
A Linear Programming Based Approach to the Steiner Tree

Problem with a Fixed Number of Terminals

Matias Siebert1, Shabbir Ahmed1, and George Nemhauser1

1H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of
Technology, Atlanta, GA

Abstract

We present a set of integer programs (IPs) for the Steiner tree problem with the property that the best
solution obtained by solving all, provides an optimal Steiner tree. Each IP is polynomial in the size of
the underlying graph and our main result is that the linear programming (LP) relaxation of each IP is
integral so that it can be solved as a linear program. However, the number of IPs grows exponentially
with the number of terminals in the Steiner tree. As a consequence, we are able to solve the Steiner tree
problem by solving a polynomial number of LPs, when the number of terminals is fixed.

1 Introduction

Given an undirected graph G = (V,E), where V is the set of nodes, E is the set of edges, ce ≥ 0 is the cost
of each edge e ∈ E, and R ⊆ V is a set of terminal nodes, a Steiner tree is a subgraph of G, which is a tree
such that all terminal nodes are connected. The Steiner tree problem is to find such a tree that minimizes
the sum of the edge costs over all edges in the tree. The tree may contain nodes in V \R, which are called
Steiner nodes. The Steiner tree problem is NP-Hard [17], in fact, it is even NP-Hard to find approximate
solutions whose cost is within a factor 96

95 of the cost of an optimal solution [3, 8].

An important line of research has been to study integer linear programming formulations (IP) for this
problem. In [15] the authors provide a catalog of Steiner tree formulations, and show the equivalence of
some of these formulations. In [14] the author studies the vertex-weighted version of the undirected Steiner
tree problem, and presents a complete description of the polytope when the graph is series-parallel. By
projecting this formulation, some facet-defining inequalities for the Steiner tree polytope are obtained. In
[20], the authors compare different formulations of the Steiner tree problem in terms of the strength of their
linear relaxations (LP), and propose a new polynomial size formulation with a stronger LP relaxation than
the ones analyzed in their paper.

In every Steiner tree, we can pick an arbitrary node r ∈ R and find a direction of the edges, such that we
can construct a unique arborescence rooted at r whose leaf nodes correspond to nodes in R\{r}. Note that
an r-arborescence is a directed tree where every node in the arborescence is reachable from the root node
r. Consequently, the Steiner tree problem can be modeled as an r-arborescence whose leaves are nodes in
R\{r} and where all terminal nodes are reached from r. A well studied formulation that uses this fact, is
the Bidirected Cut formulation [11, 25]. This is a compact and simple formulation, whose integrality gap is
known to be at most 2, but is believed to be close to one. The best known lower bound on the integrality
gap for this formulation is 36

31 ≈ 1.16 [6]. An upper bound on the integrality gap for this formulation has
been found for special cases. For quasi-bipartite graphs, the integrality gap is upper bounded by 3

2 [22], and
for claw-free graphs it is upper bounded by ln(4) [12].

Another well studied formulation, is the so called Hypergraphic formulation [19, 21, 24]. This formulation
has one variable for each component of the graph, where a component is a tree whose leaves correspond to

1

ar
X

iv
:1

81
2.

02
23

7v
1

 [
m

at
h.

C
O

]
 5

 D
ec

 2
01

8

terminal nodes. The number of variables and constraints for this formulation are proportional to the number
of components, which is exponential in the number of terminal nodes. On the positive side, we have that
the Hypergraphic formulation is stronger than the Bidirected Cut formulation [21]. The integrality gap of the
Hypergraphic formulation is lower bounded by 8

7 ≈ 1.14 [19] and upper bounded by ln(4) [16]. Moreover, in
[12] the authors show that in claw-free graphs both formulations are equivalent. On the down side, solving
the Hypergraphic formulation is strongly NP-Hard [16]. To address this problem, researchers have proposed
to solve it only considering components with at most k leaves, where k is a fixed value. This considerably
reduces the number of constraints and variables, and the solution of this restricted formulation is proven to
be a factor of ρk of an optimum solution, where ρk ≤ 1+ 1

blog2(k)c
[5]. A complete review of the Hypergraphic

formulation and its variants can be found in [7].

Finally, in [10] the authors propose an algorithm that finds an optimal solution for the Steiner tree problem
in O(n3 + n22b + n3b), where n = |V |, m = |A|, and b+ 1 = |R|. The result of this paper suggests that, for
a fixed number of terminals, there may exist a polynomial size LP formulation of the Steiner tree problem,
which is the motivation for the results presented in this paper.

Our main contribution is a set of independent IPs with the property that the best solution obtained by
solving all, provides an optimal Steiner tree. Each IP is polynomial in the size of the underlying graph and
our main result is that the LP relaxation of each IP is integral. Furthermore, the set of LPs can be solved in
parallel. The drawback, is that the number of LPs grows exponentially with the number of terminal nodes
so the complete algorithm is polynomial only for a fixed number of terminals.

The remainder of this paper is organized as follows. Section 2 analyzes the structure of Steiner trees, and
also introduces definitions used in the paper. Section 3 presents the proposed model, the proof of integrality,
and an analysis of the size of the problem. In Section 4 we present computational experiments obtained by
solving the Steiner tree problem using our proposed formulation. Section 5 gives conclusions.

2 Solution Structure

As mentioned before, several formulations use the fact that every Steiner tree contains an r-arborescence,
some of which use a flow-based formulation, and others a cut-based formulation. Both of those common
approaches work with the directed graph version D of G. In our approach, we exploit two main properties
that every solution must have.

