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Routing and Scheduling of Network Flows with

Deadlines and Discrete Capacity Allocation
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Abstract

Joint scheduling and routing of data flows with deadline constraints in communication networks has

been attracting research interest. This type of problem distinguishes from conventional multicommodity

flows due to the presence of the time dimension. In this paper, we address a flow routing and scheduling

problem with delivery deadline, where the assignment of link capacity occurs in discrete units. Discrete

capacity allocation is motivated by applications in communication systems, where it is common to have

a base unit of capacity (e.g., wavelength channel in optical communications). We present and prove

complexity results of the problem. Next, we give an optimization formulation based on a time slicing

approach (TSA), which amounts to a discretization of the time into time slices to enable to formulate

the deadline constraints. We then derive an effective reformulation of the problem, via which a column

generation algorithm (CGA) is developed. In addition, we propose a simple and fast Max-Flow based

Algorithm (MFA). We use a number of network and traffic scenarios to study various performance

aspects of the algorithms.

Index Terms

deadline, discrete capacity allocation, flow routing, flow scheduling, networks

I. INTRODUCTION

Joint optimization of routing and scheduling of data flows across networks is of importance

to many applications, such as data exchange in scientific projects [1], data replication between

datacenters [2], as well as reducing carbon footprint [3] and electrical expenses [4] of datacenter

networking. A data flow may be subject to a delivery deadline [5]. For example, a flow may be

a data backup or a collected information from weather stations. The former is less time sensitive

and may happen in the background, while the latter is more time sensitive and may be subject
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to a deadline [6]. In fact, a survey of customers by Microsoft [7] reveals that most of them

desire a deadline guarantee for data delivery, and timely delivery carries economic incentives as

well [8].

We consider a flow routing and scheduling problem, where each flow is characterized by a

source, a destination, and amount of data (in bits) to be delivered. The capacity allocated to a flow

on a link corresponds to the data transmission rate (in bits per second). A flow may be subject to

a deadline, before which the entire amount of demand has to reach the destination. The objective

is to minimize the overall completion time. We consider, what was not studied extensively earlier,

that the capacity of a link can be allocated to flows only in the form of discrete units; each unit

is allocated to at most one flow. This is rather common in communication networks, where

capacity allocation among flows has limitation in granularity. For example, in optical networks

the capacity of a link is often defined by the number of transmission channels (wavelengths),

and a wavelength channel is not shared among flows.

The key difference between our problem setting and classic flow problems (in particular

multicommodity flow, e.g., [9]–[11]) is the time component and scheduling aspect because of

the presence of deadline. Some works (e.g., [6], [12], [13]–[17]), which we will review in more

details in Section II, have addressed the time aspect, though not for discrete capacity allocation.

The combination of deadline constraint and discrete capacity allocation imposes challenges.

There are several objectives of our study. First, we would like to examine if scheduling

with deadline impacts problem complexity. Second, our study targets developing mathematical

formulations and understanding to what extend they enable problem solution. Another key

objective is to derive efficient solution algorithms in terms of optimality and time efficiency.

Finally, we aim at using computational study to shed light on how well algorithms perform for

application scenarios of interest.

Our main findings, with respect to the above objectives, are as follows.

• As we prove later, the problem is NP-hard, not only because of routing with discrete capacity

allocation, but also inherently due to the time scheduling aspect. Namely, the problem is

NP-hard even if the routing is fully fixed.

• A linear integer formulation can be derived using time slicing, i.e., the time is partitioned

into slices (aka time slots). If there are too few slices, however the formulation does not

represent exactly the original problem, hence the solution is sub-optimal in general and the

formulation may be infeasible even if feasible solutions exist to the original problem. Using
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many slices, on the other hand, increases the problem size.

• We derive an alternative formulation, in which the possible routing patterns (with associated

capacity allocations) are the key components, and time durations of using these patterns are

the optimization variables. As there are exponentially many routing patterns, we develop a

column generation algorithm. Applying the algorithm until its termination gives the optimal

solution.

• We also consider an intuitive and fast heuristic algorithm based on maximum flows. The

algorithm uses the deadlines to set priorities of the flows.

• Via extensive numerical results, it is observed that the column generation algorithm out-

performs time slicing approach. The max-flow based algorithm, although fast, has issues

with optimality and feasibility. However, we found that column generation can be combined

with the heuristic as well as with the time slicing model, to gain significant reduction of

computing effort.

The remainder of the paper is organized as follows. In Section II, we review the related works.

In Section III, we provide problem definition, illustrative examples, as well as complexity analysis

for two cases. In the first case, both routing and scheduling are subject to optimization. In the

second one, routing is fixed and only scheduling is present. In Section IV, we formulate the

problem using the time-slicing approach, and highlight potential drawbacks of this approach.

Next, we reformulate the problem using routing patterns, and present our column generation

algorithm in Section V. The heuristic algorithm is then presented in Section VI. Performance

evaluation is given in Section VII followed by conclusions in Section VIII.

II. RELATED WORKS

Existing studies of scheduling flows in networks with deadlines can be categorized into two

groups. The first group is based on heuristic algorithms that offer sub-optimal solutions. For

example, fair sharing that divides the link capacity equally among flows, is known to be far

from optimal in terms of minimizing the overall completion time [18] and meeting the flow

deadlines [19]. Scheduling flows with respect to their deadlines is known to minimize the number

of late flows, whereas sending flows with smaller sizes first minimizes the mean flow completion

time [20]. The authors of [21] proposed an algorithm based on solving a sequence of maximum

flow problems. As it is apparent, none of such algorithms guarantees obtaining the optimal

solution and they may fail in obtaining a feasible solution, even though they generally run fast.
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The second group of algorithms uses the idea of discretization of time into slices. The problem

in question is divided into several interconnected sub-problems, where each sub-problem deals

with one time slice in which some amount of data is delivered.

Chen and Primet [12] investigated multiple bulk data transfer (MBDT) subject to deadline

constraints with given routing paths. The problem is formulated as bandwidth allocation over

time to minimize the network congestion factor. Within every time slice, a bandwidth is reserved

for each data transfer. Rajah et al. [22] studied the problem of dynamic MBDT with deadlines,

and proposed a scheduling framework based on dividing time into uniform slices. The problem

is then formulated as a maximum concurrent flow problem, using throughput as the performance

objective. Extending this work, in [13] the authors proposed a non-uniform time slicing method

and introduced admission control along with scheduling algorithms to minimize the request

rejection ratio. Wang et al. [14] studied the problem of MBDT with deadlines and time-varying

link capacity. Assuming the presence of delay tolerance, the problem amounts to reducing the

peak traffic load on links along the temporal dimension via store-and-forward. Time slicing is

used for problem formulation. In [23], the authors studied MBDT in inter-datacenter networks for

backups and recovery purposes in natural disasters. In this work, the destination (backup site) of

a data flow is unknown and is subject to optimization. The objective is to minimize the time for

the backup process. In [24], the authors investigated MBDT with soft and hard deadlines. They

proposed a bandwidth on demand broker model. The works in [23] and [24] considered discrete

capacity allocation using an optical wavelength channel as the base unit. Zuo and Zho [6] studied

the problem of scheduling multiple bandwidth reservation requests on one reservation path. Two

performance parameters, the completion time and the duration of scheduling individual flows,

were considered. The authors of [6] proved that both problems are NP-complete. The authors

also presented improvements of two heuristic algorithms previously given in [15]. The authors

of [16] studied dynamic inter-datacenter data transfers with guaranteed deadlines. They used

time slots to model the timeline, and proposed two methods to determine whether or not a new

coming flow can be accommodated. The work in [17] considered transferring data from one

source to multiple destinations, which is related to the Steiner tree problem.

As was mentioned earlier, the two key elements in the problem we study are scheduling

with deadline and integer capacity allocation. In respect of these, the current literature presented

above use either heuristics or time slicing formulations to approach problem solutions. To the

best of our knowledge, there is a lack of studies investigating problem complexity inherently
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connected to the scheduling element, and alternative formulations than enable efficient computing

of optimum. These represent the literature gap that the current paper intends to fill.

III. PROBLEM DEFINITION AND COMPLEXITY ANALYSIS

A. Problem Definition

A network is modeled by a directed graph G = (N ,A) where N is the set of N nodes and A

is the set of A arcs. The arc from node i to node j is represented by (i, j). The capacity of arc

(i, j) ∈ A is denoted by cij . Denote by U = {u1, u2, . . . , uk} the available set of capacity units.

