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2GERAD, Montréal, Canada
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Abstract

In the last years, there has been a great interest in machine-learning-based heuris-
tics for solving NP-hard combinatorial optimization problems. The developed
methods have shown potential on many optimization problems. In this paper,
we present a learned heuristic for the reoptimization of a problem after a minor
change in its data. We focus on the case of the capacited vehicle routing problem
with static clients (i.e., same client locations) and changed demands. Given the
edges of an original solution, the goal is to predict and fix the ones that have a
high chance of remaining in an optimal solution after a change of client demands.
This partial prediction of the solution reduces the complexity of the problem and
speeds up its resolution, while yielding a good quality solution. The proposed
approach resulted in solutions with an optimality gap ranging from 0% to 1.7%
on different benchmark instances within a reasonable computing time.
Keywords : heuristics, reoptimization, machine learning.

1 Introduction

In the recent years, the idea of integrating machine learning (ML) and combinatorial
optimization (CO) has been greatly explored. CO problems are NP-hard and there are
generally two approaches to solve them. The exact methods that are guaranteed to ob-
tain an optimal solution but can be computationally very expensive for large instances,
and the heuristic methods that trade off the optimality of the solution for a reason-
able computing time. The idea of leveraging ML for the development of new heuristics
has shown potential in many CO problems such as traveling salesman problem (TSP),
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capacited vehicle routing problem (CVRP), etc. It is true that most of these learned
heuristics do not outperform highly optimized and specialized CO algorithms, espe-
cially for problems that have been extensively studied in the literature. Nevertheless,
the ideas behind them provide a certain flexibility for adjustments and applications to
other problems for which no good heuristic exists, or they can be integrated in already
existing algorithms to speed them up.

In this paper, we focus on CO applications in which a problem is repeatedly solved, e.g.,
daily or hourly, or even within a shorter interval, by changing neither its structure (e.g.,
its constraints) nor even its size (i.e., its variables), but only the data that define each
instance solved in the specific time interval. This is the case of applications in which the
infrastructure whose operations must be optimized does not change, for example a fleet
of vehicles that deliver goods or the power plants producing energy, but the demand of
goods or energy changes. And it is also the case of real-time changes to the data due
to disruptions in the infrastructure, for example arcs disappearing from a network (i.e.,
their capacity going to 0) due to accidents.

Applications of this type might be difficult to solve in reasonable amount of time,
or, more precisely, each instance in isolation might require a significant computational
effort even if the solution method has been designed after intensively studying the
characteristics of the CO problem. This is the theoretical consequence of NP-hardness,
and, on the practical side, it is due to the fact that the solution methods are largely
designed to be agnostic to the data.

The goal of this paper is to propose a learned heuristic allowing a fast reoptimization of
a CO problem after a slight modification of its data. In other words, we put ourselves
in a way more restrictive context with respect to the use of ML for CO problems: we
do not want to leverage ML to devise a heuristic that produces good feasible solutions
for all, say, TSP instances within the same distribution. We are settling for a lesser
objective, i.e., that of learning what can be (more or less with high probability) safely
left unchanged in the solution of a reference instance of a CO problem when the data
of the instance are perturbed. Indeed, the intuition is that given an instance and its
solution S1, if the instance is reoptimized after a slight change in its data, the new
solution S2 will have a significant overlap with S1, while only some (minor) parts of
the solutions will be different. Therefore, instead of reoptimizing from scratch, the goal
is to predict the parts of the solution that have a high probability of remaining the
same. The corresponding variables can be fixed, thus reducing the search space and
accelerating the resolution of the problem, almost independently of the solution method
applied.

To provide a concrete example, let us consider the CVRP, which is the problem where
we will apply the method proposed in this paper. The goal of the CVRP is to construct
vehicle routes in order to serve geographically-dispersed clients while minimizing the
travel costs and respecting vehicle capacity. Let us take the example of a delivery
company that solves CVRPs on a daily basis. For a given day, the company observes
that the clients are the same as in the instance solved the previous day (i.e., same client
locations) and that only some clients have a different demand. After the optimization of
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the problem, a similarity between the solutions is noticed. Given the optimal solution
(or a heuristic one) already in hand and the new demands, the objective would be
to predict and fix the sequences of edges that have a high probability to remain the
same. In case of a graph-structured problem like the CVRP, it is also possible to
reduce the size of the network by aggregating the nodes/edges of the fixed sequences,
therefore accelerating the resolution of the problem and reducing its complexity. Note
that the predictions obtained by the learned model are not necessarily 100% accurate,
misclassifications may occur and thus affect the quality of the solution. The goal is to
find a good compromise between the quality of the solution (i.e., optimality gap) and
the computing time.

As observed, one can think of several CO problems where slight modifications to the
problem data lead to similar solutions after reoptimization, especially for problems
that are solved repeatedly and for which a data set is already available (e.g., the unit
commitment problem in which the power plants producing energy are always the same
but the demand changes daily or hourly). The learned model will try to partially
predict an optimal solution. In this paper, we will only consider the case of the CVRP
with changing demands and fixed customers, but the method offers some flexibility
and has the potential to be applied to other problems or to be integrated into existing
algorithms.

The remainder of the paper is organized as follows. In Section 2, we present some
recent work on using ML for solving CO problems or accelerating their solution process.
Section 3 is devoted to presenting the CVRP, with a focus on the methods we consider
to solve it. In Section 4, we cover all the details of the method we propose. Section 5
reports our computational results. Finally, conclusions are drawn in Section 6.

2 Related work

In the literature, several heuristics incorporating ML models for solving NP-hard CO
problems were explored (see, the recent surveys Bengio et al. (2021); Kotary et al.
(2021); Cappart et al. (2021)). The proposed learning methods mostly fall into one
of two categories. In the first category, supervised learning methods (examples of the
imitation learning paradigm) are algorithms that learn from data and try to mimic an
expert. The data is given to the learner as a pair of features and expected outputs (or
labels) and the learner tries to find patterns in the data while optimizing a performance
measure. Generally, the aim of this approach is to replace known expensive computa-
tions by fast approximations (e.g., for our case, the expensive computation corresponds
to reoptimizing the problem from scratch). In the second category, we find the rein-
forcement learning (RL) algorithms that apply a “learning-by-experience” paradigm.
Instead of giving the learner the data on which to learn, RL algorithms explore the
decision space by interacting with its environment in order to achieve a certain goal. In
response to a decision (i.e., an action), the learner receives a real-valued reward. The
goal is to find the best decisions to make at each state while maximizing the expected
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rewards. This learning approach has the advantage of not requiring any data and has
generally shown a better generalization, i.e., the ability of continuing to be effective
when the problems change for example in size or even better in data distribution.

Several studies have tried to tackle the TSP, the most classical CO problem where the
goal is to visit a set of nodes exactly once with a single vehicle while minimizing the
travel distance. For the supervised approaches, we mention the work of Joshi et al.
(2019), where a learned heuristic method is presented. The method is based on a graph
convolutional network model that takes the entire graph as an input and outputs an
adjacency matrix with associated edge probabilities, which are then used to build a
valid tour using a beam search algorithm. The authors report good results on fixed
size instances. However, a very poor generalization is noticed when testing the models
on instances of different size. Instead, the methods based on RL have shown more
potential. The idea of using RL to solve CO problems was explored in Bello et al.
(2016) with an application to the TSP and the knapsack problem. Further studies
were then conducted, such as Kool et al. (2018), where the authors present an encoder-
decoder model based on the attention mechanism (Vaswani et al., 2017). In a similar
line, Nazari et al. (2018) present a framework focusing on solving the CVRP, which
can be considered as a generalization of the TSP for the case with multiple vehicles.
The results reported by the authors show a better performance when compared to
the OR-Tools solver and other heuristic algorithms. Other researchers contributed
to the methods for solving the broader class of graph-structured CO problems. Dai
et al. (2017) initiated the idea of learning on graphs, and the works of Li et al. (2018)
and Manchanda et al. (2019) enhanced further the scalability to larger graphs. These
methods have been applied to various NP-hard graph problems such as the minimum
vertex cover, maximum clique, influence maximization problem, etc.

Unlike the previous works that seek to build an end-to-end solution to the different
problems, other methods focus on using ML to guide and accelerate the solution process.
Since we pay special attention to mixed-integer programs (MIP), it is worth mentioning
the various projects involving ML in the context of branch and bound (Khalil et al.,
2016; Alvarez et al., 2017; Gasse et al., 2019; Zarpellon et al., 2020), many of which
seek to learn a branching policy imitating the strong branching strategy. Another
potential use of ML is embedding a learned model in MIP solvers in order to decide
if a decomposition of the problem is beneficial or not (Kruber et al., 2017), or if it is
favorable to linearize the quadratic part of a mixed-integer quadratic program (Bonami
et al., 2022).

Other learning-based methods have proven to be very effective on problems that are
solved repeatedly, especially when the input data changes only slightly, which is the key
idea of our project. These methods can exploit existing data from previous solutions
in order to speed up the resolution of similar unseen instances. Xavier et al. (2021)
exploit the idea and apply it on the security-constrained unit commitment, a problem
occuring in power systems and electricity markets. The authors report high speedups
on computing time, up to 10 times faster than solving the problem from scratch, and
without a noticeable loss in solution quality. Along the same lines, Lodi et al. (2020)
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consider an application to the facility location problem. They seek to estimate the
proportion of a solution that has a high probability of remaining unchanged after a
perturbation. An additional constraint is added to the original formulation according
to the predictions obtained by a regression model. Both Xavier et al. (2021) and Lodi
et al. (2020) leverage ML for speeding up the resolution of repeatedly solved problems
and do not seek to build an end-to-end solution, which is similar to our case. As
opposed to Xavier et al. (2021), our method is related to that of Lodi et al. (2020)
in the sense that both assume a reference solution to which changes (perturbations)
are applied. However, the main difference lies on the fact that our approach revolves
around fixing parts of the reference solution (i.e., edges) instead of estimating a bound
on the number of changes without specifying which variables to set. Other than that,
the CVRP remains a quite different problem and the approaches developed in this paper
have the potential to be extended to other CVRP variants and also to other routing
problems.

3 The capacited vehicle routing problem

The CVRP is a CO problem that has been studied for many years, resulting in several
exact and heuristic methods to solve it. It is classified as an NP-hard problem and
remains a difficult problem to solve to optimality even with just a few hundred clients.
Given a fleet of vehicles assigned to a depot, the problem consists in determining a set
of possible routes (i.e., one route per vehicle used) to deliver goods to a set of dispersed
clients while minimizing the travel costs. A route starts from the depot and visits a
sequence of clients before returning back, and is considered feasible if the total amount
of goods delivered does not exceed the vehicle capacity Q.

For solving this problem, we consider the algorithms based on column generation (CG
- Desaulniers et al. (2005)), which is an exact iterative method for solving large linear
programs. To ensure the obtention of integer solutions, CG is often embedded in
a branch-and-bound framework where the linear relaxation of the problem is solved
at each node using CG. In this case the method is referred to as branch-and-price
(B&P) and it is considered the state-of-the-art exact method for solving the CVRP.
But due to the complexity of the problem, solving large instances to optimality can
be computationally expensive. Therefore, several heuristics have been proposed in the
literature.

Note that our approach does not necessarily require learning from optimal solutions.
Since we want to apply it on instances of a reasonable size (i.e., 100 clients and more),
solving the instances to optimality in order to collect data can be time consuming.
Therefore, we chose to use a heuristic in the data collection phase, but during the
evaluation phase, we exploit an exact B&P algorithm. In the next sections, we present
the problem formulation along with both the exact and the heuristic algorithms used.
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3.1 CVRP formulation

In this section, we formulate the CVRP as a set partitioning problem. Let C be the set
of clients to be serviced, Ω the set of all feasible routes and cr the cost of a route r ∈ Ω.
We define ari as a binary parameter equal to 1 if client i ∈ C is serviced by route r ∈ Ω
and 0 otherwise. Let θr be a binary decision variable equal to 1 if route r is part of the
solution and 0 otherwise. The problem can therefore be formulated as follows:

(P ) min
θ

∑
r∈Ω

crθr (1)

s.t.
∑
r∈Ω

ari θr = 1, ∀i ∈ C, (2)

θr ∈ {0, 1}, ∀r ∈ Ω, (3)

where the objective (1) minimizes the total cost of the routes. Constraints (2) ensure
that each client is visited exactly once and constraints (3) are the binary requirements
on the decision variables θr.

One can notice that for large instances, the size of the route set |Ω| becomes prohibitively
large and it would not be possible to enumerate all the variables of the problem. This
is why a CG-based algorithm is used. The goal is to start with a subset of variables
and generate potentially improving columns when necessary.

3.2 Exact branch-and-price algorithm

B&P algorithms (Barnhart et al., 1996) are considered state-of-the-art exact algorithms
for solving a variety of optimization problems (e.g., routing, scheduling, . . . ). B&P is
based on the branch-and-bound method in which the linear relaxation at each node is
solved using CG. The CG process is iterative and consists in alternating between the
resolution of a restricted version of the original linear relaxation, called a restricted
master problem (RMP), and a pricing problem (PP). The goal of the PP is to find new
improving columns of negative reduced cost (for a minimization problem) that can be
added to the RMP. The CG process stops when no such columns are found. A branching
then occurs and the branch-and-bound tree exploration continues. Optionally, cutting
planes can also be added to strengthen the relaxation at each node, resulting on what
is called a branch-cut-and-price method.