1. We can always pick an arbitrary node r ∈ R as our root node, and find the min-cost r-arborescence
that spans R\{r}. Moreover, this r-arborescence can be modeled as a Min-cost Multi-Commodity
Network Flow, where we have one commodity for every node in R\{r}, and we want to send 1 unit of
flow from r to the corresponding node i ∈ R\{r}.

2. Since the solution must correspond to an r-arborescence, there must be exactly one path from the
root node r to each one of the nodes in R\{r}, which means that if any subset S of the corresponding
commodities of nodes in R\{r} share a path from r to node i ∈ V , and then split in node i, then they
will never meet again. For example, if S = {k1, k2, k3} and in node i the set S splits into S1 = {k1, k2}
and S2 = {k3}, then k1 and k2 will never share an arc again with k3.

Using these two properties, our formulation is based on two type of decisions, (i) when we split the subsets
of commodities, and (ii) into which subsets of commodities. Note that all the commodities have the same
source node, so they all start together. At some point, the set of all commodities will split into different
subsets of commodities, and those subsets will also split into other subsets, and so on, until we have each
commodity by itself. Our idea is to include a variable that tells us where a subset splits, and the partition
that it uses. For instance, say that at some point we have the set S = {k1, k2, k3} of commodities that share

2

a path. Eventually, S is split, so the model has to decide where the split is going to happen. In addition,
the model has to decide the way that S is split. Note that there are 4 possible partitions of S.

(i) {k1, k2, k3} → {{k1, k2}, {k3}}

(ii) {k1, k2, k3} → {{k1, k3}, {k2}}

(iii) {k1, k2, k3} → {{k2, k3}, {k1}}

(iv) {k1, k2, k3} → {{k1}, {k2}, {k3}}

Two important observations are, first, we only consider proper partitions (i.e. a set is not a partition of
itself), and second, the next partition that we can use will depend on the way that we partitioned S. If we
take, for instance, partition (i) then we will have to eventually partition the set {k1, k2} into {k1}, {k2}, but
if we take partition (iv) then we do not have to perform any more partitions.

2.1 Notation

In this section, we define the notation used in the rest of the paper. In Section 2.2, we provide an example
to clarify the concepts introduced in this section.

We define D = (V,A) as a directed graph such that, for every edge {i, j} in E we have two arcs (i, j) and
(j, i) in A, where V and E are the set of nodes and edges of the original undirected graph G, and where
ca = ce for all a ∈ A such that both of its end nodes correspond to the end nodes of e ∈ E. Let r ∈ R be the
arbitrarily selected root node, then we define a set K of commodities, with one commodity for each of the
nodes in R\{r}. Let sk and tk be the source and sink nodes of commodity k, where sk = r for all k ∈ K,
and tk is the corresponding node in R\{r}. Let S be the set of all subsets of K with at least one element,
i.e., |S| = 2|K| − 1, and let P be the set of all proper partitions of the sets of S that have cardinality of at
least 2.

The underlying r-arborescence of any Steiner tree uses only a subset of the sets in S (the set of all subsets
of K), which contains the set of all commodities, and all the singletons. This collection of sets of S forms
a laminar family. A family C of sets is called laminar if for every A,B ∈ C we have A ⊆ B or B ⊆ A or
A ∩ B = ∅. Let Lb be the set of all possible laminar families when |K| = b. For laminar family l ∈ Lb, let
S(l) be the set of subsets of K that appear in laminar family l, and let P (l) be the set of partitions used to
split the subsets in S(l).

For any s′ ∈ S(l) such that |s′| ≤ |K| − 1, we say that ŝ is its parent set, if s′ is one of the sets obtained
when we partition set ŝ according to laminar family l. Note that there is only one parent set for every
s′ ∈ S(l), |s′| ≤ |K| − 1. Similarly, for any set ŝ ∈ S(l) such that |ŝ| ≥ 2, we say that s′ is a child set of
ŝ, if we obtain s′ when we partition ŝ. Note that for every set ŝ ∈ S(l), |ŝ| ≥ 2 we have at least 2 child
sets. Let Sl(p) be the set of all child nodes of partition p in laminar family l, and let Pl(s) be the partition
p that splits s in laminar family l, which is defined only for sets s, such that |s| ≥ 2. Finally, we say that
a Steiner tree T in G follows an (r, l) structure, if the arborescence rooted in r contained in T belongs to
laminar family l ∈ Lb, where b = |R\{r}|.

2.2 Example

Suppose we have an instance with 4 terminal nodes. Let r be the root node, and let K = {k1, k2, k3}. Then,

3

S =

{k1}︸︷︷︸
s1

; {k2}︸︷︷︸
s2

; {k3}︸︷︷︸
s3

; {k1, k2}︸ ︷︷ ︸
s4

; {k1, k3}︸ ︷︷ ︸
s5

; {k2, k3}︸ ︷︷ ︸
s6

; {k1, k2, k3}︸ ︷︷ ︸
s7

and

P =

{(k1, k2), (k3)}︸ ︷︷ ︸
p1

; {(k1, k3), (k2)}︸ ︷︷ ︸
p2

; {(k2, k3), (k1)}︸ ︷︷ ︸
p3

; {(k1), (k2), (k3)}︸ ︷︷ ︸
p4

;

{(k1), (k2)}︸ ︷︷ ︸
p5

; {(k1), (k3)}︸ ︷︷ ︸
p6

; {(k2), (k3)}︸ ︷︷ ︸
p7

=

{s4, s3}︸ ︷︷ ︸
p1

; {s5, s2}︸ ︷︷ ︸
p2

; {s6, s1}︸ ︷︷ ︸
p3

; {s1, s2, s3}︸ ︷︷ ︸
p4

; {s1, s2}︸ ︷︷ ︸
p5

; {s1, s3}︸ ︷︷ ︸
p6

; {s2, s3}︸ ︷︷ ︸
p7

In this case p1, p2, p3 and p4 are the partitions of the set whose cardinality is 3, which is the set {k1, k2, k3}.
The partitions p5, p6 and p7 are the partitions of sets of cardinality 2, which are 3 different sets {k1, k2}, {k1, k3}
and {k2, k3}.