For each arc and flow, the amount of the arc capacity allocated is restricted to be a nonnegative

integer combination of the elements of U . For arc (i, j), the total allocated capacity to the flows

may not exceed cij . The allocated capacity to a flow represents the maximum rate at which the

data of this flow can be transmitted on the link. The set of flows is denoted by F = {1, . . . , F}.

Each flow f , f ∈ F , requires an amount of data to be sent from an origin node to a destination

node. A flow may have a deadline before which its entire amount of data must be delivered to

the destination. A flow f is specified by a 4-tuple (of , df , tf , sf) where of , df , tf , and sf denote

the origin, destination, deadline, and size (i.e., amount of data), respectively. For convenience, in

Appendix A, we provide a summary of the notion used for problem definition as well as those

used in the algorithms in later sections.

We say a flow is scheduled, if some positive amount of rate for this flow, from the origin to

the destination (hereafter referred to as end-to-end rate), is achieved by capacity allocation along

one or multiple paths. In general, the end-to-end rate of a flow changes over time and this rate

may be zero for some time periods (in which some other flows are scheduled), after which the

flow is scheduled again to deliver more data [13], [14]. In other words, a flow may be scheduled

in multiple but not necessarily consecutive time periods. In each time period, some portion of

data is sent and its amount depends on the duration of time period and the rate at which flow

is sent. Moreover, a flow may be routed along multiple paths with different rates. Path selection

and capacity allocation generally differ from one time period to another. Therefore, the duration

of time period, the capacity allocation, as well as route selection are to be jointly optimized.

That capacity allocation has to be some integral combinations of the available capacity units

restricts the flow solution to be what is commonly known as integer flows. Hence we call our

problem the Integer Flow with Deadline Problem (IFDP), in which routing and scheduling are

strongly intertwined. The objective is to complete all the flows (aka makespan in some other
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context), subject to capacity and deadline constraints. We remark that, if a flow is scheduled

in some non-consecutive time periods, the intermediate period will always be utilized for other

flows, because our objective function is to minimize the makespan. That is, there will not be

any idle time period in the optimal schedule.

B. Illustrative Examples

We provide an example of IFDP in Figure 1, for a simple network of three nodes and three

arcs. All arcs have unit capacity. Each flow has one possible path. It is apparent that, at any

time, only one flow can be scheduled due to discrete capacity allocation. It is easy to see that the

optimal schedule begins with flow A for 0.5 time units, followed by flow B for 1.5 time units, and

finally flow C for 1 time unit. The overall completion time is 3. Note that if continuous capacity

allocation is allowed, the corresponding optimum would route flows A, B, and C simultaneously,

each with 0.5 units of capacity, for 1 time unit. Next, flows B and C are combined again using

0.5 capacity units each, for a duration of 1 time unit. Flow C is then scheduled alone for 0.5

time units. The completion time is 2.5.

2

3
c31 = 1

c12 = 1 c23 = 1

1

(a) Network topology.

Flow Origin Destination Size Deadline

A 1 3 0.5 1

B 2 1 1.5 2

C 3 2 1 3

(b) Flow parameters.

Figure 1: An example with 3 flows on a network with link capacity one.

As can be seen from the example and its solution, the routing aspect of IFDP clearly assembles

integer flows applied to telecommunication networks (e.g., [10], [25]). On the other hand, the

scheduling aspect that takes place along the time dimension, and the presence of deadlines make

IFDP different from classical flow problems.

We give a second example in Figure 2 to illustrate non-consecutive scheduling of a flow along

time. As for the previous example, all arcs have unit capacity. Consider first flows A, B, and

C. Because they share a common arc, the only feasible solution to meet their deadlines is to

schedule A, B, and C, for the given order using one time unit each. The overall completion time

is 3. Now consider flow D, with size 2 and deadline 3. The path of flow D is in conflict with

that of flow B. However, flow D can be scheduled first together with flow A in the first time
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2

1

3

4 5
c45 = 1

c34 = 1

c14 = 1

c24 = 1

(a) Network topology.

Flow Origin Destination Size Deadline

A 1 5 1 1

B 2 5 1 2

C 3 5 1 3

D 2 4 2 3

(b) Flow parameters.

Figure 2: An example for which a flow is not scheduled in consecutive time periods at optimum.

unit, and then again with flow C in the third time unit, meeting the deadline of flow D and the

overall completion time remains 3.

C. Complexity Analysis

IFDP consists of jointly considering flow routing and scheduling. Because multicommodity

flow with integer capacity allocation is NP-hard, even for the case of single size of capac-

ity unit [26], the NP-hardness of IFDP is expected. We formalize this result for the sake of

completeness.

Theorem 1. IFDP is NP-hard.

Proof. See Appendix B.

A more interesting aspect of problem complexity arises when the path selection is fixed. Note

that multicommodity flow with integer capacity allocation is no longer NP-hard, if one fixed

path is given for each commodity, as the problem will reduce to a simple feasibility check. In

the following, we show the fact that the complexity of IFDP is not only due to integer capacity

allocation, but also inherently connected to scheduling along the time dimension. Namely, the

problem remains NP-hard, even if the paths of the flows are fully fixed.

Theorem 2. IFDP with given paths is NP-hard.

Proof. See Appendix C.

We end the section by a special case, for which IFDP can be solved in polynomial-time.

Namely, there is exactly one bottleneck link on which all flows interact in terms of capacity

sharing, which for example appears in some application scenarios [6]. Note that the paths to be
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used by the flows are not given, however all candidate paths include the bottleneck link. In this

case, IFDP reduces to a sequence of maximum flow problems.

Theorem 3. If the possible paths of flows all share exactly one common link, of which the

capacity is non-redundant for any flow (i.e., the maximum end-to-end rate of the flow equals

the capacity, even if the other flows are discarded), then the optimum of IFDP is to route and

schedule the flows separately in time, in ascending order of the deadlines.

Proof. See Appendix D.

IV. MATHEMATICAL FORMULATION USING TIME-SLICING

A. Problem formulation

Mathematically formulating IFDP in not very obvious. One possibility of representing the

problem is the Time-Slicing based Approach (TSA). In TSA, time is divided into time slices,

of which the set is denoted by T , and the length of time slice τ is denoted by |τ |. Each time

slice is associated with a capacity allocation. This allocation is used throughout the time slice.

Hence this is an approximate formulation, and the accuracy depends on the granularity of time

slicing. For each time slice, the problem is similar to regular multicommodity flows. The time

slices are then considered jointly with respect to data demands and deadlines. The concept of

time slicing has been used for modeling and solving problems related to IFDP, see [12]–[14],

[22]. The TSA we present below is an adaption of the concept to our problem.

We use variable yτfij to denote the rate allocated to flow f on arc (i, j) in time slice τ . Variable

rτf is used to represent the total end-to-end rate of flow f in time slice τ . Consequently, |τ |rτf is

the amount of data of flow f that is delivered in this time slice. Let zm,τ
fij ∈ Z

+ be a non-negative

integer variable, denoting how many times capacity unit m is allocated to f on (i, j) in τ . Finally

we use binary variable wτ to denote if there is any flow with positive rate in time slice τ . The
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TSA formulation is given below.

min
∑

τ∈T

|τ |wτ (1a)

s.t.
∑

{j|(i,j)∈A}

yτfij −
∑

{j|(j,i)∈A}

yτfji =























−rτf , if i = of

rτf , if i = df , ∀f ∈ F , ∀i ∈ N , ∀τ ∈ T

0, otherwise

(1b)

∑

{τ∈T :τ≤tf}

|τ |rτf = sf , ∀f ∈ F (1c)

yτfij ≤
k

∑

m=1

umz
m,τ
fij , ∀f ∈ F , ∀(i, j) ∈ A, ∀τ ∈ T (1d)

∑

f∈F

k
∑

m=1

umz
m,τ
fij ≤ cijwτ , ∀(i, j) ∈ A, ∀τ ∈ T (1e)

|τ |rτf ≤ sfwτ , ∀f ∈ F , τ ∈ T (1f)

wτ ≤ wτ−1, ∀τ ∈ T : τ ≥ 2 (1g)

wτ ∈ {0, 1}, ∀τ ∈ T (1h)

yτfij ≥ 0, ∀f ∈ F , ∀(i, j) ∈ A, ∀τ ∈ T (1i)

zm,τ
fij ≥ 0, integer, ∀f ∈ F , ∀(i, j) ∈ A, ∀τ ∈ T , ∀m ∈ {1, . . . , k} (1j)

rτf ≥ 0, ∀f ∈ F , ∀τ ∈ T (1k)

The objective function (1a) states the minimization of the total number of used time slices.

