
\

Barnetson, K. D., Burgess, A. C., Enright, J., Howell, J., Pike, D.
A. and Ryan, B. (2021) The firebreak problem. Networks, 77(3), pp. 372-
382.

(doi: 10.1002/net.21975)

The material cannot be used for any other purpose without further
permission of the publisher and is for private use only.

There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
it.

This is the peer reviewed version of the following article:

Barnetson, K. D., Burgess, A. C., Enright, J., Howell, J., Pike, D.
A. and Ryan, B. (2021) The firebreak problem. Networks, 77(3), pp. 372-
382, which has been published in final form at: 10.1002/net.21975

This article may be used for non-commercial purposes in accordance with
Wiley Terms and Conditions for Self-Archiving.

https://eprints.gla.ac.uk/222187/

Deposited on: 18 August 2020

Enlighten – Research publications by members of the University of
 Glasgow
http://eprints.gla.ac.uk

http://dx.doi.org/10.1002/net.21975
http://dx.doi.org/10.1002/net.21975
https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html
https://eprints.gla.ac.uk/222187/
http://eprints.gla.ac.uk/

The Firebreak Problem

Kathleen D. Barnetson∗, Andrea C. Burgess†, Jessica Enright‡,

Jared Howell§, David A. Pike¶, Brady Ryan‖

July 12, 2020

Abstract

Suppose we have a network that is represented by a graph G. Potentially a fire
(or other type of contagion) might erupt at some vertex of G. We are able to respond
to this outbreak by establishing a firebreak at k other vertices of G, so that the fire
cannot pass through these fortified vertices. The question that now arises is which k
vertices will result in the greatest number of vertices being saved from the fire, assuming
that the fire will spread to every vertex that is not fully behind the k vertices of the
firebreak. This is the essence of the Firebreak decision problem, which is the focus of
this paper. We establish that the problem is intractable on the class of split graphs as
well as on the class of bipartite graphs, but can be solved in linear time when restricted
to graphs having constant-bounded treewidth, or in polynomial time when restricted
to intersection graphs. We also consider some closely related problems.

Key words: graph theory, connectivity, separation, firebreak, key players, computational
complexity, treewidth, intersection graphs

∗Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL,
Canada.
†Department of Mathematics and Statistics, University of New Brunswick, Saint John, NB, Canada.

andrea.burgess@unb.ca
‡School of Computing Science, University of Glasgow, Glasgow, Scotland. Jessica.Enright@glasgow.ac.uk
§School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner

Brook, NL, Canada. jahowell@grenfell.mun.ca
¶Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL,

Canada. dapike@mun.ca
‖Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL,

Canada.

1

1 Introduction

In this paper we consider the Firebreak decision problem, which asks whether it is possible
to establish a firebreak of a given size in a network represented by a graph and thereby protect
a desired number of other vertices from being reached by a fire that breaks out at a specified
vertex of the graph. The problem is formally stated as follows, where for any given subset
S of the vertex set V (G) of a graph G, G− S denotes the subgraph of G that is induced by
the vertices of V (G) \ S.

Firebreak
Instance: A graph G, an integer k, an integer t, and a vertex vf ∈ V (G).
Question: Does V (G) contain a k-subset S such that vf /∈ S and the number

of vertices of G− S that are separated from vf is at least t?

There are similarities between this problem and the well-known Firefighting problem,
which itself takes the form of a game with two players (fire and firefighters). The game
begins with fire starting at a vertex. Thereafter, in each round of the game each firefighter
is able to designate one unburnt vertex as a permanent firebreak, and then the fire spreads
from each of its vertices to all of their unprotected neighbours. The game concludes when
the fire can spread no more (which, in the case of infinite graphs, may result in a game that
never terminates). Depending on context, the goal of the firefighters may be to minimise the
number of vertices that are scorched, or to minimise the time in which the fire is contained.
The Firefighting problem was introduced in 1995 by Hartnell [22] and has since attracted
considerable attention. For a survey of results and open questions, see [18].

The Firebreak problem could be viewed as variant of the Firefighting problem in
which the firefighters are active for only the initial round of the game, after which the
fire spreads without further intervention. The particular nature and formulation of the
Firebreak problem lends itself to several applications of practical interest. Although we
model the problem in terms of fire, it readily applies to the spread of any contagion from
a point of infection in a network and where a one-time response is able to be deployed in
immediate reaction to the outbreak.

In the course of our investigation into the Firebreak problem, we noted that it is also
closely related to what we will call the Key Player decision problem that pertains to the
number of connected components that can be created by the removal of a set of vertices. By
defining c(G) to be the number of connected components of a graph G, the Key Player
problem can be formally described as follows:

Key Player
Instance: A graph G, an integer k and an integer t.
Question: Does V (G) contain a k-subset S such that c(G− S) > t?

The Key Player problem also models various real-world scenarios and applications of
practical interest in networks. If we have the means to inoculate k nodes which then become
impenetrable to the contagion, we can ask which k nodes to inoculate in order to create the
greatest number of segregated quarantine zones. As another scenario, G might represent a
communications network that we wish to disrupt by selectively disabling k of its nodes, with

2

the goal being to maximise the number of subnetworks that become unable to communicate
with other subnetworks.

A related problem is one of dissemination rather than separation, whereby instead of
selecting a k-set S so that c(G− S) is maximised, we wish to select a k-set S that can most
efficiently reach the other vertices of G. One such scenario could be the spread of news: we
wish to directly inform k individuals, who then propagate the news to their neighbours, so
that the news spreads to everybody as quickly as possible. Instead of forwarding information,
we might care about influence and opinion (such as might be the case in a marketing cam-
paign, whereby k individuals are selected to receive a new commercial product in the hope
that they will exert influence among their friends to acquire the product). This dissemina-
tion problem and its related separation problem appear to have been first jointly described
by Borgatti in 2002 [12]. In [13] he refers to the dissemination scenario as the “Key Player
Problem / Positive” and uses the phrase “Key Player Problem / Negative” for the problem
involving the deletion of k nodes.