Figure (1) shows the tree representation of all the possible laminar families for the case K = {k1, k2, k3}.

(a) Tree representation of laminar family l1 ∈ L3. (b) Tree representation of laminar family l2 ∈ L3.

(c) Tree representation of laminar family l3 ∈ L3. (d) Tree representation of laminar family l4 ∈ L3.

Figure 1: Tree representation of all possible laminar families for the case K = {k1, k2, k3}

4

In this case, we have,

P (l1) = {p1, p5} S(l1) =
{
{k1, k2, k3}; {k1, k2}; {k1}; {k2}; {k3}

}
= {s7, s4, s1, s2, s3}

P (l2) = {p2, p6} S(l2) =
{
{k1, k2, k3}; {k1, k3}; {k1}; {k2}; {k3}

}
= {s7, s5, s1, s2, s3}

P (l3) = {p3, p7} S(l3) =
{
{k1, k2, k3}; {k2, k3}; {k1}; {k2}; {k3}

}
= {s7, s6, s1, s2, s3}

P (l4) = {p4} S(l4) =
{
{k1, k2, k3}; {k1}; {k2}; {k3}

}
= {s7, s1, s2, s3}

Consider the laminar family l1 ∈ L3 shown in Figure (1a). We have that {k1, k2, k3} is the parent set of
{k1, k2} and {k3}, and that {k1, k2} is the parent set of {k1} and {k2}. On the other hand, sets {k1} and
{k2} are the child sets of {k1, k2}, and, set {k1, k2} and {k3} are child sets of {k1, k2, k3}. Finally, we have

Sl1(p1) =
{
{k1, k2}; {k3}

}
= {s4, s3}

Sl1(p5) =
{
{k1}; {k2}

}
= {s1, s2}

Pl1
(
{k1, k2, k3}

)
= Pl1(s7) = {p1}

Pl1
(
{k1, k2}

)
= Pl1(s4) = {p5}

3 IP Model

We propose an IP model Zl that finds an optimal solution for a given laminar family l ∈ Lb, where b = |K|.
Since we are considering a fixed laminar family l, we are given S(l), the set of subsets of K that we use,
and the partitions that are performed, as well as the parent and child sets of each set in S(l). Therefore, the
main purpose of our model is to choose the node where each partition is performed. Once we know where
each partition is performed, it is easy to determine the arcs that minimize cost, since the problem reduces
to finding a shortest path between the nodes where each subset s ∈ S(l) begins and ends.

For notational simplicity, we do not index the variables of Zl by l. Our proposed formulation Zl is,

Zl : min
∑
a∈A

ca

 ∑
s∈S(l)

fsa

∑

a∈δ+(i)

fsa −
∑

a∈δ−(i)

fsa = ŷsi − ysi ∀i ∈ V, s ∈ S(l) (1)

wpi = ysi ∀i ∈ V, s ∈ S(l) : |s| ≥ 2, p ∈ Pl(s) (2)

wpi = ŷsi ∀i ∈ V, p ∈ P (l), s ∈ Sl(p) (3)∑
i∈V

wpi = 1 ∀p ∈ P (l) (4)

ŷKr = 1 (5)

ŷKi = 0 ∀i ∈ V \{r} (6)

y,ktk = 1 ∀k ∈ K (7)

yki = 0 ∀k ∈ K, i ∈ V \{dk} (8)

f ∈ {0, 1}|A|×|S(l)| (9)

(ŷ, y) ∈ {0, 1}|V |×|S(l)| (10)

w ∈ {0, 1}|V |×|P (l)| (11)

The variable fsa is 1 if we send flow in arc a for subset s, and 0 otherwise. This means, that all of the
commodities that compose subset s use arc a. The variable ŷsi is 1 if commodities in set s start sharing a

5

path in node i, and 0 otherwise. The variable ysi is 1 if commodities in set s end sharing a path in node i, and
0 otherwise. Finally, wpi is 1 if a partition p is performed in node i, and 0 otherwise. Constraint (1) is the
flow conservation constraints for all the subsets that belong to laminar family l, which relates variables f , ŷ
and y. Constraint (2) states that if partition p is performed in node i, then the subset s that is partitioned
has to stop sharing in node i. Constraint (3) states that if partition p occurs in node i, then the child sets
of partition p start to share in node i. Constraint (4) imposes that the partitions can occur only in one
node. Constraints (5) and (6) say that the set of all commodities start sharing in the root node. Finally,
constraints (7) and (8) state that every commodity has to send its flow to its sink node.

The LP relaxation of Zl, which we refer to as LP (Zl), is defined by the same objective function and set of
linear equalities, but relaxing the integrality condition of the variables. This means that we replace (9), (10)
and (11) with

f ∈ [0, 1]|A|×|S(l)| (12)

(ŷ, y) ∈ [0, 1]|V |×|S(l)| (13)

w ∈ [0, 1]|V |×|P (l)| (14)

For all l ∈ Lb, let QIPl and QLPl be the feasible regions of Zl and LP (Zl) respectively. For all e ∈ E, let
A(e) = {a ∈ A : a is a directed arc of e ∈ E}, and let χ ∈ {0, 1}|E|. χ represents a solution to the Steiner
tree problem in G, where χe = 1 if edge e belongs to the solution.