The flow conservation constraints are formulated in (1b). The next set of constraints (1c) state

that the entire amount of data of a flow has to be delivered in the time slices before the deadline.

Inequality (1d) bounds the arc rate to what is permitted by the values of z-variables and the right-

hand side is a non-negative integer combination of the capacity units. Note that the inequality

allows the rate of flow on link to be smaller than the allocated capacity. This is because we

have formulated (1c) using equality. The arc capacity constraint is given in (1e). It should be

remarked that the formulation remains valid without the presence of wτ in the right-hand side.

However the inclusion of wτ is for the purpose of strengthening the linear programming (LP)

relaxation. In (1f), the w-variables are linked to the end-to-end rate variables, such that wτ = 1
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if there is any positive rate of any flow in time slice τ , otherwise wτ = 0 due to minimization.

By (1g), time slices have to be used consecutively, starting with the first slice. This, together

with (1a), implies that the optimal solution does lead to the minimum overall completion time.

B. Remarks on TSA

As TSA is an integer linear model, standard integer programming solvers can be used for

its solution. One difficulty of using TSA is that it is not obvious how many time slices should

be defined. Clearly, by increasing the number of time slices, all feasible solutions of IFDP are

eventually feasible solutions of TSA as well, and hence solving TSA leads to the optimum of

IFDP. A large number of slices, however, significantly increases the size of the TSA model.

On the other hand, if too few slices are used, solving the TSA model may give a sub-optimal

solution, and it may happen that no feasible solution can be found at all via the model, even

though such solutions exist to the original IFDP instance.

Consider again the example given in Figure 1. Suppose time is divided into three time slices,

each having |τ | = 1, i.e., [0, 1], (1, 2], and (2, 3]. It is easy to see that there is no feasible solution

to the TSA formulation. With continuous capacity, however, the problem instance is feasible.

The optimal solution is illustrated in Figure 3(b), consisting of scheduling 0.5 unit of each flow

in time slice [0, 1], followed by scheduling 1 unit of flow B using full capacity of arcs (2, 3)

and (3, 1) in time slice (1, 2], and finally 0.5 unit of capacity of arcs (3, 1) and (1, 2) to flow C

in the last time slice (2, 3]. The overall completion time is 3. Note however this value originates

from the granularity in time slicing; in fact, the completion time would be shorter if the last

time slice can be broken into smaller segments.

Next, suppose we use a higher granularity and set |τ | = 0.5, resulting in six time slices:

[0, 0.5], (0.5, 1], . . . , and (2.5, 3]. In this case, feasible solutions exist also with discrete capacity

allocation. The optimum with discrete allocation is to schedule flow A in the first time slice,

flow B in the next three time slices, and flow C in the last two time slices. The deadlines are

met, and the solution has a completion time of 3, see Figure 3(c). With continuous capacity

allocation, an optimal solution is illustrated in Figure 3(d), consisting of scheduling 0.5 unit of

each flow in the first two time slices, followed by delivering 1 unit of flow B using full capacity

of arcs (2, 3) and (3, 1) in the next two time slices, and finally allocating full capacity of arcs

(3, 1) and (1, 2) to flow C in the next time slice. This gives a completion time of 2.5.
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0 0:5 1 1:5 2 2:5 3

(d) Continuous

(b) Continuous

(a) Discrete

(c) Discrete
1 1 1 1 1 1

2 2 2 2 2

3 3 3 3 33

2

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

Time

3 1 1

2 2

3 31

2

3 1 1

2 2

3 31

2
flow A
flow B
flow C

infeasible infeasible infeasible

Figure 3: Solutions with continuous and discrete capacity allocation.

From the above, if the number of time slices is too small, the approach may fail even

if there exist feasible solutions. In fact, for the example network, using three time slices of

uneven durations, and, more specifically, [0, 0.5], (0.5, 2], and (2, 3] respectively, does lead to

the feasibility as well as optimality. However, in general there is no recipe for how to choose

the slice durations. Using a higher number of time slices will mitigate the infeasibility issue,

however at the cost of large problem size and hence longer solution time. We also remark that,

provided that the original problem IFDP is feasible, one can easily prove that using continuous

capacity allocation leads always to a feasible solution with any time slicing. However it is rather

hard to make use of the solution to derive a solution to the original problem. Moreover, it shall

be remarked that, instead of using fixed time slices, one can treat durations of the time slices

as continuous variables. Doing so leads to a nonlinear formulation, because the amount of data

delivered for a flow in a time slice is the product of the end-to-end rate, which is a variable,

and the duration of the slice.

Even though solving TSA may not be an effective approach to obtain a high-quality solution

for IFDP, formulation (1) may be useful for the purpose of bounding. In particular, consider a

chosen time length of T and the LP relaxation of (1) with one single time slice of [0, T ]. If

the LP relaxation is infeasible, then T is a lower bound of the optimum of IFDP. The highest

lower bound can obtained via examining the largest T (e.g., via bi-section search) for which LP

infeasibility remains. The bound can be used to bound the optimality gap of a solution. Later in

Section VII, we study the effect of using this bound together with a tolerance of optimality as

a termination criterion, on the solution time of our column generation method presented in the

next section.
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V. PROBLEM REFORMULATION AND COLUMN GENERATION

We present a problem reformulation that enables a column generation algorithm (CGA), that

decomposes the problem into the so called master problem (MP) and subproblem (SP). The

algorithm iterates between a restricted MP (RMP) and SP [27]. A key aspect in designing a

column generation algorithm is how to define the ”column”. In our case, a column corresponds

to an end-to-end rate vector of the flows, resulted from a specific routing and capacity allocation

solution. More specifically, a rate vector is generically denoted by v = [rv1 , r
v
2, . . . , r

v
F ]

T , in which

element rvf , f ∈ F , represents the end-to-end rate at which flow f is sent from its origin to

destination. The set of all possible vectors is denoted by V , of which the cardinality is clearly

finite. For later use, we also define a subset of V denoted by Vf which consists of those vectors

in V for which the rate of flow f is strictly positive, i.e., Vf = {v ∈ V|rvf > 0}. Note that any

feasible rate vector must satisfy flow conservation, flow rate, and arc capacity constraints. These

constraints will be utilized in the SP for constructing new columns.

A. MP and RMP

For rate vector v ∈ V , we define a continuous, non-negative variable xv that represents how

long time rate vector v is used in a problem solution. Also, without loss of generality, we assume

that the flow indices follow the ascending order of deadlines. The full MP is as follows.

min
∑

v∈V

xv (2a)

s.t.
∑

v∈Vf

rvf xv = sf , ∀f ∈ F (2b)

∑

v∈V1∪···∪Vf

xv ≤ tf , ∀f ∈ F (2c)

xv ≥ 0, ∀v ∈ V (2d)

The objective function is to minimize the total time used by the rate vectors. Constraints

(2b) state that for each flow, the total amount of data sent from the source and received at the

destination equals its specified size. Constraints (2c) are formulated for deadlines.

We remark that, while addressing the deadline requirements, the order of the rate vectors in the

schedule is of significance. Indeed, at the first glance, it appears that using only the x-variables
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is not sufficient – we need also variables indicating the position of each vector in the scheduling

solution. In the following, we show that this is not necessary. Namely, the x-variables together

with (2c) which has the effect of partial ordering, correctly consider the deadline constraints. To

this end, let us first consider the derivation of a schedule based on the values of the x-variables

of the MP. This is necessary, because the x-variables themselves do not carry any information

of how the rate vectors should be sequenced.

We present Algorithm 1 that derives a schedule using the x-variables. The input set to the

algorithm, V+, consists of rate vectors for which the x-variables have strictly positive value at

the optimum of the RMP. As there are of O(F ) constraints in the LP, the number of such rate

vectors is of O(F ). The algorithm considers each vector v in V+, and finds the smallest flow

index f with positive rate vvf . The vector is then added to the corresponding set Qf . When all

the vectors in V+ have been examined, the algorithm goes through sets Q1, . . . ,QF , to retrieve

the vectors and their respective time durations for problem solution. Notation pf in the algorithm

represents a time point by which flow f is surely completed.

Algorithm 1: Constructing a schedule from MP

Input: V+

1: p0 ← 0, Qf ← ∅, ∀f ∈ F
2: for v ∈ V+ do

3: f+ ← min{f ∈ F : rvf > 0}
4: Qf+ ← Qf+ ∪ {v}
5: for f = 1 : F do

6: Schedule rate vectors v ∈ Qf with the respective time durations

7: pf ← pf−1 +
∑

v∈Qf

xv

The complexity of Algorithm 1 is determined by its first for-loop, since the second for-loop

simply retrieves the solution. As the size of V+ is at most F , the first for-loop goes though no

more than F vectors. For each of them, determining the flow index by the min-operator clearly

has a complexity of O(F ). Hence the overall algorithm is of complexity O(F 2).