This “negative” variant corresponds to our interest. Some of the early papers about
this problem in the literature attest to its applicability to network tolerance and robust-
ness [5, 29, 33]). More recent results have considered it from a computational complexity
perspective, establishing that it is NP-hard for various classes of graphs yet being solvable
in polynomial time for graphs having bounded treewidth [1, 7, 27, 34]. A recent survey by
Lalou et al. on the topic of detecting critical nodes in networks also touches on this prob-
lem [25]. Incidentally, our literature search revealed that there is also an edge-based version
of the problem; although the edge version is beyond the scope of the present paper, we
nevertheless provide a few references for the interested reader (see [6, 23, 30]).

In this paper we concentrate on the Firebreak decision problem, while also presenting
some new results about the Key Player problem. In Section 2 we establish that both
problems are NP-complete when restricted to the class of split graphs. We also find that
the Firebreak problem is NP-complete when restricted to the class of bipartite graphs.
Although the Key Player problem is NP-complete (and it remains so for planar cubic
graphs), in the situation where the number of vertices to be removed from the graph coincides
with the graph’s connectivity the problem is found to be solvable in polynomial time. In
Section 3 we consider graphs having treewidth that is bounded by a constant and for such
graphs we show that the Firebreak problem can be solved in linear time, and in Section 4
we show that it can be solved in polynomial time for some classes of intersection graphs.

Before continuing, we establish some basic notation and terminology. For a graph G =
(V (G), E(G)), we let degG(u) (or just deg(u) if the graph G is unambiguously implicit)
denote the degree of vertex u, and we use the notation u ∼ v to indicate that vertex u is
adjacent to vertex v. The maximum degree of G is ∆(G) = max{deg(u) : u ∈ V (G)}. By
NG(v) (or just N(v) if there is no ambiguity) we denote the open neighbourhood of a vertex
v, so that N(v) = {u ∈ V (G) : u ∼ v}; the closed neighbourhood N(v)∪{v} will be denoted
by N [v]. The order of a graph G is the cardinality |V (G)| of its vertex set, and its size is the
cardinality |E(G)| of its edge set. If A is a subset of V (G) then the subgraph of G induced
by A, denoted G[A], is the graph with vertex set A and edge set E(G)∩

{
{u, v} : u, v ∈ A

}
.

Throughout this paper we limit ourselves to finite undirected graphs without loops and
without parallel edges, and so it follows that for the size of a graph G on n vertices we have
|E(G)| 6

(
n
2

)
∈ O(n2).

3

For an instance (G, k, t, vf) of the Firebreak problem we define F(G, k, vf) as the
maximum number of vertices of G−S that are not in the same connected component as vf ,
where this maximum is taken over all choices for k-subsets S ⊆ V (G) \ {vf}. Any k-subset
S ⊆ V (G) \ {vf} that separates F(G, k, vf) vertices from vf will be called an optimal set.

2 Intractability

Clearly the Firebreak and Key Player decision problems are in NP since any given k-set
S can be easily validated to determine whether S separates at least t vertices from vf (for
the Firebreak problem) or c(G− S) > t (for the Key Player problem). In this section
we show that these two decision problems are both NP-complete.

A split graph is any graph G that admits a vertex partition V (G) = A ∪ B such that
A ∩ B = ∅, G[A] is a maximum clique, and B is an independent set (i.e., B is a set of
pairwise non-adjacent vertices). To prove that the Firebreak and Key Player decision
problems are NP-complete, we will show that they are NP-complete even when the input
graph G is restricted to the class of split graphs. We first note that under certain conditions
the problems can be easily solved.

Lemma 1. The Firebreak problem can be solved in linear time when |N(vf)| 6 k.

Proof. Let (G, k, t, vf) be an instance of the Firebreak problem where G is a graph and
|N(vf)| 6 k. We now choose S to consist of every neighbour of vf plus any choice of k −
|N(vf)| additional vertices selected from V (G)\N [vf]. Clearly no vertex in V (G)\(S∪{vf})
will be in the same connected component of G − S as vf . Since there are |V (G)| − k − 1
vertices in G− (S ∪ {vf}), the problem is equivalent to asking if |V (G)| − k − 1 > t. Hence
one simply needs to count the vertices in G, which can be done in linear time. 2

Lemma 2. The Key Player problem on a split graph G can be solved in linear time when
k is at least the size ω(G) of a maximum clique in G.

Proof. Let G be a split graph with V (G) = A ∪ B, where A induces a maximum clique
and B is an independent set, and let (G, k, t) constitute an instance of the Key Player
problem. Observe that the maximum number of connected components will be produced by
deleting A and k−|A| of the |V (G)|− |A| vertices of B. Thus the given instance of the Key
Player problem has an affirmative answer if and only if |V (G)| − k > t. To solve this, one
simply needs to count the vertices of G. This can clearly be done in linear time. 2

With the next result we show that when restricted to split graphs, the Key Player
problem is no more difficult than the Firebreak problem.

Lemma 3. The Key Player decision problem on split graphs can be solved in polynomial
time with an oracle for the Firebreak decision problem on split graphs.

Proof. Let (G1, k1, t1) constitute an instance of the Key Player problem, where G1 =
(A ∪ B,E) is a split graph with a maximum clique on A and independent set B. Without

4

loss of generality we may assume that k1 < |A| for otherwise the problem is easily solved by
Lemma 2.

We proceed to formulate an instance (G2, k2, t2, vf) of the Firebreak problem as follows.
Construct G2 from G1 by adding a new vertex named vf and adding an edge {u, vf} for each
u ∈ A. Let k2 = k1 and t2 = t1 − 1.

