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Abstract

We consider two new problems regarding the impact of edge addition or removal
on the modularity of partitions (or community structures) in a network. The first
problem seeks to add edges to enforce that a desired partition is the partition that
maximizes modularity. The second problem seeks to find the sparsest representation
of a network that has the same partition with maximum modularity as the original
network. We present integer programming formulations, a row generation algorithm,
and heuristic algorithms to solve these problems. Further, we demonstrate a counter-
intuitive behavior of modularity that makes the development of heuristics for general
networks difficult. We then present results on a selection of social and illicit networks
from the literature.
Keywords: community detection; modularity maximization; integer programming; network
optimization; social networks; illicit networks

1 Introduction

Law enforcement agencies have been turning to social network analysis in order to augment
their investigations [51, 54, 52, 36, 16, 3, 19]. In particular, the problem of edge augmentation
is of high importance to law enforcement; it is known that participants in illicit networks
attempt to hide their activities from law enforcement in order to avoid detection [6, 24, 50].
However, missing edges can dramatically change the output of these quantitative tools, mak-
ing the problem of identifying missing edges fundamentally important for the appropriate
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use of social network analysis in law enforcement investigations [54]. The problem of identi-
fying missing edges in illicit networks has been approached from many different perspectives
[7, 12, 33, 47].

Another facet of using social network analysis in augmenting the investigations of illicit
networks is through analyzing participant attributes. It has been identified that attributes
of participants in illicit networks can provide direction for law enforcement investigations to
understand the structure of these networks [10, 32, 38, 39]. In social network analysis, one
way of uncovering potential node attributes is through community detection. The commu-
nity detection problem seeks to partition the nodes into clusters, or communities, based on
some measure [53]. Calderoni et al. [11] identified that attributes, such as the roles of partic-
ipants, are linked to the communities identified through modularity maximization [43]. This
connection has sparked further research into the application of modularity maximization to
understanding illicit networks, based around the notion that incomplete information about
networks impacts the communities identified [4, 22].

We introduce a new problem bridging the areas of edge augmentation and community
detection. As law enforcement investigates an illicit network, they may not identify all of
the edges [50, 6]. This, in turn, hinders the performance of community detection methods
[4], potentially causing the communities identified to disagree with the roles determined
by the investigations. We seek to identify the minimum number of edges to add to the
network to enforce that the roles determined by law enforcement investigations align with
the communities determined via community detection. From here on, we refer to known
communities from external investigation as the ground truth community structure, or ground
truth partition.

We also consider a similar problem when law enforcement has observed parts of the illicit
network, but is not yet confident about the roles of the participants. In this case, social
network analysis is used to predict the roles of participants in an illicit network [11], and law
enforcement must then direct its investigations to validate these predictions. However, law
enforcement is limited in its resources to perform all its duties [29, 20, 27]. These resource
constraints impact the quality of investigations [18, 25]. In evaluating the quality of the
communities determined via social network analysis, it is important that law enforcement
validates these findings as efficiently as possible. This problem can be framed as identifying
a sparse sub-network which maintains the partition of the original network. In other words,
we seek to find the smallest number of edges (amongst the current ones) such that the
partition that maximizes the modularity of the sub-network is the same as the partition
that maximizes modularity of the original network. Understanding the minimum number
of edges needed to produce these communities will allow scarce resources to be allocated
to best investigate the edges of the network to prove or disprove what is believed by the
investigations.

We present approaches to formulate these problems as mixed integer nonlinear programs
(MINLPs). For the case where edges are unweighted, we are able to formulate these prob-
lems as binary nonlinear programs. We then show how to reformulate the binary nonlinear
program as an equivalent binary linear program. For the case where edges are weighted,
we show how the MINLP can be relaxed to a mixed integer linear program (MILP) and
also discuss exact approaches to solve this problem. We additionally develop heuristic ap-
proaches to solve these problems, and demonstrate properties about modularity that make
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the development of more accurate heuristics difficult. We apply our approaches to several
case studies as a proof of concept and show that our heuristics perform quite well.

1.1 Literature Review

Community detection has been a problem of interest in network analysis for many years,
with many different methods [53]. Formally, consider a network G = (V,E). A feasible
partition of V is defined to be a set of clusters, or communities, P = (C1, . . . , Ck) such
that

⋃k
i=1Ci = V and Ci ∩ Cj = ∅ for all i 6= j. Let P be the set of feasible partitions.

The community detection problem seeks to find a partition P ∗ ∈ P that maximizes some
measure of the partition. Typically, this measure would give preference to partitions where
there are a large number of edges within each cluster, but a small number of edges between
the clusters. Outside of illicit network analysis, community detection has applications in
many domains, including the analysis of biological networks and social networks [53].

A popular method to perform community detection is through modularity maximization
[14], introduced by Newman and Girvan [43]. Modularity maximization seeks to find a
partition P that maximizes the Newman-Girvan modularity metric, which compares, for
each cluster, its number of actual edges and expected numbers of edges in the equivalent
random network without communities [40]. Modularity was initially defined on unweighted
networks, but the definition can easily be extended to weighted networks. Brandes et al. [9]
provides an equivalent definition of the unweighted version of modularity as

Q =
∑
C∈P

(
|E(C)|
|E|

−
(
|E(C)|+

∑
C′∈P |E(C,C ′)|

2|E|

)2
)

,

where E(C) is the set of edges within cluster C and E(C,C ′) is the set of edges between
clusters C and C ′. The problem of modularity maximization is known to be NP-hard [9].
Many heuristic methods have been developed to quickly find partitions with relatively large
modularity scores [41, 8]. Similar metrics have also been proposed to capture the same
intuitive principles guiding modularity, while accounting for some of its shortcomings [15].

Modularity maximization can be formulated as an integer programming (IP) problem.
Brandes et al. [9] introduces this formulation, and Agarwal and Kempe [1] propose a rounding
technique to improve the solve time of these problems. Given a weighted network G = (V,E)
with edge weights w : E → R, let A be the weighted adjacency matrix of G, m =

∑
(i,j)∈E wij,

and di =
∑

j∈V wij for i ∈ V . For every pair of nodes i, j ∈ V , define decision variables
xij such that xij = 0 if i and j are in the same cluster, and xij = 1 otherwise. The integer
programming formulation of modularity maximization is as follows:

max
x∈{0,1}|V |2

1

2m

∑
i,j∈V

(
Aij −

didj
2m

)
(1− xij)

s.t.xij ≤ xik + xkj for all i, j, k ∈ V (1)

There have since been other formulations of this problem to improve solve time of the
integer program (see [2] for such methods), but discussing them is outside the scope of our
paper. Such methods can easily be adapted to fit into our framework.
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One issue that arises in our problems, compared to this past work on using IP to maxi-
mize modularity, is the fact that we are enforcing that the modularity of the given partition
is maximum amongst all partitions. This leads to a number of constraints equal to the num-
ber of partitions, i.e., an exponential number of constraints based on the number of nodes
in the network. To avoid this difficulty, our framework operates on ‘row generation,’ i.e.,
only maintaining a subset of these constraints at a time and then generating new constraints
(rows) when needed. In each iteration of our framework, a master problem is solved for a
potential optimal solution based on a subset of the partition constraints. A subproblem is
then solved to verify optimality, which fails when there is a partition not currently included
that has a modularity larger than the ground truth community structure. In such a case,
a new constraint is added to the master problem. Fischetti et al. [23] demonstrates this is
an effective method to solve bilevel integer optimization problems. More recently, commu-
nity detection through the degree-corrected stochastic block model, which is known to be
equivalent to modularity maximization [42], has been modeled as a MINLP in [49]. The au-
thors linearized the model and solved the resulting MILP using a row generation framework.
However, our problem has the added complication of needing to compare the ground truth
to all potential partitions in a network where the problem is deciding the existence of edges.

1.2 Paper Organization

The rest of the paper is organized as follows: in Section 2, our two problems of interest
are formally introduced. In Section 3, we describe a row generation algorithm to solve the
problem exactly, and reformulate the problem as a MILP. In Section 4, we demonstrate
properties of modularity that prove challenging when designing heuristic solution methods.
We also present our heuristic approaches. In Section 5, we present computational results of
our row generation algorithm and heuristics. We discuss our conclusions in Section 6.

2 Description of Problems

2.1 Edge Addition for Community Optimization

We first introduce the edge weight addition for community optimization problem. Consider
a weighted network G = (V,E) with weights w : E → R. Note that pairs of vertices that do
not have an edge between them can be considered as having edges with weight 0. Let P be
the set of feasible partitions of V , with ground truth partition T = (CT

1 , . . . , C
T
k ) ∈ P . Let

Ē be the set of edges that can have weight added to the edge between them, and let Bij be
the upper bound on the amount of weight that can be on edge (i, j). Let bij be the decision
variable indicating how much weight is added to edge (i, j). This problem considers adding
weights to G to enforce that the ground truth community structure T = (CT

1 , . . . , C
T
k ) is a

partition that maximizes the modularity of the new network and wij + bij ≤ Bij.
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Edge Weight Addition for Community Optimization
Input: A network G = (V,E) with weights w : E → R, set of edges that can have

weight added to them Ē, weight limits on edges B : E ∪ Ē → R≥0 and a
specified partition T = {CT

1 , . . . , C
T
k }

Output: Set of weights b added to edges that enforce that T is a partition that
maximizes the modularity of the network G with weights w + b.

Let QP (w) be the modularity of G with edge weights w. We can model the edge weight
addition for community optimization problem as the following:

min
b∈Z≥0

∑
(i,j)∈Ē

bij

s.t.T ∈ arg max
P∈P
{QP (w + b)} (2)

wij + bij ≤ Bij for all (i, j) ∈ Ē

By enumerating over all possible partitions, we can easily convert the constraint T ∈
arg maxP∈P{QP (b)} in model (2) to the following equivalent model:

min
b∈Z≥0

∑
(i,j)∈Ē

bij

s.t.QT (w + b) ≥ QP (w + b) for all P ∈ P (3)

wij + bij ≤ Bij for all (i, j) ∈ Ē

In this program, the constraint QT (w + b) ≥ QP (w + b) enforces that the modularity
associated with partition T after adding weights b is at least as large as the modularity
of every other partition P . Thus, T is in the set of optimal partitions for the modularity
maximization problem. To enforce that T is the unique optimal solution, the constraint
could be replaced with QT (w + b) ≥ QP(w + b) + ε for some small ε > 0.