Definition 1. Let l ∈ Lb, and let x = (f, w, ŷ, y) be a feasible solution for QIPl . We define φ to be a mapping
of x to the original problem space, where

φ(x) = χ ∈ {0, 1}|E|

given by

χe = min

1,
∑
s∈S(l)

∑
a∈A(e)

fsa

 for all e ∈ E.

3.1 Structure of feasible solutions of QIP
l

We assume that QIPl is feasible, and let x = (f, w, ŷ, y) be an arbitrary feasible solution for QIPl . A feasible
solution can have two components, it must have an acyclic component, denoted by xnc, and it may also have
a cycle component, denoted by xc. Then, x = xnc + xc. The acyclic component is always present and is a
feasible solution to the problem, while the cycle component may not be present, i.e., we may have xc = 0.
The cycle component is not feasible on its own, since it is only composed of cycles, and therefore it only
fulfills the flow constraints (1). We analyze each component separately.

First, consider the acyclic component, xnc = (fnc, wnc, ŷnc, ync). Since this component has to be feasible,
then by constraints (2)-(8), ŷsnc and ysnc have exactly one non-zero component for all s ∈ S(l), which we
call is and js respectively. There are two cases, either is 6= js, or is = js. In the first case, because of
constraint (1), there must be a path for s from is to js. In the second case, since xnc has no cycles, fsnc = 0,
or equivalently the set s has no path. On the other hand, constraints (2)-(4) ensure that the path of every
parent set ends in the same node where the path of its child sets start. By constraints (5) and (6) we have
that the set of all commodities must start in r, and by constraints (7) and (8), each singleton k must end its
path in tk. Therefore, in every feasible solution, there is a path from r to tk for all k in K, which corresponds
to the union of the paths of all sets containing k. Consequently, all Steiner trees with (r, l) structure have a
corresponding acyclic feasible solution to Zl, but not all acyclic solutions of Zl maps to an (r, l) structured

6

Steiner tree. We will discuss the case in which a feasible acyclic solution is not an (r, l) structured Steiner
tree in Proposition 1.

Now, consider the cycle component. Let xc = (fc, wc, ŷc, yc) 6= 0, i.e, there is at least one set s̃ ∈ S(l) which
has at least one cycle, and for simplicity of the argument, suppose that s̃ has only one cycle. The only
way that this can happen is when the cycle uses arcs that are not in the path between is̃ and js̃, the path
used by s̃ in the non-cycle component, otherwise it would be an infeasible solution because it would violate
constraints (1) and (9). In the cycle component, wc, ŷc and ỹc are always 0, and if xc 6= 0 then fc 6= 0.
Consequently, we have w = wnc, ŷ = ŷnc, ỹ = ỹnc, and f = fnc + fc. If a solution does not contain cycles,
then f = fnc.

Proposition 1. For all l ∈ Lb, let x be a feasible solution of Ql that does not contain any cycles, then φ(x)
is either an (r, l) structured Steiner tree, or there exists a Steiner tree, with possible different (r, l) structure,
contained in the support of φ(x).

Proof. As was pointed out in Section 3.1, in the non-cycle component of every feasible solution x of Ql,
there is a path from r to tk for every commodity k ∈ K. This is a property of every Steiner tree with an
(r, l) structure. But, there are also other cases where a feasible solution x of Ql does not map to an (r, l)
structured Steiner tree, as shown in Figure 2. We observe in Figure 2a, a feasible solution x of Ql1 whose
mapping φ(x) is not an (r, l1) structured Steiner tree1. Note that commodities k2 and k3 share arcs, but not
using set {k2, k3} because this set is not in l1.

(a) Feasible solution x for Ql1 .
(b) Steiner tree with (r, l3) structure, contained in

support of φ(x).

Figure 2: Feasible solution x of Ql1 , whose mapping φ(x) is not an (r, l1) structured Steiner tree, and (r, l3)
structured Steiner tree contained in support of φ(x).

Now, suppose x ∈ Ql is acyclic and does not map to an (r, l) structured Steiner tree. The mapping φ(x) tells
us which edges of the original undirected graph G are used by x. We can construct a subgraph defined by
those edges, and we know there must be a Steiner tree in it, because in solution x there is at least one path
from r to tk for all k ∈ K. Then, we can take any Steiner tree within the constructed subgraph, which will
have a unique (r, l∗) structure, with l∗ not necessarily equal to l. We can do this by taking any spanning
tree in the constructed subgraph. For instance, Figure 2b shows an (r, l3) structured Steiner tree within the
support of φ(x) shown in Figure 2a.

3.2 Structure of feasible solutions of QLP
l

The structure of the feasible solutions of QLPl , is similar to the solutions of QIPl , because they also have a
non-cycle, and a cycle component. For simplicity, we use the same notation as in Section 3.1. We assume
that QLPl is feasible, and let x = (f, w, ŷ, ỹ) be an arbitrary solution of QLPl . Let x = xnc + xc, where xnc
is the non-cycle component of x, and xc is the cycle component of x.

1See Figure 1 for description of laminar families l1 and l3.

7

The analysis for this case is similar to the analysis in Section 3.1, but since the variables now can be fractional,
we may have solutions where the non-cycle and the cycle component use the same arc a for the same set s,
but the sum of acyclic and cyclic components has to be at most 1 for all arcs and for all sets. Moreover, in
the cycle component, we may have that two different cycles, for the same s, use the same arc a. Thus, the
cycle part will be a collection of weighted cycles for each s ∈ S(l), such that for every arc a ∈ A, the sum of
acylic and cyclic flow in a for s is at most 1.