Now suppose there exists a k1-subset S1 of V (G1) such that c(G1 − S1) > t1. Since G1

is a split graph, this means G1 − S1 must have at least t2 = t1 − 1 isolated vertices, none
of which are in A. Thus we let S2 = S1. Then the t2 isolated vertices of G1 − S1 are also
isolated vertices of G2 − S2. As none of these vertices are members of the clique induced by
A, none of them are in the same connected component as vf . Thus S2 is a k2-subset of V (G2)
such that vf /∈ S2 and there are at least t2 vertices in G2−S2 not in the same component as
vf . Hence an affirmative answer to the Key Player problem implies an affirmative answer
to the associated Firebreak problem (G2, k2, t2, vf).

Conversely, suppose that the Firebreak problem (G2, k2, t2, vf) has an affirmative an-
swer, namely a k2-subset S2 of V (G2)\{vf} such that there are at least t2 vertices of G2−S2

that are not in the same connected component as vf . Since vf is part of the clique of G2,
these t2 vertices must be isolated vertices in G2 − S2. Let S1 = S2. Then by the construc-
tion of G2, these same t2 vertices are also isolated in G1 − S1 and so they form t2 distinct
components in G1 − S1. Since by assumption k2 < |N(vf)|, then there must be at least one
other vertex remaining in the clique with vf . This vertex also remains in the clique of G1, so
c(G1 − S1) = t2 + 1 = t1 and hence the Key Player problem has an affirmative solution.

Since the instance (G1, k1, t1) of the Key Player problem has an affirmative answer
if and only if the associated instance (G2, k2, t2, vf) of the Firebreak problem has an
affirmative answer, and this associated instance can clearly be constructed in polynomial
time, then the Key Player problem can be solved in polynomial time with the availability
of an oracle for the Firebreak problem. 2

We now proceed to show that the Firebreak and Key Player decision problems are
both NP-complete, even when restricted to the class of split graphs. To do so we will refer
to the t-Way Vertex Cut problem studied by Berger et al. [7], expressed as a decision
problem as follows:

t-Way Vertex Cut
Instance: A graph G, an integer k and an integer t.
Question: Does V (G) contain a subset S such that |S| 6 k and c(G− S) > t?

Theorem 1. When restricted to split graphs, the Firebreak and Key Player decision
problems are both NP-complete.

Proof. Relying on a construction of Marx [27] that is restricted to split graphs, Berger
et al. show that the t-Way Vertex Cut problem is NP-complete when restricted to split
graphs [7]. By using an oracle for the Key Player problem, it is straightforward to answer
any given instance (G, k, t) of the t-Way Vertex Cut problem. In particular, for each
k′ ∈ {1, 2, . . . , k} present the Key Player oracle with (G, k′, t). The t-Way Vertex Cut
problem has an affirmative answer if and only if one or more of the k answers provided by

5

the Key Player oracle is affirmative. Hence the Key Player problem is NP-complete
when restricted to split graphs. It then follows from Lemma 3 that the Firebreak problem
is also NP-complete when restricted to split graphs. 2

Corollary 1. The Firebreak and Key Player decision problems are W[1]-hard on split
graphs with parameters k and t.

Proof. For the Key Player problem, the result has already been proved by Theorem 16
of [27]. The reduction in Lemma 3 is clearly polynomial in k and t and is thus parameterized
in k and t. Thus the Firebreak problem also is W[1]-hard on split graphs with parameters
k and t. 2

We can also use split graphs to show that the Firebreak problem is NP-complete for
bipartite graphs.

Theorem 2. When restricted to bipartite graphs, the Firebreak decision problem is NP-
complete.

Proof. Suppose (G, k, t, vf) is an arbitrary instance of the Firebreak problem on a split
graph G, where V (G) = A∪B, A induces a maximum clique in G, and B is an independent
set in G. Without loss of generality we may assume that k < |N(vf)|, as otherwise the
problem is easily solved by Lemma 1. We may further assume that k < |A ∩ N(vf)| for
otherwise an optimal set S can be obtained by selecting each vertex of A∩N(vf) along with
k − |A ∩N(vf)| vertices of V (G) \ ((A ∩N(vf)) ∪ {vf}) such that vertices of B ∩N(vf) are
preferentially selected prior to selecting any other vertices of V (G) \ ((A ∩N(vf)) ∪ {vf}).

Let G′ be the graph obtained from G by subdividing every edge of G[A], so that |V (G′)| =
|V (G)| +

(|A|
2

)
and |E(G′)| = |E(G)| +

(|A|
2

)
. For convenience we let C denote the set

V (G′)\V (G) of
(|A|

2

)
vertices that are newly created in this process, and for any two distinct

vertices a1, a2 ∈ A let c(a1, a2) be the vertex of C that is a common neighbour of a1 and a2.
Observe that G′ is a bipartite graph with vertex bipartition (A,B ∪ C). We will show that
the instance (G, k, t, vf) of the Firebreak problem has an affirmative answer if and only if
the instance (G′, k, t+

(
k
2

)
, vf) also has an affirmative answer.

First suppose that S ⊆ (V (G)\{vf}) is an optimal set for the instance (G, k, t, vf). Since
k < |A ∩ NG(vf)|, in G − S none of the vertices of (A \ (S ∪ {vf})) are separated from vf
and so if there should exist some vertex u ∈ S ∩ B then for each v ∈ A \ (S ∪ {vf}) the
k-set (S \ {u}) ∪ {v} is also optimal. From an iterated application of this observation it
follows that there must exist an optimal set S0 such that S0 ∩ B = ∅. In G′, the number
of vertices that are separated from vf by S0 is F(G, k, vf) +

(|S0∩A|
2

)
= F(G, k, vf) +

(
k
2

)
and

hence F(G′, k, vf) > F(G, k, vf) +
(
k
2

)
.