In the case where G is unweighted, i.e., wij = 1 for all (i, j) ∈ E and wij = 0 for
all (i, j) /∈ E, we can derive an equivalent model for model (3) that is an integer linear
program. In this case, Ē will be the set of edges that can be added to the network, and
QP (E ′) will be the modularity of the partition P in the network G′ = (V,E ∪ E ′), where
E ′ = {(i, j) ∈ Ē : bij = 1}. This special case can be modeled as:

min
E′⊆|Ē|

|E ′|

s.t.QT (E ′) ≥ QP (E ′) for all P ∈ P (4)

Since we can derive an integer linear program equivalent to model (4), which can be
solved by commercial solvers, we will use this model as the basis for derivations in Section
3.
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2.2 Edge Removal for Community Preservation

We now introduce the edge removal for community preservation problem. Consider a network
G = (V,E), and let P ∗ be a partition that maximizes modularity of G. The edge removal
for community preservation problem seeks to identify the smallest set E ′ ⊆ E such that P ∗

is a partition that maximizes modularity of G′ = (V,E ′).

Edge Removal for Community Preservation
Input: A network G = (V,E), where P ∗ is a partition that maximizes the modu-

larity of G
Output: A network G′ = (V,E ′), where E ′ ⊂ E and P ∗ is a partition that maximizes

the modularity of G′

This problem can be modeled similarly to model (4). We can express this as the following:

min
E′⊆E

|E ′|

s.t.QP ∗(E
′) ≥ QP (E ′) for all P ∈ P (5)

Unlike model (4), where we optimize over an extended set of edges Ē, here we optimize
over the original set of edges E. Since we are trying to maintain that the original optimal
partition P ∗ is a partition that maximizes modularity, we use P ∗ as the ground truth partition
T in the constraints. Because the constraints in both models are the same, we can use a
similar solution method to solve both problems.

3 Integer Programming Framework

3.1 Initial Framework

To solve model (4) by enumeration, we would need to verify the modularity of every possible
partition, the number of which is exponentially large in the number of nodes. However,
we expect that most of those partitions can be rejected based on modularity properties.
For example, if every node is in the same cluster, or every node is in their own cluster, the
modularity will always be zero. As long as our given partition has a non-negative modularity,
we do not need to compare against these two partitions.

We propose a row generation method to solve these problems. In this framework, we
iteratively identify partitions of higher modularity than our given modularity. We then
use these partitions to determine what edges should be added to the network so the given
partition has a higher modularity than these partitions.

Let Pk be the set of partitions identified by the kth iteration of our iterative procedure.
Instead of solving model (4), we solve the following:

min
z∈{0,1}|Ē|

∑
(i,j)∈Ē

zij

s.t.QT (z) ≥ QP(z) for all P ∈ Pk (6)
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In model (6), we enforce that T has a modularity at least as large as every partition in
Pk, providing a lower bound on the objective value of model (4). However, this does not
enforce that the given partition T is in the set of partitions that maximize modularity. Let
zk be the optimal solution found in model (6), and let Ek be the set of edges added to the
network with solution zk, i.e., Ek = {(i, j) ∈ Ē : zkij = 1}. We now find a partition that
maximizes modularity of the new network with edges added. Let Ā be the adjacency matrix
of Gk = (V,E∪Ek), m̄ = |E∪Ek|, and d̄i be the degree of node i in Gk. We find a partition
that maximizes modularity with the following:

max
x∈{0,1}|V |2

1

2m̄

∑
i,j∈V

(
Āij −

d̄id̄j
2m̄

)
(1− xij)

s.t.xij ≤ xik + xkj for all i, j, k ∈ V (7)

By solving model (7), we find a partition P̄ that maximizes modularity of the new
network, as well as its modularity. If QT (zk) = QP̄ (zk), then we have that T is in the
set of optimal partitions, and we are done. If not, then we have found a partition, P̄ ,
which has greater modularity than T which must be considered when adding edges. We set
Pk+1 = Pk ∪ P̄ , and repeat this process. Formalizing this procedure yields Algorithm 1.

Algorithm 1 Row Generation for Edge Addition

Initialize: network G = (V,E), ground truth partition T , initial set of partitions P1, set
of includable edges Ē, iteration counter k = 1.
while not converged do

Step 1. Solve model (6) for zk, Ek.
if (6) is infeasible then

terminate; model (4) is infeasible.
end if
Step 2. Create test network Gk = (V,E ∪Ek). With test network Gk, solve model (7)
for optimal partition P̄ .
if QT (zk) = QP̄ (zk) then

terminate; Ek is the optimal solution to model (4).
else

Set Pk+1 = Pk ∪ P̄ , k ← k + 1, and return to Step 1.
end if

end while

To analyze, each iteration of this procedure can result in one of three outcomes. First,
if model (6) is infeasible, then model (4) is also infeasible. If model (6) is feasible, we have
two cases. If QT (zk) = QP̄ (zk) in the kth iteration, we have found an optimal set of edges
to add to the network. Otherwise, we have QT (zk) < QP̄ (zk), so we include P̄ in Pk+1, and
we continue the process. Since |P| is finite, our framework has a finite number of iterations,
and will thus solve model (4) in finite time.

We note that modularity maximization is known to be NP-Hard, meaning solving model
(7) in Algorithm 1 involves solving an NP-Hard problem each iteration. It may, however,
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not be necessary to solve model (7) to optimality; the purpose of solving model (7) is to
determine if the partition T is optimal in Gk. If it is not optimal, we wish to find a partition
P̄ with QP̄ (zk) > QT (zk), not necessarily the partition that maximizes modularity of Gk. As
long as a partition with P̄ with QP̄ (zk) > QT (zk) is identified, Algorithm 1 will still converge
to the true solution. Alternatively, solving model (7) may be replaced with other methods,
such as a heuristic method for identifying partitions with near-optimal modularity. In doing
so, Algorithm 1 provides a lower bound on the objective value, since not solving model (7) to
optimality may result in claiming that no partition exists such that QP (zk) ≥ QT (zk) even
when such a partition might exist. However, for the networks we test our methods on, it
was found that solving model (6) was more computationally challenging than solving model
(7). We elaborate further on computational testing in Section 5.

While we choose to use modularity as our measure of community structure, note that
our framework can work for any optimization-based clustering measure. In model (4), and
likewise model (6), the constraint enforcing that the given partition T has modularity at
least as large as that of all other partitions would be replaced with the desired measure of
T being at least as large as that of all other partitions, and model (7) would be replaced
with finding a partition that optimizes that measure. In this paper, though, we are able to
express model (4) as an integer program, rather than a nonlinear integer program, which we
demonstrate over the next two subsections.

3.2 Nonlinear Integer Programming Representation

We now express model (4) as an integer program. We can rewrite the modularity of a given
partition with added edges as:

QP (z) =
∑
i,j∈V

(
Aij + zij

2(m+
∑

(s,t)∈Ē zst)
−

(di +
∑

l∈V zil)(dj +
∑

h∈V zjh)

(2(m+
∑

(s,t)∈Ē zst))
2

)
(1− xPij). (8)

We can thus express the nonlinear integer program as:

min
z∈{0,1}|Ē |

∑
(i,j)∈Ē

zij

s.t.
∑
i,j∈V

(
Aij + zij

2(m+
∑

(i,j)∈Ē zij)
−

(di +
∑

l∈V zil)(dj +
∑

h∈V zjh)

(2(m+
∑

(s,t)∈Ē zst))
2

)
(1− xTij) (9)

≥
∑
i,j∈V

(
Aij + zij

2(m+
∑

(i,j)∈Ē zij)
−

(di +
∑

l∈V zil)(dj +
∑

h∈V zjh)

(2(m+
∑

(s,t)∈Ē zst))
2

)
(1− xPij)

for all P ∈ P

We note that model (5) can be expressed similarly, where zij is no longer a binary vector
indicating inclusion of edges, but a vector of integers, expressing the amount of weight added to
edges.

3.3 Linearizing the Problem

The constraints in model (9) are nonlinear, but, by using standard techniques, we can create linear
constraints that are equivalent. Below, we describe the process of linearizing these constraints,
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which we summarize in Theorem 1. The equivalent constraint in the weighted version of the
problem can be linearized similarly, but we will highlight some key differences after the derivation
is complete.

The first point to note is that the 2(m+
∑

(i,j)∈Ē zij) in the denominator is the same on both
sides of the equality. Furthermore, it will always be strictly greater than 0, assuming the network
has a nonempty edge set. Thus, multiplying both sides of the inequality by this denominator does
not change the inequality, resulting in:

∑
i,j∈V

(
Aij + zij −

(di +
∑

l∈V zil)(dj +
∑

h∈V zjh)

2(m+
∑

(s,t)∈Ē zst)

)
(1− xTij) (10)

≥
∑
i,j∈V

(
Aij + zij −

(di +
∑

l∈V zil)(dj +
∑

h∈V zjh)

2(m+
∑

(s,t)∈Ē zst)

)
(1− xPij).

Again, using that 2(m +
∑

(i,j)∈Ē zij) > 0, we multiply both sides of the inequality by 2(m +∑
(i,j)∈Ē zij) to remove fractions from our inequality. Additionally, the factors 1− xTij and 1− xPij

are multiplied by the same terms. Thus, we can equivalently express the inequality as the following:

∑
i,j∈V

(Aij + zij)(2(m+
∑

(s,t)∈Ē

zst))− (di +
∑
l∈V

zil)(dj +
∑
h∈V

zjh)

 (xPij − xTij) ≥ 0 (11)

We now have a quadratic constraint equivalent to the original constraint. To linearize this
constraint, we use the McCormick inequalities [34]. For a pair of edges (i, j) and (s, t), let wijst =
zijzst. The following inequalities enforce that wijuv takes the correct value:

wijst ≤ zij ,
wijst ≤ zst,
wijst ≥ 0,

wijst ≥ zij + zst − 1.

By multiplying out the quadratic terms, and replacing any bilinear terms with the appropriate
variable, we can express the term multiplied by xTij (and xPij) as

fij(z, w) = 2mAij + 2Aij

∑
(s,t)∈Ē

zst + 2mzij + 2
∑

(s,t)∈Ē

wijst

−

didj + di
∑
h∈V

zjh + dj
∑
l∈V

zil +
∑
h,l∈V

wiljh

 .

We can now express the linearized constraint as:

∑
i,j∈V

(xPij − xTij)fij(z, w) ≥ 0 (12)
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Since the z variables are binary, we will have that wijst = zijzst. Thus, our integer programming
formulation is:

min
z∈{0,1}|Ē|,w

∑
(i,j)∈Ē

zij

s.t.
∑
i,j∈V

(xPij − xTij)fij(z, w) ≥ 0 for all P ∈ P (13)

wijst ≤ zij for all (i, j), (s, t)

wijst ≤ zst for all (i, j), (s, t)

wijst ≥ 0 for all (i, j), (s, t)

wijst ≥ zij + zst − 1 for all (i, j), (s, t)

Theorem 1. Model (13) is equivalent to model (9): there is a one-to-one correspondence between
solutions for (9) and model (13).