3.2.1 The restricted master problem

The RMP corresponds to the linear relaxation of the formulation (1)-(3) but limited
to only a subset R ⊂ Ω of the variables. It is solved at each CG iteration, yielding a
pair of primal and dual solutions (θ, π). The dual values (πi)i∈C associated with the
constraints (2) are then used to find routes r ∈ Ω\R of negative reduced cost by solving
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the PP. If none exist, the CG process stops and the solution to the current RMP is thus
optimal for the whole linear relaxation. Otherwise, the routes are added to the RMP
(i.e., to the subset R) which is then reoptimized.

3.2.2 The pricing problem

The PP can be defined as minr∈Ω {cr −
∑

i∈C a
r
iπi}. For many applications, especially

routing and scheduling problems, this problem can be modeled as an elementary shortest
path problem with resource constraints (ESPPRC - Irnich and Desaulniers (2005))
where the goal is to find the least cost path between the source and destination nodes
while visiting the nodes at most once (i.e., elementarity requirements) and respecting
the resource constraints. For the CVRP, the only resource is the load, and a path is
considered feasible if the load does not exceed the vehicle capacity. This problem can be
defined over a graph G = (V,A), where V is the set of nodes representing the clients, in
addition to the depot nodes s and t, i.e., the source and destination nodes, respectively.
The set A represents the arcs, where each arc has an associated cost cij, (i, j) ∈ A.
Hence, the cost of a path in G is given by the sum of the costs cij of its arcs.

In order to take into account the dual values obtained by the RMP, at each iteration
and for each arc (i, j) ∈ A, a modified cost c̄ij = cij − πi is used instead, where πi are
the duals associated with constraints (2) and πs = 0. This guarantees that the cost of
a feasible route in the network is equal to its reduced cost:

c̄r = cr −
∑
i∈C

ariπi =
∑

(i,j)∈A

cijb
r
ij −

∑
i∈C

ariπi =
∑

(i,j)∈A

(cij − πi)brij =
∑

(i,j)∈V

c̄ijb
r
ij (4)

where brij is equal to 1 if arc (i, j) ∈ A is traversed in route r ∈ Ω, 0 otherwise.

The ESPPRC is an NP-hard problem, which is mainly due to the client elementarity
requirements since negative cost cycles can exist when using the modified costs c̄ij.
Relaxing this constraint (i.e., allowing the generation of paths with cycles) leads to the
SPPRC, which is an easier problem that can be solved in pseudo-polynomial time but
yields a lower bound of inferior quality if solved as the PP. Other alternatives based
on relaxations have been proposed in the literature, e.g., SPPRC-k-cyc (Irnich and
Villeneuve, 2006) and ng-routes (Baldacci et al., 2011).

The success of B&P methods for solving the CVRP and other variants is in good part
due to the efficient methods for solving the PP, mainly using dynamic programming.
A labeling algorithm is commonly used where a label corresponds to a partial path
in G (not to confound with the notion of label in ML). The algorithm starts with an
initial label representing the trivial path containing only the source node s, it then
gets extended forward along the outgoing arcs until reaching the destination node t.
A new label is created at each extension if it yields a feasible path. At the end of the
algorithm, the labels at the destination node t representing negative reduced cost routes
are used to build the new columns that are added to the RMP. Generally, several routes
are added at once, which is known to speed up the solution process and to reduce the
number of CG iterations.
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The CVRP remains one of the most studied CO problems in the literature. An effi-
cient B&P algorithm can be quite sophisticated and may contain several components.
Discussing all the details is beyond the scope of this paper and we refer the interested
reader to the survey of (Costa et al., 2019) for an in-depth overview of the methods.

3.2.3 Branch-and-price implementation

In this work, we consider using VRPSolver (Pessoa et al., 2020), which is a generic
implementation of an exact branch-cut-and-price method for VRP problems. The ad-
vantage of using VRPSolver lies in the fact that it combines several algorithms and
acceleration techniques introduced by several authors, e.g., ng-routes, path enumer-
ation, bi-directional labeling, stabilization, etc. Implementing these techniques from
scratch would be otherwise very time consuming. The authors report excellent per-
formance on several benchmark instances of various CVRP variants (e.g., with time
windows, heterogeneous fleet, multiple depots, pickups and deliveries, etc). For more
information about the implementation and the algorithms included in VRPSolver, the
reader is referred to Pessoa et al. (2020).

3.3 Heuristic algorithm

As previously mentioned, the CVRP remains a difficult problem to solve to optimality
and can be time consuming when working with large instances. For our method, we
need to solve several instances to collect enough data for the training phase, but solving
them to optimality is not required (although recommended), since it is possible to obtain
very high-quality solutions using specialized CVRP heuristics. For this reason, we chose
to use a recent heuristic called FILO (Accorsi and Vigo, 2021), which is a short term
for Fast Iterated Localized Search Optimization.

The method is based on the iterated local search paradigm and is specifically designed to
solve large-scale instances of the CVRP. The algorithm starts by constructing an initial
feasible solution using an adaptation of the savings algorithm by Clarke and Wright
(1964). It is followed by an optional step that aims at reducing the number of vehicles
used in the initial solution, if the latter is larger than a computed estimate (using a
bin-packing greedy algorithm). The algorithm then proceeds to the core optimization
step, which is based on a sequence of ruin and recreate steps. The ruin step removes
a certain number of vertices by means of a random walk of a given length (the ruin
intensity can be controlled by adapting the random walk length). Then, the recreate
step tries to reinsert the removed vertices while trying to improve upon the best solution
found. This is achieved by means of a number of local search operators targetting the
vertices involved in the disruptive effects of the ruin step. The algorithm tries to keep
a good balance between intensification and diversification, i.e., the local search can be
concentrated on the parts of the solution that have not seen any improvement after
several attempts, and at the same time, a continuous diversification is intended in
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order to escape from local optima. The algorithm stops after a determined number of
iterations and the best solution found is returned.

The performance of the FILO algorithm has been compared by the authors to other
state-of-the-art heuristics and has proven to be highly competitive on the X instances
introduced by Uchoa et al. (2017), which are also the benchmark instances used by
our method. Note that the purpose of this section is not to present or compare the
different heuristics that exist for solving the CVRP, but simply to present the heuristic
that we used to obtain high-quality solutions during the data collection phase (i.e., with
optimality gaps of less than 0, 1% on average). The method has also the advantage of
having an open-source implementation that is freely accessible.

4 Methodology

The goal of this project is to accelerate the reoptimization of repeatedly solved CO
problems for which there is only a slight change in the problem data. Let Po and So be
a problem instance and a computed good-quality solution, respectively. Furthermore,
let Pm be a modified instance obtained by applying minor changes to Po and for which
no solution is known. Instead of optimizing Pm from scratch, the objective is to identify
the parts of So that have a high probability of also being part of a solution to Pm denoted
by Sm.

In this paper, we focus on the CVRP where the locations of the clients are the same
but the demands are slightly different. Because we assume that the fleet of vehicles is
unlimited and the travel costs are symmetric, we consider for the rest of this paper an
undirected graph and denote by E(So) the set of edges used in the known solution So
to the original instance Po. Since the solution consists of vehicle routes, if we consider
E(So) as the set of edges used in a solution So already in hand, the method aims at
predicting the edges e ∈ E(So) that have a high chance to also be part of Sm. By fixing
these edges, a significant reduction of the problem complexity can be achieved, thus
greatly reducing the computing time. Let us take the example illustrated in Figure 1,
where we can observe the following: Figure (1a) represents a solution So to an original
CVRP instance involving 110 nodes. The central node corresponds to the depot and
the other nodes represent the clients. Figure (1b) shows a solution Sm to an instance
Pm obtained by randomly changing the demands of 20% of the clients of Po (the clients
with a changed demand are marked with a star node). By comparing the two figures,
one can notice a significant similarity between the two solutions. Assuming we do not
have yet the solution Sm, if we succeed in predicting and fixing the edges e ∈ E(So)
that will be part of Sm, a partial solution can be provided to the solver before starting
the optimization. This is shown in Figure (1c), where the overlapping parts of the two
solutions are highlighted, i.e., the edges e ∈ E(So) ∩ E(Sm). Furthermore, it is also
possible to reduce the size of the network by aggregating the sequences comprised of
two or more edges into a single one as shown in Figure (1d). As a result, the number
of nodes is reduced from 110 to only 54.
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(a) Solution of Po (b) Solution of Pm

After changing
demands

(c) Edges to predict and fix (d) Edges to fix after aggregating
sequences

After aggregat-
ing sequences

Figure 1: Overview of the different steps of the method.

On the other hand, since the predictions obtained by the ML model are not always
accurate and errors may occur, fixing the wrong edges can affect the quality of the
solution obtained. In fact, fixing many edges implies shorter computing times but more
chances to fix the wrong ones. On the other hand, if the number of fixed edges is
small, there is a greater chance of obtaining a better quality solution though with a
higher computing time. By controlling the number of fixed edges (e.g., by tuning the
hyperparameters of the model), it is possible to find the right compromise between the
quality of the solution and the computing time.
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4.1 Data collection

We chose to address this learning problem using a supervised learning approach. More
precisely, a binary classification model is employed. The first step in the process is to
collect enough data for the training. Given a tuple of original and modified instances
and their solutions (Po,So,Pm,Sm), a labeled dataset D = {{xe, ye}|∀e ∈ E(So)} is
built where each entry represents an edge in the original solution, the vector xe ∈ Rn

corresponds to the edge features (i.e., input), where n is the number of features and
ye = {0, 1} is the desired output (i.e., label). One can notice that we are only interested
in the edges of So and not all the edges of the graph.

The labels. Since we tackle this problem in a supervised manner, we need both
solutions So and Sm to build the dataset, i.e., we need to give both the input and
the desired output to the learner. The labels are assigned by simply checking the
overlapping edges between the solutions So and Sm as follows:

ye =

{
1 if e ∈ E(So) ∩ E(Sm)

0 otherwise
, e ∈ E(So). (5)

The features. The features xe represent the characteristics of each edge e = 〈i, j〉 in
the original solution. The extracted features are the following:

• The (x, y) coordinates of both nodes i and j;

• The cost of edge ce;

• The old and new demands of nodes i and j (the demand is set to 0 for the depot
nodes s and t);

• The distance between the depot and nodes i and j;

• A boolean value indicating whether the edge is a depot edge, i.e., equal to 1 if
either i or j is a depot node;

• A boolean value indicating whether the client i or j, or both, have a changed
demand;

• The rank of i with respect to j (and vice versa) according to the neighbor dis-
tances, e.g., if j is the nearest neighbor to i, then its rank is 1, if j is the second
closest neighbor to i then its rank is 2, and so on.

Note that since we are working on a symmetric version of the CVRP and that the order
of the entries in the vector xe is important, we always assume that i < j.
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4.2 ML prediction

Once the dataset is in hand, we apply common ML practices such as data preprocessing
(i.e., normalization, encoding) and data splitting (i.e., dividing the data into a training,
a validation and a test set), etc. As mentioned before, the prediction task corresponds
to a binary classification problem and different ML models can be considered, e.g.,
Random Forest, SVM, Neural network. In this section, we assume that we already
have a trained predictive model that takes as input the edge features xe and outputs
the predictions ŷe and we wish to know what to do with those predictions afterwards
(the comparison of which ML model is best performing is discussed in the next section).

4.2.1 ML-based edge fixing

Let G = (V,E) be an undirected graph, where V is the set of nodes including the depot
nodes and E the set of edges. Let ce, e ∈ E be the cost of edge e = 〈i, j〉. The edge
flow can be written in terms of the master problem (1)-(3) variables as

xe =
∑
r∈Ω

breθr, (6)

where bre ∈ {0, 1} indicates whether edge e ∈ E is part of a route r ∈ Ω. Therefore, an
edge can be fixed by adding a new constraint to the master problem. For each edge in
the original solution So, the flow is set to 1 depending on the predictions obtained by
the ML model, namely

xe = 1, ∀e ∈ E(So) : ŷe = 1. (7)

4.2.2 Infeasibility case

Sometimes fixing edges can lead to an infeasible restricted problem. This may only
occur in the case when the total demand of a sequence of clients fixed by the ML
model exceeds the vehicle capacity Q. For each edge, in addition to the output ŷe
returned by the model, it is possible to obtain its probability estimate p̂e of being fixed.
Generally, the model assigns the class 1 if the probability estimate p̂e is greater than
0.5 and 0 otherwise. For a sequence of clients whose sum of the demands exceed Q,
a possible solution would be to identify and unfix the edges with lowest probabilities,
until obtaining one or several feasible subsequences.

Let Gŷ = (Vŷ, Eŷ) be the graph obtained by keeping only the fixed edges and their
corresponding nodes, i.e., Eŷ = {e ∈ E | ŷe = 1} and Vŷ = {i ∈ V | ∃〈k, l〉 ∈ Eŷ :
i = k ∨ i = l}. Depending on the predictions obtained by the model, the graph
may contain multiple sequences of two nodes or more. A sequence can be defined as
p = (vp1, v

p
2, . . . , v

p
|p|), vi ∈ Vŷ, where |p| is its length. Note that since the graph is

undirected, the sequence can start at either of its ends. Let E(p) = {{i, i + 1} | i ∈
{1, 2, . . . , |p| − 1}} be the set of edges of sequence p and S(Gŷ) the set of all sequences
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in Gŷ. We denote by di the demand of node i (ds = dt = 0). The steps followed to
identify and to deal with the infeasible sequences are described in Algorithm 1.

Algorithm 1 Infeasibility check.