Now let S ′ ⊆ (V (G′) \ {vf}) be an optimal set for the instance (G′, k, t +
(
k
2

)
, vf) such

that among all optimal sets, S ′ has the least intersection with C. Since k < |A ∩ NG(vf)|,
it follows that the set A′ = (A \ (S ′ ∪ {vf})) is not empty. Recall that vf ∈ V (G), so either
vf ∈ A or vf ∈ B.

Consider the situation in which vf ∈ B. If there should exist a vertex y ∈ A′ that is
separated from vf in G′−S ′, then it is necessary that c(y, z) ∈ S ′ for each z ∈ (A∩NG(vf))\S ′

6

and consequently k = |S ′| > |A∩NG(vf)∩S ′|+|(A∩NG(vf))\S ′|. However, k < |A∩NG(vf)|
and so none of the vertices of A′ are separated from vf in G′ − S ′.

If vf ∈ A then the set A′ equals (A ∩ NG(vf)) \ S ′, which we partition into subsets Y
and Z such that Y consists of all vertices of A′ that are separated from vf in G′−S ′, and Z
consists of all vertices of A′ that are not separated from vf in G′−S ′. Since k < |A∩NG(vf)|
then for some a ∈ A′ neither a nor c(a, vf) is in S ′, and hence Z 6= ∅. For each vertex y ∈ Y
it is necessary that

⋃
z∈Z∪{vf}{c(y, z)} ⊆ S ′. Consequently k = |S ′| > |A ∩ NG(vf) ∩ S ′| +

|Y |(1 + |Z|), which is at least |A ∩ NG(vf)| when Y 6= ∅ and thus it must be that Y = ∅.
Therefore, regardless of whether vf is in A or B, no vertex of A′ is separated from vf in
G′ − S ′.

Let w ∈ A′. If there should exist some vertex x ∈ S ′ ∩C then the k-set (S ′ \ {x}) ∪ {w}
would contradict the selection of the set S ′ as an optimal set having minimum intersection
with C. Hence S ′ ∩ C = ∅. If there should exist some vertex u ∈ S ′ ∩ B then the k-set
(S ′ \ {u}) ∪ {w} is also optimal. Iterated application of this observation ensures that there
is an optimal set S ′′ such that S ′′ ∩B = S ′′ ∩C = ∅. In the graph G, the number of vertices
that are separated from vf by S ′′ is F(G′, k, vf) −

(|S′′∩A|
2

)
= F(G′, k, vf) −

(
k
2

)
and hence

F(G, k, vf) > F(G′, k, vf)−
(
k
2

)
.

So when k < |A ∩ NG(vf)| we conclude that F(G′, k, vf) = F(G, k, vf) +
(
k
2

)
. Thus the

Firebreak instance (G, k, t, vf) for the split graph G has an affirmative answer if and only
if the instance (G′, k, t+

(
k
2

)
, vf) also has an affirmative answer. 2

2.1 Some further comments about the Key Player problem

While the Firebreak problem is the main focus of this paper, we do have some additional
results pertaining to the Key Player problem. In Theorem 1 it was established that the
Key Player problem is not only NP-complete, but also that it remains so when restricted
to the class of split graphs. It happens that the problem is also NP-complete when restricted
to cubic planar graphs, in contrast to the Firebreak problem which we now show can be
solved in polynomial time when restricted to graphs of constant-bounded degree (including
cubic graphs).

Lemma 4. The Firebreak problem can be solved in polynomial time on graphs of constant-
bounded degree.

Proof. Let m be a fixed integer and let (G, k, t, vf) be an instance of the Firebreak
problem where G is a graph on n vertices such that ∆(G) 6 m. If k > deg(vf) then the
answer is affirmative if and only if t > n− 1− k because separating the maximum number
of vertices from vf is accomplished by deleting N(vf) plus k − |N(vf)| other vertices. If
k < deg(vf) then the answer can be computed by exhaustively considering all

(
n
k

)
k-subsets

of V (G) \ {vf} and determining whether any of them separate at least t vertices from vf .
Since k is bounded by the constant m, this computation can be done in polynomial time. 2

Showing that the Key Player problem is intractable on cubic planar graphs involves
consideration of the well-known Independent Set problem.

7

Independent Set
Instance: A graph G and an integer m.
Question: Does G contain an independent set of at least m vertices?

Theorem 3. The Key Player decision problem on cubic planar graphs is NP-complete.

Proof. We employ a reduction from the Independent Set problem, which Garey and
Johnson established in 1977 to be NP-complete on 3-regular planar graphs [19]. Given an
instance (G,m) of the Independent Set problem, construct an instance (G, |V (G)| −
m,m) of the Key Player problem. It is easy to see that Independent Set has an
affirmative answer if and only if this instance of the Key Player problem has an affirmative
answer. Thus an oracle for the Key Player problem can be used to efficiently solve the
Independent Set problem. 2

Having established that the Key Player problem is intractable for a variety of classes of
graphs, we now proceed to consider the special case in which the parameter k is restricted to
being the connectivity of the graph in question. For any nontrivial graph G, its connectivity
κ(G) is the size of a smallest set S of vertices such that G − S is not a connected graph;
such a set S is called a cut (or k-cut when we wish to explicitly mention the size of the cut).

As we shall see, when k = κ(G) the Key Player problem can be solved in polynomial
time. An initial thought for how to potentially prove that this is so is to enumerate all of
the κ(G)-cuts of G and if they are polynomial in number then simply calculate c(G−S) for
each κ(G)-cut S. However, unlike edge cuts of size κ′(G) (of which there are at most

(
n
2

)
;

see Section 4.3 of [28] for a proof), there can be exponentially many κ(G)-cuts in a graph
G, as is the case with the graph illustrated in Figure 1. Hence the näıve idea of examining
each κ(G)-cut individually will not serve as a valid approach.