Proof. We show that model (4) is equivalent to model (13) by showing that a feasible solution to
one model has a corresponding feasible solution to the other model with the same objective value.
Note that, since the objective function value of both models is the same, as long as z remains
unchanged between the two models, the objective value of the solution will also be unchanged.

Suppose (z, w) is a feasible solution to model (13). Since the constraints of model (9) are
equivalent to constraints (12), and (z, w) is a feasible solution to model (13), z is a feasible solution
to model (9) with equivalent objective value. Likewise, suppose z is a feasible solution to model
(9). For pairs of edges (i, j), (s, t), compute wijst = zijzst. Suppose, without loss of generality,
zij = 0, and thus wijst = 0. The McCormick inequalities will be satisfied, as 0 = wijst = zij ≤ zst
and wijst = 0 = zij ≥ zij + zst − 1. Now suppose zij = zst = 1. The McCormick inequalities are
again satisfied, since wijst = 1 ≤ zij = zst and wijst = 1 ≥ 1 = zij + zst − 1. Additionally, since
the constraints of model (9) are equivalent to constraints (12), (z, w) is a feasible solution to model
(13) with equivalent objective value. Thus, model (9) is equivalent to model (13).

In the framework of Algorithm 1, we would solve model (13) to determine Ek, then solve model
(7) to determine a partition that maximizes modularity of the network Gk = (V,E ∪ Ek). We
additionally add a constraint regarding the previous iteration’s objective value to model (13). Let
ck be the objective value in the kth iteration. We add the constraint

∑
(i,j)∈K|V |\E zij ≥ ck, with

c0 initialized as 0. By enforcing that the objective value is non-decreasing, we can reduce the time
of the branch-and-bound procedure needed to solve iterations where the objective value stays the
same as in the previous iteration.

We note that, when extending these manipulations to the weighted version of the problem, we
use the generalized McCormick envelope [34]. For integer variables zij , zst with lij ≤ zij ≤ uij and
lst ≤ zst ≤ ust, we can represent wijst as:

wijst ≤ lstzij + uijzst − lstuij
wijst ≤ lijzst + ustzij − lijust
wijst ≥ lstzij + lijzst − lijlst

wijst ≥ ustzij + lijzst − uijust
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However, for non-binary zij and zst, we no longer have the guarantee that wijst = zijzst, and
these substitutions will not result in an equivalent model. A potential solution to this is to use
binary expansion, replacing each integer variable with a set of binary variables to represent any value
that integer variable can take [45]. More formally, for integer variable zij with zij ≤ uij , we would

create binary variables b0ij , . . . , b
k
ij , with k = blog2(uij)c. We would then include zij =

∑k
l=0 2lblij ,

and replace zij with
∑k

l=0 2lblij in the model, converting the bilinear terms with integer variables to
bilinear terms with binary variables. While this substitution would result in an equivalent model,
it also results in a large number of binary variables that does not scale well with problem size.
Preliminary computational results show this is not a feasible approach.

3.4 Disjunctive Cuts and Additional Partitions

In order to better enforce that the ground truth partition is optimal, we augment model (6) by
defining valid disjunctive cuts, and augment Algorithm 1 by generating additional partitions. We
first consider how to enforce that a single node v is clustered correctly. For ease of notation, consider
a pair of arbitrary partitions P = (C1 ∪ {v}, C2, C3, . . . , Cl) and P ′ = (C1, C2 ∪ {v}, C3, . . . , Cl),
where P is the desired partition. Let ei(v) be the set of edges between v and cluster Ci for i = 1, 2
and let e−(v) be the set of edges between v and

⋃l
j=3Cj . Let E(Ci, C−) be the set of edges between

Ci and
⋃l

j=3Cj , and let Q− be the contribution to modularity by C3, . . . , Cl. We want to identify
conditions on when QP < QP ′ to derive valid inequalities that can be added to the model (13) to
prevent it from occurring.

(4m2) (QP −QP ′)

= 4m(|E(C1)|+ |e1(v)|)− (2|E(C1)|+ 2|e1(v)|+ |E(C1, C2)|+ |e2(v)|+ |E(C1, C−)|+ |e−(v)|)2

+ 4m|E(C2)| − (|2E(C2)|+ |E(C1, C2)|+ |e2(v)|+ |E(C2, C−)|)2 + 4mQ−

− 4m|E(C1)|+ (2|E(C1)|+ |E(C1, C2)|+ |e1(v)|+ |E(C1, C−)|)2 − 4mQ−

− 4m(|E(C2)|+ |e2(v)|) + (2E(C2) + 2|e2(v)|+ |E(C1, C2)|+ |e1(v)|+ |E(C2, C−)|+ |e−(v)|)2

= 4m(|e1(v)| − |e2(v)|) + (2|E(C1)|+ |e1(v)|+ |E(C1, C2)|+ |E(C1, C−)|)2

− [(2|E(C1)|+ |e1(v)|+ |E(C1, C2)|+ |E(C1, C−)|) + (|e1(v)|+ |e2(v)|+ |e−(v)|)]2

− (|2E(C2)|+ |e2(v)|+ |E(C1, C2)|+ |E(C2, C−)|)2

+ [(2|E(C2)|+ |e2(v)|+ |E(C1, C2)|+ |E(C2, C−)|) + (|e1(v)|+ |e2(v)|+ |e−(v)|)]2

= 4m(|e1(v)| − |e2(v)|)− (|e1(v)|+ |e2(v)|+ |e−(v)|)2

− 2 (2|E(C1)|+ |e1(v)|+ |E(C1, C2)|+ |E(C1, C−)|) (|e1(v)|+ |e2(v)|+ |e−(v)|)
+ 2 (2|E(C2)|+ |e2(v)|+ |E(C1, C2)|+ |E(C2, C−)|) (|e1(v)|+ |e2(v)|+ |e−(v)|)
+ (|e1(v)|+ |e2(v)|+ |e−(v)|)2

= (4m− 2|e1(v)| − 2|e2(v)| − 2|e−(v)|)(|e1(v)| − |e2(v)|)
− 2(2|E(C1)|+ |E(C1, C−)| − 2|E(C2)| − |E(C2, C−)|)(|e1(v)|+ |e2(v)|+ |e−(v)|)

Note that 0 ≤ |e1(v)|+ |e2(v)|+ |e−(v)| ≤ m, so if |e1(v)| ≤ |e2(v)| and 2|E(C1)|+ |E(C1, C−)| >
2|E(C2)|+ |E(C2, C−)|, then QP < QP ′ . Thus, we must have that

|e1(v)| ≥ |e2(v)|+ 1 or 2|E(C2)|+ |(E(C2, C−)| ≥ 2|E(C1)|+ |(E(C1, C−)|.
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Likewise, if |e1(v)| < |e2(v)| and 2|E(C1)|+ |E(C1, C−)| ≥ 2|E(C2)|+ |E(C2, C−)|, then QP <
QP ′ . This results in needing to enforce

e1(v)| ≥ |e2(v)| or 2|E(C2)|+ |(E(C2, C−)| ≥ 2|E(C1)|+ |(E(C1, C−)|+ 1.

To define these cuts regarding T , we must first discuss how to determine which nodes are “clas-
sified incorrectly,” especially when our ground truth community structure and the current optimal
partition have a different number of clusters. Let P̄ be a partition that maximizes modularity, as
determined by Algorithm 1. We construct a complete bipartite network, where one set of nodes
represents the clusters in T , and the other set represents the clusters in P̄ . For a pair of clusters
CT
i and CP̄

j , we set the edge weight for (i, j) to be |CT
i ∩ CP̄

j |, the number of nodes shared by
those clusters. We then solve the maximum weight matching problem on this bipartite network,
indicating how the clusters should be ordered. From this, we can easily determine which nodes are
incorrectly classified. Note that if an optimal partition has more clusters than the ground truth
community structure, then at least one cluster in an optimal partition will not be matched with
any cluster in the ground truth. In this scenario, all nodes in this cluster are considered incorrectly
classified. Similarly, if the ground truth community structure has more clusters than an optimal
partition, at least one cluster in the ground truth communities will not be matched with any clus-
ter in an optimal partition. All nodes in this unmatched cluster will also be considered incorrectly
classified. An example of this distinction being important is when two clusters in the ground truth
community structure are merged into a single cluster in an optimal partition. While these nodes
will all be clustered with all of the nodes they should be clustered with, whichever ground truth
cluster is smaller will have its nodes considered incorrectly classified. This indicates that edges (or
weights) must be added to distinguish this smaller cluster as its own individual cluster.

Once we have determined the set of incorrectly classified nodes M , we can now define the
disjunctive cuts. Let v ∈ M be an incorrectly classified node, and, without loss of generality,
assume v ∈ CT

1 . Let C̄ be the cluster v belongs to in P̄ . Suppose C̄ \ CT
1 is nonempty, and

consider w ∈ C̄ \ CT
1 . Without loss of generality, assume w ∈ CT

2 . We define the partition P ′ =
(CT

1 \{v}, CT
2 ∪{v}, CT

3 , . . . , C
T
l ). By utilizing P̄ , we ensure that the partition generated provides a

meaningful contribution by clustering v with a node with which it was previously clustered. Besides
defining the disjunctive cuts, we also include the partition P ′ in Pk. Computationally, this inclusion
improved solve time.

In the case when C̄ \ CT
1 = ∅, the above partition is no longer properly defined, as C̄ ⊆ CT

1 .
One option would be to have v in a cluster on its own in P ′. This partition, however, is known to
not be optimal as long as dv > 0 [9]. Instead, we consider a partition that separates all of C̄, not
just a single node, since C̄ ⊂ CT

1 . We can define a new partition P ′ = (CT
1 \ C̄, C̄, CT

2 , . . . , C
T
l ).

This partition is well defined, since if CT
1 \ C̄ = ∅ and C̄ \ CT

1 = ∅, then CT
1 = C̄ and thus v /∈M .

By including the constraint QT ≥ QP ′ , we enforce that edges are added to merge CT
1 \ C̄ and C̄.

At each iteration of Algorithm 1, we generate the set of incorrectly classified nodes M , and
remove nodes whose cluster in P̄ is a subset of a cluster in T . For each of these nodes v, we pick
an arbitrary node w, where v and w are in the same cluster in P̄ , but different clusters in T , to
define the disjunctive cuts and additional partition. Then, for every cluster CP̄

i ∈ P̄ , we check if it

is a subset of a cluster in CT
j ∈ T , and generate additional partitions for it when CP̄

i ⊂ CT
j .