Lemma 4. For any input representing a feasible solution of the MP, the output of Algorithm 1

corresponds to a feasible schedule.

Proof. Consider any flow f , f ∈ F . According to the definition of Qf , flow f is not scheduled

after time point pf , because after this time point there is no vector with positive rate for flow f .
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Thus, the overall amount of data delivered for f is
∑f

i=1

∑

v∈Qi
rvf xv . This is equal to

∑

v∈Vf

rvf xv

which in turn equals sf by (2b). Denote the completion time of flow f by χf . The total time for

scheduling flows in range [1, f ] is
∑

v∈Q1∪···∪Qf

xv. We have χf ≤
∑

v∈Q1∪···∪Qf

xv =
∑

v∈V1∪···∪Vf

xv

which is no greater than tf by (2c). Note that the last equality follows from that Qf = {v ∈

Vf |rvi = 0 for i ∈ {1, .., f}& xv > 0}.

What still remains is to show that (2c) itself is correct, i.e., in the sense that if IFDP is feasible,

then there must exist a solution satisfying (2c).

Lemma 5. If IFDP is feasible, then there exists an x-solution satisfying (2c).

Proof. Clearly, a solution to IFDP includes a set of rate vectors as well as their time durations.

The latter are the x-variables in (2a). Assume feasibility, that is, there is some ordering of these

rate vectors, such that the sequence together with the values of the corresponding x-variables

satisfy all the deadlines. Now suppose f ′ < f , and in the sequence, a rate vector v that has

positive rate for flow f but zero rate for all flows 1, . . . , f ′, is scheduled before a rate vector v′

with positive rate for flow f ′. Because all deadlines are met, tf ′ is not reached by the end of

the use of v′. Consider updating the solution, by putting v immediately after v′ instead. Thus v′,

along with all vectors scheduled between v and v′ in the original sequence, are shifted earlier

in time by xvf . Now the ending time of vector v equals that for v′ before the update. Because

tf ′ ≤ tf , the deadline of f remains satisfied. The deadlines of the other flows are clearly also

satisfied. Repeating if necessary, it is apparent that after a finite number of updates, the new

x-solution satisfies (2c), and the result follows.

By the above result, the MP formulation is indeed a correct mathematical model of IFDP.

Thus, even if there is an inherent timeline in IFDP, the x-variables are sufficient for formulating

the deadlines.

The RMP is a restricted version of MP, such that Vf is replaced by a subset V ′
f , with |V ′

f | ≪

|Vf |, f ∈ F . Let V ′ = V ′
1 ∪ · · · ∪ V

′
F . Apart from this difference, MP and RMP have the same

objective function and constraints. Hence we do not write out RMP in its full form to save

space. Also, for convenience, we will use (2b) and (2c) to refer to the constraints of RMP with

the restricted sets, as long as this does not lead to ambiguity. When constructing RMP initially,

it is preferable that V ′ results in a feasible solution. This is however not really a crucial issue,

as one can apply a penalty-like phase in case of initial infeasibility.
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B. SP Formulation

After solving the RMP, we need to determine whether the current solution is optimal. As the

MP is an LP, this amounts to finding an unconsidered rate vector with negative reduced cost

[27]. The task is accomplished via solving an SP, of which the solution is an end-to-end rate

vector, resulted from routing and capacity allocation. For SP, we reuse the notation y and z for

variables. The difference to Section IV is that there is no time slice index for these variables

here. The end-to-end rate of flow f is denoted by variable rf .

Denote by λ∗
f and π∗

f the optimal dual variable values of (2b) and (2c) of flow f in the RMP.

Note that, by the structure of (2c), π∗
f appears in the reduced cost if and only if the rate vector

to be generated has strictly positive rate for any of the flows 1, . . . , f . Hence, if we know f+ is

the first flow index with positive rate in the generated rate vector, the SP can be formulated as

follows, where the objective function together with the constant term −
∑F

f=f+ π∗
f corresponds

to reduced cost.

min 1−
F
∑

f=f+

rfλ
∗
f (3a)

s.t.
∑

{j|(i,j)∈A}

yfij −
∑

{j|(j,i)∈A}

yfji =























−rf , if i = of

rf , if i = df , ∀f ∈ F , ∀i ∈ N

0, otherwise

(3b)

yfij ≤
k

∑

m=1

umz
m
fij , ∀f ∈ F , ∀(i, j) ∈ A (3c)

k
∑

m=1

∑

f∈F

umz
m
fij ≤ cij, ∀(i, j) ∈ A (3d)

rf ≥ 0, f ≥ f+ (3e)

rf = 0, f < f+ (3f)

yfij ≥ 0, ∀f ∈ F , ∀(i, j) ∈ A (3g)

zmfij ≥ 0, integer, ∀f ∈ F , ∀(i, j) ∈ A, ∀m ∈ {1, . . . , k} (3h)

In the formulation, (3b), (3c), and (3d) deal with flow conservation, capacity allocation, and

capacity limit. These constraints are the counterparts of (1b), (1d), and (1e), respectively. The
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other constraints state the variables domains. Among them, (3e) and (3f) set the domains of the

rate values with respect to index f+.

If at the optimum r∗f , f ∈ {f
+, . . . , F}, 1 −

∑F

f=f+ r∗fλ
∗
f −

∑F

f=f+ π∗
f , which is the most

negative reduced cost among all possible rate vectors, is negative, we add the optimal rate vector,

v∗ = [r∗1, . . . , r
∗
F ]

T , to RMP, and move to the next iteration. Otherwise, the current solution via

the RMP is optimal.

A solution of (3) does not necessarily have strictly positive rate for f+. This is because one

cannot enforce something to be positive but the amount to be arbitrary in optimization. Hence,

to be more precise, f+ is the first flow index of which the rate may be positive. Note that

−πf , f ∈ {1, . . . , F}, are non-negative, hence they are costs in minimization. In (3), the costs of

allowing positive rates for flows f+, . . . , F are taken into account and hence these flows may be

allocated positive rates, whereas for flows 1, . . . , f+ − 1, the costs are excluded and they must

have zero rate. We also remark that, if it turns out that the first index of positive flow is f++ > f+,

the correct reduced cost equals 1 −
∑F

f=f+ r∗fλ
∗
f −

∑F

f=f++ π∗
f as −πf , f ∈ {f

+, . . . f++ − 1}

have to be omitted. Note that in the first sum, the first index can be either f+ or f++ without

affecting its correctness.

C. Solving the SP

That f+ is in fact unknown can be addressed by solving a sequence of SPs with different

values of f+. Intuitively, one can set f+ to 1, . . . , F and solve the SP exactly F times. In the

following, we show that better efficiency may be achieved by observing the first positive flow

in the solution, while going through the sequence.

Denote by SPf+ the SP for given index f+ indicating the first flow that may have positive

rate. Thus flows 1, . . . , f+ − 1 have zero rate, and flow f+, . . . , F have non-negative rate in

the solution of SPf+ . Suppose that in the solution of SPf+ , f++ ≥ f+ + 1 is the first flow

having positive rate. Hence the current objective function value is 1 −
F
∑

f=f++

r∗fλ
∗
f −

F
∑

f=f++

π∗
f .

The following lemma states that this value cannot be improved by solving SPf++1, . . . , SPf++ .

Lemma 6. If after solving SPf+ , the first flow with positive rate is flow f++ ≥ f+ + 1, then

SPf++1, . . . SPf++ can be discarded without loss of optimality.

Proof. Denote by θf+ the most negative reduced cost obtained by solving SPf+ . For the statement

in the lemma, θf+ = 1−
F
∑

f=f++

r∗fλ
∗
f −

F
∑

f=f++

π∗
f . Consider any m ∈ [f+ + 1, f++]. Any feasible
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solution of SPm is also feasible in SPf+ . This is because the first flow that may be positive in

the former is m, and m > f+. In other words, the solution space of SPf+ is greater. Moreover,

the optimum of SPf+ is feasible in SPm because m ≤ f++. Therefore this solution must also

be optimal to SPm. Hence θm = θf+ , and the lemma follows.

Based on what has been derived thus far, we present the procedure of solving the SP in

Algorithm 2. Here r∗f shall be understood and short-hand notation of rv
∗

f . Also, note that, even

if in the algorithm presentation, one rate vector is produced by the end, in the process multiple

vectors with negative reduced costs (but with different flow indices as the first positive element)

may be produced. These can all be added to the RMP, potentially speeding up column generation.