Let LP (Zl)(λ) denote the formulation LP (Zl), when we replace 1 by λ ∈ (0, 1] in constraints (4), (5), (7),
(12), (13), and (14).

Lemma 1. For every l ∈ Lb and λ ∈ (0, 1], we have LP (Zl)(λ) = λ [LP (Zl)(1)].

Proof. For any λ ∈ (0, 1], let (fλ, ŷλ, yλ, wλ) denote an optimal solution for LP (Zl)(λ). Then,

• LP (Zl)(λ) ≤ λ [LP (Zl)(1)]. Since (λf1, λŷ1, λy1, λw1) is a feasible solution to LP (Zl)(λ), it holds
that LP (Zl)(λ) ≤ λ [LP (Zl)(1)].

• LP (Zl)(λ) ≥ λ [LP (Zl)(1)]. Since (1
λf

λ, 1
λ ŷ

λ, 1
λy

λ, 1
λw

λ) is a feasible solution to LP (Zl)(1), it holds
that 1

λ [LP (Zl)(λ)] ≥ LP (Zl)(1)

Then, LP (Zl)(λ) = λ [LP (Zl)(1)] for all λ ∈ (0, 1].

Our main result is stated in the following theorem.

Theorem 1. For all l ∈ Lb, we have that Conv(QIPl) = QLPl .

Proof. We will prove that for all cost vectors c, there exists an optimal solution to LP (Zl) that is integral.

The following definitions will be used in the proof. For all i ∈ V, s ∈ S(l), let LP (Zl(i, s)) be a subformulation
of LP (Zl), where the root is i (instead of r), the terminal nodes are tk for all k ∈ s, and the splitting sequence
is defined by the way s, and its subsets, are split in laminar family l. The cost vector of LP (Zl(i, s)) is
the same as the one used in LP (Zl), but only considering the components of LP (Zl) that are present in
LP (Zl(i, s)). Let x∗(i, s) be an optimal solution to LP (Zl(i, s)).

Let x∗ = (f∗, ŷ∗, y∗, w∗) be an optimal solution of LP (Zl). Note that if w∗ is integer, then ŷ∗ and y∗

are integer because of constraints (4)-(8). This implies, that for all s ∈ S(l), there is only one non-zero
component in vectors ŷs and ys, which is equal to 1. Let is and js be those indexes, respectively. Now, for
all s ∈ S(l), constraints (1) and (9) correspond to the shortest is-js path polytope, which has only integer
extreme points. Since each of these polytopes is independent of each other, we have that f∗ is integer.
Therefore, if w∗ is integer, then x∗ is integer.

Now, suppose that w∗ is fractional. This implies, that for at least one set s ∈ S(l), ys is fractional. Note
that, we may have that ŷs is also fractional, but for at least one s ∈ S(l), we claim that ŷs is integer, and ys

is fractional. The justifications for this claim is the following. Suppose the partitions in P (l) are ordered in
decreasing order by the cardinality of the set they split, i.e., the first element of P (l) splits K, and the last
set of P (l) splits a set of cardinality 2. Now, consider w∗, and let ṗ be the first element in P (l) such that
wṗ is fractional. Let ṡ be the set that ṗ splits. Then, it is clear that ŷṡ is integer and yṡ is fractional.

Let ŝ be the largest set in S(l) such that ŷŝ is integral, and yŝ is fractional, and for simplicity of the argument,
suppose ŝ = K. Let I(ŝ) be the set of indexes, such that yŝi = λi > 0 for all i ∈ I(ŝ), and

∑
i∈I(ŝ) λi = 1.

Let p̂ ∈ P (l), be the partition that splits ŝ in laminar family l. By constraint (2) we have that wp̂i = λi for
all i ∈ I(ŝ), as shown in Figure 3.

8

Figure 3: Solution illustration.

For all i ∈ I(ŝ) and s ∈ Sl(p̂)2, by constraint (3), we have that ŷsi = λi. Now, take a fixed s ∈ Sl(p̂), and a
fixed i ∈ I(ŝ). Because ŷsi = λi, then we know that within solution x∗, we are sending λi units of flow from
node i to {tk}k∈s. Since x∗ is optimal, then by Lemma 1, that part of the solution has to correspond to
λix
∗(i, s), otherwise, we can improve solution x∗. On the other hand, within solution x∗ we are sending λi

units of flow from r to i, for all i ∈ I(ŝ). Let x∗(r, i, ŝ) be the lowest cost solution sending 1 unit of flow from
r to i ∈ I(ŝ) for set ŝ, then, by Lemma 1, λix

∗(r, i, ŝ) corresponds to the lowest cost solution sending λi units
of flow from r to i ∈ I(ŝ) for set ŝ, otherwise we can improve solution x∗. Figure 4 shows a representation
of the last statement.

Figure 4: Solution illustration.

Putting everything together, we have

x∗ =
∑
i∈I(ŝ)

λi

x∗(r, i, ŝ) +
∑

s∈Sl(p̂)

x∗(i, s)

But, for all i ∈ I(ŝ), x∗(r, i, ŝ) +

∑
s∈Sl(p̂)

x∗(i, s) is a feasible solution. Then, x∗ is a convex combination

of {x∗(r, i, ŝ) +
∑
s∈Sl(p̂)

x∗(i, s)}i∈I(ŝ), and therefore, it is not an extreme point. Note that, x∗(r, i, ŝ) and∑
s∈Sl(p̂)

x∗(i, s) may contain cycles. Furthermore, if ŝ 6= K, we can use the same argument, but we have to
consider the solution of all the sets that contain ŝ as a subset. By definition of ŝ, in the solution of all those
sets, ŷ and y will be integers, and therefore, the entire solution of all those sets has to be integer. Thus,
we can include that part of the solution in x∗(r, i, ŝ) +

∑
s∈Sl(p̂)

x∗(i, s) for all i ∈ I(ŝ), and use the same
argument as before. Consequently, all extreme point solutions have ŷ, y, and w integral, and therefore, all
extreme points of QLPl are integral.

