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Abstract

The K-partitioning problem consists in partitioning the nodes of a complete graph
G = (V,E) with weights on the edges in exactly K clusters such that the sum
of the weights of the edges inside the clusters is minimized. For this problem,
we propose two node-cluster formulations adapted from the literature on similar
problems as well as two edge-representative formulations. We introduced the first
edge-representative formulation in a previous work [4] while the second is obtained
by adding an additional set of edge variables. We compare the structure of the
polytopes of the two edge-representative formulations and identify a new family of
facet-defining inequalities.

The quality of the linear relaxation and the resolution times of the four formula-
tions are compared on various data sets. We provide bounds on the relaxation val-
ues of the node-cluster formulations which may account for their low performances.
Finally, we propose a branch-and-cut strategy, based on the edge-representative
formulations, which performs even better.

Keywords: graph partitioning, combinatorial optimization, integer programming,
polyhedral approach, branch-and-cut, extended formulation

1 Introduction

In this paper we study a graph partitioning problem called the K-partitioning
problem. Consider G = (V,E) a complete graph with weights wij on each
edge ij of E. The graph partitioning problem consists in partitioning the
set V = {1, . . . , n} into non-empty subsets called clusters such that the sum
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of the weights of the edges in the clusters is minimized. Variants of this
problem have been extensively studied in the literature [8,24,26] and used in
numerous applications such as processors load balancing [25,41] and image
segmentation [14,32].

Grötschel and Wakabayashi [22,23] propose an integer programming for-
mulation for a clustering problem in which the size and the number of clusters
are not bounded. They study the polyhedral structure of the problem and
present a cutting plane algorithm. Osten et al. [37] consider the clique par-
titioning problem in which each cluster must correspond to a clique. They
introduce families of valid inequalities which are generalizations of the ones
presented by Grötschel and Wakabayashi [23]. They also discuss lifting and
patching techniques to define new facets.

Graph partitioning variants in which the sizes of the clusters are con-
strained have also been considered. Sorensen et al [39,40] study the simple
graph partitioning problem in which a cluster may contain at most b ∈ Z+

nodes. They introduce a branch-and-cut algorithm. Several studies consider
both upper and lower bounds on the number of nodes. Labbé and Öszoy [31]
propose such a formulation and investigate the associated polytope. Johnson
et al. [27] introduce a column generation approach.

Another variant of graph partitioning consists in constraining the number
of clusters K. If K = 2, the problem is nothing but the max-cut problem [7].
Kaibel et al. [28] consider a formulation in which the number of clusters is
less than a given bound q and propose a method to deal with its symmetry
directly at the nodes of a branch-and-cut algorithm. Several papers also in-
vestigate the polyhedral structure of formulations with at most or at least K
clusters [12,13,15].

Our present work is motivated by an application in dialogue analysis [1,5,6].
The aim of this application is to provide a decision aid software to help the
identification of dialogical regularities. In order to guide the identification of
such regularities, several dialogical patterns have to be clustered. Whenever
the number of patterns is sufficiently low, an exact resolution of the associated
clustering problem is possible and the obtained solutions have proved, through
an expert evaluation, to be significantly more relevant than the ones obtained
with various heuristics [1,5]. This software must provide relevant and user-
friendly parameters. Setting the number of clusters satisfies both of these
criteria as it corresponds to the number of dialogical regularities sought by
the user. This is why we are considering the K-partitioning problem which
consists in partitioning a complete graph into exactly K non-empty clusters.
Nevertheless, some of our results naturally extend to the cases of at most K
or at least K clusters (see end of Section 3).

Let n and m denote the number of nodes and edges in the graph, respec-
tively. Few papers have considered the case in which the number of clusters
is fixed without any additional constraint on the number of nodes allowed
in each cluster. For example, the equipartition problem consists in partition-
ing the nodes into K clusters, each containing exactly n

K
nodes. Lisser and
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Rendl [35] consider semidefinite and quadratic programming approaches while
Mitchell [36] proposes a branch-and-cut algorithm for the problem. Whenever
the weights of all the edges are negative Goldschmit and Hochbaum [21] prove
that the problem can be solved in O(nk

2/2−3k/2+4 T (n,m)) time, where T (n,m)
is the time required to find the minimum (s, t)-cut on a graph with n nodes
and m edges. However, this problem is known to be NP-hard for the general
case [20]. Most of the linear programming approaches in the literature for the
exact resolution of the K-partitioning problem are based on node-cluster vari-
ables zki taking value 1 if node i is assigned to cluster k. Unfortunately, these
variables induce symmetry in linear programs even if additional constraints
may partially alleviate it [9,16]. We introduced a symmetry-free formulation
called edge-representative formulation (Fer) and we studied the associated
polyhedron [3,4]. In this paper we show how this formulation can be extended
to a new formulation (Fext). Then, we compare the latter with (Fer) and two
formulations with node-cluster variables adapted from the literature.

The next section is dedicated to the presentation of these four formula-
tions. In Section 3 the polytopes (Pext) and (Per), associated with the linear
relaxation of the edge-representative formulations, are compared. We intro-
duce a new family of valid inequalities called sub-representative inequalities.
We determine the conditions under which this family, as well as three families
of constraints from (Fext), are facet-defining of (Pext). We also show that under
the same conditions, these inequalities are facet-defining for two partitioning
variants with at least K clusters or at most K clusters. A branch-and-cut
algorithm, based on (Fext) and a thorough cutting-plane step at its root node,
is described in Section 4. Finally, in Section 5 we present numerical results
and give bounds on the relaxation values of the node-cluster formulations.

2 Formulations

We first present the edge-representative formulation (Fer) introduced in [3,4].
We then show how it can be extended into a new formulation called (Fext).
We also adapt to our problem two formulations from the literature based on
node-cluster variables.

2.1 Edge-representative formulation (Fer)

Grötschel and Wakabayashi [22,23] consider the clique partitioning problem
(CPP) which consists in partitioning a complete weighted graph into cliques
so that the weight of the multicut is minimized. The authors restrict neither
the number nor the size of the clusters. They introduce a formulation of the
(CPP) based on edge variable xij for all ij in E. Variable xij takes value 1
if ij is inside a cluster of the partition and 0 otherwise. Note that xij and
xji represent the same variable. To formulate the clique partitioning problem
they consider the two following families of constraints:

xij ∈ {0, 1} ∀ij ∈ E, (1)
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xij + xik − xjk ≤ 1 ∀i ∈ V ∀j, k ∈ V \{i}, j < k. (2)

Inequalities (2), called triangle inequalities, ensure that if two edges of a
triangle are in the same cluster, then the third one is necessarily in the same

cluster. Clearly the points in R
n(n−1)

2 which satisfy (1) and (2) correspond
exactly to the solutions of the clique partitioning problem.

Another way to formulate this problem consists in using node-cluster vari-
ables, which enables one to easily fix K but has the disadvantage of inducing
a lot of symmetry. In [3,4] we considered Grötschel and Wakabayashi’s edge
formulation and presented a way of fixing the number of clusters to K, without
adding any symmetry to the problem, by considering node variables rv for all
v in V (called representative variables). The idea of using such variables was
first introduced in [11] for a node coloring problem. A slightly different idea
has also been used in [9] for a node-cluster formulation of a difficult partition-
ing problem variant with an additional quadratic constraint. We adapt this
idea in formulation (Fnc2) presented in Section 2.3. In the edge-representative
formulation (Fer), variable rv takes value 1 if v is the node with the lowest in-
dex of its cluster and 0 otherwise. Node v is said to be the representative of its
cluster if rv is equal to 1. Formulation (Fer) contains the following constraints:

0 ≤ ri ≤ 1 ∀i ∈ V (3)

rj + xij ≤ 1 ∀i, j ∈ V, i < j (4)

rj +

j−1∑
i=1

xij ≥ 1 ∀j ∈ V (5)

n∑
i=1

ri = K. (6)

Inequalities (4) ensure that node j cannot be a representative if it is not
the lowest node of its cluster (i.e., each cluster contains at most one repre-
sentative). Inequalities (5) express the fact that j is a representative if nodes
1, . . . , j are not in the same cluster (i.e., each cluster contains at least one
representative). The number of clusters is set to K thanks to Equation (6).

The edge-representative formulation (Fer) is obtained by considering Con-
straints (1)-(6)

(Fer)


minimize

∑
ij∈E

wijxij

subject to (1)− (6)

.

Note that no integrality constraint is used for the representative variables.
Constraints (1), (3), (4) and (5) ensure that they are either equal to one or
zero.
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The number of variables in (Fer) can be reduced to n(n−1)
2

+ n− 3 due to
the following substitutions:

• r1 = 1, since node 1 is always the lowest of its cluster;

• r2 = 1 − x1,2, since node 2 is always a representative except if it is in the
same cluster as node 1;

• r3 = K − 2 + x1,2 −
n∑
i=4

ri, using Constraint (6).

In the remainder of the paper, (Fer) corresponds to the formulation in
which r1, r2 and r3 are substituted. However, to simplify the notations, all
the variables are kept in the expression of the formulation.

2.2 Extended edge-representative formulation (Fext)

In (Fer) Inequalities (4) and (5) are used to fix the values of the representative
variables. This can also be achieved through quadratic constraints

rj +

j−1∑
i=1

rixij = 1 ∀j ∈ V. (7)

Thanks to (7), a node j is either a representative (rj = 1) or it is in the
same cluster as exactly one node, which is less than it, which is a representative
(ri xij = 1). We linearize these quadratic constraints by adding a new set of
edge variables x̃ij for all ij ∈ E such that x̃ij is equal to ri xij. Constraints (7)
can be replaced by

rj +

j−1∑
i=1

x̃ij = 1 ∀j ∈ V, (8)

0 ≤ x̃ij ≤ 1 ∀ij ∈ E, (9)

x̃ij ≤ xij ∀ij ∈ E, (10)

x̃ij ≤ ri ∀ij ∈ E, i < j (11)

and
xij + ri − x̃ij ≤ 1 ∀ij ∈ E, i < j. (12)

Constraints (10), (11) and (12) ensure that x̃ij is equal to rixij.