Kt Kt Kt Kt

Figure 1: A graph G on n = 4t vertices. G consists of four copies of Kt that are
joined by t disjoint paths of length 3. The graph has connectivity κ(G) = t and
more than 2t cuts of size κ(G).

Instead, we consider the notion of a k-shredder in a k-connected graph, which is defined to
be a set of k vertices whose removal results in at least three components being disconnected
from one another; note that it is necessary here that k > κ(G) since G must be k-connected
and each k-shredder is also a k-cut. An algorithm that is capable of finding all of the k-
shredders of a graph G on n vertices in polynomial time is presented in [15]. The actual

8

number of k-shredders is determined in [17] to be at most 2n
3

when k > 4. We can thus solve
the Key Player problem in polynomial time when k = κ(G) by following the steps of the
algorithm presented below.

Algorithm 1.

1. Let k = κ(G).

2. If k > 4 then use the algorithm of [15] to find all of the k-shredders of G.
As [17] asserts that there are at most 2n

3
of them, we then exhaustively check

to see which k-shredder S maximises c(G − S). If there should happen to
be no k-shredders, then it must be that every k-cut produces exactly two
components.

3. If k 6 3 then exhaustively check each k-subset S of V (G) to see which k-sets
are k-cuts, and then determine which k-cut maximises c(G−S). The number
of k-subsets that must be checked is

(
n
k

)
, which is polynomial in n since k is

either 1, 2 or 3.

4. Having determined the maximum number of components that can result from
the deletion of any k-cut, compare this quantity with t to answer the given
instance of the Key Player problem.

3 Graphs with Constant-Bounded Treewidth

Before we review the technical details of treewidth, we first observe that the Firebreak
problem can be easily solved in the case where the graph in question is a tree.

Theorem 4. The Firebreak problem can be solved in polynomial time on trees.

Proof. Suppose (T, k, t, vf) is an instance of the Firebreak problem where T is a tree on
n vertices. If |N(vf)| 6 k then a polynomial-time solution follows from Lemma 1, so we
henceforth assume that |N(vf)| > k.

Root the tree T at vf . For each vertex v of T define T (v) to be the subtree of T
rooted at v and let T(v) denote the number of vertices in T (v). If v is a leaf in the tree
then clearly T(v) = 1. For any other vertex v with children x1, . . . , xm, we have that
T(v) = T(x1) + · · ·+ T(xm) + 1. The computation of each T(v) can be clearly done in O(n)
time.

To find an optimal k-set S (namely one that separates the most vertices from vf) simply
select k vertices in N(vf) having the k greatest subtree sizes. If v1, . . . , vk are these k vertices,
then there are T(v1) + · · ·+ T(vk)− k vertices not in the same connected component of vf .

To answer the given instance of the Firebreak problem, it now suffices to ask if T(v1)+
· · ·+ T(vk)− k > t. Since both the computation of each T(v) and the identification of the k
largest values of T(v) can be done in polynomial time, the problem can therefore be answered
in polynomial time. 2

9

The proof of Theorem 4 comes close to proving that the Firebreak problem can be
solved in linear O(n) time for a tree on n vertices, except that the task of selecting the
k neighbours of vf with the greatest subtree sizes may require a nonlinear sort to be per-
formed. However, it will be shown later in this section that a linear-time solution does
nevertheless exist. Our approach will be to consider the effect that bounded treewidth has
on the complexity of the problem. The treewidth parameter, defined below, was introduced
by Robertson and Seymour [31].

Definition 1. A tree decomposition of a graph G is a pair (X,T = (I, F)) where X = {Xi :
i ∈ I} is a family of subsets of V (G), and T is a tree whose vertices are the subsets Xi such
that:

1.
⋃

i∈I Xi = V (G).

2. For every edge uv ∈ E(G), both u and v are in some Xi, i ∈ I.

3. If i, j, k are vertices of T , and k lies on the (unique) path from i to j, then Xi∩Xj ⊆ Xk.

The width of a tree decomposition is max{|Xi| − 1 : i ∈ I}. The treewidth tw(G) of a graph
G is the minimum width of all tree decompositions of G.

It is easy to see that trees have treewidth at most 1. Other graphs with small treewidth
are, in a sense, tree-like. For instance, if the treewidth of a graph G is bounded by a
constant (i.e., tw(G) 6 w), then it follows from Lemma 3.2 of [32] that |E(G)| = O(n)
where n = |V (G)|. Graphs that are in some way similar to trees often lend themselves to
tractable solutions for problems that are intractable for graphs in general (see [2, 4, 8] for
details of several examples).

Moreover, Bodlaender has presented an algorithm that finds a tree decomposition of a
graph G in time that is linear in the number of vertices and exponential in the cube of the
treewidth [9]. For graphs having constant-bounded treewidth, it is therefore possible to find
tree decompositions in linear time.

Theorem 4 demonstrated that the Firebreak problem is easily solved for trees. To
show that it is also tractable for graphs for which the treewidth is bounded by a constant,
we will rely on a powerful result that is based on work of Courcelle, independently proved by
Borie, Parker and Tovey, and further extended by Arnborg, Lagergren and Seese [3, 14, 16].
A survey by Langer et al. [26] presents it in a slightly more general form than we require.
For our purposes, the following will suffice:

Theorem 5 (see Theorem 30 of [26]). Let G be a graph on n vertices, let w be a constant,
and let P be a graph-theoretic decision problem that can be expressed in the form of extended
monadic second-order logic. If tw(G) 6 w then determining whether G has property P can
be accomplished in time O(fP(w) · n) where fP is a function that depends on the property P.

