equitable 2-edge-coloring.

Furthermore, except for some special cases,MCCA mostly (but not always) returns a monochromatic cycle cover if χ

is a nearly equitable 2-edge-coloring.

We first consider a complete graph Kn of even order n , say n = 2k . By Lemma 17, any nearly equitable 2-edge-

coloring is indeed an equitable 2-edge-coloring inK2k . Hence, the algorithmMCCAworks identically for both equitable

and nearly equitable 2-edge-colorings in K2k . We then consider the case where K2k has an equitable 2-edge-coloring.
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Given a subgraphG of K2k induced by a color, the algorithm testsG for δ ≥ n/2, which is Dirac’s sufficiency condition

for hamiltonicity given in Theorem 2. Once G passes the test, the algorithm constructs a Hamiltonian cycle via the

function DiracHamiltonian, which builds a Hamiltonian cycle by following the proof of Theorem 2. According to the

proof of Lemma 14, a monochromatic cycle cover, in particular a Hamiltonian cycle, is obtained when the subgraph

G induced by a color is a disconnected or a regular graph in this case. If G fails to satisfy the condition δ ≥ n/2,

then the algorithm builds the closure G∗ of G and tests G∗ for being a complete graph according to Bondy-Chvátal’s

hamiltonicity condition given in Theorem 4. Once G∗ passes the test, the algorithm constructs a Hamiltonian cycle

via the function ClosureHamiltonian, which builds a Hamiltonian cycle by following the proof of Theorem 4. Indeed,

in the rest of the proof of Lemma 14 we use Theorems 4, 5 and 7, which give sufficiency conditions for closure and

hamiltonicity of G . Hence, the function ClosureHamiltonian will be sufficient to construct a monochromatic cycle

cover, in particular a Hamiltonian cycle, in order to complete the rest of this case.

We now consider a complete graph Kn of odd order n , say n = 2k +1. In this case, we first assume that K2k+1 has

an equitable 2-edge-coloring. Indeed, since the complete graph K4k+3 does not have an equitable 2-edge-coloring by

Corollary 12, we only need to consider a complete graph K4k+3 with an equitable 2-edge-coloring. Given a subgraph

G of K4k+3 induced by a color, the algorithm tests G for δ ≥ ⌊n/2⌋, which is Büyükçolak’s sufficiency condition

for hamiltonicity given in Theorem 3. Once G passes the test, the algorithm constructs a Hamiltonian cycle via the

function ExtensionDiracHamiltonian, which builds a Hamiltonian cycle by following the proof of Theorem 3 given in

[4]. According to the proof of Lemma 13, a monochromatic cycle cover, particularly a Hamiltonian cycle, is obtained.

Let us consider the case where a complete graph K2k+1 has a nearly equitable 2-edge-coloring. By Lemma 19 and

20, a complete graph K4k+1 may have equitable and nearly equitable 2-edge-colorings in different forms, whereas a

complete graph K4k+3 can only have a nearly equitable 2-edge-coloring. Therefore, if K4k+1 has a nearly equitable

2-edge-coloring χ , which is also an equitable 2-edge-coloring, then the algorithm constructs a monochromatic cycle

cover, in particular a Hamiltonian cycle, by considering χ as an equitable 2-edge-coloring. We then consider the case

where a complete graph K2k+1 has a sharp nearly equitable 2-edge-coloring. Given a subgraph G of K2k+1 induced by

a color, the algorithm works in the following way:

• The algorithm tests G for δ ≥ n/2 and constructs a Hamiltonian cycle via the function DiracHamiltonian if G

passes the test. According to the proof of Lemma 20, in this case a monochromatic cycle cover, in particular a

Hamiltonian cycle, is obtained when the subgraph G induced by a color is a regular graph.

• Otherwise, the algorithm then testsG for δ ≥ ⌊n/2⌋, which is Büyükçolak’s sufficiency condition for hamiltonicity

given in Theorem 3. IfG passes the test, then the algorithm constructs either a cycle cover Ck+1+Ck by following

the proof of Theorem 3 given in [4] or a Hamiltonian cycle via the function ExtensionDiracHamiltonian. According

to the proof of Lemma 20, a monochromatic cycle cover of the form Ck+1 + Ck is obtained in the complement

of G when the subgraph G is a complete bipartite graph Kk+1,k in this case. Indeed, if G = Kk+1,k , the algorithm

constructs two cycles C1 and C2 with the vertices of degree ⌈n/2⌉ and the vertices of degree ⌊n/2⌋, respectively.