The number of variables can again be reduced through substitutions:

• r1 = 1, r2 = 1− x1,2 and r3 = K − 2 + x1,2 −
n∑
i=4

ri as in formulation (Fer);

• x̃1j = x1j for all j ∈ {2, . . . , n} since node 1 is always the representative of
its cluster ;

• x̃2,3 = 1− r3 − x1,3, using Constraint (8) for j equal to 3 ;

• rj = 1−
j−1∑
i=1

x̃i,j using Constraint (8) for all j ∈ {4, . . . , n}.
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These 2n variables are substituted in the formulation. Thus, an extended
formulation of (Fer) with n(n − 2) variables is obtained. However, to sim-
plify the notations, the formulation is written without the substitutions in the
following:

(Fext)


minimize

∑
ij∈E

wijxij

subject to (1)− (4), (6) and (8)− (12)

.

The representative variables still do not require additional constraints to
ensure their integrality. The same applies to the edge variables x̃ij. Note that
Constraints (4) are not necessary in (Fext) to formulate the K-partitioning
prolem. However, as detailed in Section 3, they ensure that the linear relax-
ation of (Fext) is at least as good as the one obtained with (Fer).

2.3 Node-cluster formulations

Given a maximal number of clusters Kmax ≤ n, the node-cluster formulations
associates to each node i ∈ V and each cluster k ∈ {1, 2, . . . , Kmax} a variable
zki taking value 1 if node i is assigned to cluster k and 0 otherwise.

This type of formulation has been frequently considered for problems in
which the number or the size of the clusters is constrained. Although a few
formulations, based only on node-cluster variables, have been considered [9,16]
they are usually combined with the edge variables xij [10,12,17,18,19,28]. In
this last case a variant of the following formulation is considered:

(Fnc)



minimize
∑
ij∈E

wijxij

subject to xij ∈ {0, 1} ∀ij ∈ E (1)

xij + zki − zkj ≤ 1 ∀ij ∈ E ∀k ∈ {1, . . . , Kmax} (13)

xij − zki + zkj ≤ 1 ∀ij ∈ E ∀k ∈ {1, . . . , Kmax} (14)

−xij + zki + zkj ≤ 1 ∀ij ∈ E ∀k ∈ {1, . . . , Kmax} (15)
Kmax∑
k=1

zki = 1 ∀i ∈ V (16)

zki = 0 ∀k > i i ∈ V k ∈ {1, . . . , Kmax} (17)

zki ∈ {0, 1} ∀i ∈ V ∀k ∈ {1, . . . , Kmax} (18)

.

Relations (13), (14) and (15) have the same purpose as the triangle inequal-
ities. Equations (16) ensure that each node i ∈ V is in exactly one cluster.
Equations (17) alleviate some of the symmetry by imposing that each node
i ∈ V is not in a cluster whose index is greater than i.

This formulation enables one to obtain a partition of minimal cost with
at most Kmax clusters. Note that when all weights wij are strictly positive,
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the number of clusters in an optimal solution is always Kmax. Indeed, given
a partition π with K < Kmax clusters, a better solution can be obtained by
removing one node from any cluster of size at least 2 and using it to create a
new cluster. When some of the weights are negative, partitions with less than
Kmax cluster may be obtained.

We now present two adaptations of (Fnc) which formulate theK-partitioning
problem.

2.3.1 Formulation (Fnc1)

A first way to obtain a formulation of the K-partitioning problem consists in
fixing Kmax to K [12,16,17,28] and imposing that each cluster is non-empty
thanks to the following inequalities:∑

i∈V

zki ≥ 1 ∀k ∈ {1, . . . , Kmax}. (19)

Thus, the first node-cluster formulation is

(Fnc1)


minimize

∑
ij∈E

wijxij

subject to (1) and (13)− (19)

.

2.3.2 Formulation (Fnc2)

Equations (17) do not alleviate all the symmetry induced by the node-cluster
variables. However, a second node-cluster formulation of the K-partitioning
without any symmetry can be obtained by fixing Kmax to n [16,28]. In that
case, Bonami et al. [9] showed that the remaining symmetry can be removed
using the following inequalities which ensure that a node j can only be in a
cluster i if node i is also in it:

zij ≤ zii ∀j > i. (20)

It is interesting to note that, thanks to Relations (17) and (20), several
node-cluster variables have the same role as variables used in (Fer) and (Fext):

• for all i ∈ V , ri and zii both take value one if and only if i is the lowest node
of its cluster;

• for all i < j, variables zij and x̃ij take value one if and only if j is represented
by i.

Thus, the number of clusters can be fixed as follows:∑
i∈V

zii = K. (21)
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The obtained formulation is:

(Fnc2)


minimize

∑
ij∈E

wijxij

subject to (1), (13)− (18), (20) and (21)

.

3 Polyhedral results

Let us denote by (Per) and (Pext) the convex hulls of all feasible integer so-
lutions of (Fer) and (Fext), respectively. In this section, we show that the
linear relaxation value of (Fext) is at least as good as the one of (Fer). Then,
we determine the dimension of (Pext) with respect to K. Finally, we de-
scribe the conditions under which a new family of inequalities, called the
sub-representative inequalities, as well as Inequalities (10), (11) and (12), are
facet-defining for (Pext).

3.1 Notations

Let Rer, Rext and Rext2 denote the convex hulls of all feasible solutions of
the linear relaxations of (Fer), (Fext) and (Fext) without Constraints (4), re-
spectively. When considering formulation (Fext), the characteristic vector

xπ ∈ Rn(n−2), associated with a K-partition π, is composed of n(n−1)
2

edge

components followed by n(n−3)
2

components related to the x̃ij variables which
have not been substituted, that is

(xπ)T = (x1,2, . . . , xn−1,n, x̃2,4, . . . , x̃n−1,n).

The component of a vector α ∈ Rn(n−2) related to a variable x̃ij will be
denoted by α̃ij.

A variable which has been substituted in (Fext) is called artificial. The
artificial variables are x̃2,3, ri (i ∈ {1, ..., n}) and x̃1j(j ∈ {1, ..., j}). In a vector
α ∈ Rn(n−2), no component is associated to an artificial variable. However, in
the following, such components may be mentioned to ease the understanding.

When considering the edge-representative formulation, the characteristic

vector xπ ∈ R
n(n+1)

2
−3 contains n − 3 representative components (r4 to rn)

followed by n(n−1)
2

edge components.

Let U and W be two distinct subsets of V and α a vector of Rn(n−2).

The terms α(U) and α(U,W ) refer to the expressions
|U |∑
u=1

|U |∑
u′=u+1

αuu′ and∑
u∈U

∑
w∈W

αuw, respectively.

Transformations

Let P be a polytope which can either denote Pext or one of its face. In
order to characterize the dimension of P we identify the number of linearly
independent hyperplanes H = {x ∈ Rn(n−2) | αTx = α0} including P . To

8



Term Explanation∑
i∈R1

α̃r1i i ∈ R1 is represented by r1 only in π1∑
i∈R1

∑
j∈C1\R1

αij i ∈ R1 is in the same cluster as j ∈ C1\R1 only in π1∑
i∈R1

α̃r2i i ∈ R1 is represented by r2 only in π2∑
i∈R1

∑
j∈C2\R2

αij i ∈ R1 is in the same cluster as j ∈ C2\R2 only in π2.

Table 1
Terms of Equation (23).

obtain a relation between the coefficients of H, we compare two K-partitions
π1 = {C1, C2, C3, . . . , CK} and π2 = {{C1\R1}∪R2, {C2\R2}∪R1, C3, . . . , CK}
with R1 ⊂ C1, and R2 ⊂ C2. Note that R1 or R2 may be empty. If xπ1 and
xπ2 are both in P , the following equality is satisfied

αTxπ1 = αTxπ2 . (22)

Equation (22) can be simplified by removing the coefficients which appear
on both sides of the equation. As a consequence, a relation between the
coefficients of H can be obtained by identifying the coefficients which differ
between xπ1 and xπ2 .

Let us assume that the representative nodes of the clusters in partitions
π1 and π2 are the same. Let r1 and r2 be the representatives of C1 and C2

in these two partitions, respectively. In that case, the relation between the
coefficients of H induced by π1 and π2 is:

∑
i∈R1

(α̃r1i +
∑

j∈C1\R1
αij) +

∑
i∈R2

(α̃r2i +
∑

j∈C2\R2
αij)

=
∑

i∈R1
(α̃r2i +

∑
j∈C2\R2

αij) +
∑

i∈R2
(α̃r1i +

∑
j∈C1\R1

αij).
(23)

Table 1 provides additional explanations of Equation (23). This table only
mentions the equation terms related to R1 since the terms related to R2 are
similarly obtained.

Let R be R1 ∪R2. To help efficiently identifying the relation associated to
partitions π1 and π2, we introduce an operator T called transformation:

T : {C1, C2, R} 7→ {(C1\R) ∪ (R ∩ C2), (C2\R) ∪ (R ∩ C1)}.

This transformation is represented in Figure 1.

The relation obtained through a given transformation satisfies the two
following properties:

• its left-hand side corresponds to the sum of all the coefficients associated
with a variable equal to 1 before the transformation;
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C1\R
R ∩ C1 C2\R

R ∩ C2

Fig. 1. Representation of T (C1, C2, R)

• its right-hand side contains the sum of all the coefficients associated with a
variable equal to 1 after the transformation.

A transformation T : {C1, C2, R} 7→ {C ′1, C ′2} is said to be valid for P , if
there exist K − 2 subsets C3, . . . , CK such that the characteristic vectors of
the partitions π1 = {C1, C2, C3, . . . , CK} and π2 = {C ′1, C ′2, C3, . . . , CK} are in
P .

3.2 Comparison of the two edge-representative formulations

To compare the linear relaxations of (Fer) and (Fext), we consider proj(Rext),
the projection of (Rext) onto the variable space of (Rer) and show that Rext is
strictly included in Rer.