4 Challenges for Heuristic Approaches

The potential downsides of using model (13) include (i) that there could be a large number of binary
variables, particularly if the network is sparse, and (ii) we must repeatedly solve model (13) as we
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generate new partitions to be added to it. With this, even small networks can be computationally
expensive to solve, especially when trying to solve model (5). Thus, good heuristics are important
for obtaining high quality solutions in a reasonable amount of time. Before we present our heuristic
algorithms, we discuss some counter-intuitive behaviors of modularity as a measure of community
strength.

4.1 Counter-Intuitive Behavior of Modularity

As modularity is a measure of the strength of communities, there are two nice properties we would
hope to have. Intuitively, we would expect that adding an edge between two nodes in the same
cluster would increase the modularity score of that partition. Likewise, we would expect that
adding an edge between two nodes in different clusters would decrease the modularity score of that
partition. Neither of these intuitive properties are true. Figure 1 demonstrates that adding an edge
within a cluster can decrease modularity.

0.6753 Modularity Add red edge: 0.6724 Modularity

Figure 1: Example of adding an edge within a cluster decreasing modularity of the partition

We construct this example by taking Zachary’s karate club network [55] and removing all
edges between distinct communities in an optimal partition of the network. The modularity of the
partition where each disjoint component is its own community is 0.6753. By adding the red edge,
which is between two nodes within the red cluster, the modularity decreases to 0.6724.

We can likewise create an example where adding an edge across clusters increases the modularity.
Figure 2 demonstrates this behavior.

We create the example by starting with a complete network on 10 nodes. We then add six more
nodes, and create two disjoint paths of edge-length two on these nodes. We take one endpoint of
each path, and connect them to one node each in the complete sub-network. With the partition
where the complete sub-network and two paths are in their own clusters, we have a modularity of
0.1424. By adding the red edge, which connects the degree 1 nodes in the blue and green clusters,
the modularity increases to 0.1531.

A property of modularity being a global measure is that only the numbers of edges within
clusters and between clusters are relevant to computing modularity, but not what specific nodes
each edge connects [43]. We would then expect that the change in modularity of a particular
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0.1424 Modularity Add red edge: 0.1531 Modularity

Figure 2: Example of adding an edge across clusters increasing modularity of the partition

partition from adding an edge is dependent only on the clusters the incident nodes are in, not the
nodes themselves. Exact computations for the change in modularity are presented in Appendix A.

While this is a nice property for a global measure, this property makes developing heuristics
based on local properties difficult; we cannot distinguish between edges to add to improve the
modularity of our ground truth communities. Further, the change in modularity across different
partitions will be different and thus understanding how adding an edge changes the current best
partition remains challenging without enumerating all partitions. However, we still use our intuition
in developing our heuristics.

We also wish to understand what edges may be necessary in creating a distinct cluster. From
Brandes et al. [9], we know the following two properties.

Lemma 1. A partition P that maximizes modularity will not have disconnected clusters.

Lemma 2. A partition P that maximizes modularity will not have any clusters that consist of a
single node with degree 1.

We can combine these two results into a more powerful result regarding star networks [46].

Theorem 2. Given a partition P = {C1, . . . , Ck}, a sparsest network, where each cluster is con-
nected, to have P as a partition that maximizes modularity has each cluster Ci consisting of edges
that form a star network.

Proof. Consider a network G on n nodes, and partition P = {C1, . . . , Ck}. In order to have cluster
i constitute a connected component, we need to have at least |Ci| − 1 edges. Thus, to have that
every cluster is a connected component, we need to have at least n−k edges. We show that we can
do so by demonstrating that if each cluster is a star network, then P is a partition that maximizes
modularity.

Suppose the edges of G induce a star network on each cluster. Note that, by Lemma 1, nodes
from distinct star networks will not be clustered together in an optimal partition. Furthermore,
also by Lemma 1, in a partition that maximizes modularity, multiple degree 1 nodes in the ith star
network will not be clustered together unless they are also clustered with the degree |Ci− 1| node.
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Thus, every center node in a star network will be in a distinct cluster, and every degree 1 node will
be in its own cluster or with the center node of its star network. However, by 2, if there is a degree
1 node in its own cluster, that partition is not optimal. Thus, the only partition that maximizes
the modularity of G will have the ith cluster as the ith star network. Since |E(G)| = n − k, there
exists a network with n− k edges that has P as a partition that maximizes modularity.

This theorem helps us understand what edges would be useful to add to the network to get
the best gain for the smallest number of edges. In particular, we will seek to ‘reinforce’ star-like
sub-networks for each distinct cluster in the ground truth. This also provides a lower bound on the
objective value of model (5).

4.2 Heuristic Algorithm for Edge Addition

Since we know exactly how adding edges to the network will impact modularity, we can easily
describe the ideal edges to add: ones that are within a single cluster in ground truth partition T ,
and between two clusters in the currently optimal partition P ∗. Our procedure focuses on adding
edges (or weights) to the network that increase the modularity of T . The procedure is:

1. Identify the “most incorrectly classified” node u with an incident edge that can be added to
the network

2. Determine edge (u, v) ∈ Ē to add to the network

3. Determine if T belongs to the set of optimal partitions for G′ = (V (G), E(G) ∪ {(u, v)}

From the computations on change in modularity in Appendix A, we expect that choosing such
an edge will decrease the gap between QP ∗ and QT , which works towards enforcing that T is a
partition that maximizes modularity. We describe the procedure for unweighted networks first,
then discuss how the procedure can be modified for weighted networks.

4.2.1 Identifying Most “Incorrectly Classified” Nodes

Before we can choose the node that is “most incorrectly classified”, we need to first determine
which nodes are incorrectly classified. As with defining the disjunctive cuts, we create an auxiliary
bipartite network based on the clusters of P ∗ and T , and solve the maximum weight matching
problem on this network. To determine which nodes are incorrectly classified, we solve the maximum
weight matching problem as described in Section 3.4. Let M be the set of incorrectly classified
nodes.

We now choose which incorrectly classified node u ∈ M will be incident to the added edge.
We do so by comparing the number of nodes that u should be clustered with in T but is currently
not in a partition P ∗ that currently maximizes modularity, to the number of nodes it should be
clustered with. Let CP (u) is the set of nodes in the cluster of P containing u. We order the nodes
in M in decreasing order, determined by the fraction

qu =
|CT (u) \ CP ∗(u)|
|CT (u)| − 1

. (14)

Unless CT (u) = {u}, the denominator of this term will be strictly greater than 0, and thus the
term is well defined. Brandes et al. [9] proves that, as long as there are no isolated nodes in the
network, a partition that maximizes modularity will never have a cluster that is just a single node.
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Additionally, they show that an isolated node can be placed in any cluster (including its own)
without impacting modularity. Thus, if a ground truth partition ever has a cluster that is a single
node u, that problem will either be infeasible if du > 0, or that node can be placed in its own
cluster in a partition that maximizes modularity, so it will never be incorrectly classified.

By looking at the proportion of two terms of qu, we can differentiate between different size
clusters. If there are two nodes i and j such that |CT (i) \ CP ∗(i)| = |CT (j) \ CP ∗(j)|, and

|CT (i)| < |CT (j)|, then |CT (i)\CP∗ (i)|
|CT (i)−1| > |CT (j)\CP∗ (j)|

|CT (j)−1| . By normalizing the clusters by their size,

we allow for smaller clusters to more easily distinguish themselves and be selected earlier in the
heuristic. Algorithm 2 formalizes this procedure.

Algorithm 2 Identify Most Incorrectly Classified Nodes (MostIncorrect(G, T, P ∗)

Initialize: network G = (V,E), partitions T , P ∗.
Step 1. Create auxiliary bipartite network between clusters of T and P ∗, and solve the
maximum weight matching problem to determine set of incorrectly classified nodes M .

Step 2. Order M = {u1, . . . , u|M |} in descending order based on |CT (u)\CPk
(u)|

|CT (u)−1| . Return
M .

4.2.2 Determining Beneficial Edges to Add

Once we have determined which nodes to prioritize adding an edge to, we must then determine
which edge should be added to the network. Consider u ∈ M . Our first priority is to add an
edge (u, v) such that v ∈ CT (u) and v /∈ CP ∗(u). We expect that adding such an edge to G will
increase the modularity of T while decreasing the modularity of P ∗. Let N(u) = {j ∈ V : j ∈
CT (u) \ CP ∗(u) ∧ (u, v) ∈ Ē}. Intuitively, N(u) is the set of all nodes that u should be clustered
with but currently is not, and an edge incident to u can be added to the network. Adding an edge
where v ∈ N(u) achieves our desired goal.

If N(u) is empty, then no such edge can be added to the network, and we consider the next node
in M . If, for every u ∈M , N(u) = ∅, no edge can be added such that it is within a cluster of T and
between clusters of P ∗. Since we cannot decrease the modularity of P ∗ without also decreasing the
modularity of T , we additionally consider edges that increase the modularity of both T and P ∗. In
some cases, such as when some cluster of T is a subset of a cluster of P ∗, the edge we add to the
network will increase the modularity of T more than it increases the modularity of P ∗.

Instead of considering N(u), we consider Ñ(u) = {j ∈ V : j ∈ CT (u)∧ (u, v) ∈ Ē}. This allows
us to add edges that are both within CT (u) and CP ∗ , relaxing our restriction to include edges we
expect to also increase the modularity of P ∗. If, for every u ∈ M , Ñ(u) = ∅, then no incorrectly
classified node can have an incident edge added to the network. As such, we expect that every edge
we can add to the network will decrease the modularity of T ; we use this as termination criterion
under which the problem may be infeasible.

