
HAL Id: hal-01836007
https://hal.science/hal-01836007v3

Submitted on 15 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-dependent shortest path with discounted waits
Jérémy Omer, Michael Poss

To cite this version:
Jérémy Omer, Michael Poss. Time-dependent shortest path with discounted waits. Networks, 2019,
74 (3), pp.287-301. �10.1002/net.21885�. �hal-01836007v3�

https://hal.science/hal-01836007v3
https://hal.archives-ouvertes.fr

Time-dependent shortest paths with discounted waits

Jérémy Omer∗

Univ Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

Michael Poss†

LIRMM, University of Montpellier, CNRS, Montpellier, France

March 31, 2019

Abstract

We study a variant of the shortest path problem in a congested environment. In this setting,
the travel time of each arc is represented by a piecewise continuous affine function of departure
time. Besides, the driver is allowed to wait at nodes to avoid wasting time in traffic. While
waiting, the driver is able to perform useful tasks for her job or herself, so the objective is
to minimize only driving time. Although optimal solutions may contain cycles and pseudo-
polynomially many arcs, we provide a representation of the solutions that is polynomial in the
absolute value of the inverse of the slopes as well as in the dimensions of the graph. We further
prove that the problem is NP-Hard when the slopes are integer. We introduce a restriction
of the problem where waits must be integer and propose pseudo-polynomial algorithms for the
latter. We also provide a pseudo-FPTAS, polynomial in the ratio between the bound on the
total waiting time and the minimum travel time. Finally, we discuss harder variants of the
problem and show their inapproximability.
keywords: Time-dependent networks; Shortest paths, NP-completeness, Approximation, Dy-
namic programming, Waiting.

1 Introduction

We are interested in the situation of a salesman who must travel from an origin o to a destination
d in a potentially congested transport network. The variations in traffic conditions imply that the
travel time between any two points in the network can vary over the day. Instead of losing time
in the traffic, the salesman can avoid peak hours by delaying his departure or stopping at specific
places to perform other activities that will be useful to him or his work. If he does not have a
strong constraint on his arrival time and if he can value the time he spends waiting for better
traffic conditions, only travel time is wasted. Therefore, the salesman’s objective is to minimize
total travel time.

Alternative applications of our model are varied. One example arises in truck transportation
problems where some freight must be sent from a source to a destination at minimum cost. The

∗jeremy.omer@insa-rennes.fr
†michael.poss@lirmm.fr

1

transportation cost is essentially driven by the fuel consumption along the trip. The latter is
minimized by letting the drivers pause to avoid the most congested legs. Another example is
related to organized tourist trips that last several days. Some destinations along these trips cannot
be missed. On the other hand, there are many more choices of interesting and secondary spots that
can be visited along the way. These spots represent the nodes where waiting is allowed, bounded
by the time that can be spent in each of them. Overall, the tourism agency wishes to maximize the
interest of the whole trip, reducing the time spent in congested traffic by organizing well-chosen
stops.

Literature review

Route planning in congested transport networks is classically formalized as the search for a shortest
path in a time-dependent network. Due to this natural application, the time-dependent shortest
path problem (TDSP) has been the subject of active research since its introduction by Cooke and
Halsey in 1966 [4]. In particular, the study of the algorithmic complexity of TDSP has raised subtle
issues from the beginning. For instance, Dreyfus [10] presented the first polynomial algorithm for
the search of a shortest path in a graph where arc costs are positive and integer-valued functions
of time. However, as discussed by Kaufman and Smith [18], this result implicitly assumes that
the cost functions (i.e., the travel time functions) are consistent. This property, also referred to as
FIFO (first-in first-out), expresses that one cannot reach the head of an arc earlier by departing
later from its tail. Actually, it so happens that if we alleviate the consistency assumption, it is
possible to build a time-dependent network where the shortest path is infinite, as shown by Orda
and Rom [20]. Finiteness of the optimal paths can be guaranteed by imposing a positive constant
lower bound to arc travel time functions, but Orda and Rom [19] observe that the problem remains
NP-Hard. This statement is proved by Sherali et al. [21] by reduction from the partition problem.

In close connection to the topic of consistency is that of waiting at the tail of an arc before
traversing it. The possibility of waiting has first been investigated by Halpern [15] in inconsistent
networks. In his work, inconsistency arises from the existence of time intervals where departing from
a node is forbidden, and waits stand for parking periods. Orda and Rom [19] continued Halpern’s
work by considering two different waiting models: unrestricted waiting, and source waiting. In
the unrestricted version, waiting is allowed everywhere without restriction, but the arrival time is
minimized, which means that waiting time is counted. Interestingly, the problem can then be solved
in polynomial time if sufficiently simple travel time functions are considered (e.g., piecewise linear
functions with constant numbers of breakpoints). As argued by Foschini et al. [11], the problem is
then equivalent to the consistent case, since one can always wait at the tail of an arc as long as it
reduces the arrival time at the head of the arc.

In the source waiting model, waiting is forbidden everywhere except for the source node. This
particular case raises the question of determining arrival time at destination as a function of de-
parture time from source. Several theoretical works have been devoted to the study of this func-
tion [1, 5, 7, 11] for piecewise-linear arc travel time functions. In these articles, the authors deal
only with consistent networks. Foschini et al. [11] then established that the arrival time function
is a piecewise linear function that can have a superpolynomial number of pieces, even if the total
number of pieces in arc travel time functions is bounded. More specifically, if the total number of
pieces in the arc functions is K and n is the number of nodes in the graph, then the complexity of
the arrival time function is at most Knlog(Θ(n)). Foschini et al. show that at most K breakpoints of
this function correspond to those of the arc functions, while the others are intersection of piecewise-
linear functions. From this result, they establish that despite the superpolynomial complexity of
the arrival time function, it is polynomial to determine the departure time that minimizes total

2

travel time.
Cai et al. [2] considered models where each arc has a time-dependent cost, in addition to the

time-dependent traversal time. What is more, they allowed waiting at every node, incurring waiting
costs described by time-dependent functions. They provided dynamic programming algorithms,
later improved in [3] and [6].

An even larger literature about TDSP has focused on practical solution methods (e.g., [8, 9, 17]).
The effort on practical implementation issues is motivated by the need to get optimal paths in large-
scale time-dependent networks in only a fraction of a second. This is necessary both for the usual
needs of web applications for route planning and to solve more complex problems such as vehicle
routing problem in a time-dependent network. A recent review of these works is available in [14].