First we prove that the linear relaxation obtained when considering for-
mulation (Fext) without Constraints (4) is not necessarily as good as the one
from formulation (Fer).

Lemma 3.1 proj(Rext2) 6⊂ (Rer) if n ≥ 4 and K ∈ {2, . . . , n− 2}.

Proof. To prove this, we identify a point of proj(Rext2) which is not in (Rer).

Let x1 ∈ Rn(n−2) be the incidence vector of a K-partition π = {C1, . . . , CK}
such that C1 = {1, 2, 3} and C2 = {4}. As represented in Table 2, we consider
a second point x2, identical to x1 except for the values of the components
related to nodes 1 to 4. We can check that x2 is in (Rext2) since it satisfies
Constraints (1)-(3),(6) and (8)-(12). However, r3+x2,3 is greater than 1. Since
the projection of x2 onto the space of the variables of (Rer) does not satisfy
Constraints (4), it is not included in (Rer).

Vector
Components

r2 r3 r4 x1,2 x1,3 x1,4 x2,3 x̃2,3 x2,4 x̃2,4 x3,4 x̃3,4

x2 0.2 0.4 0.4 0.8 0.6 0.6 0.8 0 0.8 0 0.6 0

Table 2
Component values related to nodes 1 to 4 for vectors x2 of Rn(n−2).

2

When Constraints (4) are considered we can prove that, in all non-trivial
cases, proj(Rext) is strictly included in Rer.

Theorem 3.2 proj(Rext) ⊂ Rer if n ≥ 4 and K ∈ {2, . . . , n− 2}.
10



Proof. Any point x ∈ proj(Rext) satisfies Constraints (1)-(4) and (6). Con-
straints (8) and (10) show that Inequalities (5) are also satisfied. Hence
proj(Rext) ⊆ Rer. To prove the strict inclusion, we exhibit a point inRer\ proj(Rext)
.

Let x1 ∈ R
n(n+1)

2
−3 be the incidence vector of a K-partition {C1, . . . , CK}

with C1 = {1, 2, 3}. Let x2 ∈ R
n(n+1)

2
−3 be a vector identical to x1 except for

components x1,3 and x2,3 which have value 0.5 (see Table 3).

Components r1 r2 r3 x1,2 x1,3 x2,3

Initial point x1 1 0 0 1 1 1

Modified point x2 1 0 0 1 0.5 0.5

Table 3
Component values related to nodes 1, 2 and 3 of vectors x1 and x2.

Vector x2 is in (Rer) since it satisfies Relations (1)-(6). To prove that it

is also in proj(Rext), we find a vector x̃2 ∈ R
n(n−1)

2 such that ((x2)T , (x̃2)T ) ∈
(Rext). In particular, components x̃1,3 and x̃2,3 of x̃2 must satisfy Constraints (8),
(10) and (11) which respectively impose

r3 + x̃1,3 + x̃2,3 = 1, (24)

x̃1,3 ≤ x1,3 (25)

and
x̃2,3 ≤ r2. (26)

Since r2 and r3 are equal to 0, x̃2,3 = 0 and x̃1,3 = 1 (according to (24)
and (26)) but this implies that x1,3 = 1 which is different from 0.5.

2

This theorem ensures that the lower bound obtained with the linear relax-
ation (Fext) is at least as good as the one obtained with (Fer). A numerical
comparison of the quality of the linear relaxations of these formulations as
well as formulations (Fnc1) and (Fnc2) is presented in Section 5.

3.3 Dimension of Pext

In [3,4] we prove that Per is full-dimensional when K ∈ {3, . . . , n − 2}. The
following theorem shows that the same applies to Pext.

Theorem 3.3 The dimension of Pext is equal to:

(i) 0 if K ∈ {1, n};
(ii) n(n− 2) + 2 if K = 2;

(iii) n(n− 2) if K ∈ {3, 4, . . . , n− 2} (i.e., it is full dimensional);

(iv) n(n−1)
2
− 1 if K = n− 1.
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Proof. If K ∈ {1, n}, then there is only one integer solution. If K is n − 1,
then there is only one integer solution for each edge ij ∈ E (i.e., K − 1
clusters reduced to one node and one cluster is {i, j}). These solutions are
affinely independent.

Suppose K ∈ {3, . . . , n− 2}. Assume that Pext is included in a hyperplane
H = {x ∈ Rn(n−2)| αTx = α0}. We will prove that all its coefficients are equal
to 0. Since K is in {3, . . . , n−2}, a transformation T (C1, C2, R) 7→ {C ′1, C ′2} is
valid for Pext if C1, C2, C

′
1, C

′
2 are not empty (otherwise fewer than K clusters

are obtained) and |C1 ∪ C2| ≤ 4 (otherwise no partition with K clusters can
be obtained if K is equal to n− 2).

Let a, b and c be three distinct nodes in V . Transformation T ({a, b}, {c}, {b})
(represented in Figure 2a) gives

α̃ab + αab = α̃bc + αbc ∀a, b, c ∈ V. (27)

We deduce from (27) that for all a, b ∈ V the expression α̃ab +αab is equal
to a scalar that we call β.

a
b

c

(a) T ({a, b}, {c}, {b}).

1 b
c d

(b) T ({1, b, c}, {d}, {c}).

Fig. 2. Transformations used to prove the dimension of (Pext) when
K ∈ {3, . . . , n− 2}.

For any three distinct nodes b, c and d in V \{1}, the transformation rep-
resented in Figure 2b gives

α̃1,c + α1,c︸ ︷︷ ︸
=β

+αbc = α̃c,d + αc,d︸ ︷︷ ︸
=β

. (28)

Thus, for any distinct nodes b and c greater than 1, αbc is equal to 0. Since
x̃2,3 and x̃1c for all c ∈ {2, . . . , n} are artificial variables, the coefficients α̃1c

and α̃2,3 are null. Thus, α̃2,3 +α2,3 is equal to 0 and the same applies to β and
α1c.

If K is equal to 2, Table 4 shows that Pext is included in the n−2 indepen-
dent hyperplanes induced by: x1c +x1,2 + 2x̃2c−x2c = 1 for all c ∈ {3, . . . , n}.
In the following we prove that Pext cannot be included in more than n − 2
independent hyperplanes. To this end, we show that the coefficients of any
hyperplane H = {x ∈ Rn(n−2)| αTx = α0} which includes Pext are either equal
to 0 or to a linear combination of the n−2 coefficients α2c for all c ∈ {3, . . . , n}.

When K is equal to 2 a transformation T (C1, C2, R) 7→ {C ′1, C ′2} is valid
for Pext if C1, C2, C

′
1 and C ′2 are non-empty and if C1 ∪ C2 = V . Let c be a

node in V \{1, 2} and let V1 and V2 be two subsets such that {V1, V2, {1, 2, c}}
is a partition of V . From the transformations represented in Figures 3a and 3b
we get

α1c + α(c, V1) = α̃2c + α2c + α(c, V2) (29)

12



Configuration
Value of

x1c + x1,2 + 2x̃2c − x2c
{1, 2, c} ⊂ C1 1

{1} ⊂ C1, {2, c} ⊂ C2 1

{1, 2} ⊂ C1, {c} ⊂ C2 1

{1, c} ⊂ C1, {2} ⊂ C2 1

Table 4
All possible configurations of nodes 1, 2 and c ∈ V \{1, 2} when K = 2.

and

α1c + α(c, V2) = α̃2c + α2c + α(c, V1) (30)

from which we deduce that

α1c = α̃2c + α2c ∀c ∈ {3, . . . , n} (31)

and

α({c}, V1) = α({c}, V2) ∀V1, V2 such that V \(V1 ∪ V2) = {1, 2, c}. (32)

1 V1
c 2 V2

(a) T ({1, c} ∪ V1, {2} ∪ V2, {c}).

1 V2
c 2 V1

(b) T ({1, c} ∪ V2, {2} ∪ V1, {c}).

V \{c, d}
c d

(c) T (V \{d}, {d}, {c}).

1 U
c d

2

(d) T ({1, c} ∪ U, {2, d}, {2, c}).

Fig. 3. Transformations used to prove the dimension of (Pext) for K = 2.

Let d be a node in V1. By applying Equation (32) to V ′1 = V1\{d} and
V ′2 = V2 ∪ {d} we deduce that αcd is equal to 0 for all c, d ∈ {3, . . . , n}.

Transformation T (V \{d}, {d}, {c}) (see Figure 3c) shows that

α1c + α2c + α(c, V \{1, 2, c, d})︸ ︷︷ ︸
=0

= α̃cd ∀c, d ∈ {3, . . . , n} (33)

This result ensures that for all distinct nodes c and d in V \{1, 2}, the
expressions α̃cd and α1c + α2c are equal to a constant that we denote by γ.
Thanks to Equation (31) for c equal to 3 and the fact that α̃2,3 is equal to 0,
we deduce that the expression 2α2,3 is also equal to γ.
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Equations (31), (33) and the transformation represented in Figure 3d with
U = V \{1, 2, c, d} show that

α1c︸︷︷︸
=γ−α2,c

+α(c, U)︸ ︷︷ ︸
=0

+ α̃2d + α2d︸ ︷︷ ︸
=α1d

= α1,2 + α(2, U) + α̃cd︸︷︷︸
=γ

+ αcd︸︷︷︸
=0

(34)

which leads to

α1d = α1,2 + α(2, U) + α2c. (35)

Finally, we use Equations (31), (33) and (35) to show that for all c ∈
{3, . . . , K} the coefficients α1c, α̃2c and α1,2 are equal to the expressions 2α2,3−
α2c, 2(α2,3−α2c) and α2,3−

∑
i∈{4,...,n}

α2i, respectively. Thus, all the coefficients

of H are either 0 or a linear combination of the n − 2 coefficients α2c for all
c ∈ {3, . . . , n}. 2

3.4 The first linearization inequalities

Inequalities (10) involve artificial variables x̃1j when i is equal to 1 and artificial
variable x̃2,3 when j is equal to 3. We prove that in all other cases, these
inequalities are facet-defining. Let F 1

i,j be the face of (Pext) induced by (10)
for two nodes i, j such that i < j.