Suppose that, for some u ∈ M , there exists a node v ∈ N(u) (or v ∈ Ñ(u)). Thus, an edge
incident to u can be added to the network that we expect will increase the modularity of T . We now
must choose which of these edges to add to the network. Recall that the change in modularity by
adding an edge to the network is independent of the nodes incident to the edge, and only dependent
on the cluster those nodes belong to. Thus, for a fixed partition, all of the considered edges will
have the same impact on the modularity of the partition. This motivates us to consider how the
edge we choose to add will impact which partition is optimal in the network resulting from adding
that edge.
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We want to add an edge (u, v) such that, when we find an optimal partition P ′ of the resulting
network G′ = (V,E ∪ {(u, v)}), u is in a different cluster of P ′ than P ∗, moving u to be clustered
with a node it should be classified with. However, if v is not sufficiently connected to the cluster it
belongs to, adding (u, v) could result in the opposite change of clustering, moving v into a different
cluster in the resulting network. To avoid such a scenario, we measure v’s contribution to the
change in modularity by adding (u, v), which we define to be δv. Multiplying by (2m)2(2m+ 2)2,
we compute this as follows:

δv = (2m)2(2m+ 2)Avv − (2m)2(dv + 1)2 − (2m)(2m+ 2)2Avv + (2m+ 2)2d2
v

+ 2
(
(2m)2(2m+ 2)Auv + (2m)2(2m+ 2)− (2m)2(du + 1)(dv + 1)

)
− 2

(
(2m)(2m+ 2)2Auv + (2m+ 2)2dudv

)
+ 2

 ∑
u,v 6=y∈C

(
(2m)2(2m+ 2)Avy − (2m)2(dv + 1)dy − (2m)(2m+ 2)2Avy + (2m+ 2)2dvdy

)
= (−8m2 − 8m)Avv − 8m2dv − 4m2 + 8md2

v + 4d2
v

+ 2
(
(−8m2 − 8m)Auv + 8m3 + 8m2 − (4m2)(dudv + du + dv + 1) + (4m2 + 8m+ 4)dudv

)
+ 2

 ∑
u,v 6=y∈C

(
(−8m2 − 8m)Avy − 4m2(dvdy + dy) + (4m2 + 8m+ 4)dvdy

)
+ (−8m2 − 8m)Avv + (8m+ 4)d2

v − 8m2dv − 4m2

+ 2
(
(−8m2 − 8m)Auv + (8m+ 4)dudv + 8m3 + 4m2 − 4m2du − 4m2dv

)
+ 2

 ∑
u,v 6=y∈C

(
(−8m2 − 8m)Avy + (8m+ 4)dvdy − 4m2dy

)
= 16m3 + 4m2 + (−8m2 − 8m)Avv − 16m2dv

+ 2
∑

y 6=v,y∈C

(
(−8m2 − 8m)Avy + (8m+ 4)dvdy − 4m2dy

)
We drop the 16m3 + 4m2 term, since that will be constant across all choices of v, reducing our

rule to

δv = (−8m2 − 8m)Avv − 16m2dv + 2
∑

y 6=v,y∈C

(
(−8m2 − 8m)Avy + (8m+ 4)dvdy − 4m2dy

)
.

We choose to take the node v∗ = arg minv∈N(u) δv, as a smaller local change in modularity indi-
cates that node v is better connected within its cluster. We formalize this procedure in Algorithm
3.

We note that our choice is closely related to the degree of each candidate node. Intuitively,
this aligns with Theorem 2. By adding edges to the highest degree node within a cluster, we work
towards creating a star sub-network in the cluster. For incorrectly classified nodes connected to
many nodes in other clusters, we need to add more edges than just establishing a base framework.
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Algorithm 3 Choosing a Beneficial Edge (ChooseEdge(G, T,M)

Initialize: network G = (V,E), partition T , ordered set of incorrectly classified nodes
M = {u1, . . . , u|M |}, chosen = false, l = 0.
while chosen = false do

Step 1. Set l← l + 1.
if l ≤ |M | then

Step 2a. Identify candidate nodes N(ul) = {j ∈ V : CT (ul) \CPk
(ul)∧ (ul, v) ∈ Ē}.

if N(ul) = ∅ then
Return to Step 1.

else
Step 3a. Set u = ul.
Step 3b. Compute δj for all j ∈ N(u).
Step 3c. Choose j ∈ arg mini∈N(u) δi. Return (u, v).

end if
else if l > |M | and l ≤ 2|M | then

Step 2b Set l̃ = l − |M |
Step 2c. Identify candidate nodes Ñ(ul̃) = {j ∈ V : CT (ul̃) ∧ (ul̃, v) ∈ Ē}.
if Ñ(ul̃) = ∅ then

Return to Step 1.
else

Step 4a. Set u = ul̃
Step 4b. Compute δj for all j ∈ Ñ(u).
Step 4c. Choose v ∈ arg mini∈Ñ(u) δi. Return (u, v).

end if
else

Terminate, problem is infeasible.
end if

end while

Once we have added an edge to the network to create G′, we now need to determine if T belongs
to the set of partitions that maximize the modularity of G′. We do so by finding a partition P ′ that
maximizes the modularity of G′, and computing the modularity of T . If QT = QP ′ , then T belongs
to the set of optimal partitions, and we can terminate. Otherwise, we repeat the procedure. We
formalize the full procedure in Algorithm 4.

Extending this heuristic to weighted networks is quite simple. While computations of m and di
change, the above computation remains the same. We additionally allow for weight to be added to
edges already existing in the network, removing the condition Auv = 0 from the definition of N(u)
and Ñ(u). In a weighted network, we note that we could have instead added weight to an edge
until the partition changes. Even if we were to do so, this does not guarantee that an incorrectly
classified node will be correctly classified in future iterations nor that an edge will not be re-visited
by the heuristic in future iterations, as demonstrated in the example in Figure 3. In this example,
each edge has weight 1, and the weight limit for each edge is 10.

In this network, weight is added to the colored edges in Figure 3c. In the first iteration, a unit
of weight is added to the red edge, (1, 5), causing nodes 1 and 5 to be clustered together. The
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Algorithm 4 Heuristic Algorithm for Edge Addition for Community Optimization

Initialize: initial network G1 = (V,E), set of edges added E ′ = ∅, ground truth partition
T , iteration counter k = 1.
while not converged do

Step 1. Find partition P ∗ that maximizes modularity of G.
if QT (Gk) = QP ∗(G

k) then
Terminate; T belongs to the set of optimal partitions. Return E ′

else
Step 2. Set M = MostIncorrect(Gk, T, P ∗).
Step 3. Set (u, v) = ChooseEdge(Gk, T,M).
Step 4. Set Gk+1 = (V (Gk), E(Gk) ∪ (u, v)), E ′ ← E ′ ∪ (u, v), k ← k + 1.

end if
end while

(a) Optimal Partition (b) Ground Truth
(c) Ground Truth with Added

Weights

Figure 3: Example network where an edge needs additional weight added after first visit by
the heuristic approach

second iteration adds the blue edge, (2, 4). The third and fourth iterations add a unit of weight to
the green edge (5, 7). The addition of this weight causes nodes 5 and 7 to be clustered together,
but separates node 1 from node 5. Our algorithm next adds another weight to the red edge. At
the beginning, only one unit weight is needed for node 1 to be classified correctly. However, after
more iterations, node 1 is no longer classified correctly, and an edge needs to be revisited.

4.3 Heuristic Algorithm Edge Removal

When considering model (5), instead of selecting which edge to include from the edge set, we turn
our attention to removing edges from the network. The idea behind this procedure is quite intuitive
as well; order the edges in the network, then, one by one, check if removing the ith edge results
in a change in an optimal partition. If the optimal partition does not change, then that edge can
be removed from the network. Note that, if the ith edge was removed, that edge could have been
critical for changing the optimal partition when removing any of the first i − 1 edges. Thus, if
any single edge is removed, we must check the full edge list again to determine if more edges can
be removed. We repeat this procedure until it determines that removing any single edge in the
network results in a change in an optimal partition. We formalize this approach in Algorithm 5.
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Algorithm 5 Heuristic Algorithm for Edge Removal for Community Preservation

Initialize: initial network G1 = (V,E), set of edges removed E ′ = ∅, optimal partition T ,
check = true, iteration counter k = 1.
while check = true do

Step 1. Set check = false, I = ∅.
Step 2. Order edges E(Gk) = {e1, . . . , e|E(Gk)|}.
for i ∈ {1, . . . , |E(Gk)|} do

Step 3. Create network G′ = (V (Gk), E(GK) \ (I ∪ {ei})).
Step 4. Find an optimal partition P ∗ of G′.
if P ∗ = T then

Step 4a. Set I ← I ∪ {ei}, check = true.
end if

end for
Step 5. Create network Gk+1 = (V (Gk), E(Gk) \ I).
Step 6. Set E ′ ← E ′ ∪ I, k ← k + 1.

end while

We test the following rules for ordering the edges:

1. a prespecified order,

2. a random permutation,

3. a fixed order based on contribution to modularity,

4. a dynamically updated order based on contribution to modularity.

A weakness of the first rule is that the prespecified order may choose edges whose removal may
cause fewer edges to be removed in subsequent iterations. The second rule randomizes the order
in which the edges are processed in each iteration. This provides a workaround for the weakness of
the first rule, but the quality of the solution obtained using this rule is determined by the orders
randomly generated.

The third and fourth rules use an edge’s contribution to modularity to determine order. We
order the edges in decreasing order of their values in the modularity matrix, Mij = Aij − didj

2m .
Intuitively, edges with a large value of Mij have small products of degrees, meaning this edge has a
low probability to be generated in the corresponding random network. We suspect that these edges
are unlikely to be impactful in determining an optimal partition, making them good candidates for
removal. For our third rule, we choose to pre-compute this ordering and use it in each iteration,
as with the first rule. For the fourth rule, we update this ordering after each iteration. Since it is
possible that the removal of certain edges can cause changes in the importance of other edges to
an optimal partition, the updates may result in more edges removed.

Since Algorithm 5 ensures that each subsequent network has the same optimal partition as the
original network, we can improve the solution found by Algorithm 4 by taking the output solution
G′ as the input for Algorithm 5. This removes edges that were added, but later become redundant
due to the addition of other edges. For this addition as post-processing, we simply choose to process
the edges in the order in which they were added. Extending this algorithm to weighted networks
is also straightforward. Instead of removing one edge at a time, we remove a unit of weight on one
edge at a time.
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5 Computational Results

We test our methods on multiple networks, some of which are popular in community detection
literature and some popular in illicit network analysis. We retrieved this data from the CASOS
Public Datasets [13] and Pajek Datasets [5]. Table 1 reports the networks we use for our experiments
organized by the number of edges in the network. The top four networks are well known in the field
of community detection, while the bottom six are known illicit networks. For the Italian Gangs,
London Gangs, and Montreal Gangs data sets, which have disconnected components, we delete the
nodes that are not in the largest connected component. While this is not a necessary modification,
we do so to simplify the networks. We model the integer programming problem in AMPL with
CPLEX 20.1 [28] as the solver. Experiments are conducted on a laptop with an Intel® CoreTM

i5-8250 CPU @ 1.6 GHz - 1.8 GHz and 16 GB RAM running Windows 10. We set a time limit
of 7200 seconds. We develop the heuristics in R using the iGraph package [17]. Due to integer
programming limitations, we additionally restrict the set of edges considered for addition in these
experiments. To ensure feasibility, we start with the set of edges identified by the heuristics with
post-processing and without edge restrictions as the initial set of allowable edges. We then generate
the list of all pairs of nodes with shortest path length 2 between them, and randomly select from
that list to add to the set of allowable edges. We consider 100 edges for each network.

