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ABSTRACT

Two problems relevant to the design of a store-and-forward
communication network (the message routing problem and the chan-
nel capacity assignment problem) are formulated and are recog-
nized to be essentially non-linear, unconstrained multicommodity
(m.c.) flow problems. A "Flow Deviation" (FD) method for the
solution of these non-linear, unconstrained m.c. flow problems
18 described which is quite similar to the gradient method for
functions of continuous variables; here the concept of gradient
is replaced by the concept of "shortest route” flow. As in the
gradient method, the application of successive flow deviations
leads to local minima. Finally, two interesting applications
of the FD method to the design of the ARPA Computer Network are
discussed.

1. INTRODUCTION

In this paper we consider a procedure (the "flow deviation"
method) for assigning flow within store-and-forward communica-
tion networks so as to minimize cost and/or delay for a given
topology and for given external flow requirements. We begin by
defining the basic model below and follow that with some examples.
We then discuss various approaches to the problem and then in-
troduce and describe the "flow deviation" method. This method
is evaluated under some further restrictions and is then applied
to various problem formulations for the ARPA network [6], [7].

Suppose we have a collection of nodes Ni’ (i=1,...,n), and

are required to route a quantity rij of type (i,j) commodity

from Ni to Nj through a given network (Figure 1).
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Fig. 1 Example of routing of the (i,j) commodity.

The multicommodity (m.c.) flow problem consists of finding
the routes for all such commodities, which minimize (or maxi-
mize) a well-defined performance function (e.g., cost or delay),
such that a set of constraints (e.g., channel capacity con-
straints) are satisfied.

The most general multicommodity problem can be expressed
formally in the following way:

Given: A network of n nodes and b arcs
An n X n matrix R = [rij], called the require-

ment matrix, whose entries are non-negative
Minimize: (or maximize)* P(d)
over ¢ where ¢ is the flow configuration and P is a
well-defined performance function

Furthermore, ¢ must satisfy the following constraints:
Constraints:

1. ¢ must be a multicommodity flow satisfying reguirement
R. For this, the following conditions must be verified:
Conservation of the flow at nodes, commodity by commodity:

n n - rij L=
z f(lj) _ Z f(l]) ={+r, ., if 2 =3 1,5 (1.1)
k=1 k% m=1 fm +J
0 otherwise

*Without Loss of generality, onbly the minimum problem is con-
sidered in the following.
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Non-negativity of flow in directed arcs:

(ij -
szj) >0 wi,j.k,2 (1.2)
where figj) is the portion of commodity (i,j) flowing on arc
(k,2).

2. & must satisfy some additional constraints,* different
from problem to problem (e.g., capacity constraints on each
channel and/or cost constraints).

Let us define the (7,j) commodity flow g(lj) as:
(i3) é {i3) (i) , (i3)
f fl ’ f2 y ey fb
where fél]) is the portion of (i,j) commodity flowing in arc m,

and define the global flow £ as:

n n (
£= 1 J e
i=1 j=1 ~

In the sequel, we restrict our analysis to m.c. problems in
which the performance depends solely on the global flow:

P(9) = P(f) (1.3)

However, most of the arguments and techniques presented in the
paper can be extended to the general case of P($) explicitly
depending upon various types of commodities.

So far, we represented the flow configuration ¢ in terms
of £ ui,5.

An equivalent representation is obtained by providing for

each commodity (i,j) a set of routes W:j’ k=1, ..., kij’ from
node i to node j, associated with some weights atj (atj > 0,

Kij .

z aij = 1): by this we mean that commodity (i,j) is trans-
k=1

ferred from i to j along Kij routes, and route ntj carries an

k . .
amount aij rij of commodity (i,3).

*If an m.c. flow problem has no additional constraints, we de-
fine it to be an unconstrained m.c. flow problem; such a defi-
nition will be motivated in one of the following sections.
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As a third representation, we can consider the global flow
f. It can very easily be seen that f does not completely char-
acterize ¢: for instance, two different sets of routes might
yield the same f. However, from Equation (1.3), it turns out
that such a representation is sufficient for many considerations,
and is certainly more compact than the previous two. In the fol-
lowing we use whichever of these representations is most con-
venient.