1: procedure resolve infeasibility(Gŷ, p̂)
2: do
3: infeasibilityDetected = False

4: for each sequence p ∈ S(Gŷ) do

5: if
∑|p|

i=1 dvpi > Q then
6: e = arg mine∈E(p) p̂e . Identify the edge with lowest probability
7: Eŷ = Eŷ \ {e}
8: ŷe = 0
9: infeasibilityDetected = True

10: end if
11: end for
12: while infeasibilityDetected = True

13: end procedure

The algorithm takes as input the graph Gŷ and starts by initializing the variable
infeasibilityDetected to False (Step 3). Then, it proceeds by looping over the
sequences of the set S(Gŷ) in Step 4. For each sequence p, if the total demand of the
clients exceeds the capacity Q of a vehicle (Step 5), the edge with the lowest probabil-
ity estimate is identified (Step 6), then unfixed and removed from the set of edges Eŷ
(Steps 7-8). This procedure is repeated until there are no more infeasible sequences.

4.2.3 Network reduction

Once there are no more infeasible sequences, it is possible to make an improvement
that can further accelerate the optimization, which consists in reducing the number of
nodes and edges in the network. The simple (and well-known) idea is to shrink the
sequences of three nodes (i.e., two edges) or more into a single edge, while making sure
that the cost and the demands are updated accordingly.
For a sequence p = (vp1, . . . , v

p
|p|) ∈ S(Gŷ) with |p| ≥ 3, the goal is to remove all

intermediate nodes vp2, . . . , v
p
|p|−1 and link directly the two ends of the sequence by

adding the edge enew = 〈vp1, v
p
|p|〉. Its cost is updated to the cost of the whole sequence,

i.e., cenew =
∑

e∈E(p) ce, and the demand of the removed nodes
∑|p|−1

i=2 dvpi is added to

the demand of either vp1 or vp|p|. Lastly, the edge is fixed by setting the corresponding
flow variable xenew = 1. By doing so, traversing the edge enew becomes equivalent to
traversing the sequence p. The reduction of the network size depends on the number
of sequences and their lengths, in some cases a significant reduction can be obtained,
as illustrated in Figure (1d).
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4.2.4 Method summary

By putting all the pieces together, Algorithm 2 summarizes the different steps of our
method. Given the initial data (Po,Pm,So), the algorithm starts by extracting the edge
features yielding the features matrix X (Step 1), then obtaining the predictions ŷ of the
ML model and the probability estimates p̂ in Steps 2-3. The graph Gŷ representing the
edges to fix is built (Steps 4-5) and the procedure resolve infeasibility described
in Algorithm 1 is called to check for any infeasible sequences. The algorithm proceeds
by aggregating the sequences in S(Gŷ) by connecting each sequence ends (Step 9),
updating the cost and the demand (we added the demands of the intermediate nodes
to one of the two ends) in Steps 10-11, then removing the intermediate nodes and their
adjacent edges (Steps 12-13). Any removed node from Gŷ must be removed from the
original graph also. This is achieved by updating G to the induced subgraph G[Vŷ]. At
this point, the graph G corresponds to the original complete graph minus the removed
nodes from the network reduction step. Finally, the master problem is initialized and
solved after adding the flow constraints for each fixed edge (Steps 17-21).

5 Computational experiments

This section start by describing the CVRP instances we used and the data generation
process. Next, we present the details about the ML phase. Finally, the results of our
heuristic method on different benchmark instances are reported. All the experiments
were conducted on a Linux machine with an Xeon(R) Gold 6142 CPU @ 2.60GHz and
512GB of RAM.

5.1 CVRP instances

The instances used are based on the X benchmark dataset introduced by Uchoa et al.
(2017). Each instance is characterized by the following attributes:

• Depot position: The possible values are Central (C) (i.e., the depot is posi-
tioned at the center of the grid), Eccentric (E) (i.e., the depot is positioned at
the South-West corner (0, 0) of the grid) and Random (R).

• Client positioning: The three possibilities are Random (R) (i.e., the clients
are randomly dispersed on the grid), Clustered (C) (i.e., the clients are grouped
in clusters) and a combination of both, referred to as Random-Clustered (RC).

• Demand distribution: For the client demands, there are seven options with
different intervals, and all demands are drawn uniformally from each distribution.
The demands can range from: (a) [1-10], (b) [5-10], (c) [1-100], (d) [50-100], (e)
clients located in an even quadrant have demands in the range [1-50] and [50,100]
for the others, (f) 70% to 95% of the clients have a demand in the range [1,10]
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Algorithm 2 ML-based edge fixing heuristic.
Data:
Po : Original instance
Pm : Modified instance
So : Solution of the original instance
G = (V,E) : Original graph

1: X ←− extractEdgeFeatures(Po, Pm, So)
2: ŷ ←− predict(X)

3: p̂←− predict proba(X)

4: Vŷ = V, Eŷ = {e ∈ E | ŷe = 1}
5: Gŷ = (Vŷ, Eŷ)
6: resolve infeasibility(Gŷ, p̂)
7: for each sequence p = (vp1, . . . , v

p
|p|) ∈ S(Gŷ) do

8: if |p| > 2 then
9: e = 〈vp1, v

p
|p|〉

10: ce =
∑

u∈E(p) cu

11: dvp1 = dvp1 +
∑|p|−1

i=2 dvpi
12: Vŷ = Vŷ \ {vpi | i ∈ {2, . . . , |p| − 1}}
13: Eŷ = Eŷ \ {〈i, j〉 ∈ E | i /∈ Vŷ ∨ j /∈ Vŷ}
14: end if
15: end for
16: G = G[Vŷ]
17: MP ←− initialize MP(Pm)
18: for each edge e ∈ Eŷ do
19: add constraint(MP,"xe = 1")
20: end for
21: solve(Pm, G)

Network reduction
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Instance name
Depot Client Demand Avg. route

position positioning distribution size

X-n101-k25 R RC [1− 100] 4.0
X-n106-k14 E C [50− 100] 7.5
X-n110-k13 C R [5− 10] 8.4
X-n125-k30 R C Quadrant 4.1
X-n129-k18 E RC [1− 10] 7.1
X-n134-k13 R C Quadrant 10.2
X-n139-k10 C R [5− 10] 13.8
X-n143-k07 E R [1− 100] 20.3

Table 1: CVRP instances from the X benchmark instances.

and [50,100] for the remaining ones and finally, (g) unit demands, where all the
demands are equal to 1.

• Average route size: This represents the average number of clients that can be
visited by the same route, which is directly controlled by the vehicles capacity.
This is computed as n/Kmin where n is the number of clients and Kmin is an
estimate of the minimum number of vehicles required to service all clients.

Since we are interested in modifying the demands of the clients, we exclude the instances
with unit demands. Table 1 describes the instances we picked for our experiments.
The instance names are written in the form “X-n[nnodes]-k[nvehicles]” where nnodes is
the number of nodes including the depot and nvehicles is an estimate of the number of
vehicles required to service all clients. The remaining columns report the characteristics
described above.

5.2 Data generation

For each instance described in Table 1, we generate a set of modified instances by
randomly changing the demands of Nc% of the clients. The new demand of each of
these clients is chosen randomly in the interval [di−∆d, di+∆d], where di is the original
demand of the client i and ∆d a parameter controlling the interval width. In order to
analyze the impact of the demand changes on the performance of the heuristic and the
predictions, we used different values of Nc ∈ {10, 20, 30}. As for ∆d, since each instance
has a different demand distribution, we created three classes of intervals: Small (S),
Medium (M) and Large (L), controlled by the value of ∆d as shown in Table 2.

By combining the three different values of Nc and the three interval sizes, this results in
nine different scenarios Φ = {10S, 10M, 10L, 20S, 20M, 20L, 30S, 30M, 30L}. We then
proceeded as follows. For each instance in Table 1 and each scenario φ ∈ Φ, 100 modified
instances are generated, where 95 of them are used for the ML phase (i.e., training,
parameters tuning, etc.) and the remaining 5 for the optimization phase (i.e., when
the ML model is incorporated in the CG algorithm). We therefore consider the eight
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Demand ∆d (interval size)

distribution S M L

[1− 100] 5 10 15
[50− 100] 5 10 15
[5− 10] 1 2 3
Quadrant 5 10 15
[1− 10] 2 3 4

Table 2: ∆d values used depending on the demand distribution.

instances of Table 1 as the original instances (i.e., P1
o , . . . ,P8

o ) and, for each scenario
φ, we generate 100 modified versions (i.e., (P im)1

φ, . . . , (P im)100
φ , i ∈ {1, 2, . . . , 8}, φ ∈ Φ).

One ML-model is trained for each instance and for each scenario. The idea of training a
model for each instance comes from the assumption that we have a specific instance that
we solve repeatedly. Therefore we want a specific model for that particular instance.
This makes a total of 8 instances × 9 scenarios × 100 = 7, 200 modified instances
generated (and 8 × 9 = 72 ML models). Given the large number of instances, instead
of using an exact B&P method for solving and collecting solutions, we opted to use
the FILO heuristic of Accorsi and Vigo (2021)(see Section 3.3). For each of the 7, 200
instances, we run the heuristic using 10 different random seed values for 1,000,000
iterations and the solution with the smallest cost is retained.

Once the solutions of the original and modified instances are obtained, for each instance
i ∈ {1, . . . , 8} and scenario φ ∈ Φ, the solutions are grouped in a set of tuples, i.e.,
{(P io,S io, (P im)1

φ, (S im)1
φ), . . . , (P io,S io, (P im)100

φ , (S im)100
φ )} that are used to extract the edge

features and labels as detailed in Section 4.1.

5.3 Machine learning phase

Before starting the training, common practices in ML are followed, starting by a pre-
processing phase that consists of scaling and normalizing the data. The dataset (i.e., the
data from the 95 instances) is then split into a training set, a validation set and a test
set. The goal of the validation set is to tune the different hyperparameters, whereas the
purpose of the test set is to compare different classification algorithms, such as logistic
regression, K-nearest neighbors, random forest, artificial neural network (ANN), etc.
According to the results obtained on the test set, the ANN model is the overall most
robust model with accuracies ranging from 70% to 88% depending on the instance and
the scenario φ ∈ Φ (more detailed results about the models performance are reported
in the next section). The hyperparameter values used during the training of the ANN
models are described in Table 3.
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Hyperparameter Value

Learning rate 10−3

Number of epochs 1000
Epoch size 64
Batch size 32
NN Architecture 32× 32× 32× 1
Activation function ReLU
Output function Sigmoid
Optimizer Adam
Class weights Balanced

Table 3: Hyperparameters values of the ANN models.

5.4 Optimization phase

In this section, we present the results obtained by our edge-fixing heuristic. Since a
ML model is trained for each original instance and scenario, we report the ML model
performance in this section as well. Tables 4 to 6 summarize the results obtained on
the test instances. Each row corresponds to the average values obtained on the 5 test
instances (for each original instance), whereas the details of each individual instance
can be found in Appendix A. There is one table for each Nc value (i.e., 10, 20 and 30
for Tables 4, 5 and 6, respectively). The first column corresponds to the interval used
when changing the demands (i.e., S, M and L, respectively), followed by the name of
the original instance Po. Next, the average cost of the best solutions Sm obtained by
the FILO heuristic (over the 10 executions of the heuristic with different seeds). In
the fourth column, we report the average similarity between the solution of the original
instance and the solution of the modified instances computed by the following formula:

sim(So,Sm) =
|E(So) ∩ E(Sm)|
|E(So)|

. (8)

Notice that this similarity also matches the percentage of edges to fix (i.e., with the label
1). The next three columns summarize the performance of the ML model and show
the following metrics: the True Negative Rate (TNR) corresponds to the percentage of
edges that should not be fixed and that are predicted accurately; the True Positive Rate
(TPR) is equal to the percentage of edges that should be fixed and that are predicted
correctly; and the (balanced) accuracy is the mean of the two previous columns. By
fixing the edges suggested by the ML model and solving the instance using VRPSolver,
we obtain the results shown under the heading “Edge-fixing”: the average costs of
the solutions as well as the computing times in seconds. To evaluate the quality of
this solution, we report the average gap that compares the cost of the solution of our
method with that of the solution Sm of the FILO heuristic (third column). The next
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three columns provide the average cost of the solutions computed by the exact algorithm
in VRPSolver, the average computing time and the ratio with respect to the computing
time of our method (i.e., the computing time of the exact B&P algorithm divided by
the computing time of our edge-fixing method). For the exact algorithm, a time limit
of five hours is set. Empty values mean that the exact B&P failed to find an optimal
solution in the time limit for one or more of the 5 instances, refer to Appendix A for
additional details.

A natural question with respect to the proposed approach is if there is value in trying to
learn the difference between solutions of slightly modified instances. Indeed, ML-based
CVRP heuristics should be in a very favorable position in our computational setting
because the instances are from a specific data distribution and of the same size, i.e.,
no generalization is needed. In order to give a tentative answer to this question, we
compare the performance of our method with another ML method for the CVRP not
designed for reoptimization purposes but with excellent overall performance on recent
benchmarks. We chose the Dual-Aspect Collaborative Transformer algorithm (DACT
- Ma et al. (2021)) that is considered one of the most effective methods for solving the
CVRP to-date in terms of solution quality according to the recent survey Bogyrbayeva
et al. (2022). Unlike our approach, DACT is a reinforcement learning method that
learns an improvement heuristic, which means that it starts with an initial solution and
tries to improve it in an iterative way. In this method, the learner (i.e., the agent) learns
to identify a pair of nodes on which to apply a pairwise operator (e.g., 2-opt, swap,
insert) and is rewarded when a better solution is found. The authors report good results
that outperform several other learning methods on the X benchmark instances (same
instances we are using) in a reasonable computing time. In our case, we proceeded
by using the same pretrained model that the authors used in their paper but with
additional training on the 8 instances we focus on (see Table 1), in addition to using
the same parameters of their best performing model. The results obtained are reported
in the last two columns of Tables 4 to 6, representing respectively the average cost of
the solutions and the gap with respect to the FILO heuristic (just like Edge-Fixing).