Theorem 3.4 If K ∈ {3, . . . , n−2}, i ≥ 2 and j ≥ 4, F 1
i,j is a facet of (Pext).

Proof. Let H = {x ∈ Rn(n−2) | αTx = α0} be a hyperplane including F 1
i,j.

We prove that αTx is necessarily equal to αij(xij − x̃ij).
To ensure that each transformation considered in the remainder of this

proof is valid for F 1
i,j, we only consider configurations in which nodes i and j

are not together in a cluster C of size greater than 2.

Let a, b and c be three nodes of V such that |{a, b, c} ∩ {i, j}| ∈ {1, 2}.
Transformation T ({a, b}, {c}, {b}) (represented in Figure 2a) shows that for
any couple of nodes α̃ab + αab is equal to a constant that we denote by β.

Now let a, b and c be three nodes of V \{1} which satisfy |{a, b, c}∩{i, j}| ∈
{1, 2} and {a, b} 6= {i, j}. Transformation T ({1, a, b}, {c}, {b}) (represented
in Figure 2b) proves that αab is equal to 0.

The fact that x̃2,3 is an artificial variable ensures that α2,3 = β. Since α2,3

is equal to 0, the same applies to β. Thus, all the coefficients are null except
αij and α̃ij which satisfy αij = −α̃ij. 2

3.5 The second linearization inequalities

For any node i ∈ {4, . . . , n} Inequality (11) can be reformulated by substitut-
ing artificial variables x̃ij, ri and x̃1i by their expression:

x̃ij + x1,i +
i−1∑
h=2

x̃hi ≤ 1. (36)
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Let F 2
i,j be the face of (Pext) induced by (36) for two nodes i, j such that

4 ≤ i < j.

Remark 3.5 F 2
i,j is not facet-defining of Pext if K is equal to n− 2.

Proof. When K is equal to n − 2 the clusters which are not reduced to one
point are either two clusters of size 2 or one cluster of size 3.

Moreover, node i cannot be the only node in a cluster. Indeed, in that
case the characteristic vector of the corresponding partition is not in the face
induced by Equation (36) (since x̃ij +x1,i +

∑i−1
h=2 x̃hi is not equal to 1). Thus,

F 2
i,j is included in the hyperplane induced by∑

k,l∈V \{i}

xk,l = 1. (37)

2

Theorem 3.6 If K ∈ {3, . . . , n− 3} and i ≥ 4, F 2
i,j is a facet of (Pext).

Proof. Let H = {x ∈ Rn(n−2) | αTx = α0} be a hyperplane including F 2
i,j.

We prove that αTx is necessarily equal to αij(x̃ij + x1i +
i−1∑
h=2

x̃hi).

To ensure that each transformation considered in the remainder of this
proof is valid for F 2

i,j, we only consider configurations in which either nodes i
and j are in the same cluster or i is not the representative of its cluster.

We consider a partition π = {C1, . . . , CK} such that {h, i} ⊂ C3 with
h ∈ {1, . . . , i − 1, j}. Similar to the proof of Theorem 3.3 – thanks to the
transformations represented in Figure 2a and 2b – we prove that for any
couple of distinct nodes a and b in V \{i} the coefficients αab and α̃ab are equal
to 0.

Let k and l be two nodes in V \{1, i, j}. Transformation T ({i, j}, {1, k, l}, {1, k})
represented in Figure 4a proves that

α1l + αkl︸ ︷︷ ︸
=0

+α̃ij = α1i + αik + α1j + αjk︸ ︷︷ ︸
=0

∀k ∈ V \{1, i, j}. (38)

i j
l

1 k

(a) T ({i, j}, {1, k, l}, {1, k}).

i j
k
l

(b) T ({i, j}, {k, l}, {l}).

Fig. 4. Transformations used to prove the dimension of face F 2
i,j.

For any node l less than i, the transformation represented in Figure 4b
shows that

α̃ij + α̃kl + αkl︸ ︷︷ ︸
=0

= α̃il + αil + α̃jl + αjl︸ ︷︷ ︸
=0

∀l ∈ {1, . . . , i− 1}. (39)
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In particular, Equation (39) with l equals to 1 leads to α̃ij = α1i. This
and Equation (38) give αik equals 0 for any node k in V \{1, i, j}.

For l greater than i the transformation represented in Figure 4b shows that
α̃il is null. 2

3.6 The third linearization inequalities

For any node i ∈ {4, . . . , n} Inequality (12) can be reformulated by substitut-
ing artificial variables ri and x̃1i by their expression:

xij − x̃ij − x1,i −
i−1∑
h=2

x̃hi ≤ 0. (40)

Let F 3
i,j be the face of (Pext) induced by (40) for two nodes i, j such that

4 ≤ i < j.

Remark 3.7 F 3
i,j is not a facet of Pext if K is equal to n− 2.

Proof. We prove that the characteristic vector associated with any partition
in F 3

i,j satisfies
xhi = x̃hi ∀h ∈ {2, . . . , i− 1}. (41)

Since K is equal to n− 2, the clusters which are not reduced to one point
are either two clusters with two nodes or one cluster with three nodes.

If i and j are in the same cluster one can easily see that Equation (41) is
satisfied. If i and j are in different clusters, node i is the representative of its

cluster (otherwise, xij − x̃ij −x1,i−
i−1∑
h=2

x̃hi = 0 is not satisfied). Thus, xhi and

x̃hi are both equal to 0 for any node h ∈ {2, . . . , i− 1}.
2

Theorem 3.8 If K ∈ {3, . . . , n − 3} and i ∈ {4, . . . , n}, F 3
i,j is a facet of

(Pext).

Proof. Let H = {x ∈ Rn(n−2) | αTx = α0} be a hyperplane including F 3
i,j.

We prove that αTx is necessarily equal to αij(xij − x̃ij − x1i −
i−1∑
h=2

x̃hi).

To ensure that each transformation considered in the remainder of this
proof is valid for F 3

i,j we only consider configurations in which either nodes i
and j are in the same cluster or node i is the representative of its cluster.

Let π = {C1, . . . , CK} be a partition such that {i, j} ⊂ C3. Similar to the
proof of Theorem 3.3 – thanks to the transformations represented in Figure 2a
and 2b – we prove that for any couple of distinct nodes a and b in V \{i, j}
the coefficients αab and α̃ab are equal to 0.

Transformation T ({i, j}, {a}, {j}) shows that α̃i,j + αi,j is equal to α̃a,j +
αa,j for any node a ∈ V \{i, j}. To prove that these two expressions are
equal to 0, we consider a partition π = {{1, j}, C2, {i}, C4, . . . , CK} and use
transformation T ({1, j}, C2, {1}).
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The values of the remaining coefficients of H are obtained through the
transformations presented in Table 5.

Conditions Transformation Result

b ∈ V \{1, i, j}
a ∈ {1, . . . , i− 1}\{b}

i
j 1 b α̃ij + αij︸ ︷︷ ︸

=0

= α1j︸︷︷︸
=0

+αbj

i j
a b α̃ai + αai + α̃aj + αaj︸ ︷︷ ︸

=0

= α̃ab + αab︸ ︷︷ ︸
=0

+α̃ij

a
i j 1 b α̃ai + αai︸ ︷︷ ︸

=α̃ij

+ α̃aj︸︷︷︸
=α1j

+ αaj︸︷︷︸
=0

= αbi + α1i︸︷︷︸
=α̃ij

+α1j + αbj︸︷︷︸
=0

∀z ∈ {i+ 1, . . . , n}\{j} j
i

z α̃ij + αij︸ ︷︷ ︸
=0

= α̃iz + αiz︸︷︷︸
=0

Table 5
Transformations used in Theorem 3.8. Each line presents a step of the proof. The

last column corresponds to the result.

2

3.7 The sub-representative inequalities

We introduce a new family of inequalities called the sub-representative in-
equalities. For each pair of nodes i and j with i less than j, the associated
sub-representative inequality is defined as

xij ≤
i∑

h=1

x̃hj. (42)

This constraint ensures that if nodes i and j are in the same cluster, then
j is represented by a node whose index is at most i. These inequalities are
clearly valid for (Pext). Let Fi,j be the face of (Pext) induced by (42) for two
nodes i, j such that i < j.

Theorem 3.9 If K ∈ {3, . . . , n−2}, Fi,j is a facet of (Pext) if and only if the
following conditions are satisfied:

(i) i ≥ 2;

(ii) K ≤ n− 3 or i = 2.

Proof. We first prove that Equation (42) cannot be facet-defining if Con-
ditions (i) and (ii) are not satisfied. If i is equal to 1, Constraint (42) is
redundant since for all k ∈ {2, . . . , n} x̃1k is an artificial variable equal to x1k.
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If Condition (ii) is not satisfied, K is equal to n − 2 and i is greater than 2.
In that case Fi,j is included in the hyperplane induced by x2j = x̃2j. Indeed,
if 2 and j are together in a cluster C, the same applies to i (otherwise the
incidence vector of the K-partition is not in Fi,j). Since K is equal to n− 2,
node 1 cannot be in C and thus, node j is represented by node 2.

Let H = {x ∈ Rn(n−2) | αTx = α0} be a hyperplane including Fi,j and let
a and b be two distinct nodes in V \{1, 2, j}. We prove that αTx is necessarily

equal to αij(xij −
i∑

h=1

x̃hj).

To ensure that each transformation considered in the remainder of this
proof is valid for Fi,j we only consider configurations in which node j is the

only node of its cluster (i.e, xij =
i∑

h=1

x̃hj = 0) or nodes i and j are in the

same cluster (i.e, xij =
i∑

h=1

x̃hj = 1 ). Let π = {C1, . . . , CK} be a K-partition

such that:

• {1, 2, a, b} ⊆ C1 ∪ C2;

• C3 = {j};
• the remaining nodes are scattered in clusters C2 and C4 to CK .