Algorithm 2: Algorithm for solving the SP

Input: π∗
f , λ

∗
f , ∀f ∈ F

Output: v∗

1: f+ ← 1, optimum←∞, v∗ ← ∅, f ∗ ← 0
2: while f+ ≤ F do

3: Solve SPf+ to obtain its optimal rate vector v∗

4: f++ ← min{f ∈ {f+, . . . , F |r∗f > 0}}

5: if (1−
F
∑

f=f++

r∗fλ
∗
f −

F
∑

f=f++

π∗
f < optimum) then

6: optimum← 1−
F
∑

f=f++

r∗fλ
∗
f −

∑

f≥f++

π∗
f

7: v∗ ← [0, . . . , 0, r∗f++, . . . , r∗F ]
T , f ∗ ← f++, f+ ← f++ + 1

D. Summary of CGA

We provide a summary of CGA in an algorithmic form in Algorithm 3. The correctness of

CGA in terms of optimality is then formally stated.

Theorem 7. CGA solves IFDP to global optimality within a finite number of steps.

Proof. The results follows directly from LP optimality, that there are a finite number of rate

vectors, as well as Lemmas 4-6.

There is no unique way of performing the first line in Algorithm 3. An obvious choice is to

apply a scheme similar to phase one of LP, namely, to introduce additional, so called artificial

variables to represent the amount of demand not satisfied, and minimize the total unsatisfied



18

Algorithm 3: CGA

1: Start with an initial set of rate vectors V ′

2: repeat

3: Solve the RMP

4: Compute v∗ and f ∗ via Algorithm 2

5: if (1−
F
∑

f=f∗

rfλ
∗
f −

F
∑

f=f∗

π∗
f} < 0) then

6: V ′ ← V ′ ∪ {v∗}

7: until (1−
F
∑

f=f∗

rfλ
∗
f −

F
∑

f=f∗

π∗
f} = 0)

demand. For this reason, we will use phase I to refer to the first step of CGA. Moreover,

recall that SP is an integer multicommodity problem that is NP-hard, hence from a theoretically

viewpoint, Algorithm 2 is of exponential time complexity. This holds also for Algorithm 3 as it

uses Algorithm 2 repeatedly. Numerically, however, CGA performs quite well in scalability, as

will be shown later in Section VII.

VI. MAX-FLOW BASED ALGORITHM

In this section, we present a heuristic, referred to as Maximum-Flow based Algorithm (MFA).

MFA is different form the classic maximum flow in the sense that we maximize the end-to-end

rate of all flows. Hence, it is a type of multicommodity flow.

The rationale of MFA is rather intuitive. Namely, the flows are prioritized with respect to

their deadlines. The priorities are represented using weights. The sum of weighted rates of

flows is maximized. Then, the corresponding rate vector is used, until one of the flows becomes

completed. Next, the rates of completed flows are set to zeros. The process then repeats for the

remaining flows with updated demand size. Mathematically, the optimization problem can be

formulated as follows, where 1
t2
f

is used as an example of the weight for flow f . In the following,

we use r
∗ to denote the optimum rate vector of the formulation.

MFA: max
∑

f∈F

1

t2f
rf (4a)

s.t. (3b), (3c), (3d)
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Algorithm 4: Max-Flow based Algorithm

1: χ← 0
2: while (∃f, f ∈ F , with sf > 0) do

3: Fix rf = 0 if sf = 0, f ∈ F
4: Solve MFA and obtain optimum rate vector r∗

5: δ∗ ← minf∈{1,...,F :r∗
f
>0} sf/r

∗
f

6: f ∗ ← argminf∈{1,...,F :r∗
f
>0} sf/r

∗
f

7: if χ + δ∗ ≤ tf∗ then

8: sf ← sf − r∗fδ
∗, f ∈ F

9: χ← χ + δ∗

10: else

11: Return ”No Solution”

12: Return χ

MFA is formalized in Algorithm 4. For the completed flows (i.e., flows with zero demand

size), their rates are set to zeros in Line 3. For the uncompleted flows, Line 4 computes maximum

weighted rate vector. Next, the flow with minimum (remaining) time necessary to be completed

is computed by Lines 5-6. Whether this flow can be delivered within its deadline or not is

checked in Line 7. If not, MFA fails in finding a feasible solution. Otherwise, the demand size

and overall completion time are updated in Lines 8 and 9, respectively.

In addition to acting as a fast heuristic for large-scale instances of IFDP, MFA can be used

to speed up CGA. Namely, if a feasible solution is found by MFA, this solution can be used

to initialize the columns in CGA, thus eliminating the need of phase one of LP in the context

of CGA. In the next section we will show significant improvements in solution time by the

combination of MFA and CGA.

VII. PERFORMANCE EVALUATION

A. Scenario Setup

We consider three network topologies with different sizes, depicted in Figures 4, 5, and 6,

respectively. The first is a small network composed of 6 nodes and 8 bidirectional links. The

second network topology is of Softlayer Inc [28], consisting of 11 nodes and 17 bidirectional

links. The last topology is the Geant network [29] that consists of 22 nodes and 36 bidirectional

links. In all networks, the capacity of each link is set to 10 units in each direction, and the unit

in capacity allocation is 2.
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Figure 4: Small network with 6 nodes and 8 bidirectional links.
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Figure 5: Softlayer network with 11 nodes and 17 bidirectional links.
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Figure 6: Geant network with 22 nodes and 36 bidirectional links.

To gain a comprehensive performance view, five different traffic scenarios with 5, 10, 20, 50,

and 100 flows are considered. Note that a flow is characterized by its deadline, in addition to

origin and destination nodes. Hence for the small network, when there are many flows, some

will have the same origin and destination, though different deadlines. The origin and destination

of each flow are uniformly and randomly chosen from the network nodes. The sizes of flows are

also uniformly generated in the range of [1, 100]. To systematically study the impact of deadline,

we set the deadline of flow f to df = αef , where α is referred to as deadline factor and ef
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denotes the earliest possible completion time of flow f assuming that all network capacity is

available to this flow.

We set α to obtain two types of scenarios, tight and moderate. In the tight-deadline scenario, α

is set such that the instances are close to the feasibility/infeasibility boundary. Next, we increase

α by 30%, giving the moderate-deadline scenario. In TSA, the number of time slices is a multiple

(1x, 2x, 3x) of the number of flows. In 1x, the time slices are defined by the deadlines, the first

slice is from time zero to the first deadline, the second slice is from the first deadline to the

second deadline, and so on. In 2x and 3x, the time slices are created, starting from the 1x case,

followed by subdividing the longest time slice into two equal ones repeatedly, until the desired

number of slices is obtained.

For each network topology and traffic scenario, we generate 10 instances and report the

average performance. For Small and Softlayer networks, we use a computational time limit of

500 seconds for cases of up to 50 flows, and a time limit of 1000 seconds when there are

100 flows. For the Geant network, the corresponding time limits are 1500 and 3000 seconds.

The experiments were run on a Core i7 PC with a CPU 2901 MHz and 16 Gigabyte RAM,

running the operating system Windows 10. The Gurobi optimizer [30] is used for solving the

mathematical models in TSA, CGA, and MFA.

B. Performance Results for Tight Deadlines

With tight deadlines, CGA is always able to obtain the optimal solution of all instances,

whereas TSA and MFA fail to deliver a feasible solution for many and sometimes all of the

instances. Therefore, we first report the failure rates of TSA and MFA, as shown in Table I.

The failure rate is defined as ratio of the number of instances for which a solution could not be

obtained over the total number of instances. For TSA, the infeasibility can be of two reasons.

First, the instance with time slicing is in fact infeasible due to an insufficient number of time

slices. Second, the instance could be feasible but the solver is not able to verify it within the

time limit. For MFA, infeasibility is purely due to the algorithm, not because of the time limit.

On average, for Small, Softlayer, and Geant networks, TSA fails for 90%, 95%, and 74% of

the instances respectively. For Small network, this is mainly because the number of time slices is

too few in relation to the tight deadlines. This is also the case of Softlayer and Geant networks,

where there are relatively small numbers of flows. When there are many flows, the failure is to

a large extent caused by the time limit. By increasing the number of time slices, fewer instances



22

TSA (in %)

Network F 1x 2x 3x MFA (in %)

5 80|0 80|10 60|30 90

10 40|50 30|40 30|40 100

Small 20 30|70 10|90 0|80 100

50 40|60 40|60 0|100 100

100 0|100 0|100 0|100 100

5 100|0 70|20 70|20 100

10 80|20 50|40 30|60 100

Softlayer 20 10|90 10|80 0|80 100

50 30|70 10|90 0|100 100

100 0|100 0|100 0|100 100

5 40|30 30|20 30|20 40

10 30|40 40|10 30|20 90

Geant 20 10|70 0|60 0|40 90

50 0|100 0|100 0|100 100

100 0|100 0|100 0|100 100

Table I: Failure rates for TSA and MFA for instances with tight deadlines. All values represent the percentage.