Table 1: Size of test networks

Network |V | |E|
Sawmill [35] 36 62

Dolphins small [31] 40 70
Karate [55] 34 78
Les Mis [30] 77 254

Ciel [37] 25 35
Caviar6 [37] 27 47
Rhodes [48] 22 66

Montreal Gangs [21] 29 75
Italian Gangs [13] 65 113
London Gangs [26] 48 133

5.1 Results for Edge Addition to Unweighted Networks

For networks with a known community structure, we use it as the ground truth. For the Les
Misérables (Les Mis), London Gangs, and Italians Gangs data sets, we use the greedy clustering
method [41] to identify a partition to be the ground truth. For the Ciel data set, we use the Louvain
method [8] to identify a partition to be ground truth. Using the greedy clustering method resulted
in partitions that had more differences in clusters than the Louvain method, except with the Ciel
data set, where the greedy clustering method outputs an optimal partition. For networks that are
originally weighted, we remove edge weights and experiment on their unweighted versions. Figures
4 and 5 demonstrate the differences in an optimal partition and the ground truth community
structure for example networks.

Table 2 reports the initial number of incorrectly classified nodes as well as the number of edges
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(a) Optimal Partition (b) Ground Truth

Figure 4: Optimal partition and ground truth community structure of Rhodes Network

(a) Optimal Partition (b) Ground Truth

Figure 5: Optimal partition and ground truth community structure of Karate Club
Network
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added to each network to reach the desired communities. Table 3 reports the run time of each
method. We denote the integer program without disjunctive cuts and extra partitions as IP, and
the integer program with disjunctive cuts and additional partitions as IP+, and the number of
partitions visited by our algorithm as nParts. Entries marked with * did not converge to the
optimal solution within the time limit, and the lower bound on the optimal solution is reported.
For instances where the integer programming formulation did not solve the problem to optimality,
Table 4 reports the difference in modularity between the ground truth partition and an optimal
partition after adding in the edges determined as the best known lower bound.

Table 2: Comparison of Number of Edges Added to Tested Networks with Edge
Restrictions

Network Init # Misclassified #Edges Added (IP) #Edges Added (IP+) #Edges Added (Alg4) #Edges Added(Alg4&5)

Sawmill 10 9 9 16 13
Dolphins small 17 24* 29* 34 30

Karate 12 8 8 11 9
Les Mis 16 18 18 21 21

Ciel 3 1 1 1 1
Caviar6 3 11 11 12 12
Rhodes 10 18* 18* 34 34

Montreal Gangs 16 18* 18* 45 42
Italian Gangs 21 2 2 4 4
London Gangs 8 5 5 7 7

Table 3: Run Time (in seconds) on Tested Networks with Edge Restrictions

Network IP (nParts) IP+ (nParts) Alg4 Alg4&5

Sawmill 309.08 (14) 3073.24 (8) 4.83 14.25
Dolphins small 7200* (8) 7200* (9) 26.47 258.66

Karate 537.84 (16) 72.63 (7) 3.80 13.82
Les Mis 507.69 (9) 255.67 (6) 690.38 1356.53

Ciel 1.67 (1) 1.67 (1) 0.09 0.13
Caviar6 126.81 (10) 36.53 (5) 4.95 10.68
Rhodes 7200* (9) 7200* (6) 4.69 7.31

Montreal Gangs 7200* (2) 7200* (2) 627.23 1256.49
Italian Gangs 33.34 (4) 41.98 (3) 42.02 66.89
London Gangs 66.17 (8) 43.11 (4) 26.23 42.14

Table 4: Optimality Gap in Modularity for Unsolved Instances

Network QP ∗(z
∗) (IP) QT (z∗) (IP) QP ∗(z

∗)−QT (z∗) (IP) QP ∗(z
∗) (IP+) QT (z∗) (IP+) QP ∗(z

∗)−QT (z∗) (IP+)
Dolphins small 0.4845518 0.4586351 0.0259167 0.4759208 0.4502092 0.02571166

Rhodes 0.1748866 0.154691 0.02019558 0.1868622 0.154691 0.0321712
Montreal Gangs 0.2429761 0.128801 0.114175 0.2099087 0.1315759 0.07833276

Table 2 shows that the integer programming formulation is able to find a relatively small number
of edges compared to the density of the network in the case of the Karate club and Ciel networks.
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For some networks, such as Caviar6 and Montreal Street Gangs, the layout of the network requires
edges to be added to distinguish a smaller cluster from a larger cluster that can relatively easily
absorb it, as well as a significant number of edges that connect nodes that are clustered together
in the ground truth, but do not have any edges in the between them in the network. However, for
the other networks, the integer programming formulation is not able to solve the problem within
the time limit. This is due to the edge-anonymity property of modularity, as that unintentionally
creates a lot of symmetry in the branch-and-bound procedure for the master problem. Integer
programming problems with symmetry are particularly difficult to solve [44]. These symmetries
prevented the branch-and-bound procedure from meaningfully increasing the lower bound on the
objective value when fathoming nodes in the branch-and-bound tree. Additionally, as the number
of edges being included increases, the number of symmetric solutions increases exponentially. We
observed that, in early iterations and in subsequent iterations where the master problem objective
value stays the same, the master problem is solved to optimality relatively quickly. However, in
later iterations when the number of edges needed must be larger than in the previous iteration,
the master problem may not necessarily solve to optimality due to the number of branches that
need to be explored. We suspect that, in each iteration of the master problem, the integer program
identifies the optimal solution with respect to the set of previously explored partitions, but does not
complete the branching procedure to verify that the identified solution is indeed optimal. Appendix
B presents the comparison in solve time between the master and subproblems, with the default
symmetry breaking setting and maximum symmetry breaking setting.

We note that this issue is not solely based on the size of the network. The integer program-
ming framework was able to solve the problem on the Les Mis, Italian Gangs, and London Gangs
networks, but not on the Dolphins, Rhodes or Montreal Gangs networks. The former three net-
works all have more nodes and edges than the latter three networks. Additionally, the former three
networks all had ground truth communities determined by using the greedy clustering procedure.
This indicates that the difficulty of the problem is more dependent on the differences between the
ground truth community and the initial optimal community structure than the size of the network.

Including disjunctive cuts and additional partitions improves the solve time of the integer pro-
gramming formulation for the Karate club network, and only hinders the solve time of the Sawmill
network. This indicates that the extra information generated may have prevented a useful partition
that was visited by the base integer program from being visited by the augmented procedure. For
the Dolphins network, the best known lower bound increases from 24 to 29, drastically improving
the result, and improving the known quality of the heuristic solution. For Montreal Gangs and
Rhodes, no improvements are made by including the disjunctive cuts and additional partitions.
This indicates that the edge-anonymity caused the solver to stall early on in this procedure. In-
creasing the run time to 36000 seconds on these instances shows that little-to-no progress is made
in improving these lower bounds for either procedure. This demonstrates that problem difficulty
is not only dependent on the size of the network, but the density of the network and difference
between the ground truth community structure and initial optimal partition.

The heuristic approach is able to find reasonably high quality solutions as compared to the
integer program optimal solutions before post-processing is implemented. With post-processing,
we are able to reduce the number of edges needed in some networks. Furthermore, where the integer
program may not solve the problem in the time limit, the heuristic approach is able to find a solution
in under an hour in all instances. When the integer program does solve the problem within the time
limit, the heuristic approach is able to solve the problem significantly faster. We note that, since
some of the allowable edges are determined by the heuristic without edge restrictions, adding the
same edge restrictions to the heuristic will result in the same solution. However, allowing any edge
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currently not in the network to be added to the integer programming formulation would drastically
increase the run time.

We observe that when the ground truth communities are relatively similar to the initial optimal
community structure, fewer edges are needed. Additionally, if the ground truth community struc-
ture has clear boundaries between the communities, fewer edges are needed. Figures 4 and 5 help
distinguish this difference. In Figure 5b, there are very few edges between the two clusters, and
there are very few nodes that have edges that cross between clusters. This results in fewer edges
being needed to properly cluster these boundary nodes. However, in Figure 4b, the distinction
between the clusters is significantly less clear, resulting in a need for each cluster to have more
edges added to properly distinguish them. Another example of this is the difference between the
Caviar6 and Ciel networks. While both have only three initially incorrectly classified nodes, the
Caviar6 network has a cluster that is mostly absorbed into another cluster, where the boundaries
between the clusters in the Ciel network are more distinct. This causes a need for more edges in
the Caviar6 network to properly distinguish this cluster.

5.2 Results for Edge Weight Addition to Weighted Networks

We also test our methods on weighted versions of each network used in our unweighted test set.
Networks that are already weighted have an upper bound on the weight of edge set to the weight
of the maximum weight edge. For networks that are unweighted, we randomly generate weights
between 1 and 15 for each edge, with a maximum edge weight of 15 allowed. We use the unweighted
optimal partition as the ground truth, and verify that an optimal partition for the weighted network
is not the same as that of the unweighted network. We note that, unlike with unweighted networks,
we cannot compare the heuristic results directly against the integer programming results. The inte-
ger program cannot find the optimal solution due to the inaccuracy in the McCormick inequalities.
Table 5 reports the weights on networks used for experiments, using the same ordering as above.