It can be seen that the set of m.c. flows satisfying con-
straints (1.1) and (1.2) is convex. In particular, if we let

Fé {£|f is an m.c. flow satisfying constraints (1.1) and (1.2)},
we have that F is a convex polyhedron. The global flows cor-
responding to the "corners" (extreme points) of F have an inter-
esting property: they are shortest route* flows [9].

2. MULTICOMMODITY PROBLEMS IN THE DESIGN OF S/F NETWORKS

Let us now consider a store-and-forward (S/F) communication
network [l]. In such a network, messages traveling from Ni to

Nj are "stored" in queue at any intermediate node Nk’ while
awaiting transmission, and are sent "forward" to Nz, the next
node in the route from Ni to Nj’ when channel (k,%) permits.
Thus, at each node there are different queues, one for each out-
put channel. The message flow requirements between nodes arise
at random times and the messages are of random lengths; therefore
the flows in the channels and the queue lengths in the nodes are
random variables. Under appropriate assumptions,t an analysis
of the system can be carried out [1]; in particular, it is pos-
sible to relate the average delay T suffered by a message travel-
ing from source to destination (the average is over time and over
all pairs of nodes) to the average flows in the channels.

The result of the analysis is:

T= ) —T, (2.1)

*4 shortest route flow is an m.c. flow whose routes can be de-
eribed by a shortest route matrix, computed for an arbitrary
assignment of lengths to the arcs.

tdssumptions: Poisson arrivals at nodes, exponential distribu-
tion of message length, independence of arrival processes at
different nodes, independence assumption of service times at
successive nodes [1].
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T = total average delay per message [sec/messg]
b = number of arcs in the network

Xi = message rate on channel i [messg/sec]
n n

Y = Z z r., = total message arrival rate from
i=1 j=1 external sources [messg/sec]

Ti = average delay suffered by a message waiting for

channel i [sec/messg]

Ti is the sum of two components:

T, =T] + TV
i i i
where
N S . .
Ti REEY transmission and queueing delay
i i
T; = pi = propagation delay
and
Ci = capacity of channel i [bits/sec]
1/u = average message length [bits/messg]
We can rewrite Equation (2.1) as follows:
b A/ u
1 i
T==7 = + (A /uup, (2.2)
Y3 Ci Ai/u i i

Letting Ai/u = fi’ Equation (2.2) becomes:

12 £
T==) |——+ £,p! (2.3)
Y 1 Ci fi iTi
where
fi = average bit rate on channel i [bits/sec]
Pi = UPi

The average delay T is the most common performance measure
for S/F networks, and the multicommodity problem consists of
finding that routing, or flow pattern F, which minimizes T.
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We may now pose two problems:

Problem A: "Routing assignment"
Given: Topology, channel capacities and a require-
ment matrix R
b
Minimize: T(f) = ) (o + p:) £,
~ Y . C. - £, i i
over £ i=1 i i

Constraints: (i) £ is an m.c. flow

(i) E <c,i=1, ..., b

The problem is in the standard multicommodity form* and the
additional constraints are capacity constraints. Let FA be the

set of feasible flows for Problem A: FA =FN{f|f < c}.
Clearly FA is a convex set (intersection of convex sets).

A second interesting problem in S/F networks is formulated
below. Assume that we have a given network topology in which
the channel capacities have to be assigned. A cost is associated
with the values of the capacities, and the total cost of the net-
work is given. In addition, the flow routes must be determined.
The problem statement is:

Problem B': "Routing and capacities assignment, general
cost—-capacity function"

Given: Topology, requirement matrix R, number of

dollars available D
b
. e . 1

Minimize: T(C,f) = L z (——F "+ py) £,

over C,f Yi=1 %17 %4

Constraints: (i) f is an m.c. flow
(1) £, <c, 1i=1, ..., b

A
@)

b
(1id) .z di(Ci)
i=1
where
C = (Cl,Cz,...,Cb)

di(C.) = arbitrary cost-capacity
function for arc i

The minimization can be carried out first on C, keeping f fixed,
and then on f.