According to the results reported in Tables 4 to 6, we can notice that on average
the similarity decreases by increasing the number of changes we make on the demands
(controlled by the parameter Nc and the intervals), which is expected. A high similarity
of 79% is noticed on average on the instances with 10% change and small interval, while
the instances with 30% change and large interval have an average similarity of 63%.
At the instance level, it seems that the dispersion of the clients as well as the length
of the routes can have an impact on the similarity of the solutions. For example, the
instances with randomly dispersed clients and medium to long routes (e.g., X-n110-k13,
X-n139-k10, X-n143-k07) tend to have a higher similarity compared to instances with
clustered clients (e.g., X-n106-k14 and X-n125-k30).

Before evaluating the performance of the model, we would like to highlight the impact
that a bad prediction may have in the obtained solution. If some edges are not fixed
when they should be (false negatives), it can affect the computing time but the solver
can still include them in the final solution. However, the edges with label 0 can have
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Interval Po Sm cost sim(So,Sm)
ML model metrics Edge-fixing Exact B&P DACT

TNR TPR Accuracy Cost Time (s) Gap Cost Time (s) Ratio Cost Gap

Small

X-n101-k25 27637 84% 71% 70% 70% 27718 13 0.29% 27635 211 22.4 28184 1.98%
X-n106-k14 26376 85% 89% 60% 75% 26436 25 0.23% 26376 962 61.3 26897 1.98%
X-n110-k13 14987 93% 100% 66% 83% 14987 8 0.00% 14987 265 36.7 15159 1.15%
X-n125-k30 55613 63% 76% 73% 75% 55683 235 0.13% - - - 58581 5.34%
X-n129-k18 28765 62% 78% 72% 75% 28982 78 0.75% 28765 3479 53.4 29697 3.24%
X-n134-k13 10888 80% 89% 54% 72% 10917 77 0.27% - - - 11284 3.64%
X-n139-k10 13590 85% 92% 81% 86% 13599 26 0.06% - - - 13846 1.88%
X-n143-k07 15722 81% 87% 88% 88% 15726 54 0.02% - - - 16245 3.32%

Average 23886 79% 85% 71% 78% 24256 65 0.22% - - - 24987 2.82%

Medium

X-n101-k25 27606 83% 77% 63% 70% 27736 18 0.47% 27606 324 20.4 28298 2.51%
X-n106-k14 26358 66% 95% 73% 84% 26380 14 0.08% 26358 355 23.9 26871 1.95%
X-n110-k13 14971 87% 98% 67% 82% 14993 12 0.15% 14969 283 24.5 15137 1.11%
X-n125-k30 55713 60% 74% 73% 74% 55758 198 0.08% 55655 5156 58.4 58735 5.42%
X-n129-k18 28862 60% 74% 75% 75% 29124 105 0.91% - - - 29801 3.26%
X-n134-k13 10888 63% 74% 73% 74% 11024 320 1.25% - - - 11304 3.82%
X-n139-k10 13601 90% 85% 76% 81% 13608 27 0.05% - - - 13863 1.92%
X-n143-k07 15707 85% 97% 79% 88% 15710 63 0.02% - - - 16200 3.14%

Average 24213 74% 84% 72% 78% 24292 95 0.38% - - - 25026 2.89%

Large

X-n101-k25 27651 70% 63% 77% 70% 28125 122 1.71% 27648 399 7.9 28142 1.98%
X-n106-k14 26412 65% 84% 74% 79% 26557 250 0.54% - - - 26846 1.64%
X-n110-k13 15030 75% 86% 73% 80% 15107 35 0.51% 15030 2283 60.7 15187 1.04%
X-n125-k30 55733 55% 81% 75% 78% 55825 422 0.16% - - - 58500 4.97%
X-n129-k18 28755 62% 78% 73% 75% 28972 171 0.76% 28748 2457 22.5 29546 2.75%
X-n134-k13 10908 69% 72% 68% 70% 10908 164 0.66% - - - 11267 3.29%
X-n139-k10 13600 83% 85% 75% 80% 13635 47 0.26% - - - 13850 1.84%
X-n143-k07 15716 88% 97% 73% 85% 15717 62 0.00% - - - 16265 3.49%

Average 24226 71% 81% 73% 77% 24365 159 0.58% - - - 24950 2.62%

Table 4: Average results for scenarios with Nc = 10.

a more serious impact, since they can affect the quality of the solution if predicted
inaccurately (false positives), which potentially leads to a higher gap. As previously
mentioned, the similarity is also the percentage of edges to be fixed. A high similarity
means that most of the edges in the solution of the original instance are labeled 1,
which also implies that the ML model tends to make fewer “significant” errors since
there are not many edges with label 0. If we focus on the solution quality, it is possible
to give a higher weight to the edges with label 0, which can lead to a high TNR (thus
reducing the false positives) and probably a lower TPR, meaning that less edges will be
fixed resulting in a higher computing time. Conversely, if we do the opposite and assign
a higher weight to the edges with label 1, we will likely fix more edges and achieve a
lower computing time but at the expense of bad-quality solutions. In our case, we use a
balanced weight between the two classes as shown in Table 3. Depending on the desired
goal, one seeks to find a compromise between quality and computing time.

From the ML metrics obtained we can observe an average accuracy ranging from 78% to
80%, but if we look closer at the individual instances, we can notice some variance and a
slight positive correlation between the accuracy and the similarity. By fixing the edges
proposed by the model and comparing the solution with the one of the FILO heuristic,
we obtain an average gap ranging from 0.22% to 0.70%. We can also notice that the gap
follows the same tendency as the similarity, i.e., more changes of the demands imply
less similarity, more possible misclassifications and thus a higher gap. Therefore, the
instances with high similarity (e.g., instances with dispersed clients and long routes)
generally have a lower gap compared to the others. The detailed results in Appendix

20



Interval Po Sm cost sim(So,Sm)
ML model metrics Edge-fixing Exact B&P DACT

TNR TPR Accuracy Cost Time (s) Gap Cost Time (s) Ratio Cost Gap

Small

X-n101-k25 27486 83% 73% 75% 74% 27628 29 0.51% 27486 231 8.6 28220 2.67%
X-n106-k14 26338 72% 90% 71% 81% 26401 30 0.24% 26336 1147 88.5 26845 1.93%
X-n110-k13 14980 77% 86% 74% 80% 15024 9 0.29% 14980 429 55.5 15152 1.15%
X-n125-k30 55493 63% 85% 68% 77% 55509 233 0.03% - - - 58372 5.19%
X-n129-k18 29020 56% 71% 78% 74% 29408 143 1.33% 29009 5791 76.5 29703 2.35%
X-n134-k13 10909 73% 85% 69% 77% 10943 150 0.32% - - - 11323 3.80%
X-n139-k10 13613 87% 91% 81% 86% 13616 103 0.02% - - - 13870 1.89%
X-n143-k07 15715 86% 90% 86% 88% 15748 30 0.21% - - - 16261 3.47%

Average 24194 75% 84% 75% 80% 24284 91 0.37% - - - 24968 2.81%

Medium

X-n101-k25 27512 68% 74% 72% 73% 27694 32 0.66% 27512 518 19.4 28076 2.05%
X-n106-k14 26306 64% 87% 71% 79% 26400 20 0.36% 26306 5257 238.2 26785 1.72%
X-n110-k13 14983 73% 86% 77% 82% 15078 27 0.64% 14983 548 30.3 15217 1.56%
X-n125-k30 55503 54% 82% 74% 78% 55579 233 0.14% - - - 58528 5.45%
X-n129-k18 29171 57% 73% 76% 74% 29655 315 1.66% - - - 30001 2.85%
X-n134-k13 10877 55% 82% 80% 81% 10956 127 0.73% - - - 11258 3.50%
X-n139-k10 13605 72% 87% 80% 84% 13631 205 0.20% - - - 13855 1.84%
X-n143-k07 15708 81% 80% 83% 82% 15745 49 0.24% - - - 16233 3.35%

Average 24208 65% 81% 77% 79% 24342 126 0.58% - - - 24991 2.79%

Large

X-n101-k25 27645 59% 70% 73% 72% 27871 56 0.81% 27645 466 30.8 28244 2.17%
X-n106-k14 26413 61% 79% 74% 77% 26555 100 0.54% - - - 26834 1.59%
X-n110-k13 15034 68% 81% 79% 80% 15161 23 0.84% 15034 487 25.4 15216 1.21%
X-n125-k30 55958 58% 79% 70% 74% 56168 433 0.37% - - - 58629 4.77%
X-n129-k18 29123 55% 77% 74% 75% 29462 386 1.16% 29092 3106 16.0 29848 2.49%
X-n134-k13 10909 55% 82% 80% 81% 11051 254 1.31% - - - 11317 3.75%
X-n139-k10 13585 73% 88% 77% 83% 13619 139 0.25% - - - 13788 1.50%
X-n143-k07 15743 84% 79% 79% 79% 15775 41 0.20% - - - 16332 3.74%

Average 24301 64% 79% 76% 78% 24458 179 0.69% - - - 25026 2.65%

Table 5: Average results for scenarios with Nc = 20.

A indicate that the gap of the individual instances can vary between 0% and 1.71%. A
perfect solution is obtained (i.e., same solution as the FILO heuristic, thus a 0% gap)
when the TNR is 100%. In a few rare cases, the solver was able to find a better solution
than the heuristic even after fixing parts of the solution, such as X-n125-k30 10M 4 in
Table 8 and X-n125-k30 30L 3 in Table 15. Generally, the FILO heuristic finds very
good solutions (especially when considering 10 runs): it succeeds in finding the optimal
solution in many cases when compared to the available exact B&P results. We believe
that the gap reported between the edge-fixing and the FILO heuristic must not be far
from the one with the exact B&P algorithm.

In terms of computing time, the edge fixing method takes only a few minutes or even
a few seconds in some cases to find the optimal solution of the modified problem (that
with fixed variables according to the ML prediction), whereas the exact B&P algorithm
that solves the (original) problem from scratch can take hours of computation to find an
optimal solution, and in many cases no solution is found after the time limit especially
for large instances. Apparently, the current version of VRPSolver does not have strong
heuristics to produce feasible solutions. On the one side, this is not an issue for our
computational investigation because we use VRPSolver as well (and we are definitely
not using it for comparison). On the other side, this is somehow reinforcing the fact
that, after our proposed fixing, the instances are much easier and even without good
heuristics VRPSolver is very effective on them. Note that in our experiments, the FILO
heuristic with 1,000,000 iterations takes about 8 to 13 minutes per execution depending
on the instance size, not to forget that we executed the heuristic 10 different times with
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Interval Po Sm cost sim(So,Sm)
ML model metrics Edge-fixing Exact B&P DACT

TNR TPR Accuracy Cost Time (s) Gap Cost Time (s) Ratio Cost Gap

Small

X-n101-k25 27562 75% 80% 70% 75% 27669 37 0.39% 27562 178 5.9 28219 2.38%
X-n106-k14 26383 65% 89% 69% 79% 26438 148 0.21% 26378 1577 25.9 26833 1.70%
X-n110-k13 15005 74% 92% 77% 84% 15083 32 0.52% 15005 555 21.8 15157 1.01%
X-n125-k30 55776 53% 77% 73% 75% 55834 259 0.10% - - - 58601 5.06%
X-n129-k18 29414 58% 80% 74% 77% 29778 237 1.24% 29405 3742 24.8 30086 2.28%
X-n134-k13 10925 77% 90% 62% 76% 10952 140 0.25% - - - 11361 4.00%
X-n139-k10 13622 83% 91% 73% 82% 13692 154 0.51% - - - 13829 1.52%
X-n143-k07 15754 83% 79% 87% 83% 15822 56 0.43% - - - 16328 3.65%

Average 24305 71% 85% 73% 79% 24409 133 0.46% - - - 25052 2.70%

Medium

X-n101-k25 27654 63% 68% 73% 71% 27804 51 0.54% 27651 243 24.8 28277 2.25%
X-n106-k14 26437 59% 75% 70% 73% 26615 247 0.67% - - - 26780 1.30%
X-n110-k13 15058 77% 87% 72% 79% 15095 14 0.24% 15058 269 33.6 15292 1.55%
X-n125-k30 55925 50% 82% 78% 80% 56009 451 0.15% - - - 58859 5.25%
X-n129-k18 29221 54% 79% 75% 77% 29698 137 1.63% 29215 3574 34.8 29849 2.16%
X-n134-k13 10926 56% 83% 80% 81% 11048 129 1.12% - - - 11301 3.43%
X-n139-k10 13640 75% 89% 78% 83% 13708 256 0.49% - - - 13926 2.09%
X-n143-k07 15782 80% 78% 85% 82% 15870 49 0.55% - - - 16423 4.06%

Average 24330 64% 80% 76% 78% 24481 167 0.67% - - - 25088 2.76%

Large

X-n101-k25 27617 66% 76% 72% 74% 27929 185 1.12% 27617 339 19.4 28207 2.13%
X-n106-k14 26440 54% 79% 68% 74% 26637 275 0.75% - - - 26913 1.79%
X-n110-k13 15090 66% 82% 72% 77% 15211 88 0.80% 15090 1120 18.7 15318 1.51%
X-n125-k30 56228 52% 84% 71% 78% 56221 475 -0.01% - - - 58725 4.44%
X-n129-k18 29674 58% 75% 73% 74% 30179 75 1.69% 29670 4914 69.9 30554 2.97%
X-n134-k13 10950 53% 83% 82% 82% 11029 145 0.72% - - - 11423 4.31%
X-n139-k10 13616 73% 91% 76% 84% 13635 128 0.14% - - - 13868 1.85%
X-n143-k07 15884 79% 82% 83% 83% 15941 313 0.36% - - - 16326 2.79%

Average 24437 63% 82% 75% 78% 24598 211 0.70% - - - 25167 2.72%

Table 6: Average results for scenarios with Nc = 30.

different seeds and retained the best solution. Overall, the computing time of the edge-
fixing heuristic remains lower than a single execution of FILO and way lower than an
exact B&P algorithm.