Although the function fP may not be polynomial, if w is a constant then so too is fP(w).
Hence decision problems that have extended monadic second-order (EMSO) formulations
are fixed-parameter tractable. Monadic second-order (MSO) logic expressions for graphs are
based on

10

• variables for vertices, edges, sets of vertices and sets of edges,

• universal and existential quantifiers,

• logical connectives of conjunction, disjunction and negation,

• and binary relations to assess set membership, adjacency of vertices, incidence of edges
and vertices, and equality for vertices, edges and sets.

We will only need to consider vertices and sets thereof, which will be respectively denoted
by lower case and upper case variable names. Predicates can be constructed from the basic
ones and incorporated into expressions (in this manner a predicate for implication can be
built). To provide an illustrative example, the expression

∃X∃Y
(
∀u ((u ∈ X) ∧ (u 6∈ Y)) ∨ ((u 6∈ X) ∧ (u ∈ Y))

)
∧(

∀u∀v ((adj(u, v))⇒ ((u ∈ X) ∧ (v ∈ Y)) ∨ ((u ∈ Y) ∧ (v ∈ X)))
)

encodes whether a given graph is bipartite, where adj(u, v) represents a Boolean predicate
that evaluates whether vertices u and v are adjacent.

Extended MSO logic has additional features that enable set cardinalities to be considered.
The survey by Langer et al. [26] provides an excellent overview, to which we direct readers
for more details.

Since the factor fP(w) in the conclusion of Theorem 5 effectively becomes a hidden
constant, it follows that deciding whether a graph G has the property P can be done in
linear time when the hypothesis of the theorem is satisfied. With this in mind, we now show
that the Firebreak problem is tractable when restricted to graphs having treewidth at
most a constant w.

Theorem 6. The Firebreak problem can be solved in linear time for graphs with constant-
bounded treewidth.

Proof. Let ϕ represent the following logic expression with two set variables (S and X).

ϕ = (vf 6∈ S) ∧ (vf 6∈ X) ∧
(
∀y (y ∈ S)⇒ (y 6∈ X)

)
∧(

∀x∀y
(
(x ∈ X) ∧ (adj(x, y)) ∧ (y 6∈ S)

)
⇒ (y ∈ X)

)
Observe that ϕ encodes whether the set S separates the set X from a designated vertex
vf . To take into consideration the cardinalities of the sets S and X, we now describe how
to construct an evaluation relation ψ as indicated by Definition 18 of [26]. Following the
notation of [26], given that we have two sets (S and X) and two integer input values (k and
t), choosing m = 1 will result in ψ having four variables:

y1 =
∑
u∈S

w1(u) y2 =
∑
u∈X

w1(u) y3 = k y4 = t

Define the weight function w1 : V (G)→ R such that w1(v) = 1 for each v ∈ V (G). Now, let
ψ be the evaluation relation

(y1 = y3) ∧ (y2 > y4)

We have adhered to Definition 18 of [26]. Hence we have created an EMSO expression that
encodes the Firebreak decision problem. The result now follows from Theorem 5.

11

4 Intersection Graphs

Given a family of sets S = {S0, S1, . . . , Sk}, the intersection graph of S is a graph G = (V,E)
for which there exists a bijection f between V and S such that u is adjacent to v in G if and
only if f(u)∩f(v) 6= ∅, that is, f(u) intersects f(v). We say that the bijective assignment and
the family of sets are a representation of G. When we restrict the nature of the representing
sets, we can restrict the class of representable graphs, and structured representations have
provided a wide variety of tractability results (many examples are listed in [20]).

Here, we give polynomial-time algorithms for two classes of intersection graphs: subtree
intersection graphs of trees with limited numbers of leaves and permutation graphs. In
both cases, we use an approach that sweeps the representation for separators, allowing us to
exhaustively check these separators for firebreak feasibility.

4.1 Intersection graphs of subtrees in a tree

In this section we focus on the intersection graphs of subtrees in a tree that has a constant-
bounded number of leaves (the leafage), for which we show that the Firebreak problem
can be solved in polynomial time. For our purposes, two subtrees are considered to intersect
if they share at least one vertex. The intersection graphs of a tree are the chordal graphs,
and the intersection graphs of trees with constant-bounded leafage can be recognised and
a representation constructed in time O(n3) [21] (where n is the number of vertices in the
graph to be represented). Because these are a subfamily of chordal graphs, for which tw(G) =
ω(G) − 1, they do not in general have constant-bounded treewidth and so the results from
Section 3 do not apply to them.

Theorem 7. The Firebreak problem on a graph G = (V,E) that is the intersection graph
of subtrees of a tree of leafage ` can be solved in time O(|V |2`+1).

Proof. Let (G, k, t, vf) be an instance of the Firebreak problem where G is the intersection
graph of subtrees T of a tree T = (VT , ET) with constant-bounded number of leaves `, and
denote by T(v) the subtree of T that represents vertex v ∈ V (G). For convenience, let
n = |V |. Recall that we denote by S the set of k vertices that we remove from the graph G
in order to form a firebreak.

We make a simplifying assumption that we should not place in S a neighbour of vf that
is adjacent only to other neighbours of vf , as such a vertex being included in S can only ever
protect from burning that single vertex and no others; there is always a non-worse choice of
vertex for inclusion in S. Note also that we assume that vf has more than k neighbours, for
if not then we apply Lemma 1 to resolve the question in O(n) time.

We argue that we can find a polynomially-bounded number of useful minimal separators,
that any solution to the Firebreak problem will place in S at most a constant-bounded
number of them, and that we can check each candidate set of separators efficiently.