2Recall that Sl(p) is the set of all child subsets of p in laminar family l.

9

As a corollary, we can solve the entire Steiner tree problem by optimizing each laminar family subproblem
independently, and taking the solution with the lowest cost. For simplicity of notation, we define Ql = QIPl ,
which are the extreme points of QLPl .

Corollary 1. Let c ≥ 0 be the cost vector of a Steiner tree problem instance. Let xl = Argmin{cTx : x ∈ Ql},
and vl = cTxl for all l ∈ Lb. Then, φ(xl

∗
) is a minimum cost Steiner tree, where l∗ = Argmin{vl : l ∈ Lb}.

Proof. Note that, since the cost is non-negative, then the optimal solution for each subproblem is acyclic.
By Proposition 1, we know that φ(xl

∗
) is either an (r, l∗) structured Steiner tree, or φ(xl

∗
) contains a Steiner

tree, with a different structure. But, since the cost vector is non-negative, then φ(xl
∗
) has to be a Steiner

tree, otherwise, we can take any Steiner tree contained in the support of φ(xl
∗
), which will have a lower cost

since it uses a subset of the edges used by φ(xl
∗
). Therefore, φ(xl

∗
) is a minimum cost Steiner tree.

Note that using a standard disjunctive programming argument, we can write an extended formulation for
the entire problem based on the formulations for each laminar family [1, 9].

3.3 Problem size

The downside of our proposed formulation is the number of laminar families, which grows very fast as the
number of terminals increase. In this section we provide an upper bound on the number of laminar families
that we have to consider, and we show that this upper bound is tight.

In the following proposition, we use the notion of a full binary tree. Note that, a tree T is called a full binary
tree if every node in T has either zero or two children.

Proposition 2. It suffices only to consider laminar families in Lb whose tree representation corresponds to
a full binary tree.

Proof. Let l1 be a laminar family in Lb and let T (l1) be the tree representation of l1, such that T (l1) is not a
full binary tree. Therefore, there must be a node in T (l1) that has at least 3 child nodes, which implies that
there must be a set in l1 that is partitioned into at least 3 sets, let ŝ be such set. Suppose that the child sets
of ŝ in l1 are s1, s2, . . . , st with t ≥ 3. For simplicity, assume t = 3. Now, let l2 be the laminar family in Lb
such that S(l2) = S(l1)∪ s′ where s′ = s1 ∪ s2. This means that all partitions in l1 and l2 are the same, but
in l1, ŝ is partitioned into s1, s2, s3, and in l2, ŝ is partitioned into s′ and s3, and s′ is partitioned into s1 and
s2. Now, let x1 = (f1, w1, ŷ1, y1) be an optimal solution to Zl1 . We claim that we can construct a feasible
solution to Zl2 using x1. Let i∗ be the node where ŝ is split in x1, then we define x2 = (f2, w2, ŷ2, y2) ∈ Ql2
as follows,

(f2)sa =

{
(f1)sa ∀a ∈ A, s ∈ S(l1)
0 ∀a ∈ A, s = s′

(ŷ2)si =

 (ŷ1)si ∀i ∈ V, s ∈ S(l1)
1 i = i∗, s = s′

0 ∀i ∈ V \{i∗}, s = s′

(y2)si =

 (y1)si ∀i ∈ V, s ∈ S(l1)
1 i = i∗, s = s′

0 ∀i ∈ V \{i∗}, s = s′

Note that the values of the w2 vector will be determined by the values of ŷ2 and y2. Moreover, x2 is a feasible
solution to Zl2 , whose cost is the same as the cost of x1. Hence, Zl2 ≤ Zl1 . The same argument holds for t > 3
as well. Consequently, we only need laminar families where each non-singleton set is partitioned into two
proper subsets, which correspond to laminar families whose tree representation is a full binary tree.

10

Using Proposition 2, we can reduce the number of laminar families by considering only laminar families
whose tree representations are full binary trees. For simplicity of notation, we denote by Lb the reduced set
of laminar families, when we have b + 1 terminals. We are interested in expressing |Lb| as a function of b.
Note that, |Lb| is equivalent to the number of full binary labeled trees with b leaves. It is known that (see
[4], and [23] Chapter 5.2.6).

|Lb| = (2b− 3)!! =
(2(b− 1))!

2b−1(b− 1)!

Note, however, that |Lb| is not always achieved, since there are graphs that do not yield some laminar families

of Lb, which is why (2(b−1))!
2b−1(b−1)! is an upper bound on the number of laminar families to consider. Now, recall

Stirling’s formula, which gives lower and upper bounds for n!. For any n ∈ Z+ we have

√
2πnn+

1
2 e−n ≤ n! ≤ enn+ 1

2 e−n

Then,

|Lb| =
(2(b− 1))!

2b−1(b− 1)!

≤ e(2(b− 1))2(b−1)+
1
2 e−2(b−1)

2b−1
√

2π(b− 1)(b−1)+
1
2 e−(b−1)

=
e2(b−1)(b− 1)(b−1)e−(b−1)√

π

=
e√
π

(
2(b− 1)

e

)(b−1)

We conclude that |Lb| grows as O
((

2b
e

)b)
. Although this is a big number, it is small compared to the total

number of laminar families. In fact, it can be shown that as b increases, the ratio between the number of
laminar families corresponding to full binary trees and the total number of laminar families, goes to 0.