Our contributions

To answer the salesman problem presented above, we consider a TDSP in a consistent network
where waiting is allowed and arc travel time functions are continuous and piecewise linear. In
contrast to the unrestricted case introduced by Orda and Rom [19], the total wait is bounded and
each waiting period at a node is also bounded. More importantly, we do not seek to minimize the
arrival time at destination but the total travel time. Stated otherwise, the waiting time is discounted
from the arrival time at destination. This can be seen as a generalization of the problem studied
by Foschini et al. [11], where they also seek a minimum travel time path, but waiting is restricted
to the origin. Our model is also related to one of the models studied in [2, 3, 6], were waiting at
each node is bounded, with the following differences. First, in addition to local waiting constraints,
we also consider a global constraint. Second, [2, 3, 6] focus only on integer values for the waiting
times, while we consider both integer and continuous values for these. Last, the model of [2, 3, 6]
considers paths having lengths not greater than a given time horizon T (and provide algorithms
polynomial in T), while no such restriction appears in our model.

The main focus of this article is on the complexity of the TDSP with discounted waits. Our
findings reveal that this small shift from classical assumptions yields complex issues with that
respect.

Our first result is in the observation that the problem may not be in NP, since optimal paths
may contain a number of arcs that is not polynomially bounded. Nevertheless, we show that the
optimal paths have compact representations if the right derivatives are not too small. Using a
reduction from the partition problem, we then show that the problem is NP-Hard if the graph is
acyclic and the slopes in the pieces of arc travel time functions are restricted to the values −1, 0
and 1.

A more detailed study leads us to consider both integer and real-valued waiting times. We
show that the two problems are equivalent if the slopes in arc cost functions are all integer. But a
counter-example highlights that this is not true in general, even if the intervals defining the pieces
of the arc travel time functions are integer. Nevertheless, we can bound the ratio between the
optimal values of the two problems if the arc functions are lower bounded by a common value
Cmin. This result is meaningful, because we develop a label setting algorithm that finds an optimal
path in pseudo-polynomial time if waiting times are restricted to integer values. If n and m are
the numbers of nodes and arcs in the graph, the algorithm runs in O(mW 2 + nW log(nW)) time.
We also observe that an arbitrarily high precision can be obtained with this integer approximation
by increasing the granularity of the time discretization.

As an alternative to this approach, we develop a pseudo-FPTAS having a complexity polynomial
in the ratio of W to Cmin. The scheme is valid for both integer and real-valued waiting times.

3

We conclude our study with an analysis of two harder variants of the problem. In the first vari-
ant, we relax the consistency assumption, and in the second one, we consider a stronger constraint
on the waiting times at each node. In both cases, the problem ends up being not approximable,
and we show the strong NP-Hardness of the latter case.

Organization of the article

The remainder of the article is organized as follows. We formally define the problem, and introduce
our notations in Section 2. We propose a compact representation of the solutions in Section 3, and
show that the problem is NP-Hard in Section 4. In Section 5 we highlight the impact of restricting
waiting times to integer values. Section 6 is then devoted to the pseudo-polynomial algorithm for
integer waits, and the pseudo-FPTAS is studied in Section 7. Our last results about harder variants
of the problem are presented in Section 8.

2 Problems definition and notations

We consider a directed graph G = (V,A) with n nodes and m arcs, m ≥ n, containing two origin
and destination nodes, o and d. The bound on total waiting time is denoted as W ∈ Z and the
bound on the waiting time at each node is denoted as Wv ∈ Z, ∀v ∈ V . The travel time of each arc
is given by a positive continuous piecewise linear function Ce : R+ → R+ defined by re pieces plus
a final constant piece. Each piece s = 1, . . . , re is an affine function cse + ρset defined on the interval
[τ s−1
e , τ se], where cse ∈ Z, ρse ∈ Q and τ0

e = 0. Let rmax = maxe∈E re be the maximum number of
pieces in the arc travel time functions. We also denote by the minimum and the maximum values of
all travel times functions by Cmin = mine,tCe(t) and Cmax = maxe,tCe(t), respectively. To simplify
the exposure of some results of this paper, we assume throughout that Ce(t) is never smaller than
1.

Assumption 1. Cmin ≥ 1.

Let Pv be the set of all paths from o to v ∈ V . We study herein the cost of (p, w), where
p = (v1(= o), v2, . . . , v|p|(= d)) belongs to Pd, and w = (w1, . . . , w|p|) is the vector of waiting times
which belongs to

W(p,W) =

w ∈ R|p|+ :

|p|∑
k=1

wk ≤W, wk ≤Wvk , k = 1, . . . , |p|

 .

When the path p = (v1, v2, . . . , v|p|) is fixed, we introduce the notation Ck := Cvkvk+1
. Since we

wish to minimize total travel time, the cost of (p, w) can be expressed as

T (p, w) =

|p|−1∑
k=1

Ck(tk), (1)

where tk is the departure time from node vk; it is computed recursively as

tk = tk−1 + Ck−1(tk−1) + wk. (2)

Notice that T (p, w) for p ∈ Pd is different from t|p|, which also accounts for the total waiting time
up to node d. More precisely, the two quantities are related through the equation

T (p, w) = t|p| −
|p|∑
k=1

wk. (3)

4

The aim of the article is to study the complexity of the following two optimization problems.

opt = min
p∈Pd

min
w∈W(p,W)

T (p, w), (WTDSP)

optI = min
p∈Pd

min
w∈WI(p,W)

T (p, w), (WTDSPI)

where WI(p, ω) =W(p, ω) ∩ Z[p| contains only integer waiting times.
In most applications, we can assume that arc travel times are consistent: if we enter an arc e at

time t ≤ t′, then we leave the arc at time t+ Ce(t) ≤ t′+ Ce(t′). Hence, unless stated otherwise, we
assume throughout the paper that consistency holds. For the particular travel time functions we
consider, this assumption can also be stated as follows. We suppose the following holds throughout
the paper, apart from Proposition 8 from Section 8.

Assumption 2 (Consistency assumption). Let ρmin = mine,s ρ
s
e. We have ρmin ≥ −1.

We shall sometime refer to the right-derivative of a one-variable function f(x) as ∂+f(x).

3 Compact representation

Optimal solutions to WTDSP and WTDSPI may contain cyclic paths where one waits several
times at the same node v provided that each waiting time does not exceed the upper bound Wv.
In fact, we can construct examples in which the optimal path traverses a node W times. One such
example is depicted in Figure 1. The optimal solution goes W times through the loop on node 1 to
wait 1 at every stop at the node. This wait is made profitable by the decreasing travel time on arc
(1, d). This implies that the problem may actually not be in NP since it may not be possible to
compute the objective function in polynomial time. Of course, if the graph is acyclic, the previous
situation never happens.

Observation 1. If G is acyclic, WTDSP is in NP.

o
Co1 = 1

C11 = 1

1

W1 = 1

d t

C1d

1
2W + 1

2W + 2

Figure 1: Instance where the optimal path traverses W arcs.

Below we introduce a compact representation for candidate solutions, which allows us to verify
their feasibility and compute their objective values in polynomial time, given that max

e,s:|ρse|>0
1/|ρse| is

constant.

Theorem 1. Let λ = max
e,s:|ρse|>0

1
|ρse|

. The feasibility of a candidate solution (p, w) and its cost can be

computed in O(λr2
maxm

3 log(Cmax)) operations.