Let U be the set C2\{1, 2, a, b}. Transformations T ({1, a, b}, {2} ∪ U, {b})
and T ({1, b}, {2, a} ∪ U, {b}) show that

αab = 0 ∀a, b ∈ V \{1, 2, j}. (43)

Let c, d and e be three distinct nodes in V \{i, j}. The transformation
represented in Figure 5a gives

α̃cd + αcd = β ∀c, d ∈ V \{i, j}, (44)

with β a scalar. In particular, we obtain:

• α1k = β for all k ∈ V \{i, j} (since x̃1k is an artificial variable);

• α̃cd = β for all c, d ∈ V \{1, 2, i, j} thanks to Equation (43).

c
d

e

(a) T ({c, d}, {e}, {d}).

1 2 U
a b

(b) T ({1, 2, a} ∪ U, {b}, {a}).

1 b U
a i

(c) T ({1, a, b} ∪ U, {i}, {a}).

d
c i

j

(d) T ({c, d}, {i, j}, {c}).

Fig. 5. Transformations used to prove that Fi,j is a facet if Conditions (i), (ii) and
(iii) are satisfied.

For all a in V \{1, 2, i, j} transformation T ({1, 2, a}∪U, {b}, {a}) (see Fig-
ure 5b) proves that α2a is null and the transformation represented in Fig-
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ure 5c shows that α̃ai + αai = β. Transformations T ({1} ∪ U, {2, i}, {i})
and T ({1} ∪ U, {2, i}, {2}) prove that α̃2i + α2i and α1i are equal to β, re-
spectively. Since β is equal to α̃2,3 + α2,3 and x̃2,3 is an artificial variable, we
deduce that β is equal to 0.

Transformation T ({c, i}, {j}, {i}) leads to αij = −α̃ij. Transformation T ({c, d}, {i, j}, {c})
(see Figure 5d) gives αcj = 0 if c is greater than i and α̃ij = α̃cj+αcj otherwise.
We then prove thanks to T ({c, d, i}, {j}, {c}) that for all c > i α̃cj = 0.

Lastly, for i > 2 Conditions (iii) ensure that K is less than n − 2. Thus,
transformation T ({1, c, d, i}, {j}, {d, j}) leads to αcj = 0 for all c ∈ {2, . . . , i−
1}.

2

3.8 At least K clusters or at most K clusters

Formulation (Fext) can easily be adapted to the cases in which at least or at
most K clusters are sought, by replacing Equality (6) with

n∑
i=1

ri ≤ K (45)

or
n∑
i=1

ri ≥ K. (46)

This observation leads to the two following formulations:

(F+
ext)


minimize

∑
ij∈E

wijxij

subject to (1)− (4), (8)− (12) and (46)

and

(F−ext)


minimize

∑
ij∈E

wijxij

subject to (1)− (4), (8)− (12) and (45)

The variable substitutions considered in (Fext) are also possible for these
two formulations with the exception of r3, as we no longer have (6).

Let Pext,K , P−ext,K and P+
ext,K denote the convex hulls of all feasible solutions

of (Fext), (F+
ext) and (F−ext), respectively. Let P1 be Pext,K or one of its faces

and let P2 be P+
ext,K , P−ext,K or one of their faces.

Remark 3.10 If P1 ⊂ P2 and P2 contains a feasible solution π with a number
of clusters different from K, then dim(P2) ≥ dim(P1) + 1.

This is due to the fact that Pext,K is a projection of either P+
ext,K or P−ext,K

on the hyperplane defined by
n∑
i=1

ri = K.
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The following proofs are based on this remark and the results obtained
previously with Pext.

Theorem 3.11 The dimension of P+
ext is equal to :

(i) n(n− 2) + 1 if K ∈ {1, . . . , n− 2};
(ii) n(n−1)

2
if K = n− 1.

Proof. Polytope P+
ext,n−1 only contains the n(n−1)

2
affinely independent solu-

tions of Pext,n−1 and the solution πn = {{1}, {2}, . . . , {n}}. For k less than
n− 1, P+

ext,k includes πn and all the solutions in Pext,n−2. 2

Theorem 3.12 The dimension of P−ext is equal to :

(i) 0 if K = 1;

(ii) n(n− 2) + 3 if K = 2;

(iii) n(n− 2) + 1 if K ∈ {3, . . . , n}.

Proof. Polytope P−ext,1 only contains one solution.

P−ext,K for K ∈ {3, . . . , n} contains all the solutions in Pext,n−2 and π1 =
{{1, 2, . . . , n}}.

P−ext,2 contains Pext,2 and solution π1 so dim(P−ext,2) ≥ n(n− 2) + 3. More-
over, as represented in Table 4, P−ext,2 is included in the hyperplanes x1c +
x1,2 + 2x̃2c − x2c = 1 for all c ∈ {3, . . . , n} which ensure that dim(P−ext,2) =
n(n− 2) + 3. 2

We now prove that all the facets identified previously for Pext,K are also
facets of P+

ext,K and P−ext,K .

Let F 1+
ij and F 1−

ij respectively be the faces of P+
ext,K and P−ext,K associated

with Inequality (10) for i, j ∈ V and K ∈ {1, . . . , n}.

Theorem 3.13 If K ∈ {3, . . . , n}, i ≥ 2 and j ≥ 4, the face F 1+
i,j is a facet

of P+
ext,K.

Proof. All solutions in F 1
ij are also in F 1+

i,j . Moreover, F 1+
i,j contains any

solution with K + 1 clusters such that i and j are not in the same clusters.2

The following theorems can be proved using similar arguments.

Theorem 3.14 If K ∈ {1, . . . , n − 2}, i ≥ 2 and j ≥ 4, the face F 1−
i,j is a

facet of P−ext,K.

Let F 2+
i,j and F 2−

i,j respectively be the faces of P+
ext,K and P−ext,K induced

by (36) for two nodes i, j such that 4 ≤ i < j.

Theorem 3.15

• If K ∈ {3, . . . , n} and i ≥ 4, F 2+
i,j is a facet of P+

ext,K.

• If K ∈ {1, . . . , n− 3} and i ≥ 4, F 2−
i,j is a facet of P−ext,K.

Let F 3+
i,j and F 3−

i,j respectively be the faces of P+
ext,K and P−ext,K induced

by (40) for two nodes i, j such that 4 ≤ i < j.
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Theorem 3.16

• If k ∈ {3, . . . , n} and i ∈ {4, . . . , n}, F 3+
i,j is a facet of P+

ext,K.

• If k ∈ {1, . . . , n− 3} and i ∈ {4, . . . , n}, F 3−
i,j is a facet of P−ext,K.

Let F+
i,j and F−i,j respectively be the faces of P+

ext,K and P−ext,K induced
by (42) for two nodes i, j such that i < j.

Theorem 3.17

• If K ∈ {3, . . . , n}, F+
i,j is a facet of P+

ext,K if the following conditions are
satisfied:

(i) i ≥ 2;

(ii) K ≤ n− 3 or i = 2.

• If K ∈ {1, . . . , n− 2}, F−i,j is a facet of P−ext,K if the following conditions are
satisfied:

(i) i ≥ 2;

(ii) K ≤ n− 3 or i = 2.

4 Branch-and-cut strategy

In this section, we briefly present our branch-and-cut algorithm which is di-
vided in two steps:

(i) a thorough cutting-plane step at the root node during which valid in-
equalities are added to an incomplete version of formulation (Fext) (i.e.,
formulation (Fext) without its largest families of inequalities) in order to
improve as much as possible the value of the relaxation at the root of the
branch-and-cut tree;

(ii) a classical CPLEX branch-and-cut step which starts with the full formu-
lation (Fext) plus the inequalities generated during the cutting-plane step
which were tight for the last computed relaxation.

Our branch-and-cut takes advantage of the following families of inequalities
that we considered in a previous work [3,4]: the strengthened triangle inequal-
ities [3,4], the 2-partition inequalities [22], the general clique inequalities [12]
and the paw inequalities [4].

In [3,4] we proved that the triangle inequalities (2) are not facet-defining for
Per when i is greater than both j and k [3,4]. In that case they are dominated
by the following inequalities which are all facet-defining for K ∈ {2, . . . , n−3}:

xij + xik − xjk + ri ≤ 1 ∀j, k ∈ V \{i}, j < k < i. (47)

We directly use this reinforcement in formulations (Fer) and (Fext).

The 2-partition inequality associated with two disjoint subsets of nodes S
and T is:

x(S, T )− x(S)− x(T ) ≤ min(|S|, |T |). (48)
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Given a subset Z ⊂ V of size qK + p (with p ∈ {0, 1, . . . , K − 1}) the
general clique inequality associated with Z is:

x(Z) ≥ (q + 1)q

2
p+

q(q − 1)

2
(K − p). (49)

The paw inequality related to four nodes a, b, c and d of V is:

xab + xbc − xac + xcd + xb + xc ≤ 2. (50)

We use two approaches to separate these inequalities:

(i) greedy algorithms which quickly search for several violated inequalities;

(ii) Kernighan-Lin type algorithms [29] which are slower, only seek to find
one inequality and are only used when all the greedy algorithms fail at
finding any violated inequality.

We use the last approach only for the 2-partition inequalities and the gen-
eral clique inequalities, which appeared to be significantly more useful in our
previous studies [2,3,4].

Our greedy algorithms to separate the 2-partition inequalities is based on
Grötschel and Wakabayashi [22]. It seeks inequalities in which set S is reduced
to only one node.

For the general clique inequalities, we adapt a greedy algorithm which
achieves an approximation factor of 2 of the densest at least k-subgraph prob-
lem [30]. This problem consists in identifying a subgraph of at least k nodes
of maximal density (i.e., a set S ⊂ V which maximizes

∑
i,j∈S

wi,j). The worst

case running time of this algorithm is O(n3) but, as mentioned in [22], it is
much faster in practice.

We define a greedy heuristic for the paw inequalities which for each b
successively seeks the nodes c, a and d which maximize the left-hand side of
Equation (50).