Concerning the DACT method, we can notice an average gap of 2.7%. The method
performs better on some instances than on others with gaps ranging from 0.03% up to
5.72% according to the detailed results in Appendix A. Since the method is iterative
and performs a certain number of steps at the inference phase (more precisely 10,000
steps as described in Ma et al. (2021)), its computing time is not negligible and can
range from 10 to 15 minutes on average depending on the instance size. Therefore, the
edge-fixing method outperforms DACT both in terms of computing time and solution
quality.

6 Conclusion

In this paper, we proposed a ML-based heuristic for the reoptimization of repeatedly
solved problems after minor changes in the problem data. More precisely, we put
ourselves in the context of a company that solves CVRPs on a daily basis where the
locations of the clients are the same but slightly different demands occur. Given that
there can be a great similarity between the solutions, the goal was to exploit the ones
obtained from previous executions (not necessarily optimal ones) in order to speed up
the reoptimization of future instances. The aim was to predict and fix the edges that
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have a high chance of remaining in the solution after a change of the demands.

Following a supervised learning approach, we trained neural network models on the
data collected from a recent heuristic for the CVRP called FILO. The models achieved
an average accuracy of 78% on the test instances. By incorporating the predictions in
our edge-fixing method, we were able to find solutions in reasonable computing times
with gaps ranging from 0% to 1.71% (with an average of 0.51%) when compared to the
FILO heuristic we learned from. These gaps are also lower compared to other recent
ML methods proposed in the literature such as the DACT method used to compute the
entire CVRP solution. We also obtained an acceleration effect, considerably reducing
the size of the network and allowing an even faster reoptimization.

Future work can seek some improvements, for example by the exploration of more
complex learning models that can take advantage of the graph structure of the problem
or even sequence models since we are dealing with routes. This may potentially lead to
a better accuracy and therefore better gaps and lower computing times.
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A Detailed results of the experiments

This section provides detailed computational results that are complementary to those
presented in Section 5. The results are grouped by scenario (Nc and interval) and
reported in Tables 7-15. The same information as in Tables 4 to 6 is reported, with
the only difference that each row represents an individual instance. Also, an additional
column has been added to indicate the name suffix of the modified instance Pm (second
column).

Po Pm Sm cost sim(So,Sm)
ML model metrics Edge-fixing Exact BaP DACT

TNR TPR Accuracy Cost Time (s) Gap Cost Time (s) Ratio Cost Gap

X-n101-k25

10S 1 27538 84% 55% 67% 61% 27733 26 0.71% 27538 226 8.7 27943 1.47%
10S 2 27775 71% 61% 73% 67% 27849 14 0.27% 27764 199 14.2 28306 1.91%
10S 3 27591 100% 100% 63% 82% 27591 7 0.00% 27591 180 25.7 28287 2.52%
10S 4 27703 73% 60% 76% 68% 27811 14 0.39% 27703 276 19.7 27966 0.95%
10S 5 27580 91% 77% 70% 74% 27605 4 0.09% 27580 175 43.8 28417 3.03%

Average - 27637 84% 71% 70% 70% 27718 13 0.29% 27635 211 22.4 28184 1.98%

X-n106-k14

10S 1 26403 77% 74% 64% 69% 26600 58 0.75% 26403 1567 27.0 26977 2.17%
10S 2 26398 85% 85% 59% 72% 26478 46 0.30% 26398 1246 27.1 26860 1.75%
10S 3 26365 94% 100% 56% 78% 26365 8 0.00% 26365 589 73.6 26957 2.25%
10S 4 26359 89% 92% 60% 76% 26366 8 0.03% 26359 1250 156.3 26904 2.07%
10S 5 26353 82% 95% 63% 79% 26369 7 0.06% 26353 157 22.4 26789 1.65%

Average - 26376 85% 89% 60% 75% 26436 25 0.23% 26376 962 61.3 26897 1.98%

X-n110-k13

10S 1 14971 95% 100% 64% 82% 14971 11 0.00% 14971 141 12.8 15102 0.88%
10S 2 15006 95% 100% 64% 82% 15006 6 0.00% 15006 241 40.2 15275 1.79%
10S 3 14996 92% 100% 68% 84% 14996 6 0.00% 14996 338 56.3 15212 1.44%
10S 4 14965 87% 100% 70% 85% 14965 7 0.00% 14965 215 30.7 15076 0.74%
10S 5 14996 96% 100% 66% 83% 14996 9 0.00% 14996 389 43.2 15130 0.89%

Average - 14987 93% 100% 66% 83% 14987 8 0.00% 14987 265 36.7 15159 1.15%

X-n125-k30

10S 1 55573 67% 68% 68% 68% 55715 71 0.26% 55573 1044 14.7 58563 5.38%
10S 2 55784 57% 77% 76% 77% 55786 788 0.004% 55817 >5h - 58883 5.56%
10S 3 55653 65% 80% 74% 77% 55654 169 0.002% 55638 3161 18.7 58609 5.31%
10S 4 55487 69% 79% 70% 75% 55661 84 0.31% 55487 3243 38.6 58473 5.38%
10S 5 55567 57% 76% 77% 77% 55599 64 0.06% 55530 1927 30.1 58379 5.06%

Average - 55613 63% 76% 73% 75% 55683 235 0.13% - - - 58581 5.34%

X-n129-k18

10S 1 28981 59% 77% 75% 76% 29472 129 1.69% 28981 2793 21.7 30015 3.57%
10S 2 29061 62% 81% 74% 78% 29257 81 0.67% 29061 1034 12.8 30055 3.42%
10S 3 28644 58% 70% 68% 69% 28781 74 0.48% 28643 3124 42.2 29630 3.44%
10S 4 28598 70% 81% 67% 74% 28716 56 0.41% 28598 9179 163.9 29265 2.33%
10S 5 28541 60% 82% 77% 80% 28685 48 0.50% 28541 1263 26.3 29518 3.42%

Average - 28765 62% 78% 72% 75% 28982 78 0.75% 28765 3479 53.4 29697 3.24%

X-n134-k13

10S 1 10906 89% 87% 52% 70% 10913 37 0.06% - >5h - 11416 4.68%
10S 2 10916 100% 100% 45% 73% 10916 50 0.00% - >5h - 11274 3.28%
10S 3 10809 54% 75% 62% 69% 10929 190 1.11% - >5h - 11205 3.66%
10S 4 10892 56% 85% 67% 76% 10913 72 0.19% - >5h - 11293 3.68%
10S 5 10916 100% 100% 42% 71% 10916 37 0.00% 10950 >5h - 11234 2.91%

Average - 10888 80% 89% 54% 72% 10917 77 0.27% - - - 11284 3.64%

X-n139-k10

10S 1 13586 93% 100% 76% 88% 13586 34 0.00% 13586 10804 317.8 13753 1.23%
10S 2 13605 89% 100% 81% 91% 13605 17 0.00% 13609 >5h - 13869 1.94%
10S 3 13607 85% 100% 81% 91% 13607 35 0.00% - >5h - 13945 2.48%
10S 4 13611 91% 100% 80% 90% 13611 19 0.00% 13611 17189 904.7 13820 1.54%
10S 5 13542 67% 60% 86% 73% 13586 24 0.32% - >5h - 13841 2.21%

Average - 13590 85% 92% 81% 86% 13599 26 0.06% - - - 13846 1.88%

X-n143-k07

10S 1 15716 85% 100% 88% 94% 15716 21 0.00% - >5h - 16347 4.02%
10S 2 15726 85% 85% 85% 85% 15738 41 0.08% - >5h - 16237 3.25%
10S 3 15733 83% 87% 86% 87% 15736 117 0.02% - >5h - 16063 2.10%
10S 4 15730 68% 62% 93% 78% 15734 50 0.03% - >5h - 16243 3.26%
10S 5 15707 83% 100% 89% 95% 15707 41 0.00% - >5h - 16334 3.99%

Average - 15722 81% 87% 88% 88% 15726 54 0.02% - - - 16245 3.32%

Table 7: Results for instances with Nc = 10 and Small (S) intervals.
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Po Pm Sm cost sim(So,Sm)
ML model metrics Edge-fixing Exact BaP DACT

TNR TPR Accuracy Cost Time (s) Gap Cost Time (s) Ratio Cost Gap

X-n101-k25

10M 1 27722 88% 83% 63% 73% 27969 36 0.89% 27722 544 15.1 28417 2.51%
10M 2 27636 76% 72% 66% 69% 27841 19 0.74% 27636 246 12.9 28156 1.88%
10M 3 27411 88% 67% 61% 64% 27482 19 0.26% 27411 370 19.5 28143 2.67%
10M 4 27655 69% 61% 65% 63% 27784 10 0.47% 27655 117 11.7 28286 2.28%
10M 5 27605 96% 100% 59% 80% 27605 8 0.00% 27605 343 42.9 28489 3.20%

Average - 27606 83% 77% 63% 70% 27736 18 0.47% 27606 324 20.4 28298 2.51%

X-n106-k14

10M 1 26399 56% 90% 79% 85% 26433 19 0.13% 26399 684 36.0 26882 1.83%
10M 2 26341 63% 97% 76% 87% 26370 20 0.11% 26341 368 18.4 26898 2.11%
10M 3 26340 61% 96% 78% 87% 26374 14 0.13% 26340 210 15.0 26853 1.95%
10M 4 26381 60% 93% 78% 86% 26392 13 0.04% 26381 424 32.6 26796 1.57%
10M 5 26330 88% 100% 55% 78% 26330 5 0.00% 26330 88 17.6 26928 2.27%

Average - 26358 66% 95% 73% 84% 26380 14 0.08% 26358 355 23.9 26871 1.95%

X-n110-k13

10M 1 14899 82% 95% 69% 82% 14910 13 0.07% 14889 441 33.9 14972 0.49%
10M 2 15032 82% 95% 69% 82% 15131 14 0.66% 15032 502 35.9 15197 1.10%
10M 3 15018 91% 100% 64% 82% 15018 15 0.00% 15018 106 7.1 15187 1.13%
10M 4 14933 86% 100% 68% 84% 14933 11 0.00% 14933 131 11.9 15223 1.94%
10M 5 14971 95% 100% 63% 82% 14971 7 0.00% 14971 237 33.9 15107 0.91%

Average - 14971 87% 98% 67% 82% 14993 12 0.15% 14969 283 24.5 15137 1.11%

X-n125-k30

10M 1 55529 70% 79% 68% 74% 55608 79 0.14% 55529 2284 28.9 58614 5.56%
10M 2 55735 53% 82% 82% 82% 55807 75 0.13% 55620 7479 99.7 58916 5.71%
10M 3 55828 68% 65% 64% 65% 55858 56 0.05% 55828 6486 115.8 58461 4.72%
10M 4 55773 51% 72% 78% 75% 55690 23 -0.15% 55647 834 36.3 58579 5.03%
10M 5 55700 57% 74% 71% 73% 55828 755 0.23% 55650 8696 11.5 59103 6.11%

Average - 55713 60% 74% 73% 74% 55758 198 0.08% 55655 5156 58.4 58735 5.42%

X-n129-k18

10M 1 28661 54% 72% 77% 75% 29332 67 2.34% 28661 356 5.3 29734 3.74%
10M 2 29035 61% 70% 74% 72% 29203 27 0.58% 29031 3817 141.4 30139 3.80%
10M 3 29283 58% 73% 73% 73% 29559 115 0.94% 29460 >5h - 30142 2.93%
10M 4 28920 64% 79% 76% 78% 28931 30 0.04% 28910 2674 89.1 29751 2.87%
10M 5 28409 62% 77% 75% 76% 28594 286 0.65% 28395 1290 4.5 29240 2.93%

Average - 28862 60% 74% 75% 75% 29124 105 0.91% - - - 29801 3.26%

X-n134-k13

10M 1 10891 59% 79% 77% 78% 11083 554 1.76% - >5h - 11265 3.43%
10M 2 10952 90% 60% 55% 58% 11095 645 1.31% - >5h - 11387 3.97%
10M 3 10792 54% 71% 76% 74% 10910 20 1.09% - >5h - 11254 4.28%
10M 4 10891 57% 79% 77% 78% 10979 165 0.81% - >5h - 11265 3.43%
10M 5 10915 55% 80% 81% 81% 11055 214 1.28% - >5h - 11349 3.98%

Average - 10888 63% 74% 73% 74% 11024 320 1.25% - - - 11304 3.82%

X-n139-k10

10M 1 13584 97% 100% 71% 86% 13584 48 0.00% 13584 >5h - 13727 1.05%
10M 2 13605 89% 93% 78% 86% 13621 18 0.12% - >5h - 14027 3.10%
10M 3 13606 81% 74% 82% 78% 13610 28 0.03% 13649 >5h - 13775 1.24%
10M 4 13611 91% 100% 77% 89% 13611 12 0.00% - >5h - 13894 2.08%
10M 5 13600 93% 60% 72% 66% 13613 28 0.10% - >5h - 13890 2.13%