Before proving the theorem, we introduce two technical results that bound the number of times
any piece s of an arc e such that ρse 6= 0 can be hit along a path.

5

Lemma 1. Let (p, w) be a solution of WTDSP and assume that there exist 1 ≤ k1 < k2 <
· · · < kq < |p| such that (vki , vki+1), i = 1, . . . , q, are different repetitions of the same arc e and
τ s−1
e ≤ tki < τ se ,∀i ∈ {1, . . . , q}. The following holds:

tkq+1 ≥ tk1 + (cse + ρsetk1)

q−1∑
i=0

(1 + ρse)
i.

Proof. We prove the result by induction on l. First assume that q = 1. We have

tk1+1 = tk1 + Ce(tk1) + wk1+1 ≥ tk1 + cse + ρsetk1 .

Hence the result holds.
Now, assume that the result holds for some index q − 1 ≥ 1 and assume that there is a qth

repetition of e such that τ s−1
e ≤ tkq < τ se . By definition of the travel time on arc e, we have

tkq+1 = tkq + cse + ρse × tkq + wkq+1.

To use the induction hypothesis, we rewrite this equality as

tkq+1 − tk1 = tkq − tk1 + cse + ρse × tk1 + ρse(tkq − tk1) + wkq+1

= (1 + ρse)(tkq − tk1) + cse + ρsetk1 + wkq+1

By non-negativity of travel and waiting times, we then notice that tkq ≥ tkq−1+1 and wkq+1 ≥ 0,
so the above yields

tkq+1 − tk1 ≥ (1 + ρse)(tkq−1+1 − tk1) + cse + ρsetk1

We can then use the induction hypothesis to obtain

tkq+1 − tk1 ≥ (cse + ρsetk1)×

(
(1 + ρse)

q−2∑
i=0

(1 + ρse)
i + 1

)
= (cse + ρsetk1)

q−1∑
i=0

(1 + ρse)
i.

For a given solution (p, w) where vk is the kth node on p, we say that e = (vk, vk1) is non-
constant if τ s−1

e ≤ tk < τ se and ρse 6= 0, and we call s a non-constant piece of e. We similarly say
that e is constant if ρse = 0. Let us introduce the notation Cse = Ce(τ

s
e).

Lemma 2. Let (p, w) be a solution of WTDSP, and e a non-constant arc of p. If ρse = −1, piece
s of e cannot appear more than once in p. Otherwise, the non-constant piece cannot appear in p

more than
⌊

log(Cs
e)−log(cse)

log(1+ρse)

⌋
times.

Proof. Let (p, w) be a solution of WTDSP, and e ∈ p. We first assume that ρse = −1 and that
there exists 1 ≤ k < |p| such that (vk, vk+1) = e and τ s−1

e ≤ tk < τ se . Recall the assumption that
Ce(t) ≥ 1 for all t, which in turn implies that cse > τ se . By definition of the travel time function of
e, we get

tk+1 = tk + Ce(tk) + wk = tk + cse − tk + wk > τ se ,

so the result holds.

6

Let 1 ≤ k1 < · · · < kq+1 < |p| be such that (vki , vki+1), i = 1, . . . , q + 1, are q + 1 occurrences of
piece s of e and suppose ρse > −1. In particular, this means that tkq+1 ≤ τ se . Since tkq+1 ≤ tkq+1 ,
Lemma 1 implies that this inequality can be satisfied only if

tk1 + (cse + ρsetk1)

q−1∑
i=0

(1 + ρse)
i ≤ τ se

⇔ tk1 + (cse + ρsetk1)
1− (1 + ρse)

q

−ρse
≤ τ se

⇔ tk1 −
cse
ρse
− tk1 + (cse + ρsetk1)

(1 + ρse)
q

ρse
≤ τ se

⇔ (cse + ρsetk1)
(1 + ρse)

q

ρse
≤ τ se +

cse
ρse

⇔ (cse + ρsetk1)
(1 + ρse)

q

ρse
≤ Cse
ρse
,

where the last inequality follows from cse + τ se ρ
s
e = Cse . Next, if ρse < 0, we get that tkq+1 ≤ τ se only

if

(1 + ρse)
q ≥ Cse

cse + ρsetk1
≥ Cse

cse
. (4)

Similarly, if ρse > 0, we get that tkq+1 ≤ τ se only if

(1 + ρse)
q ≤ Cse

cse + ρsetk1
≤ Cse

cse
. (5)

Taking the logarithm of both sides of (4) and (5) yields the result.

We are now able to prove the main result of this section.

Proof of Theorem 1. Let e ∈ E and s ∈ {1, . . . , re}. If −1 < ρse < 0, then by Assumption 1 and
definition of λ,

log(Cse)− log(cse)

log(1 + ρse)
≤ − log(cse)

ρse
≤ λ log(cse) ≤ λ log(Cmax) (6)

If ρse > 0, we similarly obtain log(Cs
e)−log(cse)

log(1+ρse) ≤ λ log(Cse) ≤ λ log(Cmax). For a reasonable encoding

of travel times, Lemma 2 thus ensures the solutions of WTDSP include a polynomial (in λ) number
of non-constant arcs.

Consider some solution (p, w): p can then be described as the concatenation of a polynomial
number of paths (p1, . . . , pq), where only the last arc of pi can be non-constant for all i = 1, . . . , q.
Let σ`e ∈ {1, . . . , re + 1} index the `-th constant piece of Ce for each ` = 1, . . . , Le. Notice that
Le ≥ 1 since the last piece of each travel time function is constant; denote Lmax = maxe∈E Le.
Let i ∈ {1, . . . , q}, and denote by (vi1 , . . . , viq) the sequence of nodes in pi. If an arc e appears in
position k ≤ |pi| − 2 of pi, it is constant. Since the arrival time at the nodes of a path increases
along the path, it is possible to identify Le + 1 positions k1

e ≤ k2
e ≤ · · · ≤ kLe+1

e ≤ |pi|, such that

1. e first appears in pi at position k1
e , and it last appears at position kLe+1

e − 1;

2. each occurrence k of e in piece σ`e is such that k
σ`
e
e ≤ k < k

σ`
e+1
e .

7

As a consequence, if we sort
⋃
e∈pi

⋃
`∈{1,...,Le+1}{k`e} by ascending order, we can describe pi as the

concatenation of at most mLmax subpaths p1
i , . . . , p

r
i and one non-constant arc such that, for all

j ∈ {1, . . . , r}, every arc e ∈ pji has the same travel time every time it appears in pji .
The above means that each subpath can be described with one array of sizeO(rmaxm) containing

the number of times each arc appears in the subpath, and the waiting times on the subpath can be
stored in another array of size O(n) containing the total waiting time at each node of the subpath.
The travel and waiting times over a subpath are then computed in O(m) operations, so that the
travel and waiting times along pi, i = 1, . . . , q, are computed in at most O(rmaxm

2) operations.
By Lemma 2 and (6), q ≤ λrmaxm log(Cmax), so the travel time of p can be computed in at most
O(λr2

maxm
3 log(Cmax)) operations.