For TSA, with notation p|q, p stands for the percentage of instances that are infeasible and q represents

the the percentage that a solution is not found due to time limit. CGA has zero failure rate and therefore

it is not included in the table.

tend to be infeasible in TSA. This is expected by the approach of time slicing. On the other

hand, using a greater number of time slices makes the problem size significantly larger, and

consequently the solution time becomes the bottleneck. Note that TSA has a lower failure rate

for 5, 10, and 20 flows in Geant Network. The reason is that Geant is larger than the other two

networks, hence it is easier to obtain feasibility when there are few flows.

MFA has an extremely high failure rate. Feasibility is attained only for Geant network and

some of the instances with small numbers of flows. Thus, an intuitive heuristic, such as MFA,

that uses deadline as priority is not a good choice if the deadlines are tight.
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Figure 7: Solution time of CGA for the tight-deadline instances.
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The average time used by CGA to solve the instances is shown in Figure 7. CGA never hits

the time limit, hence the solutions are optimal. The time increases with respect to network size as

well as the number of flows. However, the rate of increase is relatively moderate. For example,

when the number of flows grows from 50 to 100, the increase in solution time is less than 3

times.

C. Performance Results for Moderate Deadlines

For instances with moderate deadlines, we examine three performance aspects: 1) the opti-

mality gap of TSA and MFA, 2) the failure rate of these two approaches, and 3) the solution

time of them in comparison to CGA. The numerical results are shown in Figures 8-10. We make

the following observations based on the results.

1) Optimality gap and failure rate: TSA and MFA show consistent results for the three

networks. As the number of flows increases, the optimality gap of TSA decreases. This is

because the base number of time slices equals F , hence the granularity increases with F . For

example for Softlayer network, the gap by TSA(1x) is about 12% for 5 flows and decreases

to only 3% for 50 flows. It can be seen that the optimality gap for 100 flows increases again,

this is due to the fact that TSA hits the time limit, see Figure 9(a). The failure rate increases

very significantly, see Figure 9(b), because of a higher risk that TSA terminates pre-maturely

due to the time limit. Moreover, the effect of scaling up, i.e., going from 1x to 2x and 3x, is

apparent for small F , because the granularity becomes significantly improved. For large F , it

has little impact on optimality gap, but leads often to infeasibility as the problem size grows

considerably. For Softlayer network and 100 flows, for example, the failure rate of TSA(1x) is

80%, and increases to 90% for both TSA(2x) and TSA(3x).

The optimality gap of MFA is clearly larger than that of TSA, and peaks at approximately

20% for Small network. Note that the optimality gap of MFA grows first, but then decreases in

F . One explanation is that the sub-optimality of MFA, due to imposing priority strictly following

deadlines, is first magnified by the problem size, here the number of flows. However, when there

are many flows, the scheduling order in high-quality solutions become more coherent with the

deadlines, as it is less likely that combining flows with deadlines being far apart will result in

feasibility. As for the failure rate, MFA performs well in this aspect for the three networks.

2) Solution time: The solution times are the average values over the instances for which TSA

and MFA were able to obtain a feasible solution within the time limit. As a general trend, TSA
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is faster in delivering its solution for small number of flows, see Figures 8(d)-10(d), and in such

cases feasibility is not an issue for TSA. Note that the difference in time can be very significant.

For Geant network and 20 flows, for example, CGA needs almost 50 seconds, whereas the

solution time of TSA(1x) is only a couple of seconds. The solution of the latter is not optimal,

however the gap is quite small. For large number of flows, however, CGA clearly outperforms

TSA in time. For MFA, the solution time is very attractive – it is in order of one or even two

magnitudes faster than TSA and CGA. However MFA has the highest optimality gap.

As the overall observation, CGA outperforms TSA and MFA, in delivering optimum with

zero failure rate. On the other hand, even if neither TSA nor MFA gives satisfactory results by

themselves, they can be used together with CGA, either to speed up the latter, or to reduce the

overall time when some tolerance of optimality is accepted. These aspects are examined below.
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Figure 8: Performance results for Small network.
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Figure 9: Performance results for Softlayer network.
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Figure 10: Performance results for Geant network.

D. Combining CGA with MFA and TSA

In this section, we consider using CGA in conjunction with MFA and/or TSA. Recall that, to

reach the initial feasible solution (IFS), CGA runs Phase I in which the objective is to minimize

a penalty function of infeasibility. We refer to the process of reaching optimality, starting from

the IFS, as Phase II.

First, we observe that when MFA does deliver a feasible solution, the time required is much

shorter than that of Phase I, and the solution is generally of better quality than the IFS of CGA.

Hence, to speed up CGA, we can use the solution of MFA as an IFS for CGA. The time of

Phase I is reduced therefore to the running time of MFA. We refer to this combination as MFA-

CGA. Second, as discussed in Section IV, the LP relaxation of TSA (rTSA) can be used to

provide a lower bound of the global optimum. Hence, if a tolerance on the optimality gap is

present, the bound from rTSA can be used to terminate CGA as soon as the current solution

of CGA meets the tolerance parameter with respect to the lower bound. As a result, the time
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necessary for Phase II is reduced. This is particularly useful for large-scale instances. We refer

to this combination as rTSA-CGA(p), where p represents the percentage value of the tolerance

parameter. Finally, combining both MFA and rTSA with CGA is denoted by MFA-rTSA-CGA(p).

Table II summarizes our findings. We show the average solution times of Phase I and Phase II

of CGA, and the time reductions achieved. For MFA-CGA, the time reduction of Phase I is the

relative difference of the computing time of Phase I of CGA and the running time of MFA. For

rTSA-CGA, the time reduction reported for Phase II is the relative difference of the computing

time of Phase II of CGA and the sum of the time for solving rTSA and the time needed for

Phase II before satisfying the 10% optimality tolerance. Note that MFA is not used for Phase I

in the results of rTSA-CGA.

Average Solution Time of CGA (s) Average Time Reduction (in %)

Network F Phase I Phase II MFA-CGA rTSA-CGA(10%) MFA-rTSA-CGA(10%)

Phase I Phase II Total

5 0.95 2.07 58 66 74

10 2.32 3.22 64 48 57

Small 20 6.97 9.21 80 54 76

50 35.25 60.98 88 58 88

100 169.05 126.42 95 52 96

5 0.69 0.97 51 48 52

10 2.16 6.07 65 57 67

Softlayer 20 7.10 14.10 78 57 81

50 49.28 84.90 90 55 86

100 262.87 187.18 95 44 95

5 0.97 0.74 65 34 75

10 2.25 3.25 69 49 75

Geant 20 9.95 13.60 82 57 81

50 134.45 136.05 93 54 86

100 606.41 377.93 95 63 94

Table II: Average solution time of CGA and average time reduction.

We observe that both phases of CGA require similar time (within order of magnitude).

Therefore time reduction is of importance for both.

MFA-CGA yields for very significant time reduction of Phase I, from 50% with few flows up

to 95% with 100 flows. The time reduction increases with respect to the number of flows. The

reason is that the solution time of MFA grows with a much slower rate than that of running

Phase I of CGA in its original design. We remark that the solution of MFA is typically better

than the IFS of the original CGA. Hence, even though not shown in the table, MFA-CGA also

gives some time reduction in Phase II.
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Having an optimality tolerance of 10% and using the bound of rTSA, i.e., rTSA-CGA(10%),

leads to significantly less time in Phase II. The time reduction ranges between 34% and 66%. We

observe no correlation of the time reduction with the network size or the number of flows. For

a majority of cases, the percentage values are lower than those for Phase I achieved via MFA-

CGA. This is however counter-balanced, to some extent, by the fact that Phase II sometimes

takes more time than Phase I in CGA, and in such a case the reduction of the former has more

impact.

The combination MFA-rTSA-CGA(10%) gives a substantial reduction of the total solution

time, starting from 50% for 5 flows and reaching 96% for 100 flows. Hence the approach is

useful for dealing with large-scale scenarios where the problem size is mainly due to the number

of flows.
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(a) Softlayer network with 50 flows.
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(b) Geant network with 100 flows.