For the sub-representative inequalities we consider each node i ∈ V and
seek the node j which leads to the most violated inequality. The running
time of these two greedy algorithms is O(n2). The complexity of each phase
of a Kernighan-Lin algorithm is also O(n2). In practice, it appears that the
number of phases is rather small (around 3 in our experiments).

In order to quickly compute the successive relaxations during the cutting-
plane step, we remove Constraints (2), (4), (10)-(12) and (47) from (Fext). At
each cutting-plane step, violated inequalities from these removed families are
sought through enumeration heuristics. For example, to separate the triangle
inequalities, three permutations of (1, 2, . . . , n) – Si = (si1, s

i
2, . . . , s

i
n), Sj =

(sj1, s
j
2, . . . , s

j
n) and Sk = (sk1, s

k
2, . . . , s

k
n) – are randomly generated. These three

sets define the order in which the triangle inequalities are tested (e.g., the first
inequality considered corresponds to nodes si1, s

j
1 and sk1). The enumeration

heuristics used for the other families of inequalities follow the same principle.
To limit the number of inequalities in the formulation, we only add for each
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family the 500 most violated inequalities among the 3000 first that we find.

During the cutting-plane step, feasible solutions are regularly obtained
from linear relaxations via a greedy algorithm which first identifies the K
highest representative variables of the current linear relaxation x∗ and then
assigns each non-representative node i to the cluster of the representative r
which maximizes x∗ir.

When no violated inequality is found, the branch-and-cut step is initiated
with the complete formulation (Fext) plus the inequalities generated during
the cutting-plane step which are tight for the last relaxation. This step uses
CPLEX branch-and-cut in which all the greedy separation algorithms are used
at each node of the enumeration tree. The Kernighan-Lin type algorithms are
not considered during this step due to their complexity.

5 Numerical results

In this section we compare the four formulations presented in Section 2 in
terms of the value of the linear relaxation and computation time. The per-
formance of the branch-and-cut algorithm described in Section 4 is matched
against the default CPLEX branch-and-cut approach for each of the four for-
mulations.

5.1 Quality of the linear relaxations

The linear relaxations of the formulations are compared over data sets D1,
D2 and D3 each composed of 100 different graphs for each considered value of
n. In these data sets the values of the edge weights are randomly generated
using a uniform distribution respectively in the following intervals: [0, 500],
[−250, 250] and [−500, 0]. These instances are intended to be rather difficult
to solve when compared to real instances.

For a given graph G and a given formulation F , let x∗ be the value of the
optimal integer solution and let xr be the value of the corresponding linear
relaxation. We define the relative gap of F over G by 100 ∗ |x∗ − xr|/x∗. The
smaller the relative gap, the better the linear relaxation.

The results obtained for the four formulations over D1, D2 and D3 are
presented in Table 6, Table 7 and Table 8, respectively. They contain, for
each couple (n,K) and each formulation, the average relative gap of the 100
corresponding graphs.

We first observe that the values of the linear relaxations are significantly
different in the three tables. The highest values are obtained with the instances
fromD1 whereas the lowest are observed over the instances ofD3. This is likely
related to the fact that the K-partitioning problem is polynomial whenever
all the edges have negative values [21]. The main conclusion of these three
tables is that the extended formulation always gives the best results closely
followed by (Fer). The node-cluster formulations are significantly worse except
for (Fnc2) in D3 and (Fnc1) in D1 when K is equal to 2. In an effort to explain
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these observations, we prove (see Appendix) the three following bounds.

Bound 5.1 The optimal value of the linear relaxation of (Fnc2) is less than
or equal to min

j∈{2,...,K}
min
i<j

wij

2K−j+1 .

Bound 5.2 If K ∈ {3, . . . , n}, then the optimal value of the linear relaxation
of (Fnc1) is less than or equal to min

j∈{2,...,K−1}
min
i<j

wij

2K−j .

Bound 5.3 If K is equal to 2, then the optimal value of the linear relaxation

of (Fnc1) is in the interval [min
i,j∈V

wij
n−1
2
, 1
2

n∑
i=2

w1i].

These bounds show that the values of the linear relaxation, for these two
formulations, are extremely weak over instances with positive weights on their
edges (e.g., instances from D1). To illustrate this statement, we consider an
instance Ge for which all edge weights are equal to 1. Bound 5.1 states that the
linear relaxation of (Fnc2) could not be better than 1

2K−1 . This shows why the
quality of the relaxation decreases with K. We can draw similar conclusions
for (Fnc1) via Bound 5.2 which gives a maximal value of the relaxation equal
to 1

2K−2 when K is greater than 2. Finally, the last bound explains why the
results of (Fnc1) are slightly better when K is equal to 2. Indeed, in this case,
Bound 5.3 shows that the value of the linear relaxation of Ge is equal to n−1

2
.

5.2 Optimal resolution

In order to compare the four formulations in terms of optimal resolution, we
use for each of them CPLEX 12.7 with the default parameters as well as
a 2.50 GHz Intel Core i5 2520M CPU equipped with 8 GByte RAM. The n
general clique inequalities induced by the sets Z of size n − 1 and n are
used to reinforce each formulation since it proved to significantly speed up
the resolution in our preliminary experiment. The branch-and-cut algorithm
described in Section 4 is also considered.

5.2.1 Random instances

For a given value of n and K, the five resolution methods (i.e., the four
formulations and the branch-and-cut algorithm) are tested on the 10 first
instances of data sets D1, D2 and D3. We interrupt the cutting-plane step
after 500 seconds as we observed that the increase of the relaxation value tends
to decrease over the iterations.

A total of 2400 partitioning problems are solved on the random instances.
Therefore, the maximal computation time considered is relatively small (10
minutes, for a total computing time of 400 hours).

The results over the three data sets are presented in Tables 10, 11 and 12.
We first observe that the performances of formulations (Fer) and (Fext) are very
similar in terms of time and gap. The better quality of the linear relaxation
of (Fext) is compensated by a faster computation of the linear relaxation of
(Fer) which enables us to explore more nodes in the branch-and-cut tree. This

24



n Formulation
K

2 3 4 5 6 7 8 9 10

15

(Fnc1) 82 97 98 99 99 99 99 100 100

(Fnc2) 99 99 99 99 100 100 100 100 100

(Fer) 87 79 71 60 48 34 20 11 5

(Fext) 76 70 61 51 39 25 13 7 3

16

(Fnc1) 83 98 99 99 99 99 99 100 100

(Fnc2) 99 99 99 100 100 100 100 100 100

(Fer) 88 82 74 64 53 41 24 14 8

(Fext) 78 73 65 55 44 32 18 9 5

17

(Fnc1) 84 98 99 99 99 100 100 100 100

(Fnc2) 99 99 99 100 100 100 100 100 100

(Fer) 89 83 76 68 58 47 31 18 11

(Fext) 79 74 67 59 49 38 23 12 7

18

(Fnc1) 86 98 99 99 99 100 100 100 100

(Fnc2) 99 99 100 100 100 100 100 100 100

(Fer) 90 85 79 71 62 51 39 26 16

(Fext) 81 77 70 62 53 42 30 18 10

19

(Fnc1) 86 98 99 99 99 100 100 100 100

(Fnc2) 99 99 100 100 100 100 100 100 100

(Fer) 91 86 81 74 67 58 47 34 21

(Fext) 82 78 72 65 57 49 38 25 14

20

(Fnc1) 87 99 99 99 100 100 100 100 100

(Fnc2) 99 100 100 100 100 100 100 100 100

(Fer) 92 88 83 77 70 62 52 39 25

(Fext) 83 80 75 69 61 53 44 31 18

Table 6
Average relative gap percentage of the four considered formulations over one

hundred graphs of D1 instances for different values of n and K.

suggests that a more dynamic management of the constraints in (Fext) may
improve the results.

For each of the three data sets, the efficiency of the node-cluster formu-
lations generally decreases when K increases. In particular, when K is equal
to 2, (Fnc1) is significantly better. The main exception to these observations
appears in data set D2 when n is equal to 50 where these formulations fail at
finding good feasible solutions.

Data sets D1 and D2 lead to similar observations. Method (BC) provides
reduced computation times and better gaps than (Fer) and (Fext) while the
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n Formulation
K

2 3 4 5 6 7 8 9 10

15

(Fnc1) 122 83 79 83 92 105 123 147 184

(Fnc2) 118 73 61 56 53 51 50 49 49

(Fer) 29 9 8 9 12 15 17 20 24

(Fext) 21 8 7 9 11 12 14 13 14

16

(Fnc1) 128 88 85 87 95 107 123 144 175

(Fnc2) 124 78 66 60 57 56 55 54 54

(Fer) 30 9 8 9 11 14 17 20 24

(Fext) 22 8 8 9 11 13 14 15 16

17

(Fnc1) 149 97 91 94 101 111 125 143 167

(Fnc2) 146 86 73 67 64 62 61 59 58

(Fer) 41 13 10 12 14 16 19 22 25

(Fext) 32 11 10 11 13 15 16 17 18

18

(Fnc1) 146 100 95 97 103 112 124 139 159

(Fnc2) 143 90 77 70 67 64 63 61 60

(Fer) 38 14 11 12 14 17 19 21 23

(Fext) 29 12 11 12 14 16 17 18 18

19

(Fnc1) 147 107 102 104 110 118 129 143 162

(Fnc2) 143 96 84 77 74 72 70 69 68

(Fer) 37 16 14 15 17 20 22 25 28

(Fext) 29 15 14 14 16 18 20 21 21

20

(Fnc1) 148 111 107 109 115 123 134 146 163

(Fnc2) 144 100 88 83 79 77 76 74 73

(Fer) 37 18 16 17 19 21 23 25 28

(Fext) 29 17 16 17 18 20 22 23 23

Table 7
Average relative gap percentage of the four considered formulations over one

hundred graphs of D2 instances for different values of n and K.

node-cluster formulations give the worst ones. The size of the branch-and-cut
tree for (Fnc1) and (Fnc2) shows that a lot of branching is necessary to improve
the quality of the linear relaxation. This can be due to a poor initial value of
the relaxation as well as to the presence of symmetry in the formulations.