Reciprocally, let (p, w) be a path described as the concatenation of a polynomial number of
subpaths with waiting times separated by isolated arcs. Assume also that the subpaths are rep-
resented by two tables, one with the number of times each arc is followed and one with the total
waiting time over each node of the subpath. The flow conservation constraints and the bounds
on waiting time can be checked in O(m) operations on each subpath. It is also possible to check
that the travel time of every arc of a subpath remains constant over the subpath by computing
travel time at the start and at the end of the subpath. This is done in O(rmaxm) operations. As a
consequence, the validity of (p, w) can be verified in a polynomial number of operations.

4 Hardness

We prove below that WTDSP and WTDSPI are hard, following a polynomial reduction from the
classical number partitioning problem [13] (PARTITION). It is well known that PARTITION is
NP-Complete, but it can be solved by an algorithm whose execution time is a polynomial in the
sum of the weights of the items involved.

Proposition 1. The decision versions of WTDSP and WTDSPI are NP-Complete if G is acyclic
and ρse ∈ {−1, 0, 1} for all e and s.

Proof. We consider below the case of WTDSP, the proof being similar for WTDSPI . From Theo-
rem 1, WTDSP is in NP. We reduce PARTITION to the decision version of WTDSP in an acyclic
graph to show that the latter problem is NP-Complete.

Consider an instance of PARTITION characterized by n integers a1, . . . , an such that
∑n

i=1 ai =
2A. We build the corresponding instance of WTDSP by considering a graph G = (V,E) such that

V ={o, d} ∪ {1, . . . , n} ∪ {1W , . . . , nW }

E ={(o, 1), (o, 1W), (1W , 1), (n, d)} ∪
n−1⋃
i=1

{(i, i+ 1), (i, (i+ 1)W), ((i+ 1)W , (i+ 1))},

where o and d are the origin and destination nodes, and {1W , . . . , nW } are waiting nodes. The
travel time of the arcs (iW , i) are constant and equal to A+ ai for i = 1, . . . , n, and the arc (n, d)
has a travel time function given by Cnd(t) = A+ |t− 2(n+ 1)A|. The upper arcs have a travel time
equal to 2A and the travel times of (o, 1W) and of the arcs (i − 1, iW) are constant and equal to
A for i = 2, . . . , n. The maximum total waiting time is W = A; the node maximum waiting times
are WiW = ai,∀i ∈ {1, . . . , n}, and zero for every other node. Figure 2 illustrates the instance of
WTDSP described above.

For any solution (p, w) of the above instance of WTDSP, we denote I = {i : (iW , i) ∈ p}. We
get a solution of PARTITION from a solution of WTDSP by summing the integers ai, i ∈ I.

8

o n1

W1W = a1

2A

A

d
Cnd(t)

1W A+ a1 A+ an

WnW = an

nW

2A

A

2A

A

Figure 2: Reduction from an instance of PARTITION to WTDSP

Departure time from n is then given by 2nA+
∑

i∈I(ai + wi), so the expression of Cnd yields

T (p, w) = 2nA+
∑
i∈I

ai +A+

∣∣∣∣∣∑
i∈I

(ai + wi)− 2A

∣∣∣∣∣ .
One readily verifies that T (p, w) = (2n + 2)A if

∑
i∈I ai = A and

∑
i∈I wi = A, and T (p, w) >

(2n + 2)A if
∑

i∈I ai > A. If
∑

i∈I ai < A, the maximum waiting times at the nodes involve that∑
i∈I wi ≤

∑
i∈I ai, so

T (p, w) ≥ (2n+ 1)A+
∑
i∈I

ai + 2A− 2
∑
i∈I

ai > (2n+ 2)A.

As a conclusion, there exists a subset I ⊂ {1, . . . , n} such that
∑

i∈I ai = A if and only if the
instance of WTDSP has a solution with total travel time equal to (2n+ 2)A, which shows that the
decision version of WTDSP is NP-Complete.

5 Fractionality matters

In this section, we study the relation between the optimal solutions of problem WTDSP and its
restriction to integer waiting times, WTDSPI . While one can expect that the solutions to both
problems are different in general, the following example shows that the ratio between their optimal
values can be as large as 3/2.

Example 1. Consider the simple example drawn on Figure 3. One readily verifies that the optimal
solution waits M −1 at node o and M−1

M at node 1, yielding a total travel time of 2+ 1
M . Moreover,

the cheapest integer solution waits M − 1 at node o and 0 node 1, and it has a total travel time
equal to 3. Hence, for any ε > 0, the ratio between the two solutions is equal to 3/(2 + 1

M), which
is not smaller than 3/2− ε if M is large enough.

The instance used in Example 1 is particularly pessimistic because its lowest travel times values
are equal to 1. We show next that the ratio between the two objectives decreases with the increase
of the minimum value of the travel time functions.

Proposition 2. Let Cmin = inf
e∈E,t≥0

Ce(t) ≥ 1. Then, optI ≤ (1 + 1
Cmin

) opt.

To prove the result, we first show that the decreasing rates of T (p, w) along each variable wi
are bounded below by −1. Let ek denote the vector with value 1 in coordinate k and 0 otherwise.

Lemma 3. Let v ∈ V . For any p ∈ Pv and δ ≥ 0, T (p, w + δek) ≥ T (p, w)− δ.

9

o

max(2− t
M , 1) max(M + 2− t,Mt−M2 −M + 1)

0 0 0 0

d1

W1 = 1Wo = M − 1

Figure 3: Instance of WTDSP with a fractional solution.

Proof. Let p ∈ Pv and let t and t′ be the vectors of departure times for w and w + δek, respec-
tively. By definition, t′k = tk + δ and, since ρmin ≥ −1, we see by induction that t` ≤ t′` for all
` ∈ {k, . . . , |p|}. In particular, t|p| ≤ t′|p|, and the result follows from (3).

Proof of Proposition 2. Let (p∗, w∗) be the optimal solution to WTDSP and (p∗, bw∗c) a feasible
solution to WTDSPI . From the definition of Cmin we have |p∗| − 1 ≤ opt

Cmin
. Hence, we obtain

optI ≤ T (p∗, bw∗c) ≤ T (p∗, w∗) + |p∗| − 1 ≤ opt +
1

Cmin
opt = (1 +

1

Cmin
) opt .

Proposition 2 shows that the error made by restricting ourselves to integer values can be quite
small for practical instances. Integer solutions may also happen to be optimal in the continuous
variant. There are some cases in which we can predict that this will happen, as the instance used
in the proof of Proposition 1. A particularity of this instance is that all slopes of functions Ce are
integer. Next, we prove that when this happens, WTDSP always has an integer optimal solution.

Proposition 3. If ρse ∈ Z for all e and s, there exists an optimal solution to WTDSP with integer
waiting times.