Table 5: Total Weights of Edge Sets of Test Networks

Network Total Weight

Sawmill 481
Dolphins small 544

Karate 654
Les Mis 2030

Ciel 198
Caviar6 668
Rhodes 524

Montreal Gangs 621
Italian Gangs 915
London Gangs 980

As before, we restrict the set of edges to which weight can be added to in each network. We
restrict this to be the set of currently existing edges, enforcing that no new edges can be added.
Additionally, we restrict the total weight that an edge can have. Table 6 reports the initial number
of incorrectly classified nodes and the amount of weight added to each network. Table 7 reports
the run time of each method.
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Table 6: Comparison of Amount of Weight Added to Tested Networks with Edge
Restrictions

Network Init. #Misclassified Weight Added (Alg4) Weight Added(Alg2&3)

Sawmill 16 30 26
Dolphins small 8 61 58

Karate 13 45 44
Les Mis 11 48 47*

Ciel 3 12 12
Caviar6 7 115 113
Rhodes 6 38 31

Montreal Gangs 11 45 43
Italian Gangs 16 30 30
London Gangs 17 Infeasible* Infeasible*

Table 7: Run Time (in seconds) on Tested Networks with Edge Restrictions

Network Alg2 Alg2&3

Sawmill 11.02 48.58
Dolphins small 20.79 68.19

Karate 46.15 120.11
Les Mis 2243.14 7200*

Ciel 0.51 0.96
Caviar6 17.42 60.38
Rhodes 2.64 7.37

Montreal Gangs 51.06 169.83
Italian Gangs 158.94 367.81
London Gangs 6073.99* 6073.99*

For all networks except Caviar6 and London Gangs, we are able to add less than 12% of the
initial total weight to the network in order to return to the desired clustering. With Caviar6, we
see that this percentage is much higher, at 17% of the initial total weight. This is likely due to
the large disparity in distribution of edge weights; there are a few nodes with a lot of weight on
incident edges, but many nodes with a small amount of weight on incident edges. Being able to
correctly classify these nodes with a small amount of weight on incident edges takes much more
weight. Similarly to the unweighted case, the post-processing is able to reduce the total weight
added by a small amount, but this decrease is not as significant as in the unweighted case. In the
case of London Gangs, the heuristic determines the problem is infeasible with edge restrictions.
The weights on this network were randomly generated, so we know the heuristic is incorrect in
this determination; by adding weights such that every edge in the network has the same weight,
the optimal clustering will be the same as in the unweighted network. This highlights that adding
weights in a greedy fashion may prevent the problem from being solved correctly.
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We next report results on weighted networks without edge restrictions. Table 8 reports the
initial number of incorrectly classified nodes, as well as the number of edges added to each network
to reach the desired communities. Table 9 reports the run time of each method.

Table 8: Comparison of Amount of Weight Added to Tested Networks without Edge
Restrictions

Network Init. #Misclassified Weight Added (Alg2) Weight Added(Alg2&3)

Sawmill 16 26 22
Dolphins small 8 62 58

Karate 13 45 44
Les Mis 11 48 47*

Ciel 3 12 12
Caviar6 7 115 113
Rhodes 6 28 26

Montreal Gangs 11 48 46
Italian Gangs 16 31 30
London Gangs 17 151 134

Table 9: Run Time (in seconds) on Tested Networks without Edge Restrictions

Network Alg2 Alg2&3

Sawmill 9.67 36.08
Dolphins small 21.22 52.27

Karate 50.97 145.72
Les Mis 2482.99 7200*

Ciel 0.50 0.96
Caviar6 17.57 60.15
Rhodes 1.72 6.93

Montreal Gangs 34.32 90.14
Italian Gangs 187.92 762.48
London Gangs 4643.55 7200*

In this case, removing edge restrictions results in similar overall weight being added to the
networks, and has run times comparable to that of the restricted edge case. An interesting result
is that less weight needs to be added to the Dolphins and Montreal Gangs networks when edge
restrictions are enforced. Recall that the proposed algorithms act in a greedy fashion by focusing
on local decisions at each point. These results indicate that adding weight to any possible edge can
result in adding weight to a locally good choice, but creates global difficulties in later iterations.
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5.3 Results for Edge Removal

Here, we present the results of the edge removal for community preservation problem. The edge-
anonymity prevented the integer programming formulation from making meaningful progress to-
wards a solution, even with additional constraints enforcing that clusters are connected components.
We present the number of edges remaining and run time on each network for all four rules in Ta-
ble 10, with run time being reported in Table 11. For rule 2, we run 100 tests, and report the
median, minimum and maximum of the number of edges remaining, and the mean and standard
deviation of the run times. For the Les Mis data set, we only run 20 tests due to lengthy solve time.
Additionally, we expect that our method will remove all cross-cluster edges; we expect removing
them will increase the modularity of an optimal partition. For all networks tested, we verified that
removing such edges resulted in the resulting network having the same optimal partition as the
initial network, allowing us the apply our method to these reduced networks. We test our method
on these reduced networks, with number of edges remaining presented in Table 12 and run times
presented in Table 13. We report the number of edges remaining after removing cross-cluster edges
as Pre, and the number of edges determined by Theorem 2 in the column LB.

Table 10: Comparison of Number of Edges Remaining in Tested Networks

Network #Edges Rule 1 Rule 2 Med (Min, Max) Rule 3 Rule 4 LB

Sawmill 62 46 34 (33, 46) 34 34 32
Dolphins small 70 53 43 (38, 68) 42 42 34

Karate 78 31 33 (30, 36) 31 31 30
Les Mis 254 137 74 (72, 140) 137 137 71

Ciel 35 26 26 (25, 28) 25 25 22
Caviar6 47 23 23 (23, 35) 23 23 23
Rhodes 66 21 23 (21, 27) 21 21 19

Montreal Gangs 75 35 32 (29, 36) 35 36 26
Italian Gangs 113 62 64 (62, 72) 64 64 60
London Gangs 133 44 45 (43, 88) 44 44 42

Here we see that for almost every data set, the rules ordering the edges based on contribution
to modularity either perform as well as or better than the other rules. The minimums obtained by
the second rule are at least as good as these rules, but the medians rarely outperform the other
rules. Additionally, the high standard deviations in run time make it less appealing, even when it
is the fastest rule. The second rule only consistently outperforms the third and fourth rules in the
Les Mis data set. This is likely due to being able to identify orderings that remove problematic
edges that prevent the removal of more edges in later iterations. We note that the first rule only
happens to work well when the ordering of the edges is already satisfactory. While it performs
well here, it is not guaranteed to do so in general, such as with the Dolphins data set, where
the third and fourth rule will be consistent regardless of initial edge ordering. We note that, on
these networks, the dynamic reordering impacts execution time negligibly, but does not improve
the results. Additionally, by applying pre-processing to remove edges that cross clusters, we can
remove at least 10% of the edges in each network while still maintaining the same optimal partition.
This reduction significantly improves the solve time in every network. Additionally, applying our
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Table 11: Run Time (in seconds) on Tested Networks

Network Rule 1 Rule 2 Mean (SD) Rule 3 Rule 4

Sawmill 14.78 22.09 (8.40) 23.96 23.76
Dolphins small 98.06 35.17 (8.69) 24.67 23.89

Karate 27.11 26.41 (13.37) 23.06 23.09
Les Mis 7200* 5811.00 (1140.88) 7200* 7200*

Ciel 2.51 2.11 (0.46) 1.70 1.69
Caviar6 12.44 9.25 (2.90) 11.54 11.59
Rhodes 6.00 2.97 (0.84) 2.72 2.64

Montreal Gangs 47.93 111.50 (57.73) 172.28 177.58
Italian Gangs 837.89 1023.24 (235.80) 1128.15 1156.27
London Gangs 334.29 1310.91 (1377.77) 628.27 640.23

Table 12: Comparison of Number of Edges Remaining in Tested Networks with
Pre-Processing

Network #Edges Pre Rule 1 Rule 2 Med (Min, Max) Rule 3 Rule 4 LB

Sawmill 62 51 46 34 (33, 43) 34 34 32
Dolphins small 70 63 42 42 (38, 57) 42 42 34

Karate 78 57 31 33 (30, 40) 30 30 30
Les Mis 254 194 104 73 (72, 81) 95 95 71

Ciel 35 29 26 26 (25, 26) 25 25 22
Caviar6 47 27 23 23 (23, 23) 23 23 23
Rhodes 66 46 23 23 (21, 28) 21 21 19

Montreal Gangs 75 44 34 33 (29, 37) 33 33 26
Italian Gangs 113 87 68 68 (62, 73) 62 62 60
London Gangs 133 90 59 44 (43, 49) 44 44 42

algorithm to these reduced networks consistently improved the quality of the solutions found, and
decreased the range of solutions identified by the second rule.

6 Conclusions and Future Work

We define two new problems regarding the modularity of a network. In the first problem, we seek
to find the minimum set of edges (or weights) to add to a network to enforce that a given partition
maximizes modularity. In the second problem, we seek to find the minimum set of edges in the
network such that a partition optimizing modularity of the reduced network and the full network
is the same. We provide an integer programming framework for these problems, and augment the
method with the generation of disjunctive cuts and additional partitions. We demonstrate how the
counter-intuitive behavior of modularity proves problematic for the branch-and-bound procedure
and prevents proving nice properties about how adding edges impacts modularity. The integer
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Table 13: Run Time (in seconds) on Tested Networks with Pre-Processing

Network Rule 1 Rule 2 Mean (SD) Rule 3 Rule 4

Sawmill 12.76 11.05 (1.39) 10.78 10.75
Dolphins small 18.04 20.63 (3.61) 19.95 19.97

Karate 8.78 8.87 (0.93) 10.03 9.86
Les Mis 1696.14 1253.12 (182.17) 2086.95 1777.45

Ciel 1.46 1.49 (0.13) 1.42 1.45
Caviar6 2.18 2.42 (0.37) 2.50 2.31
Rhodes 1.76 1.65 (0.30) 1.61 1.51

Montreal Gangs 11.75 12.25 (1.40) 11.29 11.74
Italian Gangs 308.31 349.39 (37.99) 285.99 295.70
London Gangs 59.17 67.19 (9.26) 68.42 71.46

programming formulation is able to solve the first problem when the ground truth communities are
relatively distinct or similar to the initial optimal clusters, demonstrating that the difficulty of the
problem is not just dependent on the size of the network. We also devise heuristics that are able
to find high quality solutions to the problem significantly quicker than the integer programming
formulation, and find solutions to the problem on instances that the integer programming formu-
lation is not able to solve. For the second problem, our heuristics find that we are able to identify
a small number of edges necessary to maintain the original community structure, often within a
small percentage of edges away from identifying star networks within each cluster.

Future work includes extending these methods to work for other optimization based clustering
measures, such as modularity density, as well as the development of heuristics for these measures
[15]. Additional future work includes improving the components of the integer programming frame-
work, such as symmetry breaking techniques in the branch-and-bound procedure. Improving the
tightness of the McCormick inequalities in the weighted problem when enforcing a given partition
is optimal as compared to previously visited partitions is also important to being able to apply the
integer program to weighted networks. This framework can also be improved upon to utilize more
advanced means of solving for a partition that optimizes modularity, allowing for these problems
to be solved more efficiently and on larger networks.
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Appendices

A Appendix A: Computation of Change in Modularity

A.1 Change in Modularity from Including an Edge Within a Clus-
ter

Proof. Consider adding edge e = (u, v) where u, v ∈ C1. Let ze be the vector such that zee = 1 and
zee′ = 0 for e′ 6= e. We compute the difference (QT (ze)−QT (0). To simplify fractions, we multiply
by (2m)2(2m+ 2)2.