*The possibility of formulating the routing problem as a multi-
commodity flow problem was already recognized by Frank and Chou
in [84]1. An interesting linear programming approach is pre-
sented there.
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If the cost-capacity functions are linear (i.e.,
di(ci) = dici), then the minimization over C can easily be per-

formed by the method of Lagrange multipliers and we get the
following optimum capacities as functions of the flows [1]:

De »/fidi
= +  — .
Ci fi 3 B (2.4)
Y VE.a,
j=1 J 3
where

D

b
D- ) f.4,
e . 11
i=1

By introducing Equation (2.4) into the expression of T(C,f) we
have:

b 2
(L)
i=1

b
T(C,f) = T(f) = +17 £p (2.5)
o ~ Y . 11
YD i=1
e
Since
b
D> ) a,c, for (iii)
_ 11
i=1
and
b b
} d.c.> )} 4a,f,  for (ii)
. i1, 1 1
i=1 i=1
then
b
D> ) 4,f
T . i1
i=1
and
b
De =D - ‘z difi >0 (iv)
i=1

It is easy to see from Equation (2.4) that (iv) implies also
(ii) and (iii); hence both (ii) and (iii) can be replaced by
(iv).

By introducing Equation (2.5) into Problem B' and using
result (iv), we obtain:
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Problem B: "Routing and capacities assignment, linear
cost-capacity function"
Given: Topology, requirement matrix R, number of
dollars D

b 2
( ¥ /f.d.)
=1 *+1*

Minimize: T(f) = + l-z £1P;
over f YD i
Constraints: (i) f m.c. flow
(ii) De >0

Again the problem is reduced to an optimal flow problem of the
standard multicommodity form. The additional constraint is now
a cost constraint. Let FB be the set of feasible flows for
Problem B:

b
Fa=Fniflp- | a; > o0}
i=1

Clearly FB is convex.

The inspection of Problems A and B motivates the following
important observation:

Observation:

In both Problems A and B, the performance T(f) goes to =
whenever £ approaches the boundaries defined by the ad-
ditional constraints (i.e., when any channel becomes
saturated in A, or when the excess dollars D reduce to
zero in B). €

Using mathematical programming terminology, the performance
T(f) incorporates the additional constraints as penalty functions.
From a practical point of view, such a property is very important:
it guarantees the feasibility of the solution {with respect to
the additional constraints) during the application of usual non-
linear minimization techniques, provided a feasible starting flow
is found.

The property is quite general for S/F networks: when the
additional constraints are satisfied with equality, usually some
saturation occurs, the gqueues at nodes grow large and the delay
T increases rapidly.

As a consequence of the above observation, if we assume
that a feasible starting solution can be found,* we can disregard

*Techniques for finding feasible starting solutions are shown in
the applications section.
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the additional constraints and approach Problems A and B as
unconstrained m.c. flow problems. Problems A and B will be
investigated further in later sections.

3. THE FD METHOD AS AN APPROACH TO THE SOLUTION OF
NON-LINEAR M.C. FLOW PROBLEMS

In order to place the Flow Deviation (FD) method in the
proper perspective in relation to the existing methods, it is
convenient to classify the various m.c. flow problems into
categories; for each category, the solution techniques avail-
able in the literature are reviewed and the contribution of
the FD method is discussed.

a) Unconstrained M.C. Flow Problems

a.1) Linear performance. The linear min cost flow problem with
no constraints on capacity has the well known shortest route
solution (where the arc length is equivalent to the linear cost
of the arc) [9,12]. Very efficient techniques are available for
the evaluation of all shortest routes on a graph and for the
routing of the commodities along such routes [9,16]; therefore
it appears convenient to reduce complicated flow problems (i.e.,
non-linear, or constrained) to the linear, unconstrained form,
which can be solved efficiently.

a.2) Non-linear performance. The most natural thing to do is
to linearize the problem. Problems which are separable* and
convex can be linearized by approximating the convex functions
with piecewise linear functions and by introducing one supple-
mentary variable and one constraint equation for each linearized
segment [11,15,24]. This method has two serious drawbacks:
first, it can be applied only to separable and convex problems;
secondly, the number of variables and constraints becomes pro-
hibitively large for large networks.

Another method, which applies to differentiable problems,
consists of approximating the performance function with the
tangent hyperplane, which is expressed in terms of the partial
derivatives {BP/afi}. The min cost solution of the linearized

problem is the shortest route flow, where the length of arc i
is defined as BP/Bfi. As it will be shown later, such shortest

route flow represents the direction of the steepest descent flow
deviation.