Proof. Let p = (v1(= o), v2, . . . , v|p|(= d)) be an optimal path and w ∈ W(p, w) the optimal waiting
times. Notice first that Assumption 2 implies that ρse = −1, ρse = 0 or ρse ≥ 1 for each e ∈ E and
s = 1, . . . , re. Let us recall that

T (p, w) =

|p|−1∑
k=1

Ck(tk(w)), (7)

where tk(w) is the departure time from node vk using waiting times w. Suppose first that w` is the
unique fractional value of w along p and let ρ = ∂+Ce(t`(w)) for e = (v`, v`+1). Three cases occur,
depending on the value of ρ.

ρ = −1. Define w′ = dwe. These waiting times are also feasible, because every maximum waiting
time is integer.
Now, tk(w) = tk(w

′) for each k < `, so that Ck(tk(w
′)) = Ck(tk(w)) for k < `. What is

more, C`(t`(w
′)) = C`(t`(w)) − (dw`e − w`). This means that C`(t`(w

′)) ≤ C`(t`(w)) and
t`+1(w′) = t`+1(w). From the latter, we get Ck(tk(w

′)) = Ck(tk(w)) for k > `, which,
combined to the former, yields T (p, w′) ≤ T (p, w).

ρ ≥ 1. We define w′ = bwc. We have

Ck(tk(w
′)) = Ck(tk(w)) (8)

10

for all k ∈ {1, . . . , `− 1}, and

C`(t`(w
′)) = C`(t`(w))− ρ(w` − bw`c). (9)

Applying Lemma 3 to the path (v`+1, . . . , v|p|), we also have

|p|−1∑
k=`+1

Ck(tk(w
′)) ≤

|p|−1∑
k=`+1

Ck(tk(w)) + w` − bw`c. (10)

Combining (8), (9) and (10), we obtain T (p, w′) ≤ T (p, w).

ρ = 0. Let `′ ∈ {`+ 1, . . . , |p|} index the first node along p such that t`′ lies in a non-constant piece
of Ce′ , where e′ = (v′`, v`′+1). If ρse′ = −1, define w′ = dwe so that tk(w

′) = dtk(w)e for each
k ≤ `′. Otherwise, define w′ = bwc so that tk(w

′) = btk(w)c for each k ≤ `′. Then, notice
that because the breakpoints are integer and ∂+Ck(tk(w)) = 0 for all k ∈ {`, . . . , `′ − 1}, we
have

Ck(tk(w)) = Ck(dtk(w)e) = Ck(btk(w)c), ∀k ∈ {`, . . . , `′ − 1}. (11)

The result follows by combining (11) with the analysis of the above cases applied to v`′ instead

of v` to study
∑|p|−1

k=`′ Ck(tk(w
′)).

Suppose now that there are two or more components of w that are fractional, denoted {`1, . . . , `s},
and let ρ = ∂+Ce(t`1(w)). In what follows, we build a solution that has a smaller number of frac-
tional components and whose travel time is not greater than that of the original solution. Repeating
the procedure yields an optimal integer solution.

ρ = −1. Define w′ by transferring the fractional part from component `2 to component `1 until
w′`1 = dw`1e or w′`2 = bw′`2c. We see similarly as above that T (p, w′) ≤ T (p, w).

ρ ≥ 1. Define w′`1 = bw`1c and w′k = wk for k 6= `1. Using the same argument as above, we obtain
T (p, w′) ≤ T (p, w).

ρ = 0. Let us define ρk = ∂+Ce(tk(w)) for each `1 < k < `2. We consider three sub-cases. First,
if ρk = 0 for each `1 < k < `2, then we define w′ by transferring the fractional part from
component `1 to component `2 until w′`2 = dw`2e or w′`1 = bw′`1c. Only the departure times of
nodes in {v`1 , . . . , v`2−1} are affected and these do not cross any of the (integer) breakpoints
of their respective cost functions.

For the other two sub-cases, we define k′ = min{k : `1 < k < `2, ρk 6= 0}. If ρk′ > 0, we define
w′ as in the first sub-case. Otherwise, ρk′ < 0, and we define w′ by transferring the fractional
part from component `2 to component `1 until w′`1 = dw`1e or w′`2 = bw′`2c.

6 Pseudo-polynomial-time algorithms

We now show how WTDSPI can be solved in pseudo-polynomial time, yielding also a pseudo-
FPTAS for WTDSP. For any v ∈ V , let T Iv (ω) be the minimum travel time among all paths from
o to v whose waiting times are integer and total waiting times (not including the wait at node v)
are equal to ω:

T Iv (ω) = min
p∈Pv

min
w∈WI(p,ω)

T (p, w). (12)

11

In particular, T Io (0) = 0 and T Io (ω) = +∞ for ω > 0. The main idea of the algorithm described
in this section relies on defining T Iv (ω) recursively along candidate paths. Considering a particular
path p = (v1, . . . , v|p|) ∈ Pd and ω ∈ Z+, we have

T Ivk(ω) = min
ν∈[(ω−Wvk−1

)+,ω]∩Z

{
T Ivk−1

(ν) + Ck−1(T Ivk−1
(ν) + ω)}

}
, (13)

where ν ∈ [(ω−Wvk−1
)+, ω]∩Z guarantees that the wait at node vk−1 is at most Wvk−1

. Combining
the above recursion with a dynamic search for the optimal path, we obtain a dynamic programming
(DP) recursion:

T Iv (ω) =


min

(u,v)∈E

{
min

ν∈{(ω−Wu)+,...,ω}

{
T Iu (ν) + Cuv(T

I
u (ν) + ω)

}}
v 6= o

0 v = o, ω = 0
+∞ v = o, ω 6= 0

(14)

To introduce a pseudo-polynomial-time algorithm, we first describe a simpler version of the
problem that assumes that G is acyclic. Observe that the reduction of PARTITION we made in the
proof of Proposition 1 involves an acyclic graph, so this assumption maintains NP-Completeness.

Proposition 4. If G is acyclic, optI can be computed in O(mW 2) operations.

Proof. Since G is a directed acyclic graph, we can order its nodes such that (i, j) ∈ E ⇒ i ≤ j.
Hence, recursion (14) can be solved in O(W 2m) operations by computing the value function T Iv (ω)
according to the order of the nodes.

The DP recursion (14) cannot be used to solve the problem in general graphs. Specifically, the
presence of cycles in G together with the fact that ω belongs to the inner minimization domain
yields cycles in the graph that represents the states of the DP. Stated otherwise, one cannot define
an order to fill the states of the value-function T Iv (ω). We can overcome this issue by considering
a label-setting algorithm, which allows for cycles in the solution.

Proposition 5. In general graphs, optI can be computed in O(mW 2 + nW log(nW)) operations.

Proof. To prove the result, we solve WTDSPI with Algorithm 1 using a Fibonacci heap [12]. The
validity of the algorithm can be proved similarly to Dijkstra’s algorithm, proving by induction on
the cardinality of S that θv(ω) = Tv(ω) for each (v, ω) ∈ S.