Given the representation T, which by [21] we can construct in time O(n3), we know from
[36] that there are at most O(n2) minimal vertex separators in our graph G, and that they
correspond to the vertices of T : specifically, there is one for each vertex u of T , and it is
composed of the vertices of G that are represented by subtrees that contain u. Note that
(also due to [36]) there are at most O(n2) vertices in T . Any candidate separating set S that

12

will serve as a certificate to an affirmative answer to our problem instance (G, k, t, vf) must
be composed of the union of a set of these minimal separators.

There is a unique path from each leaf to the closest vertex of T(vf). Let vi, vj be vertices
on that path in the tree, and let Si, Sj be their corresponding minimal vertex separators in
G. Without loss of generality, let vi be closer to T(vf) than vj is. Then the set of vertices
separated from vf in G − Si is at least as large as the set of vertices separated from vf
in G − (Si ∪ Sj). Thus in a candidate separating set S we need include only at most one
minimal separator corresponding to a vertex on the unique path from each leaf to the subtree
T(vf). There are at most ` such paths, so there are

(
n2

`

)
= O(n2`) possible combinations

of minimal separators to consider when constructing candidate solutions to our problem
instance (G, k, t, vf).

Given a particular candidate separator S, we can check if it provides a certificate for an
affirmative answer to (G, k, t, vf) by checking to see if |S| 6 k, and if the number of vertices
separated from vf in G− S is at least t in O(n) time.

Thus we can generate all candidate solutions in time O(n2`), and check the feasibility of
each in time O(n), giving an overall running time of O(n2`+1).

As a special case for leafage ` = 2 this argument gives us an algorithm to solve the
Firebreak problem in interval graphs in time O(n5). We can do somewhat better in
this case using a representation-construction algorithm due to Booth and Lueker [11], who
give an O(|V | + |E|) algorithm, which, using the reasoning above, we can use to give an
O((|V |+ |E|)4) algorithm.

4.2 Permutation Graphs

There are a large variety of types of intersection graphs (in fact, every graph is an intersection
graph of some set of objects). While Theorem 7 applies to intersection graphs of paths in
a tree (which we note includes interval graphs), permutation graphs are not a subclass of
this class of intersection graphs. By using a sweeping-for-separators approach we are able
to show that the Firebreak problem is tractable on permutation graphs as well. We make
use of one of the many characterisations of a permutation graph, as in [35]: a permutation
graph is the intersection graph of straight line segments between two parallel lines.

We give an example of a permutation graph and a corresponding representation in Fig-
ure 2. We will make use of several results on these representations to address the Firebreak
problem on permutation graphs.

Theorem 8. An instance (G, k, t, vf) of the Firebreak problem where G is a permutation
graph on n vertices can be solved in time O(n3k2).

Proof. As noted by Lemma 1, the case in which |N(vf)| 6 k can be solved in O(n) time, so
we will now consider the case where |N(vf)| > k. A permutation graph has a representation
in the form of line segments between two parallel horizontal lines, which itself can be created
in O(n2) time, and in which we can assume without loss of generality that there are no
vertical line segments [35].

This representation gives a partition of vertices: those corresponding to line segments to
the left of the line segment representing vf , those corresponding to line segments to the right

13

v0

v0

v1

v1

v2

v2

v3

v3

v4

v4

v0

v1
v2

v3
v4

Figure 2: An example of a permutation graph and an associated representation.

of the line segment representing vf , and those adjacent to vf (i.e., the lines that intersect
the line representing vf). In this representation there are n line-segment endpoints on the
top horizontal line, and n on the bottom (there is one of each for each vertex). If we segment
the horizontal lines into portions between line segment endpoints, there are therefore n − 1
segments of each. As described in [10], we can find all minimal separators in a permutation
graph from the line segment representation by considering a series of cut-lines, where a
cut-line is a line between the two horizontal walls with one endpoint on the top horizontal
line and one on the bottom, and we consider one cut-line for each pair of top segment and
bottom segment. There are thus O(n2) such cut-lines, and again due to [10] we know that
every minimal separator in the permutation graph consists of the vertices corresponding to
the line segments crossed by one of these cut-lines in the representation.

Of these O(n2) minimal separators, there are O(nk) that are of interest to us, namely
those that contain at most (k−1) vertices; for convenience we call minimal vertex separators
that meet this size constraint (k − 1)-small. Given any (k − 1)-small minimal separator S
defined by the cut-line s, let Sleft be the subset of vertices to the left of s and let Sright be
the subset of vertices to the right of s.

Consider the following algorithm that searches for firebreaks (i.e., k-subsets of V (G) that
separate vf from some other vertices) of the form S ∪ T .

Algorithm 2.

1. Find all minimal separators S with vf ∈ Sleft (resp. Sright) which have size at
most k, and denote this set as L (resp. R).

2. Exhaustively search for all pairs (S, T) such that S ∈ L, T ∈ R, |S|+ |T | 6 k
and |Sright|+ |Tleft| > t.

If such a pair (S, T) is disjoint and |S|+ |T | = k, then S ∪ T is a firebreak.

Otherwise, consider the component C in G−(S∪T) containing vf . If |V (C)|−
1 + |Sright| + |Tleft| − t + |S ∪ T | > k then there is a firebreak as |V (C)| − 1
vertices can be removed from this component and |Sright| + |Tleft| − t vertices
can be removed from other components to produce a firebreak of size k by
adding them to S ∪ T .

3. If no firebreak was found during the exhaustive search, then no firebreak exists.

14

Suppose some firebreak exists but this algorithm found none. There exist t vertices that
can be separated from vf , possibly some to the left, say L, and some to the right, say R, of
vf . Note that at most one of L and R can be empty. Since L and R are separated from vf ,
there must be cut-lines between them and vf that define minimal separators and hence the
algorithm must have found a firebreak.

Since there are O(nk) minimal separators that are (k − 1)-small, we can search through
the pairs in O(n2k2) time. For each pair (S, T) we may have to find G− (S ∪ T) and count
|V (C)|, |Sright|, and |Tleft|. This adds a factor of n and thus the problem can be solved in
O(n3k2) time.