Average - 13601 90% 85% 76% 81% 13608 27 0.05% - - - 13863 1.92%

X-n143-k07

10M 1 15724 81% 96% 84% 90% 15739 156 0.10% - >5h - 16151 2.72%
10M 2 15747 87% 100% 80% 90% 15747 41 0.00% - >5h - 16370 3.96%
10M 3 15667 83% 100% 80% 90% 15667 43 0.00% - >5h - 16150 3.08%
10M 4 15691 87% 100% 75% 88% 15691 41 0.00% - >5h - 16193 3.20%
10M 5 15706 85% 90% 78% 84% 15706 36 0.00% - >5h - 16136 2.74%

Average - 15707 85% 97% 79% 88% 15710 63 0.02% - - - 16200 3.14%

Table 8: Results for instances with Nc = 10 and Medium (M) intervals.
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Po Pm Sm cost sim(So,Sm)
ML model metrics Edge-fixing Exact BaP DACT

TNR TPR Accuracy Cost Time (s) Gap Cost Time (s) Ratio Cost Gap

X-n101-k25

10L 1 27781 83% 64% 70% 67% 28176 85 1.42% 27781 123 1.4 28420 2.30%
10L 2 27493 61% 66% 86% 76% 27786 15 1.07% 27493 154 10.3 27812 1.16%
10L 3 27490 80% 78% 77% 78% 27526 15 0.13% 27490 245 16.3 28297 2.94%
10L 4 27775 64% 60% 78% 69% 28665 424 3.20% 27759 788 1.9 28248 1.70%
10L 5 27717 64% 45% 74% 60% 28472 71 2.72% 27717 683 9.6 28210 1.78%

Average - 27651 70% 63% 77% 70% 28125 122 1.71% 27648 399 7.9 28142 1.98%

X-n106-k14

10L 1 26400 60% 89% 84% 87% 26472 22 0.27% 26400 454 20.6 26776 1.42%
10L 2 26463 68% 81% 70% 76% 26705 408 0.91% 26463 10289 25.2 26934 1.78%
10L 3 26354 59% 88% 85% 87% 26423 146 0.26% 26354 662 4.5 26860 1.92%
10L 4 26515 50% 64% 72% 68% 26825 667 1.17% 26549 >5h - 26974 1.73%
10L 5 26330 88% 96% 60% 78% 26358 9 0.11% 26330 95 10.6 26686 1.35%

Average - 26412 65% 84% 74% 79% 26557 250 0.54% - - - 26846 1.64%

X-n110-k13

10L 1 14945 86% 91% 66% 79% 14961 9 0.11% 14945 529 58.8 14950 0.03%
10L 2 15203 63% 83% 81% 82% 15314 82 0.73% 15203 8812 107.5 15313 0.72%
10L 3 14992 72% 69% 69% 69% 15181 62 1.26% 14992 676 10.9 15169 1.18%
10L 4 15088 64% 89% 84% 87% 15157 15 0.46% 15088 1063 70.9 15473 2.55%
10L 5 14923 92% 100% 64% 82% 14923 6 0.00% 14923 333 55.5 15032 0.73%

Average - 15030 75% 86% 73% 80% 15107 35 0.51% 15030 2283 60.7 15187 1.04%

X-n125-k30

10L 1 55480 59% 88% 74% 81% 55517 159 0.07% 55480 2091 13.2 58240 4.97%
10L 2 55409 58% 84% 74% 79% 55587 38 0.32% 55383 17979 473.1 57890 4.48%
10L 3 56244 49% 76% 76% 76% 56250 543 0.01% 56143 11651 21.5 58517 4.04%
10L 4 55829 57% 80% 72% 76% 55909 118 0.14% 55717 5987 50.7 58796 5.31%
10L 5 55705 51% 79% 77% 78% 55861 1252 0.28% 55802 >5h - 59059 6.02%

Average - 55733 55% 81% 75% 78% 55825 422 0.16% - - - 58500 4.97%

X-n129-k18

10L 1 28546 64% 64% 63% 64% 29015 165 1.64% 28546 2873 17.4 29354 2.83%
10L 2 29109 60% 89% 81% 85% 29245 69 0.47% 29109 5039 73.0 29824 2.46%
10L 3 29042 60% 81% 75% 78% 29146 100 0.36% 29042 889 8.9 29992 3.27%
10L 4 28673 57% 80% 79% 80% 28839 269 0.58% 28641 3035 11.3 29441 2.68%
10L 5 28403 68% 76% 66% 71% 28615 251 0.75% 28403 451 1.8 29120 2.52%

Average - 28755 62% 78% 73% 75% 28972 171 0.76% 28748 2457 22.5 29546 2.75%

X-n134-k13

10L 1 10935 80% 75% 62% 69% 10964 27 0.27% - >5h - 11251 2.89%
10L 2 10941 54% 85% 88% 87% 10998 34 0.52% - >5h - 11293 3.22%
10L 3 10792 58% 64% 65% 65% 10963 307 1.58% - >5h - 11129 3.12%
10L 4 10944 56% 78% 75% 77% 10989 298 0.41% - >5h - 11297 3.23%
10L 5 10928 95% 57% 52% 55% 10984 152 0.51% - >5h - 11363 3.98%

Average - 10908 69% 72% 68% 70% 10908 164 0.66% - - - 11267 3.29%

X-n139-k10

10L 1 13580 89% 86% 71% 79% 13581 73 0.01% 13580 13184 180.6 13859 2.05%
10L 2 13588 77% 95% 81% 88% 13674 58 0.63% - >5h - 13870 2.08%
10L 3 13595 82% 82% 77% 80% 13600 26 0.04% 13595 7712 296.6 13833 1.75%
10L 4 13625 76% 72% 78% 75% 13660 38 0.26% 13625 13273 349.3 13832 1.52%
10L 5 13612 91% 91% 70% 81% 13660 41 0.35% - >5h - 13855 1.79%

Average - 13600 83% 85% 75% 80% 13635 47 0.26% - - - 13850 1.84%

X-n143-k07

10L 1 15735 89% 100% 72% 86% 15735 18 0.000% - >5h - 16335 3.81%
10L 2 15734 87% 94% 75% 85% 15736 54 0.013% - >5h - 16196 2.94%
10L 3 15727 90% 100% 71% 86% 15727 60 0.000% - >5h - 16175 2.85%
10L 4 15703 90% 92% 71% 82% 15703 40 0.000% - >5h - 16020 2.02%
10L 5 15683 85% 100% 74% 87% 15683 139 0.000% - >5h - 16598 5.83%

Average - 15716 88% 97% 73% 85% 15717 62 0.00% - - - 16265 3.49%

Table 9: Results for instances with Nc = 10 and Large (L) intervals.
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Po Pm Sm cost sim(So,Sm)
ML model metrics Edge-fixing Exact BaP DACT

TNR TPR Accuracy Cost Time (s) Gap Cost Time (s) Ratio Cost Gap

X-n101-k25

20S 1 27524 73% 75% 82% 79% 27761 13 0.86% 27524 140 10.8 28402 3.19%
20S 2 27543 96% 75% 70% 73% 27543 27 0.00% 27543 328 12.1 28145 2.19%
20S 3 27461 84% 87% 75% 81% 27551 26 0.33% 27461 227 8.7 28137 2.46%
20S 4 27522 88% 64% 69% 67% 27709 44 0.68% 27522 288 6.5 27980 1.66%
20S 5 27382 73% 62% 78% 70% 27575 36 0.70% 27382 171 4.8 28436 3.85%

Average - 27486 83% 73% 75% 74% 27628 29 0.51% 27486 231 8.6 28220 2.67%

X-n106-k14

20S 1 26357 76% 92% 68% 80% 26391 11 0.13% 26357 407 37.0 26884 2.00%
20S 2 26318 72% 96% 72% 84% 26359 33 0.16% 26318 453 13.7 26888 2.17%
20S 3 26360 74% 73% 64% 69% 26524 66 0.62% 26360 784 11.9 26897 2.04%
20S 4 26292 60% 91% 82% 87% 26372 31 0.30% 26292 432 13.9 26804 1.95%
20S 5 26361 78% 100% 69% 85% 26361 10 0.00% 26355 3660 366.0 26753 1.49%

Average - 26338 72% 90% 71% 81% 26401 30 0.24% 26336 1147 88.5 26845 1.93%

X-n110-k13

20S 1 15039 63% 70% 77% 74% 15068 17 0.19% 15039 297 17.5 15153 0.76%
20S 2 14985 92% 83% 64% 74% 15033 8 0.32% 14985 208 26.0 15116 0.87%
20S 3 15047 84% 100% 72% 86% 15047 7 0.00% 15047 1487 212.4 15219 1.14%
20S 4 14930 69% 86% 82% 84% 15024 10 0.63% 14930 114 11.4 15148 1.46%
20S 5 14899 79% 92% 76% 84% 14946 4 0.32% 14899 41 10.3 15122 1.50%

Average - 14980 77% 86% 74% 80% 15024 9 0.29% 14980 429 55.5 15152 1.15%

X-n125-k30

20S 1 55528 62% 80% 67% 74% 55589 189 0.11% - >5h - 58525 5.40%
20S 2 55486 57% 86% 76% 81% 55546 387 0.11% 55481 3074 7.9 58331 5.13%
20S 3 55688 57% 81% 71% 76% 55624 282 -0.11% 55612 11840 42.0 58771 5.54%
20S 4 55371 74% 87% 60% 74% 55394 154 0.04% - >5h - 58010 4.77%
20S 5 55390 65% 92% 68% 80% 55390 151 0.00% - >5h - 58221 5.11%

Average - 55493 63% 85% 68% 77% 55509 233 0.03% - - - 58372 5.19%

X-n129-k18

20S 1 28574 60% 74% 78% 76% 28675 28 0.35% 28523 1670 59.6 29357 2.74%
20S 2 29397 55% 72% 79% 76% 29932 354 1.82% 29391 6230 17.6 30012 2.09%
20S 3 29296 57% 66% 77% 72% 29868 172 1.95% 29296 1894 11.0 30056 2.59%
20S 4 29127 57% 76% 76% 76% 29587 108 1.58% 29126 6979 64.6 29886 2.61%
20S 5 28708 52% 66% 79% 73% 28977 53 0.94% 28708 12182 229.8 29204 1.73%

Average - 29020 56% 71% 78% 74% 29408 143 1.33% 29009 5791 76.5 29703 2.35%

X-n134-k13

20S 1 10916 57% 85% 79% 82% 11023 526 0.98% - >5h - 11344 3.92%
20S 2 10918 86% 80% 59% 70% 10934 40 0.15% - >5h - 11256 3.10%
20S 3 10899 63% 87% 76% 82% 10929 96 0.28% - >5h - 11324 3.90%
20S 4 10901 65% 92% 75% 84% 10916 39 0.14% 10901 >5h - 11315 3.80%
20S 5 10909 92% 81% 55% 68% 10913 49 0.04% - >5h - 11377 4.29%

Average - 10909 73% 85% 69% 77% 10943 150 0.32% - - - 11323 3.80%

X-n139-k10

20S 1 13605 85% 81% 81% 81% 13605 60 0.00% - >5h - 13815 1.54%
20S 2 13624 89% 100% 80% 90% 13624 36 0.00% 13624 6925 192.4 13819 1.43%
20S 3 13602 91% 92% 78% 85% 13607 197 0.04% 13595 13074 66.4 13856 1.87%
20S 4 13624 86% 100% 82% 91% 13624 87 0.00% - >5h - 13961 2.47%
20S 5 13608 83% 82% 82% 82% 13619 135 0.08% 13608 11745 87.0 13897 2.12%

Average - 13613 87% 91% 81% 86% 13616 103 0.02% - - - 13870 1.89%

X-n143-k07

20S 1 15708 87% 100% 89% 95% 15708 38 0.00% - >5h - 16083 2.39%
20S 2 15733 87% 100% 88% 94% 15733 13 0.00% - >5h - 16231 3.17%
20S 3 15730 93% 100% 82% 91% 15730 26 0.00% - >5h - 16158 2.72%
20S 4 15722 93% 100% 82% 91% 15722 56 0.00% - >5h - 16386 4.22%
20S 5 15684 69% 50% 88% 69% 15845 16 1.03% - >5h - 16449 4.88%

Average - 15715 86% 90% 86% 88% 15748 30 0.21% - - - 16261 3.47%

Table 10: Results for instances with Nc = 20 and Small (S) intervals.
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Po Pm Sm cost sim(So,Sm)
ML model metrics Edge-fixing Exact BaP DACT

TNR TPR Accuracy Cost Time (s) Gap Cost Time (s) Ratio Cost Gap

X-n101-k25

20M 1 27709 63% 77% 75% 76% 28105 47 1.43% 27709 550 11.7 28385 2.44%
20M 2 27440 65% 68% 73% 71% 27646 64 0.75% 27440 615 9.6 27696 0.93%
20M 3 27530 70% 81% 72% 77% 27559 24 0.11% 27530 983 41.0 28193 2.41%
20M 4 27656 74% 70% 65% 68% 27767 11 0.40% 27656 217 19.7 28413 2.74%
20M 5 27226 67% 76% 75% 76% 27393 15 0.61% 27226 223 14.9 27694 1.72%

Average - 27512 68% 74% 72% 73% 27694 32 0.66% 27512 518 19.4 28076 2.05%

X-n106-k14

20M 1 26362 69% 87% 67% 77% 26467 28 0.40% 26362 16266 580.9 26888 2.00%
20M 2 26345 72% 95% 68% 82% 26437 24 0.35% 26345 1522 63.4 26829 1.84%
20M 3 26282 65% 87% 72% 80% 26442 17 0.61% 26282 2024 119.1 26760 1.82%
20M 4 26328 60% 82% 72% 77% 26353 18 0.09% 26328 4543 252.4 26644 1.20%
20M 5 26212 55% 82% 78% 80% 26299 11 0.33% 26212 1928 175.3 26667 1.74%