Now, we analyze the size of each subproblem LP (Zl) for l ∈ Lb. By Proposition 2, we use laminar families
whose tree representation T (l) is a full binary tree. An important property of full binary trees is that, the
number of internal nodes is L − 1, where L is the number of leaves. In our case, there are b leaves, which
implies b−1 internal nodes, and 2b−1 nodes in the entire tree. This implies that |S(l)| = 2b−1 for all l ∈ Lb.
Moreover, the number of non-singleton sets corresponds to the number of internal nodes in T (l) which is
b − 1, and also is the number of partitions in l. Finally, since we only consider l such that T (l) is a full
binary tree, the number of child sets of each partition is exactly 2. Using these facts, the number of variables
and constraints are the same for all l ∈ Lb, and the number of variables is O(nb + mb) and the number of
constraints is O(nb + b), where n = |V |, m = |A| and b + 1 = |R|. Therefore, LP (Zl) is of polynomial size
in the input data. Consequently, we have that each subproblem is polynomially solvable, but the number of

subproblems grow as O
((

2b
e

)b)
, which implies that the problem is fixed-parameter tractable with respect

to the number of terminal nodes. This last remark is consistent with previous results [10, 13].

4 Computational Results

We provide computational results to evaluate the performance of our proposed formulation. We use instances
from the SteinLib library [18]. Table 1 shows the number of laminar families as a function of the number of
terminal nodes, and it shows how long it will take to solve the entire problem if each subproblem takes one
second to execute, and they are solved sequentially.

11

Number of terminals |Lb| Running time
3 1 1 seconds
4 3 3 seconds
5 15 15 seconds
6 105 1.75 minutes
7 945 15.75 minutes
8 10,395 2.89 hours
9 135,135 37.54 hours
10 2,027,025 23.46 days
11 34,459,425 1.09 years

Table 1: Number of terminals, maximum number of laminar families, and total execution time if each
subproblem takes 1 second to solve.

As we can see from Table 1, the expected time to run instances with 9 or more terminals will be very large,
even if the execution time for each subproblem is 1 second. Thus, we have only run experiments on instances
with at most 8 terminal nodes.

Our code is implemented in Python using Gurobi 7.5.1 as a solver. All tests were performed on a laptop with
an Intel Core i7 (3.3 GHz) processor, and 16 GB of memory, using the macOS Sierra operating system. As
we previously discussed, we can solve each laminar family subproblem independently, and therefore, they
can be solved in parallel, but we implemented our code such that we run each subproblem sequentially.

Table 2 summarizes the results. The first two columns correspond to the test set and instance name, the
third column shows the number of nodes, the fourth column shows the number of arcs, the fifth and the
sixth columns present the number of terminal nodes and total number of laminar families. Finally, the last
two columns present the average execution time for each subproblem, and the total execution time for all
the models, respectively. All the reported times are in seconds.

Test set Instance |V | |A| |R| |Lb| Subproblem time Entire problem time
LIN lin01 53 160 4 3 0.003 s 0.01 s
LIN lin02 55 164 6 105 0.005 s 0.48 s
LIN lin04 157 532 6 105 0.021 s 2.18 s
LIN lin07 307 1,052 6 105 0.060 s 6.26 s
I160 i160-033 160 640 7 945 0.016 s 15.43 s
I160 i160-043 160 5,088 7 945 0.151 s 142.63 s
I160 i160-045 160 5,088 7 945 0.164 s 154.74 s
LIN lin03 57 168 8 10,395 0.007 s 71.26 s
PUC cc3-4p 64 576 8 10,395 0.018 s 190.89 s
PUC cc3-4u 64 576 8 10,395 0.019 s 192.65 s
I320 i320-011 320 3,690 8 10,395 0.197 s 1,806.00 s
I320 i320-043 320 20,416 8 10,395 0.910 s 9,468.00 s

Table 2: Instance details and execution times in seconds.

5 Conclusions and Future Work

We propose an LP based approach to the Steiner tree problem. The proposed approach consists of solving
a set of independent IPs. The best solution among the set of IPs corresponds to an optimal Steiner tree.

12

Each IP is polynomial in the size of the underlying graph, and we prove that the LP relaxation of each IP
is integral, so each IP can be solved as a linear program. The main issue is that the number of IPs to solve

grows as O
((

2b
e

)b)
where b + 1 is the number of terminal nodes. Consequently, we are able to solve the

Steiner tree problem by solving a polynomial number of LPs, when the number of terminals is fixed. This is
consistent with previous results [10, 13].

Future research might be directed in trying to develop tools to deal with the large number of laminar families
that need to be considered. One approach could be to use Column Generation to solve this problem. We
can start with a small set of the laminar families, and then try to add new laminar families to the problem in
a smart way. The main difficulty with this approach, is to develop an efficient pricing problem to determine
which laminar families must be added to the problem.

Another line of research is to develop new approximation algorithms using our formulation. Since solving
our formulation for a small set of laminar families is fast, then one may try to find laminar families which
are good candidates to be optimal. For instance, one can look at the linear relaxation of the Bidirected Cut
formulation, which is easy to solve, and then identify all the laminar families used by the fractional solution
obtained. We can use those laminar families as candidates for an optimal solution.