In data set D3 formulation (Fnc1) gives the best results for K equal to 2
and the worst ones otherwise, while (Fnc2) is better than (Fext) and (Fer). This
is also the data set in which the node-cluster formulations browse the fewest
nodes while the edge-representative formulations browse the most nodes. The
results of our branch-and-cut approach on this data set are almost always

26



n Formulation
K

2 3 4 5 6 7 8 9 10

15

(Fnc1) 10 22 36 54 76 105 143 196 274

(Fnc2) 3 7 13 18 26 34 44 56 72

(Fer) 3 8 13 19 26 34 44 57 73

(Fext) 3 7 13 18 25 34 44 56 72

16

(Fnc1) 9 20 33 49 69 94 127 171 232

(Fnc2) 3 7 12 17 23 31 40 51 65

(Fer) 3 7 12 17 23 31 40 51 66

(Fext) 3 7 11 17 23 31 40 51 64

17

(Fnc1) 9 19 32 46 64 86 115 151 201

(Fnc2) 3 7 11 16 22 29 37 47 59

(Fer) 3 7 11 16 22 29 37 47 59

(Fext) 3 7 11 16 22 29 37 46 58

18

(Fnc1) 8 18 30 43 60 80 104 135 176

(Fnc2) 3 6 10 15 21 27 35 43 53

(Fer) 3 6 11 15 21 28 35 43 54

(Fext) 3 6 10 15 21 27 34 43 53

19

(Fnc1) 8 17 28 40 56 74 96 123 158

(Fnc2) 3 6 10 14 20 25 32 40 49

(Fer) 3 6 10 14 20 26 32 40 50

(Fext) 3 6 10 14 19 25 32 40 49

20

(Fnc1) 8 16 27 39 53 70 90 114 145

(Fnc2) 3 6 10 14 19 25 31 38 46

(Fer) 3 6 10 14 19 25 31 38 47

(Fext) 3 6 10 14 19 25 31 38 46

Table 8
Average relative gap percentage of the four considered formulations over one

hundred graphs of D3 instances for different values of n and K.

worse than the ones of the other methods. This is not surprising as it has
been noticed experimentally [3] that a remarkably small number of violated
inequalities can be found for D3 instances.

In the light of these results it appears that, for these difficult instances,
the node-cluster formulations give better results for D3 instances (the polyno-
mial case), whereas the edge-representative formulations should be preferred
otherwise.
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Instance 1 2 3 4 5 6

Average weight -32 -354 162 -29 -349 163

Standard deviation 9443 10331 10194 9428 10332 10207

Minimal weight -151693 -212231 -181596 -153151 -214271 -183342

Maximal weight 239752 170713 220276 242057 172355 222394

Table 9
Average, standard deviation, minimal and maximal value of the edge weights for

the six instances from the spin-glass data set.

5.2.2 Instances from the literature

We now evaluate the behavior of the five methods on instances from the liter-
ature with an increased computation time of 1 hour. Eight instances from the
TSPLIB [38] with different number of cities (from 29 to 127) as well as six in-
stances of ground-states of the Ising model of spin-glass with 100 nodes [33,34]
are considered. The results of the TSPLIB and the spin-glass instances are
presented in Table 13 and Table 14, respectively.

Similar to D1 instances, the weights in the TSPLIB are non-negative as
they correspond to distances between cities. This may explain why the results
look similar. The node-cluster formulations give for most instances the worst
results while the performances of (Fer) and (Fext) are similar. The branch-and-
cut algorithm results are significantly better and it always finds the optimal
solution for instances with less than 70 nodes. We can observe that all methods
show better performances on this data set than over the random instances of
D1. A possible explanation is the fact that real instances are more likely
to contain underlying clusters (e.g., several cities close to one another in a
TSPLIB instance) than random ones.

Like dataset D2, the spin-glass instances contain positive and negative val-
ues on their edges (see Table 9). The four formulations behave similarly in
both data sets, however, the results of the branch-and-cut are not as impres-
sive. Indeed, for K equal to 4 and 6 it only provides a slight improvement
compared to our formulations and for K equal to 8 the results are worst.
We believe that this is due to the huge number of inequalities (in particular
the O(n3) triangle inequalities) which slows down the separation algorithms.
Thus, interesting perspectives to improve the performances on large graphs
would be to enhance the separation algorithms as well as improving the man-
agement of the triangle inequalities.

6 Conclusion

We have compared two node-cluster formulations for the K-partitioning prob-
lem with an edge-representative formulation (Fer) and its extended version
(Fext). An advantage of the formulations with representative variables is that
they enable us to fix the number K of clusters without resorting to the node-
cluster variables, and thus, avoiding a lot of symmetry. This advantage is re-
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flected in our numerical experiments when weights are not all negative and K
is strictly greater than 2.

These numerical results can be improved significantly by using facet-defining
inequalities in a branch-and-cut process that takes advantage of facet-defining
inequalities previously studied in [3,4] as well as the sub-representative in-
equalities introduced in this paper.

Finally, our extended formulation (Fext) has an even better relaxation than
our basic edge-representative formulation but at the price of an increased size.
As a result, both formulations give similar performances in our experiments.
We believe that the better relaxation provided by (Fext) combined with an
efficient management of the triangle inequalities might significantly improve
the results for larger instances.

29



n K
Time (s) and Gap (%) Nodes

(Fnc1) (Fnc2) (Fer) (Fext) (BC) (Fnc1) (Fnc2) (Fer) (Fext) (BC)

time gap time gap time gap time gap time gap

20

2 2 0 8 0 6 0 7 0 0 0 948 1656 12 5 0

4 161 1 550 6 16 0 24 0 2 0 71059 26046 460 293 0

6 328 3 36 0 6 0 9 0 0 0 84519 6094 344 144 0

8 394 7 2 0 1 0 1 0 0 0 167181 474 45 16 0

30

2 170 0 600 38 156 0 135 0 3 0 43224 4273 247 102 0

4 600 61 600 72 601 9 600 9 149 0 45047 2445 2728 1723 1

6 601 84 601 61 481 6 496 6 59 0 52824 3846 4547 2500 46

8 601 93 601 40 88 0 121 0 8 0 73342 7740 2139 1346 2

40

2 600 25 600 59 600 20 600 11 35 0 13432 1645 199 104 0

4 601 84 600 83 606 38 607 38 615 8 15754 676 29 3 0

6 601 95 600 78 609 38 604 34 614 13 10452 711 565 226 0

8 601 97 600 71 601 34 601 34 556 15 9749 910 1598 624 0

50

2 600 39 601 79 600 11 600 11 600 5 3402 286 16 10 0

4 601 90 601 88 611 40 604 51 604 20 4090 75 0 0 0

6 601 97 604 84 628 49 611 52 600 28 2585 79 0 0 0

8 601 99 601 79 609 45 604 56 613 29 5679 171 0 0 0

Table 10
Average results (in terms of time, gap and number of nodes in the branch-and-cut tree) obtained for each of the five methods over 10

instances of D1. (BC) corresponds to the branch-and-cut algorithm presented in Section 4. Bold results are the best in terms of gap and
time. A gap of 0% corresponds to an optimal solution over each of the 10 instances.
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n K
Time (s) and Gap (%) Nodes

(Fnc1) (Fnc2) (Fer) (Fext) (BC) (Fnc1) (Fnc2) (Fer) (Fext) (BC)

time gap time gap time gap time gap time gap

20

2 1 0 13 0 8 0 8 0 0 0 32 272 59 8 0

4 31 0 87 0 10 0 15 0 5 0 10912 5948 25 27 1

6 244 1 97 0 14 0 16 0 11 0 42353 6841 67 60 30

8 526 19 63 0 10 0 10 0 13 0 64315 6273 211 142 97

30

2 14 0 308 6 259 3 145 0 4 0 2608 2743 1040 94 0

4 600 109 600 130 366 12 443 19 112 0 16549 1347 1352 905 0

6 600 130 600 123 400 11 407 18 184 0 9372 2269 885 668 2

8 601 158 600 121 409 15 419 15 275 1 6197 3174 1097 869 2

40

2 600 80 601 197 600 69 600 70 253 0 12495 380 245 107 0

4 600 465 600 488 618 195 608 195 623 39 3778 128 8 2 0

6 600 603 600 569 607 244 608 245 651 45 1076 247 3 1 0

8 600 1286 601 1134 601 555 603 556 644 60 522 404 9 7 0

50

2 600 2242 601 4108 600 1593 600 1598 603 154 3528 0 15 10 0

4 600 1638 600 1670 611 789 603 809 622 118 624 0 0 0 0

6 600 3133 600 2978 604 1490 601 1519 605 98 200 1 0 0 0

8 600 1682 600 1522 604 761 603 775 605 110 19 5 0 0 0

Table 11
Average results (in terms of time, gap and number of nodes in the branch-and-cut tree) obtained for each of the five methods over 10

instances of D2. (BC) corresponds to the branch-and-cut algorithm presented in Section 4. Bold results are the best in terms of gap and
time. A gap of 0% corresponds to an optimal solution over each of the 10 instances.
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n K
Time (s) and Gap (%) Nodes