(2m)2(2m+ 2)2(QT (ze)−QT (0))

= (2m)2(2m+ 2)Auu − (2m)2(du + 1)2 − (2m)(2m+ 2)2Auu + (2m+ 2)2d2
u

+ (2m)2(2m+ 2)Avv − (2m)2(dv + 1)2 − (2m)(2m+ 2)2Avv + (2m+ 2)2d2
v

+ 2
(
(2m)2(2m+ 2)Auv + (2m)2(2m+ 2)− (2m)2(du + 1)(dv + 1)

)
+
(
−(2m)(2m+ 2)2Auv + (2m+ 2)2dudv

)
+ 2

 ∑
u,v 6=x∈C1

(
(2m)2(2m+ 2)Aux − (2m)2(du + 1)dx − (2m)(2m+ 2)2Aux + (2m+ 2)2dudx

)
+ 2

 ∑
u,v 6=y∈C1

(
(2m)2(2m+ 2)Avy − (2m)2(dv + 1)dy − (2m)(2m+ 2)2Avy + (2m+ 2)2dvdy

)
+

∑
u,v 6=x,y∈C1

(
(2m)2(2m+ 2)Axy − (2m)2dxdy − (2m)(2m+ 2)2Axy + (2m+ 2)2dxdy

)
+

∑
Ci∈T,i6=1

∑
x,y∈Ci

(
(2m)2(2m+ 2)Axy − (2m)2dxdy − (2m)(2m+ 2)2Axy + (2m+ 2)2dxdy

)
= (−8m2 − 8m)Auu − 8m2du − 4m2 + 8md2

u + 4d2
u

+ (−8m2 − 8m)Avv − 8m2dv − 4m2 + 8md2
v + 4d2

v

+ 2
(
(−8m2 − 8m)Auv + 8m3 + 8m2 − (4m2)(dudv + du + dv + 1) + (4m2 + 8m+ 4)dudv

)
+ 2

 ∑
u,v 6=x∈C1

(
(−8m2 − 8m)Aux − 4m2(dudx + dx) + (4m2 + 8m+ 4)dudx

)
+ 2

 ∑
u,v 6=y∈C1

(
(−8m2 − 8m)Avy − 4m2(dvdy + dy) + (4m2 + 8m+ 4)dvdy

)
+

∑
u,v 6=x,y∈C1

(
(−8m2 − 8m)Axy + (8m+ 4)dxdy

)
+

∑
Ci∈T,i6=1

∑
x,y∈Ci

(
(−8m2 − 8m)Axy + (8m+ 4)dxdy

)
= (−8m2 − 8m)Auu + (8m+ 4)d2

u − 8m2du − 4m2

+ (−8m2 − 8m)Avv + (8m+ 4)d2
v − 8m2dv − 4m2
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+ 2
(
(−8m2 − 8m)Auv + (8m+ 4)dudv + 8m3 + 4m2 − 4m2du − 4m2dv

)
+ 2

 ∑
u,v 6=x∈C1

(
(−8m2 − 8m)Aux + (8m+ 4)dudx − 4m2dx

)
+ 2

 ∑
u,v 6=y∈C1

(
(−8m2 − 8m)Avy + (8m+ 4)dvdy − 4m2dy

)
+

∑
u,v 6=x,y∈C1

(
(−8m2 − 8m)Axy + (8m+ 4)dxdy

)
+

∑
Ci∈T,i6=1

∑
x,y∈Ci

(
(−8m2 − 8m)Axy + (8m+ 4)dxdy

)

= 16m3 −
∑
x∈C1

16m2dx +
∑
Ci∈T

∑
x,y∈Ci

(
(−8m2 − 8m)Axy + (8m+ 4)dxdy

)
Thus, the increase in modularity by adding (u, v) is

16m3 −
∑

x∈C1
16m2dx +

∑
Ci∈T

∑
x,y∈Ci

(
(−8m2 − 8m)Axy + (8m+ 4)dxdy

)
(2m)2(2m+ 2)2

.
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A.2 Change in Modularity from Including an Edge Between Clus-
ters

Proof. Consider adding edge e = (u, v) where u ∈ C1 and v ∈ C2. Let ze be the vector such that
zee = 1 and zee′ = 0 for e′ 6= e. We compute the difference (QT (ze) −QT (0). We simplify fractions
by multiplying by (2m)2(2m+ 2)2.

(2m)2(2m+ 2)2(QT (ze)−QT (0))

= (2m)2(2m+ 2)Auu − (2m)2(du + 1)2 − (2m)(2m+ 2)2Auu + (2m+ 2)2d2
u

+ 2

 ∑
u6=x∈C1

(
(2m)2(2m+ 2)Aux − (2m)2(du + 1)dx − (2m)(2m+ 2)2Aux + (2m+ 2)2dudx

)
+

∑
u6=x,y∈C1

(
(2m)2(2m+ 2)Axy − (2m)2dxdy − (2m)(2m+ 2)2Axy + (2m+ 2)2dxdy

)
+ (2m)2(2m+ 2)Avv − (2m)2(dv + 1)2 − (2m)(2m+ 2)2Avv + (2m+ 2)2d2

v

+ 2

 ∑
v 6=y∈C2

(
(2m)2(2m+ 2)Avy − (2m)2(dv + 1)dy − (2m)(2m+ 2)2Avy + (2m+ 2)2dvdy

)
+

∑
v 6=x,y∈C2

(
(2m)2(2m+ 2)Axy − (2m)2dxdy − (2m)(2m+ 2)2Axy + (2m+ 2)2dxdy

)
+

∑
Ci∈T,i/∈{1,2}

∑
x,y∈Ci

(
(2m)2(2m+ 2)Axy − (2m)2dxdy − (2m)(2m+ 2)2Axy + (2m+ 2)2dxdy

)
= (−8m2 − 8m)Auu − 8m2du − 4m2 + 8md2

u + 4d2
u

+ 2

 ∑
u6=x∈C1

(
(−8m2 − 8m)Aux − 4m2(dudx + dx) + (4m2 + 8m+ 4)dudx

)
+

∑
u6=x,y∈C1

(
(−8m2 − 8m)Axy + (8m+ 4)dxdy

)
+ (−8m2 − 8m)Avv − 8m2dv − 4m2 + 8md2

v + 4d2
v

+ 2

 ∑
v 6=y∈C2

(
(−8m2 − 8m)Avy − 4m2(dvdy + dy) + (4m2 + 8m+ 4)dvdy

)
+

∑
v 6=x,y∈C2

(
(−8m2 − 8m)Axy + (8m+ 4)dxdy

)
+

∑
Ci∈T,i/∈{1,2}

∑
x,y∈Ci

(
(−8m2 − 8m)Axy + (8m+ 4)dxdy

)
= (−8m2 − 8m)Auu + (8m+ 4)d2

u − 8m2du − 4m2

+ 2

 ∑
u6=x∈C1

(
(−8m2 − 8m)Aux + (8m+ 4)dudx − 4m2dx

)
+

∑
u6=x,y∈C1

(
(−8m2 − 8m)Axy + (8m+ 4)dxdy

)
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+ (−8m2 − 8m)Avv + (8m+ 4)d2
v − 8m2dv − 4m2

+ 2

 ∑
v 6=y∈C2

(
(−8m2 − 8m)Avy + (8m+ 4)dvdy − 4m2dy

)
+

∑
v 6=x,y∈C2

(
(−8m2 − 8m)Axy + (8m+ 4)dxdy

)
+

∑
Ci∈T,i/∈{1,2}

∑
x,y∈Ci

(
(−8m2 − 8m)Axy + (8m+ 4)dxdy

)

= −8m2 −
∑
x∈C1

8m2dx −
∑
y∈C2

8m2dy +
∑
Ci∈T

∑
x,y∈Ci

(
(−8m2 − 8m)Axy + (8m+ 4)dxdy

)
Thus, the increase in modularity by adding (u, v) is

−8m2 −
∑

x∈C1
8m2dx −

∑
y∈C2

8m2dy +
∑

Ci∈T
∑

x,y∈Ci

(
(−8m2 − 8m)Axy + (8m+ 4)dxdy

)
(2m)2(2m+ 2)2

.
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B Comparison of Master and Subproblem Solve Times

Table 14: Comparison of Run Times (in seconds) with Default CPLEX Symmetry Breaking

Network Master (IP) Sub (IP) Master (IP+) Sub (IP+)

Sawmill 288.89 10.09 3050.45 5.78
Dolphins >7200 27.81 >7200 25.24
Karate 514.06 12.56 51.39 8.30
Les Mis 83.01 386.96 20.41 166.31

Ciel 1.13 0.20 1.09 0.19
Caviar6 115.45 7.44 27.92 4.92
Rhodes >7200 5.88 >7200 4.20

Montreal Gangs >7200 24.64 >7200 103.38
Italian Gangs 5.06 17.02 4.53 13.33
London Gangs 24.13 31.36 12.42 16.88

Table 15: Comparison of Run Times (in seconds) with Maximum CPLEX Symmetry
Breaking

Network Master (IP) Sub (IP) Master (IP+) Sub (IP+)
Sawmill 261.12 9.98 3265.61 5.75
Dolphins >7200 15.64 >7200 67.66
Karate 432.62 12.52 51.31 7.94
Les Mis 83.41 366.24 30.84 168.44

Ciel 1.11 0.20 1.13 0.20
Caviar6 112.99 7.59 27.22 4.95
Rhodes >7200 5.53 >7200 1.94

Montreal Gangs >7200 25.14 >7200 75.36
Italian Gangs 4.84 17.36 4.81 14.75
London Gangs 24.11 30.55 14.09 18.64

39


	1 Introduction
	1.1 Literature Review
	1.2 Paper Organization

	2 Description of Problems
	2.1 Edge Addition for Community Optimization
	2.2 Edge Removal for Community Preservation

	3 Integer Programming Framework
	3.1 Initial Framework
	3.2 Nonlinear Integer Programming Representation
	3.3 Linearizing the Problem
	3.4 Disjunctive Cuts and Additional Partitions

	4 Challenges for Heuristic Approaches
	4.1 Counter-Intuitive Behavior of Modularity
	4.2 Heuristic Algorithm for Edge Addition
	4.2.1 Identifying Most ``Incorrectly Classified" Nodes
	4.2.2 Determining Beneficial Edges to Add

	4.3 Heuristic Algorithm Edge Removal

	5 Computational Results
	5.1 Results for Edge Addition to Unweighted Networks
	5.2 Results for Edge Weight Addition to Weighted Networks
	5.3 Results for Edge Removal

	6 Conclusions and Future Work
	Appendices
	A Appendix A: Computation of Change in Modularity
	A.1 Change in Modularity from Including an Edge Within a Cluster
	A.2 Change in Modularity from Including an Edge Between Clusters

	B Comparison of Master and Subproblem Solve Times