In addition, we can use our formulation to improve solutions delivered by any approximation algorithm.
This can be done, because every solution delivered by an approximation algorithm is a Steiner tree. We can
identify the (r, l) structure of such a tree, and then find a minimum cost Steiner tree with (r, l) structure by
solving LP (Zl), which will take polynomial time since we are only solving one subproblem.

Another research path is to develop an algorithm to solve each subproblem efficiently. The structure of the
optimal solution for each problem is well characterized. For each subproblem, the problem reduces to finding
the splitting nodes, and then taking the union of shortest paths. Furthermore, we can use this algorithm to
construct a local search algorithm. Suppose we have a solution for a given laminar family l ∈ Lb. There are
laminar families in Lb that have a similar topology to that of l. Then, the idea is to develop an algorithm
that searches for an improving laminar family in the neighborhood of l.

Finally, a different line of research is to study our proposed approach in special graphs. There are important
results in the literature for special graphs, in particular there are results that provide an upper bound on
the integrality gap for well-known formulations. In these type of graphs, we may find a bound on how bad
the optimal solution of the subproblem is, for the “worst” structure compared with the optimal solution for
the entire problem. Moreover, there are results that show that for special cases of planar graphs, there is
an algorithm to solve the problem in polynomial time [2]. These results, may imply that for those type of
graphs, the number of tree structures to consider is limited.

Acknowledgement

This research was partially supported by Office on Naval Research grants N00014-15-1-2078 and N00014-
18-1-2075 to the Georgia Institute of Technology, and by the CONICYT (Chilean National Commission for
Scientific and Technological Research) through the Doctoral Fellowship program “Becas Chile”, Grant No.
72160393

13

References

[1] E. Balas. Disjunctive programming: Properties of the convex hull of feasible points. Discrete Applied
Mathematics, 89(1-3):3–44, 1998.

[2] M. Bern and D. Bienstock. Polynomially solvable special cases of the steiner problem in planar networks.
Annals of Operations Research, 33(6):403–418, 1991.

[3] M. Bern and P. Plassmann. The steiner problem with edge lengths 1 and 2. Information Processing
Letters, 32(4):171–176, 1989.

[4] L. J. Billera, S. P. Holmes, and K. Vogtmann. Geometry of the space of phylogenetic trees. Advances
in Applied Mathematics, 27(4):733–767, 2001.

[5] A. Borchers and D.-Z. Du. The k-steiner ratio in graphs. SIAM Journal on Computing, 26(3):857–869,
1997.

[6] J. Byrka, F. Grandoni, T. Rothvoss, and L. Sanità. Steiner tree approximation via iterative randomized
rounding. Journal of the ACM (JACM), 60(1):6, 2013.

[7] D. Chakrabarty, J. Könemann, and D. Pritchard. Hypergraphic lp relaxations for steiner trees. In
International Conference on Integer Programming and Combinatorial Optimization, pages 383–396.
Springer, 2010.

[8] M. Chleb́ık and J. Chleb́ıková. The steiner tree problem on graphs: Inapproximability results. Theo-
retical Computer Science, 406(3):207–214, 2008.

[9] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming. Springer, 2014.

[10] S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. Networks, 1(3):195–207, 1971.

[11] J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Standards, 71:233–
240, 1967.

[12] A. E. Feldmann, J. Könemann, N. Olver, and L. Sanità. On the equivalence of the bidirected and
hypergraphic relaxations for steiner tree. Mathematical programming, 160(1-2):379–406, 2016.

[13] A. E. Feldmann and D. Marx. The complexity landscape of fixed-parameter directed steiner network
problems. arXiv preprint arXiv:1707.06808, 2017.

[14] M. X. Goemans. The steiner tree polytope and related polyhedra. Mathematical programming, 63(1-
3):157–182, 1994.

[15] M. X. Goemans and Y.-S. Myung. A catalog of steiner tree formulations. Networks, 23(1):19–28, 1993.

[16] M. X. Goemans, N. Olver, T. Rothvoß, and R. Zenklusen. Matroids and integrality gaps for hyper-
graphic steiner tree relaxations. In Proceedings of the forty-fourth annual ACM symposium on Theory
of computing, pages 1161–1176. ACM, 2012.

[17] R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer computations,
pages 85–103. Springer, 1972.

[18] T. Koch, A. Martin, and S. Voß. Steinlib: An updated library on steiner tree problems in graphs. In
Steiner trees in industry, pages 285–325. Springer, 2001.

[19] J. Könemann, D. Pritchard, and K. Tan. A partition-based relaxation for steiner trees. Mathematical
Programming, 127(2):345–370, 2011.

[20] T. Polzin and S. V. Daneshmand. A comparison of steiner tree relaxations. Discrete Applied Mathe-
matics, 112(1-3):241–261, 2001.

14

[21] T. Polzin and S. V. Daneshmand. On steiner trees and minimum spanning trees in hypergraphs.
Operations Research Letters, 31(1):12–20, 2003.

[22] S. Rajagopalan and V. V. Vazirani. On the bidirected cut relaxation for the metric steiner tree problem.
In SODA, volume 99, pages 742–751, 1999.

[23] R. P. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press, 1999.

[24] D. M. Warme and J. S. Salowe. Spanning trees in hypergraphs with applications to Steiner trees. Uni-
versity of Virginia, 1998.

[25] R. T. Wong. A dual ascent approach for steiner tree problems on a directed graph. Mathematical
programming, 28(3):271–287, 1984.

15

	1 Introduction
	2 Solution Structure
	2.1 Notation
	2.2 Example

	3 IP Model
	3.1 Structure of feasible solutions of QlIP
	3.2 Structure of feasible solutions of QlLP
	3.3 Problem size

	4 Computational Results
	5 Conclusions and Future Work