(Fnc1) (Fnc2) (Fer) (Fext) (BC) (Fnc1) (Fnc2) (Fer) (Fext) (BC)

time gap time gap time gap time gap time gap

20

2 0 0 1 0 4 0 4 0 4 0 8 0 19 18 15

4 4 0 2 0 7 0 10 0 9 0 1408 102 143 142 124

6 130 0 3 0 19 0 17 0 22 0 36589 456 681 631 575

8 600 19 3 0 31 0 34 0 47 0 62536 1163 2017 1486 1438

30

2 0 0 3 0 42 0 43 0 35 0 50 0 33 32 29

4 28 0 14 0 133 0 146 0 128 0 3769 342 387 402 272

6 600 7 21 0 305 0 314 1 496 1 16951 1527 2000 1724 934

8 601 25 414 3 564 5 564 6 602 7 7771 4806 4506 3970 1093

40

2 1 0 13 0 245 0 199 0 202 0 72 35 48 50 32

4 407 0 52 0 542 3 549 3 605 5 8274 953 405 333 15

6 601 14 462 4 600 9 600 9 606 12 3946 2906 428 355 18

8 600 27 600 9 600 14 600 14 604 18 1625 2451 428 419 20

50

2 3 0 34 0 486 1 499 1 603 1 92 64 35 37 7

4 600 5 258 0 600 5 600 5 609 6 3829 1771 21 22 4

6 600 15 600 6 600 10 600 10 608 10 1145 1881 21 18 5

8 600 29 600 13 600 18 600 17 610 15 453 1662 18 19 4

Table 12
Average results (in terms of time, gap and number of nodes in the branch-and-cut tree) obtained for each of the five methods over 10

instances of D3. (BC) corresponds to the branch-and-cut algorithm presented in Section 4. Bold results are the best in terms of gap and
time. A gap of 0% corresponds to an optimal solution over each of the 10 instances.
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Instance n K
Time (s) and Gap (%) Nodes

(Fnc1) (Fnc2) (Fer) (Fext) (BC) (Fnc1) (Fnc2) (Fer) (Fext) (BC)

time gap time gap time gap time gap time gap

bayg 29

2 19 0 468 0 3251 0 112 0 3 0 1534 4287 35141 265 0

4 3600 10 3602 19 3600 1 3600 1 156 0 210026 22604 41339 34090 57

6 3603 16 3600 9 230 0 304 0 14 0 230472 42730 6442 4875 0

8 3601 16 1966 0 40 0 109 0 9 0 215260 33339 1541 1859 0

swiss 42

2 20 0 1024 0 3601 6 3037 0 19 0 246 548 2516 1309 0

4 3600 7 3600 11 3603 8 3601 7 19 0 54962 2821 13652 3534 0

6 3601 11 3601 7 3602 8 3603 6 11 0 66849 3673 30882 11899 0

8 3604 12 3601 3 3601 6 3601 2 9 0 88964 4932 59914 19128 0

att 48

2 26 0 1231 0 3601 5 1388 0 35 0 167 140 1385 197 0

4 552 0 3503 0 3601 4 2285 0 18 0 5035 2596 4142 1940 0

6 3602 9 3600 6 3606 7 3602 6 19 0 33152 2645 19753 5477 0

8 3601 13 3600 2 3604 5 3605 3 14 0 25983 4174 46173 10428 0

berlin 52

2 179 0 3600 18 3601 24 3600 21 128 0 1323 278 787 79 0

4 3602 17 3602 20 3601 21 3601 19 75 0 23673 743 1909 590 0

6 3602 32 3600 25 3604 27 3601 24 1679 0 20848 1184 7629 2093 28

8 3613 31 3600 20 3608 24 3602 21 45 0 33560 1280 18456 4282 0

st 70

2 629 0 3600 12 197 0 308 0 86 0 859 0 0 0 0

4 3600 4 3600 7 3600 3 3600 2 3606 0 2941 31 79 49 0

6 3601 13 3601 10 3602 5 3603 4 566 0 4342 142 694 206 5

8 3602 16 3605 11 3600 8 3603 7 3604 3 3557 319 1300 350 8

pr 76

2 392 0 3600 15 3600 2 3600 2 145 0 141 0 12 1 0

4 3601 22 3600 21 3600 13 3600 12 3603 1 2803 2 56 3 0

6 3601 25 3600 18 3602 11 3600 11 3604 1 2087 13 198 17 0

8 3601 23 3600 13 3604 9 3600 8 96 0 1908 26 358 32 0

eil 101

2 3601 9 3601 19 3604 4 3602 4 3600 1 1287 0 0 0 0

4 3600 19 3600 20 3600 10 3601 9 3602 6 294 0 3 0 0

6 3600 35 3601 32 3600 24 3600 24 3600 18 57 0 7 2 0

8 3600 34 3616 30 3600 24 3600 23 3628 16 41 0 39 5 0

bier 127

2 3601 25 3601 37 3601 32 3606 31 3603 15 869 0 0 0 0

4 3618 54 3601 54 3601 49 3603 48 3676 31 10 0 2 0 0

6 3600 69 3601 69 3601 65 3664 64 3602 53 13 0 2 0 0

8 3600 65 3601 63 3600 59 3601 58 3600 47 7 0 0 0 0

Table 13
Average results (in terms of time, gap and number of nodes in the branch-and-cut tree) obtained for each of the five methods over 8

instances of the TSPLIB. (BC) corresponds to the branch-and-cut algorithm presented in Section 4. Bold results are the best in terms of
gap and time. A gap of 0% corresponds to an optimal solution.
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K
Time (s) and Gap (%) Nodes

(Fnc1) (Fnc2) (Fer) (Fext) (BC) (Fnc1) (Fnc2) (Fer) (Fext) (BC)

time gap time gap time gap time gap time gap

2 3031 4 3600 19 3681 2 3629 2 1143 0 8211 0 0 0 0

4 3601 13 3608 14 3601 2 3600 2 3629 2 1281 0 5 1 0

6 3600 12 3600 12 1993 0 1913 0 1869 0 166 0 6 0 0

8 3600 12 3601 12 1438 0 1240 0 1589 0 11 0 1 0 0

Table 14
Results (in terms of time, gap and number of nodes in the branch-and-cut tree) obtained for each of the method over 6 instances of 100

nodes from the spin-glass data set. (BC) corresponds to the branch-and-cut algorithm presented in Section 4. Bold results are the best in
terms of gap and time. A gap of 0% corresponds to an optimal solution over each of the 6 instances.
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Appendix

Bound 6.1 The optimal value of the linear relaxation of (Fnc2) is less than
or equal to min

j∈{2,...,K}
min
i<j

wij

2K−j+1 .

Proof. To prove this bound, we exhibit for all j ∈ {2, . . . , K} and all i ∈
{1, . . . , j − 1}, a feasible solution of the linear relaxation in which xij is equal
to 2j−K−1 and all the remaining x variables are null.

To obtain such a solution, we fix the value of the z variables as follows:

• zaa = 1 ∀a ≤ j − 1;

• zij = 2j−K−1;

• zjj = 1− zij;
• zja = zij ∀a > j;

• zaa = 1− 2a−K−2 ∀a ∈ {j + 1, . . . , K + 1};
• zab = 2a−K−2 ∀a ∈ {j + 1, . . . , K + 1} ∀b ∈ {a+ 1, . . . , n};
• zba = 0 otherwise.

Table 15 represents the value of these coefficients when i is equal to 1 and
j is strictly less than K.
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. . .

K
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...
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. . . 3
4

K + 1
...
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. . . 1
4

1
2

...
...

...
...

. . .
...

...

n 2j−K−1 2j−K−1 2j−K . . . 1
4

1
2

Table 15
For a given j < K, representation of the variables z which are not null in a

feasible solution of cost 2j−K−1w1j of the linear relaxation of formulation (Fnc2).

We let the reader check that these solutions are feasible for the linear
relaxation of (Fnc2). For instance, the fact that the sum of each line of Table 15
is equal to 1 ensures that Equations (16) are satisfied. Similarly, Equation (21)
is satisfied as the sum of the diagonal variables in Table 15 is equal to K. 2

Bound 6.2 If K ∈ {3, . . . , n}, then the optimal value of the linear relaxation
of (Fnc1) is less than or equal to min

j∈{2,...,K−1}
min
i<j

wij

2K−j .

Proof. To prove this bound, we exhibit for all j ∈ {2, . . . , K − 1} and all
i ∈ {1, . . . , j − 1}, a feasible solution of the linear relaxation in which xij is
equal to 2j−K and all the remaining x variables are null.

To obtain such a solution, we fix the value of the z variables as follows:

• zaa = 1 ∀a ≤ j − 1;

• zij = 2j−K ;

• zjj = 1− zij;
• zja = zij ∀a > j;

• zaa = 1− 2a−K−1 ∀a ∈ {j + 1, . . . , K};
• zab = 2a−K−1 ∀a ∈ {j + 1, . . . , K} ∀b ∈ {a+ 1, . . . , n};
• zba = 0 otherwise.

Table 16 represents the value of these coefficients when i is equal to 1 and j
is strictly less than K − 1.

2
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n 2j−K 2j−K 2j−K+1 . . . 1
4

1
2

Table 16
For a given j < K − 1, representation of the variables z which are not null in a
feasible solution of cost 2j−Kw1j of the linear relaxation of formulation (Fnc1).

Bound 6.3 If K is equal to 2, then the optimal value of the linear relaxation

of (Fnc1) is in the interval [min
i,j∈V

wij
n−1
2
, 1
2

n∑
i=2

w1i].

Proof. We consider a solution in which:

• x1i = 0.5 for all i ∈ V ;

• xij = 0 otherwise;

• z11 = 1;

• zji = 0.5 otherwise.

This solution is feasible, hence the optimal value of the linear relaxation

is less than or equal to 1
2

n∑
i=2

w1i.

To prove that min
i,j∈V

wij
n−1
2

is a lower bound, we show that
∑
ij∈E

xij is neces-

sarily greater than or equal to n−1
2

.

From Equation (15) and the fact that z11 is equal to 1, we deduce that

xij ≥ z2i + z2j − 1 ∀ij ∈ E, (51)

and

x1i ≥ z1i ∀i ∈ V \{1}. (52)

Let S ⊂ V be the set of nodes i which satisfy z2i > 0.5. We deduce
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from (51) and (52) that∑
ij∈E

xij ≥
∑
i≥2

z1i +
∑
i,j∈S

z2i + z2j − 1. (53)

We know from (16) that

n−1
2

=
∑
i≥2

(z1i + z2i − 1
2
)

≤
∑
i≥2

z1i +
∑
i∈S

(z2i − 1
2
)

(54)

The lower bound is obtained from (53) and (54).

2
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