5 Acknowledgements

Authors Burgess and Pike acknowledge research grant support from NSERC. Ryan acknowl-
edges support from an NSERC Undergraduate Student Research Award.

References

[1] B. Addis, M. Di Summa, and A. Grosso. Identifying critical nodes in undirected graphs:
Complexity results and polynomial algorithms for the case of bounded treewidth. Dis-
crete Applied Math. 161 (2013) 2349–2360.

[2] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded
decomposability—A survey. BIT 25 (1985) 2–23.

[3] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs.
J. Algorithms 12 (1991) 308–340.

[4] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Discrete Applied Mathematics 23 (1989) 11–24.

[5] C. Ballester, A. Calvó-Armengol, and Y. Zenou. Who’s who in networks. Wanted: The
key player. Econometrica 74 (2006) 1403–1417.

[6] N. Baruah and A.K. Baruah. On a traffic control problem using cut-set of graph. Int.
J. Advanced Networking and Applications 3 (2012) 1240–1244.

[7] A. Berger, A. Grigoriev, and R. van der Zwaan. Complexity and approximability of the
k-way vertex cut. Networks 63 (2014) 170–178.

[8] H.L. Bodlaender. Dynamic programming on graphs with bounded treewidth. Tech. Rep.
RUU-CS-87-22. University of Utrecht (1987).

[9] H.L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25 (1996) 1305–1317.

[10] H.L. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and pathwidth of permutation
graphs. SIAM J. Disc. Math. 8 (1995) 606–616.

15

[11] K.S. Booth and G.S. Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. Journal of Computer and System Science
13 (1976) 335–379.

[12] S.P. Borgatti. The key player problem. In: Dynamic Social Network Modeling and Anal-
ysis: Workshop Summary and Papers (Breiger, Carley and Pattison (eds.)). National
Academies Press, Washington (2003) pp. 241–252.

[13] S.P. Borgatti. Identifying sets of key players in a social network. Comput. Math. Organiz.
Theor. 12 (2006) 21–34.

[14] R.B. Borie, R.G. Parker, and C.A. Tovey. Automatic generation of linear-time algo-
rithms from predicate calculus descriptions of problems on recursively constructed graph
families. Algorithmica 7 (1992) 555–581.

[15] J. Cheriyan and R. Thurimella. Fast algorithms for k-shredders and k-node connectivity
augmentation. J. Algorithms 33 (1999) 15–50.

[16] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Information and Computation 85 (1990) 12–75.

[17] Y. Egawa. k-shredders in k-connected graphs. J. Graph Theory 59 (2008) 239–259.

[18] S. Finbow and G. MacGillivray. The firefighter problem: a survey of results, directions
and questions. Australas. J. Combin. 43 (2009) 57–77.

[19] M.R. Garey and D.S. Johnson. The rectilinear Steiner tree problem is NP -complete.
SIAM J. Appl. Math 32 (1977) 826–834.

[20] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Elsevier Science, 2004,
2nd Edition.

[21] M. Habib and J. Stacho. Polynomial-time algorithm for the leafage of chordal graphs.
Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark,
2009.

[22] B.L. Hartnell. Firefighter! An application of domination. 25th Manitoba Conference
on Combinatorial Mathematics and Combinatorial Computing, University of Manitoba,
Winnipeg, 1995.

[23] A.V. Karzanov and E.A. Timofeev. Efficient algorithm for finding all minimal edge cuts
of a nonoriented graph. Cybernetics 22 (1986) 156–162.

[24] T. Kloks. Treewidth, Computations and Approximations. Lecture Notes in Computer
Science, vol. 842. Springer-Verlag, Berlin Heidelberg (1994).

[25] M. Lalou, M.A. Tahraoui, and H. Kheddouci. The critical node detection problem in
networks: A survey. Computer Science Review 28 (2018) 92–117.

16

[26] A. Langer, F. Reidl, P. Rossmanith, and S. Sikdar. Practical algorithms for MSO model-
checking on tree-decomposable graphs. Computer Science Review 13–14 (2014) 39–74.

[27] D. Marx. Parameterized graph separation problems. Theoretical Computer Science 351
(2006) 394–406.

[28] H. Nagamochi and T. Ibaraki. Algorithmic Aspects of Graph Connectivity. Cambridge
University Press, New York (2008).

[29] D. Ortiz-Arroyo and D.M.A. Hussain. An information theory approach to identify sets
of key players. In: Intelligence and Security Informatics (Ortiz-Arroyo, Larsen, Zeng,
Hicks and Wagner (eds.)). Lecture Notes in Computer Science, vol 5376. Springer-
Verlag, Berlin (2008) pp. 15–26.

[30] J.S. Provan and M.O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. Comput. 12 (1983) 777–788.

[31] N. Robertson and P.D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7 (1986) 309–322.

[32] N. Robertson and P.D. Seymour. Graph minors. X. The disjoint paths problem. J.
Combinatorial Theory – Series B 63 (1996) 65–110.

[33] M.M. Sathik and A.A. Rasheed. A centrality approach to identify sets of key players in
an online weblog. Int. J. Recent Trends in Engineering 2 (2009) 85–87.

[34] S. Shen and J.C. Smith. Polynomial-time algorithms for solving a class of critical node
problems on trees and series-parallel graphs. Networks 60 (2012) 103–119.

[35] J. Spinrad. On comparability and permutation graphs. SIAM J. Comput. 14 (1985)
658–670.

[36] P. Sreenivasa Kumar and C.E. Veni Madhavan. Minimal vertex separators of chordal
graphs. Discrete Applied Mathematics 89 (1998) 155–168.

17

	Wiley Cover Sheet (AFV)
	222187