We finish this section by mentioning that the above algorithms can be extended to provide a
pseudo-FPTAS for opt. Let us introduce the notation Z/q = { zq : z ∈ Z}. We can refine (14) for
the granularity Z/q as follows.

T qv (ω) =


min

(u,v)∈E

{
min

w∈[(ω−Wu)+,ω]∩Z/q
{T qu(w) + Cuv(T

q
u(w) + ω)}

}
v 6= o

0 v = o, ω = 0
+∞ v = o, ω 6= 0

(15)

We can similarly adapt Algorithm 1 to the granularity Z/q. Next, we denote the optimal solution
of the problem solved by (15) as optq = minω∈[0,W]∩Z/q T

q
d (ω). One readily verifies that computing

optq through (15) can be done in O(mq2W 2) operations in acyclic graphs. Similarly, adapting
Algorithm 1 to the granularity Z/q leads to a time complexity of O

(
mq2W 2 + nqW log(nqW)

)
operations. What is more, the next result shows that the approximation of opt provided by optq

is tighter than that provided by optI .

12

θo(0) = 0
θv(ω) = +∞, v ∈ V, ω = 0, . . . ,W, (v, ω) 6= (o, 0)
S = ∅ // set of marked labels

repeat
(u, ω) = arg min

(v,w)∈V×{0,...,W}\S
{θv(w)} // mark the label with minimum travel time

S ← S ∪ {(u, ω)}
for (u, v) ∈ E do

for ν = 0, . . . ,min(Wu,W − ω) do
θv(ω + ν) = min(θv(ω + ν), θu(ω) + Cuv(θu(ω) + ω + ν)) // update minimum

travel times

until u = d

output: θv(ω), v ∈ V, ω ∈ {0, . . . ,W}
Algorithm 1: Label-setting algorithm for WTDSP

Proposition 6. Let Cmin = inf
e∈E,t≥0

Ce(t) ≥ 1. Then, optq ≤
(

1 + 1
q×Cmin

)
opt.

Proof. Let (p∗, w∗) be the optimal solution to WTDSP and (p∗, bq × w∗c/q) a feasible solution to
its Z/q counterpart. We obtain

optq ≤ T (p∗, bq × w∗c/q) ≤ T (p∗, w∗) +
|p∗|
q
≤ opt +

1

q × Cmin
opt =

(
1 +

1

q × Cmin

)
opt .

Considering the worst-case of Proposition 6 (Cmin = 1), we obtain a pseudo-fully polynomial-
time approximation scheme for WTDSP.

7 A pseudo-FPTAS for bounded waiting times

Next we study approximation algorithms for WTDSP. Our first observation is that the problem may
be hard to approximate in general because optimal solutions could contain pseudo-polynomially
many arcs. The example below shows that solutions with polynomially many arcs cannot yield
constant-factor approximations for the problem.

Example 2. Let γ(n) be a given polynomial function. Consider a set of instances built on the
graph from Figure 1, with W ≥ γ(n). Then, for any integers K and L large enough, we define a
specific instance as follows: Wo = 0, W1 = K, W = L × K, Co1(t) = C11(t) = 1, and C1d(t) =
max(L×(K+1)+2−t, 1). The optimal solution to this instance contains L loops around node 1 and
its total travel time is equal to L+ 2. The best path, p, from o to d with length at most γ(n) is that
having γ(n) loops around node 1. What is more, the total travel time of p is L+ 2 +K(L− γ(n)).
Hence, for any K, we can choose L large enough so that the approximation ratio provided by p is
greater than 1 +K.

The difficulty of getting good approximate solutions in Example 2 is due to the large ratio
between W and the minimum travel time Cmin, which we denote by α in what follows. Notice
that assuming that α is constant still leads to hard optimization problems as the instances used in
Proposition 1 have α = 1. The following example shows that optimal solutions can be approximated
by the factor 1 + ε by paths having polynomially many arcs in n,m, α, and 1/ε.

13

L = εW
α ;

W̃ ← bWL c;
W̃v ← bWv

L c for all v ∈ V ;

C̃e(t)← L−1 × Ce(Lt) for all e ∈ E;

Run Algorithm 1 using W̃ , {W̃v}v∈V and {C̃e}e∈E instead of W, {Wv}v∈V and {Ce}e∈E ;

Let (p̃, w̃) be the optimal solution and õpt
I

the optimal value;
return (p̃, Lw̃)

Algorithm 2: Pseudo-FPTAS for WTDSP

Example 3. Consider another variant of the example from Figure 1 described by the integer K
with Wo = 0, W1 = 1, W = K, Co1(t) = C11(t) = K and C1d(t) = max(K(K + 3)− t,K). Hence,
α = 1. The optimal solution contains K loops around node 1 and its total travel time is equal to
K(K + 2). Yet, for any ε > 0, this modified example can be approximated by the factor 1 + ε by the
path from o to d that contains min(K, b1/εc) loops around 1.

We now provide a pseudo-FPTAS, described in Algorithm 2. The latter follows the classical
technique introduced by Ibarra and Kim [16], where the parameters of the instance are rounded and
the rounded problem is solved exactly (using Algorithm 1 in our case). In particular, Algorithm 2

involves rounded travel time functions C̃e(t) = L−1×Ce(Lt), ∀e ∈ E, and waiting bounds W̃ = bWL c
and W̃v = bWv

L c, ∀v ∈ V . For a given path p = (v1(= o), v2, . . . , v|p|(= d)) ∈ Pd, we get the following
set of feasible waiting times.

W̃(p, W̃) =

w̃ ∈ R|p|+ :

|p|∑
k=1

w̃k ≤ W̃ , w̃k ≤ W̃vk , k = 1, . . . , |p|

 .

Similarly to (1), we then define

T̃ (p, w̃) =

|p|−1∑
k=1

C̃k(t̃k),

where w̃ ∈ W̃(p, W̃) and t̃k is the departure time from node vk computed recursively as

t̃k = t̃k−1 + C̃k−1(t̃k−1) + w̃k. (16)

The corresponding optimal travel time is denoted as õpt. We see that T̃ (p, w̃) can be easily related
to T (p, Lw̃).

Lemma 4. For any path p ∈ Pd and w̃ ∈ W̃(p, W̃), we have T̃ (p, w̃) = L−1 × T (p, Lw̃).

Proof. Let t be the solution to recursion (2) for w = L × w̃ ∈ W(p,W), and t̃ be the solution to
recursion (16) for w̃. We see by recurrence that t̃k = L−1tk. Specifically, t̃1 = w̃1 = L−1w1 = L−1t1,
and

t̃k = t̃k−1 + C̃k−1(t̃k−1) + w̃k = L−1tk−1 + L−1Ck−1(L× L−1 × tk−1) + L−1wk = L−1tk.