Average - 26306 64% 87% 71% 79% 26400 20 0.36% 26306 5257 238.2 26758 1.72%

X-n110-k13

20M 1 14943 76% 74% 73% 74% 15053 8 0.74% 14943 167 20.9 15164 1.48%
20M 2 15046 64% 79% 80% 80% 15102 30 0.37% 15046 1616 53.9 15197 1.00%
20M 3 14904 78% 96% 75% 86% 14981 6 0.52% 14904 189 31.5 15131 1.52%
20M 4 15018 65% 84% 84% 84% 15237 82 1.46% 15018 363 4.4 15184 1.11%
20M 5 15004 82% 95% 75% 85% 15018 10 0.09% 15004 407 40.7 15408 2.69%

Average - 14983 73% 86% 77% 82% 15078 27 0.64% 14983 548 30.3 15217 1.56%

X-n125-k30

20M 1 55433 56% 85% 74% 80% 55510 635 0.14% 55668 >5h - 58555 5.63%
20M 2 55593 48% 81% 80% 81% 55649 150 0.10% 55563 3534 23.6 58829 5.82%
20M 3 55966 55% 81% 73% 77% 56046 87 0.14% 55918 15876 182.5 58710 4.90%
20M 4 55251 66% 82% 63% 73% 55288 214 0.07% 55147 12934 60.4 58736 6.31%
20M 5 55272 47% 80% 79% 80% 55400 80 0.23% - >5h - 57810 4.59%

Average - 55503 54% 82% 74% 78% 55579 233 0.14% - - - 58528 5.45%

X-n129-k18

20M 1 29301 53% 76% 80% 78% 29697 189 1.35% 29301 2064 10.9 30306 3.43%
20M 2 29203 61% 75% 71% 73% 29504 325 1.03% 29169 4528 13.9 29736 1.83%
20M 3 29368 60% 69% 73% 71% 29976 228 2.07% 29653 >5h - 30326 3.26%
20M 4 29426 48% 74% 84% 79% 30065 705 2.17% 29412 8398 11.9 30069 2.19%
20M 5 28556 62% 71% 71% 71% 29035 129 1.68% 28556 4177 32.4 29568 3.54%

Average - 29171 57% 73% 76% 74% 29655 315 1.66% - - - 30001 2.85%

X-n134-k13

20M 1 10898 56% 84% 79% 82% 10939 38 0.38% - >5h - 11409 4.69%
20M 2 10942 56% 88% 81% 85% 10974 360 0.29% - >5h - 11238 2.71%
20M 3 10930 56% 92% 90% 91% 11024 137 0.86% 11004 >5h - 11280 3.20%
20M 4 10904 52% 73% 76% 75% 10925 30 0.19% - >5h - 11398 4.53%
20M 5 10712 54% 72% 74% 73% 10916 72 1.90% - >5h - 10967 2.38%

Average - 10877 55% 82% 80% 81% 10956 127 0.73% - - - 11258 3.50%

X-n139-k10

20M 1 13545 70% 80% 80% 80% 13584 187 0.29% 13545 12506 66.9 13811 1.96%
20M 2 13618 70% 90% 83% 87% 13630 107 0.09% 13618 6516 60.9 13783 1.21%
20M 3 13591 66% 93% 89% 91% 13605 117 0.10% - >5h - 13883 2.15%
20M 4 13648 72% 87% 79% 83% 13690 320 0.31% - >5h - 13820 1.26%
20M 5 13621 82% 86% 71% 79% 13648 295 0.20% - >5h - 13976 2.61%

Average - 13605 72% 87% 80% 84% 13631 205 0.20% - - - 13855 1.84%

X-n143-k07

20M 1 15722 92% 100% 77% 89% 15722 13 0.00% - >5h - 16158 2.77%
20M 2 15747 89% 93% 81% 87% 15768 11 0.13% - >5h - 16183 2.77%
20M 3 15709 73% 71% 86% 79% 15774 99 0.41% - >5h - 16382 4.28%
20M 4 15745 77% 64% 82% 73% 15745 47 0.00% - >5h - 16254 3.23%
20M 5 15616 73% 74% 88% 81% 15717 77 0.65% - >5h - 16189 3.67%

Average - 15708 81% 80% 83% 82% 15745 49 0.24% - - - 16233 3.35%

Table 11: Results for instances with Nc = 20 and Medium (M) intervals.
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Po Pm Sm cost sim(So,Sm)
ML model metrics Edge-fixing Exact BaP DACT

TNR TPR Accuracy Cost Time (s) Gap Cost Time (s) Ratio Cost Gap

X-n101-k25

20L 1 27463 67% 70% 63% 67% 27637 107 0.63% 27463 374 3.5 28221 2.76%
20L 2 27507 66% 69% 70% 70% 27641 93 0.49% 27507 196 2.1 28158 2.37%
20L 3 27789 51% 76% 85% 81% 28245 50 1.64% 27789 100 2.0 28369 2.09%
20L 4 27837 53% 65% 76% 71% 28097 7 0.93% 27837 707 101.0 28276 1.58%
20L 5 27631 59% 70% 73% 72% 27733 21 0.37% 27631 955 45.5 28194 2.04%

Average - 27645 59% 70% 73% 72% 27871 56 0.81% 27645 466 30.8 28244 2.17%

X-n106-k14

20L 1 26348 66% 87% 76% 82% 26420 25 0.27% - >5h - 26759 1.56%
20L 2 26599 55% 72% 73% 73% 26792 171 0.73% 26593 12168 71.2 26907 1.15%
20L 3 26405 65% 85% 74% 80% 26655 97 0.95% 26387 5847 60.3 26853 1.70%
20L 4 26358 57% 79% 77% 78% 26520 199 0.61% 26358 401 2.0 26871 1.95%
20L 5 26357 62% 74% 71% 73% 26390 8 0.13% - >5h - 26782 1.61%

Average - 26413 61% 79% 74% 77% 26555 100 0.54% - - - 26834 1.59%

X-n110-k13

20L 1 15011 77% 75% 69% 72% 15035 15 0.16% 15011 231 15.4 15234 1.49%
20L 2 15003 76% 86% 73% 80% 15226 9 1.49% 15003 386 42.0 15160 1.05%
20L 3 15062 59% 78% 83% 81% 15262 18 1.33% 15062 307 17.1 15291 1.52%
20L 4 15027 63% 76% 83% 80% 15150 49 0.82% 15027 351 7.2 15193 1.10%
20L 5 15066 65% 88% 85% 87% 15131 26 0.43% 15066 1162 44.7 15203 0.91%

Average - 15034 68% 81% 79% 80% 15161 23 0.84% 15034 487 25.4 15216 1.21%

X-n125-k30

20L 1 55584 57% 73% 69% 71% 55824 997 0.43% - >5h - 57981 4.32%
20L 2 56407 56% 85% 76% 81% 56870 379 0.82% 56407 2428 6.4 59339 5.20%
20L 3 55903 65% 83% 68% 76% 55898 181 -0.01% - >5h - 59042 5.62%
20L 4 56451 61% 76% 63% 70% 56680 508 0.41% - >5h - 58746 4.07%
20L 5 55445 53% 76% 73% 75% 55567 100 0.22% - >5h - 58035 4.67%

Average - 55958 58% 79% 70% 74% 56168 433 0.37% - - - 58629 4.77%

X-n129-k18

20L 1 29249 54% 81% 74% 78% 29428 286 0.61% 29149 1455 5.1 30263 3.47%
20L 2 29468 64% 75% 63% 69% 30008 380 1.83% 29468 1557 4.1 30198 2.48%
20L 3 29761 52% 82% 81% 82% 30170 306 1.37% 29709 6152 20.1 30198 1.47%
20L 4 28504 50% 70% 76% 73% 28766 59 0.92% 28501 2751 46.6 29405 3.16%
20L 5 28635 54% 78% 74% 76% 28940 900 1.07% 28635 3614 4.0 29177 1.89%

Average - 29123 55% 77% 74% 75% 29462 386 1.16% 29092 3106 16.0 29848 2.49%

X-n134-k13

20L 1 10934 56% 86% 83% 85% 11030 181 0.88% - >5h - 11370 3.99%
20L 2 10922 55% 86% 85% 86% 11073 622 1.38% - >5h - 11343 3.85%
20L 3 10987 54% 85% 82% 84% 11132 134 1.32% - >5h - 11331 3.13%
20L 4 10965 54% 81% 80% 81% 11048 238 0.76% - >5h - 11276 2.84%
20L 5 10736 56% 74% 70% 72% 10971 96 2.19% 10736 12945 134.8 11264 4.92%

Average - 10909 55% 82% 80% 81% 11051 254 1.31% - - - 11317 3.75%

X-n139-k10

20L 1 13583 84% 87% 68% 78% 13597 154 0.10% 13583 16053 104.2 13798 1.58%
20L 2 13582 73% 87% 79% 83% 13612 36 0.22% 13580 4350 120.8 13785 1.49%
20L 3 13579 81% 100% 72% 86% 13597 33 0.13% 13579 5595 169.5 13771 1.41%
20L 4 13565 63% 77% 81% 79% 13662 407 0.72% 13565 10501 25.8 13771 1.52%
20L 5 13614 65% 90% 87% 89% 13628 64 0.10% 13638 >5h - 13814 1.47%

Average - 13585 73% 88% 77% 83% 13619 139 0.25% - - - 13778 1.50%

X-n143-k07

20L 1 15799 88% 91% 78% 85% 15814 23 0.09% - >5h - 16471 4.25%
20L 2 15705 89% 75% 76% 76% 15715 76 0.06% - >5h - 16193 3.11%
20L 3 15815 71% 52% 82% 67% 15886 19 0.45% - >5h - 16432 3.90%
20L 4 15816 82% 78% 81% 80% 15879 74 0.40% - >5h - 16373 3.52%
20L 5 15580 89% 100% 79% 90% 15580 13 0.00% - >5h - 16190 3.92%

Average - 15743 84% 79% 79% 79% 15775 41 0.20% - - - 16332 3.74%

Table 12: Results for instances with Nc = 20 and Large (L) intervals.
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Po Pm Sm cost sim(So,Sm)
ML model metrics Edge-fixing Exact BaP DACT

TNR TPR Accuracy Cost Time (s) Gap Cost Time (s) Ratio Cost Gap

X-n101-k25

30S 1 27645 73% 79% 69% 74% 27759 40 0.41% 27645 247 6.2 28109 1.68%
30S 2 27709 71% 72% 72% 72% 27838 33 0.47% 27709 254 7.7 28579 3.14%
30S 3 27485 78% 77% 66% 72% 27606 89 0.44% 27485 256 2.9 28104 2.25%
30S 4 27620 84% 85% 66% 76% 27712 8 0.33% 27620 47 5.9 28422 2.90%
30S 5 27350 68% 87% 79% 83% 27431 13 0.30% 27350 87 6.7 27883 1.95%

Average - 27562 75% 80% 70% 75% 27669 37 0.39% 27562 178 5.9 28219 2.38%

X-n106-k14

30S 1 26346 64% 94% 73% 84% 26433 19 0.33% 26346 84 4.4 26900 2.10%
30S 2 26440 60% 80% 67% 74% 26457 239 0.06% 26419 5459 22.8 26932 1.86%
30S 3 26424 60% 85% 71% 78% 26573 422 0.56% 26423 903 2.1 26787 1.37%
30S 4 26389 73% 88% 61% 75% 26400 53 0.04% 26386 752 14.2 26875 1.84%
30S 5 26317 67% 97% 73% 85% 26326 8 0.03% 26317 689 86.1 26669 1.34%

Average - 26383 65% 89% 69% 79% 26438 148 0.21% 26378 1577 25.9 26833 1.70%

X-n110-k13

30S 1 15054 80% 87% 72% 80% 15109 61 0.37% 15054 337 5.5 15257 1.35%
30S 2 15002 72% 96% 78% 87% 15092 32 0.60% 15002 56 1.8 15139 0.91%
30S 3 14990 71% 92% 81% 87% 15059 47 0.46% 14990 1664 35.4 15175 1.23%
30S 4 14949 75% 90% 77% 84% 15123 12 1.16% 14949 304 25.3 15158 1.40%
30S 5 15031 72% 93% 76% 85% 15032 10 0.01% 15031 412 41.2 15057 0.17%

Average - 15005 74% 92% 77% 84% 15083 32 0.52% 15005 555 21.8 15157 1.01%

X-n125-k30

30S 1 55714 47% 75% 78% 77% 55813 309 0.18% 55643 4647 15.0 58197 4.46%
30S 2 56124 56% 73% 68% 71% 56119 181 -0.01% 56037 7085 39.1 59211 5.50%
30S 3 55919 46% 75% 80% 78% 56014 422 0.17% 55779 1061 2.5 59158 5.79%
30S 4 55619 51% 79% 74% 77% 55685 297 0.12% 55614 >5h - 58320 4.86%
30S 5 55504 64% 84% 66% 75% 55539 86 0.06% 55674 >5h - 58117 4.71%

Average - 55776 53% 77% 73% 75% 55834 259 0.10% - - - 58601 5.06%

X-n129-k18

30S 1 29566 57% 76% 72% 74% 30061 213 1.67% 29533 2806 13.2 30314 2.53%
30S 2 29771 63% 80% 69% 75% 30035 43 0.89% 29771 1578 36.7 30305 1.79%
30S 3 29588 57% 82% 75% 79% 29740 82 0.51% 29588 3659 44.6 30372 2.65%
30S 4 28892 61% 83% 74% 79% 29356 500 1.61% 28892 1303 2.6 29612 2.49%
30S 5 29253 52% 81% 80% 81% 29700 346 1.53% 29240 9362 27.1 29825 1.96%