Notice that the order of vertices in C1 and C2 makes no difference for the Hamiltonian cycle since these sets of

vertices form two distinct complete graphs in the complement of G .

• Otherwise, the algorithm tests G for a cut vertex x . If G passes the test, then the algorithm constructs a cycle

cover of the form Ck+1 + Ck in two different ways by using the structure of G − x given in the proof of Lemma

20.

Notice that the algorithm returns “NONE" for a complete graph with a nearly equitable 2-edge-coloring χ if both

subgraphs induced by the colors are 2-connected with δ = k − 1 and ∆ = k + 1 (Case 2b in the proof of Lemma
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20). In other words, the algorithm remains inconclusive in this case since the corresponding part of the proof is not

constructive.
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Algorithm 1MonochromaticCycleCoverAlgorithm (MCCA)

Require: A complete graph Kn of order n with a 2-edge-coloring χ

Ensure: C is a monochromatic cycle cover of Kn in a single color

1: G1 ← the subgraph of Kn induced by red.

2: G2 ← the subgraph of Kn induced by blue.

3: δ1 ← the minimum degree of G1.

4: δ2 ← the minimum degree of G2.

5: ∆1 ← the maximum degree of G1.

6: ∆2 ← the maximum degree of G2.

7: for i = 1 to 2 do

8: if δi ≥ n/2 then

9: C ← DiracHamiltonian(Gi , δi )

10: if C , NONE then return C .

11: G∗
i
← closure of Gi

12: if G∗
i
is a complete graph then

13: C ← ClosureHamiltonian(Gi ,G∗i )

14: if C , NONE then return C .

15: if δi = ⌊n/2⌋ then

16: if Gi is a complete bipartite graph K ⌈n/2⌉,⌊n/2⌋ then

17: C1 ← the vertices of degree ⌈n/2⌉

18: C2 ← the vertices of degree ⌊n/2⌋

19: C ← C1 + C2

20: if |V (C ) | = |V (Gi ) | then return C .

21: else

22: C ← ExtensionDiracHamiltonian(Gi , δi )

23: if C , NONE then return C .

24: if Gi has a cut vertex x and if k ≥ 4 then

25: Let A and B be two components of Gi − x such that |B | ≥ |A |

26: if |B | > |A | then

27: C1 ← the vertices of A and x

28: C2 ← DiracHamiltonian(B, δi − 1)

29: C ← C1 + C2

30: if |V (C ) | = |V (Gi ) | then return C .

31: else if |B | = |A | then

32: C1 ← DiracHamiltonian(A, δi − 1)

33: C2 ← DiracHamiltonian(B, δi − 1)

34: Let x be adjacent to more vertices of A than B .

35: Let P = x0x1 ...xk−1 ← C1.

36: for j = 0 to k − 1 do

37: if xx j ∈ E (Gi ) and xx j+1 ∈ E (Gi ) then

38: return C1 = (x0 ...x j xx j+1...xk−1) .

39: C ← C1 + C2

40: if |V (C ) | = |V (Gi ) | then return C .

41: return NONE
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By using the constructive nature ofDirac’s original proof for Theorem 2, thework in [7] presents a polynomial-time

algorithm for finding Hamiltonian cycles in graphs that satisfy the condition of Theorem 2, i.e., having at least three

vertices and minimum degree at least half the total number of vertices. For the sake of completeness, in Algorithm 2

we give a function which produces a Hamiltonian cycle under the condition of Theorem 2.

In Algorithm 2, the function DiracHamiltonian first builds a maximal path by starting with an edge and then

extending it in both directions as long as this is possible. Afterwards, the function closes the path to a cycle and then

tries to find a larger path by adding to the cycle a new vertex and opening it back to a path. By the minimum degree

condition δ ≥ n/2, any maximal path can be closed to a cycle and it is possible to extend a closed cycle to a larger

path. Finally, the function builds a Hamiltonian path and then a Hamiltonian cycle.

Algorithm 2 DiracHamiltonian

1: function DiracHamiltonian(G , δ )

Require: δ ≥ |V (G ) |/2

Ensure: return a Hamiltonian cycle C or “NONE"

2: P ← a trivial path in G .