Hence,

T̃ (p, w̃) =

|p|−1∑
k=1

L−1 × Ck(L× L−1 × tk) = L−1T (p, w).

14

To compute the approximation ratio of Algorithm 2, we introduce the following notations. We
define W = (W,Wv : v ∈ V) as the (n + 1)-tuple of all bounds on waiting times, and define

similarly W̃ = (W̃ , W̃v : v ∈ V). Further, we let opt(W) be the optimal solution of WTDSP for
the specific waiting times W; we define similarly optI(W). The following result details how far
optI(bWc) is from opt(W). We skip the proof, because it is a straightforward adaptation of that
of Proposition 2.

Lemma 5. For any W′ ∈ Rn+1, we have optI(bW′c) ≤ (1 + 1
Cmin

) opt(W′).

Proposition 7. Let α = W
Cmin

. Algorithm 2 is a pseudo-FPTAS for opt running in O
(
mα2

ε2
+ nα

ε log
(
nα
ε

))
operations.

Proof. Let (p∗, w∗) be the optimal solution of WTDSP and (p̃, Lw̃) be the solution returned by
Algorithm 2. Notice that the definitions of C̃e and α, imply that

inf
e∈E,t≥0

C̃e =

inf
e∈E,t≥0

Ce(t)

L
=
Cmin
W

α

ε
≥ 1

ε
.

Therefore,

T (p̃, Lw̃) = L× T̃ (p̃, w̃) (Lemma 4)

= L× õpt
I
(W̃) (Definition of õpt

I
)

≤ L(1 + ε)õpt

(
W

L

)
(Lemma 5)

≤ L(1 + ε)T̃ (p∗, w∗/L) (Definition of õpt)

= (1 + ε)T (p∗, w∗) (Lemma 4)

= (1 + ε) opt (Definition of opt)

What is more, observing that W̃ = bα/εc, we get that Algorithm 2 runs in

O
(
mα2

ε2
+
nα

ε
log
(nα
ε

))
operations.

We conclude the section by discussing how to extend the pseudo-FPTAS to WTDSPI . If
L ≤ 1, then W < α/ε and the exact pseudo-polynomial-time algorithms run in polynomial time.
Otherwise, we consider L′ = bLc in Algorithm 2, in which case the algorithm returns solution
(p̃, L′w̃). The solution is feasible for WTDSPI and satisfies T (p̃, L′w̃) ≤ (1 + ε) opt ≤ (1 + ε) optI .

8 Harder variants of WTDSP

Out of completeness, we consider the case the time-dependent network is not consistent (i.e., where
Assumption 2 is not satisfied). This can be meaningful in applications where different modes of
transport can be taken depending on departure time. It has been considered for instance by Orda
and Rom [19] in the context of telecommunications, where a message can be sent through different
channels whose availabilities depend on time.

15

o n1

1

1

d
Cnd(t)

1′ a1 ann′

1

1

1

1

Figure 4: Reduction from partition to show inapproximability.

Orda and Rom [19] state that the problem isNP-Hard when no waiting time is allowed (W = 0).
As in the rest of the literature, the authors aimed at minimizing arrival time, but without wait,
this is equivalent to minimizing arrival time. A proof of NP-Hardness is given by Sherali et al.
in [21], where the reduction is made from PARTITION. The reduction is similar to that depicted in
Figure 2, but they use a piecewise constant travel time function on the last arc. Below, we extend
their result to the class of functions considered in this article, and we study the approximability of
the problem.

Proposition 8. If we relax Assumption 2 in the definition of WTDSP, then, for any polynomial-
time computable function γ(n), WTDSP cannot be approximated within a factor of γ(n) if P 6= NP,
even when W = 0.

Proof. We reduce PARTITION to WTDSP to show the inapproximability result. For this, consider
an instance of PARTITION characterized by n integers a1, . . . , an such that

∑n
i=1 ai = 2A, and

consider the corresponding instance depicted on Figure 4, where the travel time Ce of each arc
different from (n, d) is a constant function indicated on the figure. In addition, we define Cnd(t) =
(n+ A+ 1)γ(n)|t− n− A|+ 1. If the answer to the partition problem is yes, we obtain a path of
length n+A+ 1; if it is no, there exists no path shorter than (n+A+ 1)γ(n).

Another variant of WTDSP could be considered with more practical significance than relaxing
Assumption 2. For all v ∈ V , the upper bound Wv means that every time a path goes through v,
it is allowed to wait at most Wv. This means that in a cyclic path going k times through v, it is
allowed to wait k ×Wv at v. This will not be relevant in some contexts, which is why we wish to
consider the variant where it is allowed to wait only Wv in total at each node v. This comes down
to replacing the constraint wk ≤Wk from the definition of W(p, ω) with∑

k∈{1,...,|p|}:vk=v

wk ≤Wv, ∀v ∈ V. (17)

The optimization problem we obtain by adding the above constraint to WTDSP is denoted as
TWTDSP.

Proposition 9. The optimization problem TWTDSP is NP-Hard, and, for any polynomial-time
computable function γ(n), it cannot be approximated within a factor of γ(n) if P 6= NP.

Proof. We prove the result by reduction from the classical HAMILTONIAN CYCLE problem [13].
We consider an instance of HAMILTONIAN CYCLE described by a directed graph G = (V,E)

and let γ(n) be any polynomial-time computable function. We also define β(n) = (2n+ 3)γ(n).
As illustrated by Figure 5, we create an instance of TWTDSP by duplicating each node i of G

into one in and one out node, iin and iout, so that one arc (iout, jin) with constant travel time is

16

1out1in

o

C1(t)

iout iin

to jin for all (i, j) ∈ E

from kin for all (k, i) ∈ E

to jin for all (1, j) ∈ E

from kout for all (k, 1) ∈ E

2 Cd(t)

1 1 1 1

1 1 1 1

Wiout = 0

d

Wiin = β(n)− 2

W1in = β(n)− 2
W1out = 0

Ci(t)

Figure 5: Reduction from HAMILTONIAN CYCLE to an instance of TWTDSP.

created for each arc (i, j) of E. We also create one arc (iin, iout) for each i ∈ V and define its travel
time function as:

Ci(t) =


(β(n)− 1)(t− kβ(n)) + 1 if kβ(n) ≤ t ≤ kβ(n) + 1, k = 0, . . . , n− 1
−t+ (k + 1)β(n) + 1 if kβ(n) + 1 ≤ t ≤ (k + 1)β(n), k = 0, . . . , n− 1
(β(n)− 1)(t− nβ(n)) + 1 if t ≥ nβ(n)

The origin node o is connected to 1in with constant travel time 2 and 1in is connected to d with
travel time function

Cd(t) = max{−t+ nβ(n) + 3, γ(n)(t− nβ(n)− 2) + 1}.