Average - 29414 58% 80% 74% 77% 29778 237 1.24% 29405 3742 24.8 30086 2.28%

X-n134-k13

30S 1 10925 89% 93% 53% 73% 10925 30 0.00% - >5h - 11333 3.73%
30S 2 10962 86% 80% 53% 67% 10973 53 0.10% - >5h - 11409 4.08%
30S 3 10960 56% 87% 79% 83% 11012 211 0.47% - >5h - 11365 3.70%
30S 4 10874 60% 88% 75% 82% 10949 366 0.69% - >5h - 11294 3.86%
30S 5 10903 95% 100% 51% 76% 10903 42 0.00% - >5h - 11406 4.61%

Average - 10925 77% 90% 62% 76% 10952 140 0.25% - - - 11361 4.00%

X-n139-k10

30S 1 13610 91% 91% 64% 78% 13722 127 0.82% 13610 13075 103.0 13831 1.62%
30S 2 13655 81% 83% 72% 78% 13835 351 1.32% 13655 3380 9.6 14047 2.87%
30S 3 13623 89% 87% 67% 77% 13659 204 0.26% 13623 7294 35.8 13730 0.79%
30S 4 13621 77% 97% 81% 89% 13632 40 0.08% - >5h - 13724 0.76%
30S 5 13599 79% 96% 79% 88% 13610 48 0.08% - >5h - 13812 1.57%

Average - 13622 83% 91% 73% 82% 13692 154 0.51% - - - 13829 1.52%

X-n143-k07

30S 1 15738 86% 100% 89% 95% 15738 9 0.00% - >5h - 16338 3.81%
30S 2 15822 85% 83% 87% 85% 15855 216 0.21% - >5h - 16463 4.05%
30S 3 15825 89% 81% 84% 83% 15972 34 0.93% - >5h - 16429 3.82%
30S 4 15707 91% 83% 82% 83% 15712 9 0.03% - >5h - 16243 3.41%
30S 5 15677 65% 50% 92% 71% 15833 14 1.00% - >5h - 16169 3.14%

Average - 15754 83% 79% 87% 83% 15822 56 0.43% - - - 16328 3.65%

Table 13: Results for instances with Nc = 30 and Small (S) intervals.
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Po Pm Sm cost sim(So,Sm)
ML model metrics Edge-fixing Exact BaP DACT

TNR TPR Accuracy Cost Time (s) Gap Cost Time (s) Ratio Cost Gap

X-n101-k25

30M 1 27849 57% 66% 75% 71% 28118 110 0.97% 27830 244 2.2 28118 0.97%
30M 2 27660 60% 67% 72% 70% 27964 66 1.10% 27660 91 1.4 28338 2.45%
30M 3 27699 69% 69% 72% 71% 27718 8 0.07% 27699 89 11.1 28401 2.53%
30M 4 27724 60% 67% 71% 69% 27843 67 0.43% 27724 149 2.2 28388 2.40%
30M 5 27340 68% 70% 76% 73% 27375 6 0.13% 27340 642 107.0 28139 2.92%

Average - 27654 63% 68% 73% 71% 27804 51 0.54% 27651 243 24.8 28277 2.25%

X-n106-k14

30M 1 26419 61% 66% 60% 63% 26526 76 0.41% 26419 599 7.9 26892 1.79%
30M 2 26550 52% 66% 71% 69% 26741 312 0.72% 26579 >5h - 26804 0.96%
30M 3 26437 63% 81% 74% 78% 26659 73 0.84% 26656 >5h - 26805 1.39%
30M 4 26446 56% 73% 70% 72% 26731 769 1.08% - >5h - 26621 0.66%
30M 5 26333 63% 89% 76% 83% 26419 7 0.33% - >5h - 26779 1.69%

Average - 26437 59% 75% 70% 73% 26615 247 0.67% - - - 26780 1.30%

X-n110-k13

30M 1 15183 81% 71% 65% 68% 15228 8 0.30% 15183 339 42.4 15443 1.71%
30M 2 15075 83% 80% 66% 73% 15079 9 0.03% 15075 177 19.7 15502 2.83%
30M 3 15129 70% 86% 78% 82% 15163 7 0.22% 15129 150 21.4 15346 1.43%
30M 4 14995 76% 96% 75% 86% 15093 41 0.65% 14995 291 7.1 15040 0.30%
30M 5 14910 77% 100% 76% 88% 14910 5 0.00% 14910 387 77.4 15130 1.48%

Average - 15058 77% 87% 72% 79% 15095 14 0.24% 15058 269 33.6 15292 1.55%

X-n125-k30

30M 1 55574 52% 80% 77% 79% 55711 892 0.25% 55574 1425 1.6 58917 6.02%
30M 2 56218 45% 84% 84% 84% 56292 114 0.13% 56128 1280 11.2 59406 5.67%
30M 3 56589 52% 80% 76% 78% 56691 685 0.18% 56314 3800 5.5 59519 5.18%
30M 4 55735 46% 79% 76% 78% 55793 86 0.10% 55656 5232 60.8 58574 5.09%
30M 5 55510 53% 85% 78% 82% 55558 476 0.09% - >5h - 57880 4.27%

Average - 55925 50% 82% 78% 80% 56009 451 0.15% - - - 58859 5.25%

X-n129-k18

30M 1 29604 61% 82% 67% 75% 30105 324 1.69% 29604 5594 17.3 30360 2.55%
30M 2 29758 51% 80% 82% 81% 30408 91 2.18% 29758 3348 36.8 30256 1.67%
30M 3 29813 54% 80% 72% 76% 30221 89 1.37% 29793 4689 52.7 30122 1.04%
30M 4 28682 55% 83% 77% 80% 29212 122 1.85% 28669 406 3.3 29629 3.30%
30M 5 28249 48% 72% 77% 75% 28545 60 1.05% 28249 3835 63.9 28878 2.23%

Average - 29221 54% 79% 75% 77% 29698 137 1.63% 29215 3574 34.8 29849 2.16%

X-n134-k13

30M 1 10959 53% 83% 85% 84% 11039 36 0.73% - >5h - 11168 1.91%
30M 2 10977 52% 80% 81% 81% 11118 108 1.28% - >5h - 11360 3.49%
30M 3 10998 65% 86% 73% 80% 11139 372 1.28% - >5h - 11464 4.24%
30M 4 10942 58% 90% 80% 85% 11035 70 0.85% - >5h - 11427 4.43%
30M 5 10752 52% 75% 81% 78% 10907 60 1.44% - >5h - 11086 3.11%

Average - 10926 56% 83% 80% 81% 11048 129 1.12% - - - 11301 3.43%

X-n139-k10

30M 1 13631 80% 91% 76% 84% 13742 133 0.81% 13631 8248 62.0 13926 2.16%
30M 2 13795 74% 82% 76% 79% 13932 585 0.99% - >5h - 14235 3.19%
30M 3 13598 86% 95% 68% 82% 13598 57 0.00% 13598 10792 189.3 13834 1.74%
30M 4 13617 66% 90% 87% 89% 13628 322 0.08% 13617 7536 23.4 13927 2.28%
30M 5 13560 70% 87% 82% 85% 13638 184 0.58% 13560 16734 90.9 13710 1.11%

Average - 13640 75% 89% 78% 83% 13708 256 0.49% - - - 13926 2.09%

X-n143-k07

30M 1 15751 86% 100% 86% 93% 15751 7 0.00% - >5h - 16292 3.43%
30M 2 16039 69% 63% 89% 76% 16346 199 1.91% - >5h - 16741 4.38%
30M 3 15798 84% 80% 83% 82% 15869 16 0.45% - >5h - 16912 7.05%
30M 4 15690 91% 84% 79% 82% 15690 7 0.00% - >5h - 16005 2.01%
30M 5 15630 70% 62% 90% 76% 15692 15 0.40% - >5h - 16165 3.42%

Average - 15782 80% 78% 85% 82% 15870 49 0.55% - - - 16423 4.06%

Table 14: Results for instances with Nc = 30 and Medium (M) intervals.
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Po Pm Sm cost sim(So,Sm)
ML model metrics Edge-fixing Exact BaP DACT

TNR TPR Accuracy Cost Time (s) Gap Cost Time (s) Ratio Cost Gap

X-n101-k25

30L 1 27736 61% 76% 75% 76% 28298 47 2.03% 27736 555 11.8 28486 2.70%
30L 2 27465 72% 84% 71% 78% 27590 13 0.46% 27465 300 23.1 28045 2.11%
30L 3 27809 66% 70% 70% 70% 28281 844 1.70% 27809 126 0.1 28438 2.26%
30L 4 27809 65% 70% 69% 70% 28156 12 1.25% 27809 348 29.0 28358 1.97%
30L 5 27267 65% 82% 73% 78% 27321 11 0.20% 27267 364 33.1 27709 1.62%

Average - 27617 66% 76% 72% 74% 27929 185 1.12% 27617 339 19.4 28207 2.13%

X-n106-k14

30L 1 26623 47% 76% 71% 74% 26874 666 0.94% - >5h - 26976 1.33%
30L 2 26502 58% 78% 62% 70% 26765 594 0.99% 26494 6491 10.9 26907 1.53%
30L 3 26345 59% 82% 66% 74% 26430 9 0.32% 26345 74 8.2 26901 2.11%
30L 4 26438 44% 81% 79% 80% 26710 90 1.03% 26438 >5h - 26932 1.87%
30L 5 26290 61% 78% 63% 71% 26406 18 0.44% 26268 2157 119.8 26851 2.13%

Average - 26440 54% 79% 68% 74% 26637 275 0.75% - - - 26913 1.79%

X-n110-k13

30L 1 15269 66% 74% 67% 71% 15347 13 0.51% 15269 795 61.2 15634 2.39%
30L 2 15145 54% 81% 85% 83% 15363 144 1.44% 15145 635 4.4 15297 1.00%
30L 3 15076 69% 89% 71% 80% 15162 59 0.57% 15076 252 4.3 15286 1.39%
30L 4 14945 63% 80% 73% 77% 15050 201 0.70% 14945 3822 19.0 15123 1.19%
30L 5 15015 78% 86% 63% 75% 15134 21 0.79% 15015 94 4.5 15248 1.55%

Average - 15090 66% 82% 72% 77% 15211 88 0.80% 15090 1120 18.7 15318 1.51%

X-n125-k30

30L 1 56435 49% 83% 74% 79% 56463 622 0.05% - >5h - 58481 3.63%
30L 2 56372 58% 82% 65% 74% 56422 401 0.09% - >5h - 59140 4.91%
30L 3 56386 57% 88% 70% 79% 56210 312 -0.31% 56072 2397 7.7 58901 4.46%
30L 4 56432 50% 86% 73% 80% 56494 702 0.11% - >5h - 59352 5.17%
30L 5 55514 46% 82% 72% 77% 55517 337 0.01% 55453 15245 45.2 57751 4.03%

Average - 56228 52% 84% 71% 78% 56221 475 -0.01% - - - 58725 4.44%

X-n129-k18

30L 1 29989 52% 74% 75% 75% 30723 136 2.45% 29985 4123 30.3 30941 3.17%
30L 2 30260 60% 75% 71% 73% 30736 72 1.57% 30260 3099 43.0 31252 3.28%
30L 3 30007 53% 73% 75% 74% 30656 85 2.16% 30007 1201 14.1 30769 2.54%
30L 4 29356 55% 71% 74% 73% 29944 65 2.00% 29341 15778 242.7 30275 3.13%
30L 5 28757 71% 84% 71% 78% 28836 19 0.27% 28757 370 19.5 29535 2.71%

Average - 29674 58% 75% 73% 74% 30179 75 1.69% 29670 4914 69.9 30554 2.97%

X-n134-k13

30L 1 11037 52% 79% 81% 80% 11125 337 0.80% - >5h - 11627 5.35%
30L 2 10974 52% 88% 87% 88% 11045 111 0.65% - >5h - 11498 4.77%
30L 3 10945 58% 84% 77% 81% 11043 39 0.90% 10950 >5h - 11346 3.66%
30L 4 10869 51% 78% 80% 79% 10940 76 0.65% 10868 9388 123.5 11231 3.33%
30L 5 10926 53% 84% 85% 85% 10994 161 0.62% - >5h - 11412 4.45%

Average - 10950 53% 83% 82% 82% 11029 145 0.72% - - - 11423 4.31%

X-n139-k10

30L 1 13564 79% 93% 73% 83% 13583 95 0.14% - >5h - 13854 2.14%
30L 2 13696 72% 92% 77% 85% 13720 139 0.18% 13696 9395 67.6 14082 2.82%
30L 3 13648 77% 94% 75% 85% 13667 177 0.14% 13648 10780 60.9 13859 1.55%
30L 4 13580 61% 79% 82% 81% 13599 99 0.14% 13580 9597 96.9 13669 0.66%
30L 5 13593 78% 96% 75% 86% 13604 132 0.08% - >5h - 13876 2.08%

Average - 13616 73% 91% 76% 84% 13635 128 0.14% - - - 13868 1.85%

X-n143-k07

30L 1 16065 78% 87% 85% 86% 16137 1297 0.45% - >5h - 16566 3.12%
30L 2 16110 70% 64% 86% 75% 16273 181 1.01% - >5h - 16474 2.26%
30L 3 15856 85% 90% 80% 85% 15878 55 0.14% - >5h - 16364 3.20%
30L 4 15712 91% 100% 77% 89% 15712 21 0.00% - >5h - 16148 2.77%
30L 5 15676 69% 70% 89% 80% 15704 11 0.18% - >5h - 16079 2.57%

Average - 15884 79% 82% 83% 83% 15941 313 0.36% - - - 16326 2.79%

Table 15: Results for instances with Nc = 30 and Large (L) intervals.
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