Figure 11: Times reduction by rTSA-CGA(p) and MFA-rTSA-CGA(p) with respect to p. The time reduction is

calculated in relation to the overall time of CGA.

Figure 11 illustrates how the time reduction by rTSA-CGA(p) and MFA-rTSA-CGA(p) varies

as a function of optimality tolerance parameter p for two representative instances. Obviously,

higher tolerance of optimality gap means larger time reduction. This growth stops at the point

where the optimality gaps of the solution provided by MFA and the (original) IFS of CGA are

within the tolerance, for MFA+rTSA+CGA(p) and rTSA+CGA(p), respectively. As expected,

MFA-rTSA-CGA(p) offers clearly larger reduction of the overall time than rTSA-CGA(p) for all

p-values. This is because the latter focuses on Phase II only. In MFA-rTSA-CGA(p), both phases

are shortened in time, and the reduction on Phase II is a joint effect of rTSA via bounding and

of MFA that provides a better IFS than what CGA had. Using MFA-rTSA-CGA(p), the CGA
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time is reduced by one order of magnitude for p = 10% and p = 15% for the two scenarios.

VIII. CONCLUSIONS

We have investigated flow routing and scheduling with the presence of deadline constraints

and capacity allocation with discrete units. In addition to examining problem complexity, we

have considered three solution approaches, TSA, CGA, and MFA. They use time slicing, problem

reformulation and column generation, and multicommodity maximum flow, respectively. Among

them, CGA delivers global optimum. Our performance evaluation shows that, with tight dead-

lines, TSA and MFA often fail to obtain a feasible solution. When the deadlines are less stringent,

TSA provides solution faster than CGA if the number of flows is relatively small, though the

optimality gap is non-negligible. MFA is fastest among the three approaches when infeasibility

is not an issue. However, it also has the largest optimality gap. Overall, CGA represents a viable

solution approach for global optimality. Moreover, there are relevant use cases of the solution

from MFA and the bound from TSA, in the context of CGA, particularly for large-scale instances.

Further work includes extensions of the problem, to which adaptions of the proposed ap-

proaches will be studied. One specific case is the data backup problem studied in [23] that

applies TSA for problem solution. In this problem, a source has multiple candidate destinations

for data backup. At any time, a source may choose at most one destination, and a destination

may be used by at most one source. No deadline is present. We remark that CGA can be

adapted by setting a large value for all flow deadlines, and tailoring the subproblem formulation

to no common source or destination is used by the flows with positive rates in the rate vectors.

Some preliminary results indicate the relative performance between TSA and CGA is coherent

with those in Section VII in terms of solution time and optimality gap. Extensive performance

evaluation as well as extensions to other related problems are subject to further study.
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APPENDIX A

Symbol Definition Symbol Definition

G network N set of nodes

N number of nodes A set of arcs

A number of arcs (i, j) arc from i to j

cij capacity of arc (i, j) U set of discrete capacity units

ui size of capacity unit i F set of flows

F number of flows of origin of flow f

df destination of flow f tf deadline of flow f

sf size of flow f

Table III: Basic notation.

Symbol Definition

T set of time slices

τ a time slice

|τ | length of time slice τ

yτfij continuous variable, denoting the rate of flow f on arc (i, j) in time slice τ

rτf continuous variable, indicating the end-to-end rate of flow f in time slice τ

wτ binary variable that takes value one if any flow is scheduled in time slice τ , and zero

otherwise

zm,τ
fij integer variable that denotes the number of times that flow f uses capacity unit um on

arc (i, j) in time slice τ

Table IV: Notation related to the time slicing approach (TSA).

Symbol Definition

χ overall completion time

r
∗ optimum rate vector

δ∗ the minimum time required to complete one of the flows

f ∗ the flow that completes first among the flows

Table V: Notation related to the max-flow based algorithm (MFA).
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Symbol Definition

V set of rate vectors

v an end-to-end rate vector in form of [rv1 , r
v
2, . . . , r

v
F ]

T

rvf the rate of flow f in vector v

Vf set of rate vectors in which flow f has positive end-to-end rate: {v ∈ V|rvf > 0}
yfij continuous variable, indicating the rate of flow f on arc (i,j)

rf continuous variable, denoting the rate of flow f

xv continuous variable, denoting the time duration that vector v is scheduled

zmfij integer variable, denoting the number of times that capacity unit um is used by flow f
on arc (i, j)

f+ the first flow index with positive rate in a rate vector

λ∗
f optimal dual value corresponding to the demand constraint of flow f

π∗
f optimal dual value corresponding to deadline constraint of flow f

Qf set of rate vectors in which f is the first flow of positive rate: {v|v ∈ Vf \(V0∪· · ·∪Vf−1)}
pf a time point by which the data transmission of flow f is completed

Table VI: Notation related to the column generation algorithm (CGA).

Symbol Definition

α deadline factor

ef the earliest possible completion time of flow f if all capacity of the network is given

to this flow

1x use of F time slices in TSA

2x use of 2F time slices in TSA

3x use of 3F time slices in TSA

Table VII: Notation related to the simulation setup.

APPENDIX B

We adopt a polynomial-time reduction from the 3-satisfiability (3-SAT) problem that is NP-

complete [31]. Consider any 3-SAT instance with m Boolean variables n1, n2, . . . , nm, and k

clauses c1, c2, . . . , ck. A variable or its negation is called a literal. Denote by n̂i the negation

of ni, i = 1, 2, . . . , m. Each clause consists of a disjunction of exactly three different literals,

e.g., n1 ∨ n2 ∨ n̂3. We use Zi and Ẑi to denote the sets of clauses in which variable ni and its

negation n̂i appear, respectively. Also, Zi and Ẑi are used to denote their respective cardinalities.

We assume that no clause contains both a variable and its negation, and any literal appears in

at least one clause and at most k − 1 clauses. For any arc (u, v) that we define below, u and

v are referred to as head and tail of the arc, respectively. Similarly, the first and last node of a
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path are called head and tail of the path. We construct an IFDP instance as follows. The number

of nodes equals N =
∑m

i=1(Zi + Ẑi + 2) + 3k. The first
∑m

i=1(Zi + Ẑi + 2) nodes are referred

to as literal nodes, and the last 3k nodes are referred to as clause nodes. The number of arcs

is A =
∑m

i=1(Zi + Ẑi + 2) + (6k + 1); the nodes indexed by the numbers in the two pairs of

parentheses are referred to as literal and clause arcs, respectively. The capacity of all arcs equals

one, which is also the unit in capacity allocation. The number of flows is F = m+ k, referred

to as literal and clause flows, respectively. The deadline of all flows is one time unit, i.e., ti = 1

for i = 1, . . .m+ k. The size of each flow is one, i.e., si = 1 for i = 1, . . . , m+ k.

ni1 ni2

n̂i1

o
l
i d

l
i

e
l
i

Figure 12: The two disjoint literal paths for literal flow i with Zi = 3 and Ẑi = 2.

For literal flow i, the origin and destination nodes are denoted by oli and dli, respectively. There

are exactly two possible paths for literal flow i, referred to as literal paths. See Figure 12. Arc

(oli, e
l
i) appears in both paths, and shown by the solid line. The first literal path corresponds to

variable ni, and consists of the solid arc and dash-dotted arcs. The first and last nodes of this

path are oli and dli, respectively. The remaining Zi nodes between them are eli, ni1, . . . , ni(Zi−1).

Thus, there are Zi + 1 arcs in the path where the first arc is the common arc (oli, e
l
i) and each

of the remaining arcs represents an occurrence of variable ni in the clauses. The second path

follows a similar construction and consists of arc (oli, e
l
i) and dashed arcs. The nodes between

the origin and destination are eli, n̂i1, . . . , n̂i(Ẑi−1), giving Ẑi + 1 arcs. The arcs, except the first

one, represent the Ẑi occurrences of n̂i in the clauses. The above construction is repeated for

every literal flow, without any overlap between the elements defined for a literal flow and those

defined for any other literal flow.

For clause flow j, we introduce origin node ocj and destination node dcj . There are three possible

paths referred to as the clause paths of j. Each path corresponds to a literal in the 3-SAT clause

and consists of exactly four arcs. The first arc is common among the three paths and originates

from ocj to ecj . The second arc is from ecj to head of the literal arc defined earlier to represent

the occurrence of the literal in this clause. The third arc is the literal arc itself, and the fourth

arc originates from the tail of the literal arc to dcj . See Figure 13 for an illustration, assuming
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that clause j contains literal ni, and this is the second occurrence of the literal. For the other

two literals in the clause, two additional paths are defined similarly. This construction applies to

all the clauses. Hence each clause path has exactly one arc in common with a literal path.

ni1 ni2

n̂i1

oli dlieli

ocj ecj dcj

Figure 13: One of the three clause paths for clause flow cj . The corresponding clause is cj , ni is one of its literals

and this is the second occurrence of the literal.