Finally, the maximum wait is equal to β(n)− 2 at nodes iin and 0 on the other nodes.
First, observe that if the departure time from a node iin is such that kβ(n)+1 ≤ tiin ≤ (k+1)β(n)

for some k ∈ {0, . . . , n− 1}, the expression of Ci implies that tiin +Ci(tiin) = (k+ 1)β(n) + 1. Since
the arcs originating from the out nodes all have constant costs equal to 1, this involves that for
k ≤ n−1, the departure time from the kth out node on a path is at least kβ(n)+1. In particular, if
vin
n+1 is the (n+ 1)th in node on a path, tvinn+1

≥ nβ(n) + 2. As a consequence, if the path traverses

17

(vin
n+1, v

out
n+1), the last piece of the arc travel time function involves that

Cvn+1 ≥ β(n). (18)

Second, let (p, w) be a feasible solution, and denote as t(d − 1) the departure time from 1in

before traversing (1in, d). The expression of Cd gives

T (p, w) = t(d− 1) + Cd(t(d− 1))−
|p|−1∑
i=1

wi

= −
|p|−1∑
i=1

wi +

{
nβ(n) + 3 if t(d− 1) ≤ nβ(n) + 2
γ(n)(2t(d− 1)− nβ(n)− 2) + 1 if t(d− 1) > nβ(n) + 2

From the maximum wait values and constraint (17), we also know that
∑|p|−1

i=1 wi ≤ k(β(n) − 2),
where k is the number of distinct in nodes in the path. In particular, this means that

T (p, w) ≥ (2k + 3) + (n− k)β(n). (19)

Now, if the answer to HAMILTONIAN CYCLE is yes, there is a path (v1, . . . , vn, vn+1) in G
where v1 = vn+1 = 1 and v1, . . . , vn are distinct nodes of G. Thus, we can build a solution (p, w)

of TWTDSP where p = (o, vin
1 , v

out
1 , . . . , vin

n , v
out
n , 1in, d) and

∑|p|−1
i=1 wi = n(β(n) − 2) (by waiting

β(n)− 2 at nodes vin
i for i = 1, . . . , n). With this solution, we get T (p, w) = (2n+ 3).

Finally, assume that the answer is no. We first observe that there is a straightforward bijection
between the cycles starting from node 1 in G and the set of paths that appear in the solutions of
TWTDSP. This means that for any solution (p, w) of TWTDSP, either p goes through less than
n distinct in nodes or it goes through at least n+ 1 out nodes. In the former case, inequality (19)
shows that T (p, w) ≥ (2k + 3) + β(n) > γ(n)(2n + 3). In the latter case, inequality (18) applies
on the (n + 1)th arc connecting an in node to an out node in p, which also proves that T (p, w) >
γ(n)(2n+ 3).

Observe that although constraint (17) guarantees a maximum total waiting time at each node,
it does not exclude the possibility of a cyclic optimal solution. To see this, consider the simple
example drawn on Figure 6. The costs of the arcs other than (2, d) are all constant and equal to 1,
C2d(t) = max{7 − t, 1}, and the bounds are Wv = 0, ∀v 6= 3, and W3 = 1. It is straightforward to
verify that the optimal value is 6 by considering the solution defined as p = (o, 1, 2, 3, 1, 2, d) and
w3 = 1. The only acyclic path from o to d is (o, 1, 2, d) whose total travel time is equal to 7. It
is also interesting to notice that adding constraint (17) does not change the optimal value of this
instance.

References

[1] G. Borradaile and M. Shirley, Time-dependent shortest paths in bounded treewidth graphs,
(2017), arxiv:1706.01508v1.

[2] X. Cai, T. Kloks, and C.K. Wong, Time-varying shortest path problems with constraints,
Networks 29 (1997), 141–150.

[3] I. Chabini and B. Dean, Shortest path problems in discrete-time dynamic networks: Complex-
ity, algorithms and implementations, Unpublished manuscript (1999).

18

o
1 1

d

0 0 0 0

21

3

1 1

W3 = 1

C2d

Figure 6: Instance of WTDSP with a cyclic solution.

[4] K.L. Cooke and E. Halsey, The shortest route through a network with time-dependent internodal
transit times, J. Math. Anal. Appl. 14 (1966), 493 – 498.

[5] B.C. Dean., Shortest paths in FIFO time-dependent networks: Theory and algorithms. Com-
puter Science Technical Report, MIT, 2004.

[6] B.C. Dean, Algorithms for minimum-cost paths in time-dependent networks with waiting poli-
cies, Networks 44 (2004), 41–46.

[7] F. Dehne, M.T. Omran, and J.R. Sack, Shortest paths in time-dependent FIFO networks,
Algorithmica 62 (2012), 416–435.

[8] D. Delling and D. Wagner, “Time-dependent route planning,” Robust and Online Large-Scale
Optimization: Models and Techniques for Transportation Systems, R.K. Ahuja, R.H. Möhring,
and C.D. Zaroliagis (eds.), Springer Berlin Heidelberg, 2009, pp. 207–230.

[9] B. Ding, J.X. Yu, and L. Qin, Finding time-dependent shortest paths over large graphs, Pro-
ceedings of the 11th International Conference on Extending Database Technology: Advances
in Database Technology, 2008, EDBT ’08, pp. 205–216.

[10] S.E. Dreyfus, An appraisal of some shortest-path algorithms, Oper. Res. 17 (1969), 395–412.

[11] L. Foschini, J. Hershberger, and S. Suri, On the complexity of time-dependent shortest paths,
Algorithmica 68 (2014), 1075–1097.

[12] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimiza-
tion algorithms, J ACM 34 (1987), 596–615.

[13] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman & Co., New York, NY, USA, 1979.

[14] M. Gendreau, G. Ghiani, and E. Guerriero, Time-dependent routing problems: A review,
Comput. Oper. Res. 64 (2015), 189–197.

[15] J. Halpern, Shortest route with time dependent length of edges and limited delay possibilities
in nodes, Zeitschrift für operations research 21 (1977), 117–124.

[16] O.H. Ibarra and C.E. Kim, Fast approximation algorithms for the knapsack and sum of subset
problems, J ACM 22 (1975), 463–468.

19

[17] E. Kanoulas, Y. Du, T. Xia, and D. Zhang, Finding fastest paths on a road network with speed
patterns, 22nd International Conference on Data Engineering (ICDE’06), 2006, pp. 1–10.

[18] D.E. Kaufman and R.L. Smith, Fastest paths in time-dependent networks for intelligent vehicle-
highway systems application, I V H S J. 1 (1993), 1–11.

[19] A. Orda and R. Rom, Shortest-path and minimum-delay algorithms in networks with time-
dependent edge-length, J ACM 37 (1990), 607–625.

[20] A. Orda and R. Rom, Minimum weight paths in time-dependent networks, Networks 21 (1991),
295–319.

[21] H.D. Sherali, K. Ozbay, and S. Subramanian, The time-dependent shortest pair of disjoint
paths problem: Complexity, models, and algorithms, Networks 31 (1998), 259–272.

20