3: repeat

4: while P is not maximal do

5: Append an edge to P . ⊲ P is a maximal path in G .

6: Let P = x0x1 ...xk .

7: for i = 0 to k − 1 do

8: if x0xi+1 ∈ E (G ) and xi xk ∈ E (G ) then

9: return C = (x0, xi+1 ...xk−1, xk , xi , xi−1 ...x1, x0) .

10: ⊲ The existence of such an index i is guaranteed by minimum degree condition.

11: if C , NONE and |V (C ) | , |V (G ) | then

12: Let e be an edge with exactly one endpoint in C .

13: Let e′ be an edge of C incident to e ⊲ There are two such edges.

14: P ← C + e − e′

15: until |V (C ) | = |V (G ) | or C = NONE

16: return C .

As a result of the constructive nature of Bondy-Chvátal’s proof for Theorem 4, there exists a polynomial-time algo-

rithm which produces a Hamiltonian cycle in graphs whose closure is a complete graph. For the sake of completeness,

we give such an algorithm in Algorithm 3.

In Algorithm 3, the function first arbitrarily arranges all vertices in a cycle since the closure is complete. Note that

this cycle is Hamiltonian since it contains all vertices of the graph. If all edges of the cycle are already in the graph,

then we are done. Otherwise, there exists an edge e which is in the closure but not in the graph. The function opens

this Hamiltonian cycle to a Hamiltonian path P = x0x1 ...xk by removing e , and builds a new Hamiltonian cycle from

this Hamiltonian path using edges x0xi+1 and xk xi and removing edge xi xi+1 in the graph for some 2 ≤ i ≤ k − 1. The

existence of such an edge is guaranteed by definition of closure, i.e., d (x0) + d (xk ) ≥ n. After repeating this process

for each edge which is in the closure but not in the graph, the function constructs a Hamiltonian cycle in the graph.
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Algorithm 3 ClosureHamiltonian

1: function ClosureHamiltonian(G ,cl (G ))

Require: cl (G ) is a complete graph

Ensure: return a Hamiltonian cycle C or “NONE"

2: C ← a Hamiltonian cycle in cl (G ) .

3: ⊲ C can be obtained by arbitrarily arranging all vertices.

4: for j = 1 to k do

5: if e i is not an edge in G then

6: P ← C − e j ⊲ P is a Hamiltonian path in Ḡ .

7: Let P = x0x1 ...xk .

8: for i = 2 to k − 1 do

9: if x0xi+1 ∈ E (G ) and xi xk ∈ E (G ) then

10: C ← (x0, xi+1 ...xk−1, xk , xi , xi−1 ...x1, x0) .

11: repeat

12: Let E = {e1, e2, ..., ek } be the edge set of C .

13: until E ⊆ E (G ) or C = NONE

14: return C .

Since the function ExtensionDiracHamiltonian and its constructive structure are explicitly stated in [4], we do not

give the algorithm ExtensionDiracHamiltonian here. We refer to [4] for details.

5 | CONCLUSION

In this work, we show that there exists a monochromatic cycle cover in complete graphs with at least 13 vertices

and a nearly equitable 2-edge-coloring. Hence, we conclude that the minimum reload cost is zero in these graphs.

In general, all proofs except one part in this paper are constructive. Then, we provide a polynomial-time algorithm

that constructs a monochromatic cycle cover, in particular a Hamiltonian cycle or two cycles whose sizes differ by at

most one, in complete graphs with a nearly equitable 2-edge-coloring. This algorithm builds a monochromatic cycle

cover in all complete graphs with an equitable 2-edge-coloring, whereas it may remain inconclusive in some complete

graphs with a sharp nearly equitable 2-edge-coloring. In particular, the algorithm remains inconclusive for the case

where both subgraphs induced by a color in a complete graph of odd order 2k + 1 with a sharp nearly equitable

2-edge-coloring is 2-connected with δ = k − 1 and ∆ = k + 1.

We believe that the MinRC3 problem may have solution zero for other types of 2-edge colorings in complete

graphs because of the insight provided by this work. As a future work, we plan to study the MinRC3 problem in com-

plete graphs with a 2-edge coloring in general and design an algorithm that not only determines whether a monochro-

matic cycle cover exists but also constructs a monochromatic cycle cover whenever it exists.
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