Assume there is a feasible solution for the 3-SAT instance. For any variable ni, if it has value

true, we route literal flow i on the literal path defined for n̂i. Otherwise, literal flow i uses the

literal path defined for ni. As a result, if ni is true, all the arcs representing the occurrences of

ni are available (i.e., has no literal flow) and all the arcs representing the occurrences of n̂i are

in use by flow i. Consider any clause cj and suppose it is satisfied by ni i.e., ni is true. We route

clause flow j by the clause path defined for this occurrence of ni. This path is available because

the first, second and fourth arcs are always available to clause flow j as they are specifically

defined for j, and the third arc is available since ni has value true. Using the resulting routing

solution and scheduling this routing for one time unit yields a feasible solution.

Assume there is a solution for the IFDP instance. Note that the deadline for all flows is one

time unit, and exactly one unit of capacity can be used on any arc. Moreover, by construction,

the end-to-end rate of any flow cannot exceed one. These together imply that the end-to-end

rate must equal one at any time point of the IFDP solution. Therefore, at any time point, one of

the two literal paths is in use for each literal flow i, and one of the three clause paths is in use

by each clause flow j. Thus it is sufficient to consider the flow routing at any time point in the

solution to the IFDP instance. For any literal flow i, if the routing path is the one corresponding

to ni, variable ni is assigned with value false, otherwise, it is assigned with value true. This

leads to a complete value assignment for the 3-SAT instance. Now consider any clause flow j,

because its end-to-end rate equals one, at least one of the clause paths is available, meaning that

the corresponding literal arc is not used by the corresponding literal flow, and hence the clause
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of the 3-SAT instance is satisfied. Consequently the answer to the 3-SAT instance is yes. The

proof is then complete by noting that the reduction is clearly polynomial.

APPENDIX C

As for the proof of Theorem 1, we construct a reduction from 3-SAT as follows. There are

F = 2m+ k flows referred to as literal and clause flows respectively. For convenience, notation

for literal and clause of 3-SAT reused for the corresponding flows. Thus n1, n̂1, . . . , nm, n̂m

denote the 2m literal flows and c1, . . . , ck denote the k clause flows. The deadlines of literal and

clause flows equal two and one time units, respectively, i.e., ti = 2, for i = 1, . . . , 2m, and ti = 1,

for i = 2m+ 1, . . . , 2m+ k. The size of each flow is one, i.e., si = 1 for i = 1, . . . , 2m+ k.

For clause flow cj , we use ocj and dcj to denote the origin and destination nodes, respectively.

We define an arc from ocj to an intermediate node ecj with capacity three and an arc from ecj to

destination node dcj with capacity one. This path is referred to as clause path cj , consisting of

two arcs, see Figure 14.

ocj ecj dcj
c = 3 c = 1

Figure 14: Clause path cj .

For each pair of literal flows ni and n̂i, we define a set of four nodes. Two of these nodes

are denoted by oli and ôli representing the origins of the two flows, respectively. The other two

nodes are denoted by bi and b′i for the sake of reference. We define an arc from each of the two

origins oli and ôli to node bi, and an arc from bi to b′i. Arc (bi, b
′
i) is hence the bottleneck arc for

flows ni and n̂i. These three arcs all have capacity one. Thus, at most one of the two can be

routed at a time. See Figure 15. All literal flows share a common destination, denoted by dl.

For each literal flow, we designate one single path for routing, referred to as literal path.

Specifically, for literal flow ni, the path consists of arcs (oli, bi), (bi, b
′
i), followed by traversing

through the first arc of all clause paths cj where cj ∈ Ẑi, and finally to destination node dl.

For this purpose, we need to define some additional arcs as follows. Denote by cj1, . . . , cjẐi
the

clauses in Ẑi. First, we define an arc from b′i to the first node of clause path cj1 , i.e., origin

ocj1 . Next, we define one arc from ecjh which is the middle node of clause path for jh, to ocj(h+1)

which is the origin node of clause path for jh+1, for h = 1, . . . , Ẑi − 1. Finally, we define an

arc ocj
Ẑi

to the destination of literal flow dl. The capacity of all these new arcs equals one. For

literal flow n̂i, similar construction applies to Zi.
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Figure 15: The set of four nodes defined for pair ni and n̂i.

By the constructions above, each flow has one single path in the network, i.e., routing is

fully fixed. Moreover, the reduction is clearly polynomial. We make the following observations.

First, the literal flows of each pair are mutually exclusive, that is, we can either schedule ni or

n̂i, but not both simultaneously. Second, scheduling literal flow ni has two effects. First, one

capacity unit becomes occupied on the first arc of each clause path for which the clause is in Ẑi.

Second, the first arc of each clause path for which the clause is in Zi has at least one capacity

unit available. Scheduling n̂i has the opposite effects. Having these observations in mind, in the

following we show the equivalence of the 3-SAT instance and the IFDP instance in terms of

feasibility.

Suppose there is a yes-answer to the 3-SAT instance. For each pair of literals ni and n̂i,

we schedule the literal flow with value true in the first time unit, and the other in the second

time unit. By doing so, all the literal flows are delivered within the deadline of two time units.

Consider any clause cj , at least one of the literals of this clause holds true. Therefore, at least

one unit of capacity is available on the first arc of clause path cj . This, together with the fact

that the second arc of clause path cj is defined only for this clause, implies that the clause flow

can be scheduled and delivered within the first time unit.

Conversely, assume we have a feasible solution for the IFDP instance. Note that the deadline

for the clause flows is one time unit, and for any clause flow, its end-to-end rate can be at most

one. Therefore, the end-to-end rate of a clause flow must equal one throughout the entire time

line of the IFDP scheduling solution. Thus, no matter the time point taken, for the first arc

of any clause path, at least one capacity unit is available. Now consider any time point of the

IFDP solution. For each pair of literal flows, if ni is scheduled, we assign value true to variable

ni. Otherwise we set ni to be false. This gives a true/false assignment of the 3-SAT instance.

For the value assignment, as least one literal of each clause holds true. This is because at least

one of the three corresponding literal flows is scheduled at the time moment, as otherwise no

capacity of the first arc of the clause path would be available to the clause flow. Hence the value
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assignment of the 3-SAT instance make all clauses satisfied. We remark that, in general, the flow

scheduling solution of the IFDP instance may change over time, however the feasibility of the

IFDP implies that the solution of any time point gives a feasible solution to the 3-SAT instance.

We can now conclude that the recognition version of IFDP is NP-complete and its optimization

version is NP-hard.

APPENDIX D

Consider an optimal solution to IFDP, and suppose there exists a time interval of length δ, in

which F ′ > 1 flows are scheduled and routed through the common arc. Without loss of generality,

suppose the flow indexes are 1, . . . , F ′. Moreover, denote by µf the amount of capacity of the

arc, or equivalently, the end-to-end rate, allocated to flow f, f ∈ {1, . . . F ′}. Hence the amount

of demand delivered in this time interval is δµf , f ∈ {1, . . . F ′}. Note that none of these flows’

deadlines is before the end of the time interval.

Consider replacing the scheduling solution for the time interval as follows. The amount of

arc capacity c =
∑F ′

f=1 µf is allocated to one flow at a time, and this is also the end-to-end rate

of the flow. The order of the flows can be arbitrary. This change is feasible because the arc is

the only common one of all flows, and each the arc is also the bottleneck for each individual

flow. Moreover, the scheduling time of flow f is set to δµf/c. After the update, for any flow f ,

the amount of demand delivered remains δµf as before. In addition, the total scheduling time is

δ
∑F ′

f=1 µf/c = δ, i.e., the length of the time interval. Hence the updated solution has no impact

on the overall completion time nor solution feasibility in meeting the deadlines. Thus the new

solution remains optimal.

Applying the above to all time intervals in which multiple flows are scheduled, we obtain an

optimal solution in which one single flow is scheduled at any time point. At this stage, suppose

any two flows f ′ and f are scheduled consecutively, with tf < tf ′ . Swapping the two flows

in the schedule with their respective time durations obviously will not affect the feasibility or

optimality of the solution. Doing so repeatedly if necessary, we eventually obtain an optimal

solution in which the flows are scheduled individually in ascending order of the deadlines.
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