*A separable m.c. flow problem has the form:

b
P(f) = ) P.(f,)

i=1
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The above idea is the essence of the FD method, which con-
sists of repeated evaluations of steepest descent directions and
of one variable minimizations along such directions; the method
(described in Section 5) is conceptually very similar to the
gradient method applied to non-linear minimization problems. If
the problem is differentiable, the FD method is clearly superior
to the supplementary variables method mentioned before: it does
not add new variables and constraints, and can be applied to non-
convex, non—-separable cases.

In fact, the idea of using shortest routes (computed with
partial derivatives) for the solution of non-linear problems is
not new: using such techniques, Dafermos [17] solved various
traffic problems, formulated as unconstrained, convex m.c. flow
problems, and Yaged [18] solved a min cost capacity assignment
for a communications network, which was formulated as an uncon-
strained, concave m.c. flow problem.

Dafermos stated the conditions for the optimality of the
solution and proposed an algorithm for finding the optimal rout-
ing in the convex case; the algorithm, however, is impractical
for large nets, as it regquires the bookkeeping of all paths for
all commodities [17]. Yaged's results, on the other hand, are
very restricted: they apply only to a separable, concave prob-
lem [18].

In this paper, we attempt a more general, systematic in-
vestigation of the method; we introduce the main results in a
more straightforward way and in a simpler formulation than in
[17]. We indicate an algorithm which is applicable to non-
separable problems and which has been efficiently applied to
large nets.

b) Constrained M.C. Flow Problems

b.1) Linear performance, linear constraints. The classical,

and most efficient, approach is the Dantzig-Wolfe decomposition
[13,14], which reduces the solution of the main problem to the
repeated solution of a Master Problem and a Subproblem. The
Master is a linear program containing the additional constraints,
and the Subproblem, which generates new columns to introduce
into the Master, is an unconstrained linear min cost flow prob-
lem.

b.2) Non-linear performance, non-linear constraints. The
general theory of non~linear problems with non-linear constraints
is very hard. The special case of convex performance and concave
non-negativity constraints, however, can be attacked efficiently
with the Dantzig-Wolfe decomposition for convex programs [11];
the Master Problem is a linear program, and the column generating
Subproblem is an unconstrained convex min cost flow problem.

Here is another important area of application for the FD method.
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We showed that the two design problems considered in the
paper can be regarded as unconstrained m.c. flow problems;
therefore, in the sequel, unless otherwise specified, we refexr
to unconstrained problems.

4. STATIONARITY CONDITIONS

Let us assume that P(f) is continuous with its first par-
tial derivatives. We want to establish necessary and sufficient
conditions for f to be stationary.*

The most general perturbation (which we define as flow
deviation) around f can be obtained as a convex combination of
f with any m.c. flow v. The result of such flow deviation, f',
is expressed as:

f'=Q-Nf+ v =£f+ Ny~ £)
where

veF, 0<x<1

If A » 0, the flow deviation is infinitesimal. TFor A = §x << 1,
we have:

b
SP(£) = P(£') - P(f) = 6% ] (v, = £) (4.1)
k=1
where
3P
L ==
ko~ of,

From Equation (4.1) and from the definition of stationarity, £
is stationary if:

b
Y g, (v, ~£)>0, vefF (4.2)
ST S S M

We can also produce infinitesimal perturbations that involve
only one of the commodities; f must be stationary with respect
to any one of them separately. It follows that f is stationary
if, for all (i,j) commodities: N

b . . .. ‘o
¥ zk(v]i”) - flilj)) > 0,yv e FH) (4.3)
k=1
*f is defined as stationary if, for any infinitesimal perturba-
tion 8f (such that f + S8f is also m.c. flow) we have
P(f + ¢&f) > P(f)

A local minimum is always stationary; the opposite, however,
18 not true.
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where F(lj) is the set of the feasible (i,j) commodity flows.
In fact, Equations (4.2) and (4.3) are equivalent, as will be
seen from the subsequent derivations. Condition (4.2) can be
rewritten as:

E b
min Lv. > ] & f (4.4)
veF k=1 Kk =pay KX

But, as £ € F, Equation (4.4) becomes:

§ b
min gv. = ) & f (4.5)
ysF k=1 k k k=1 k k
Similarly, Equation (4.3) becomes:
b . . b . .
min Toa v oy G (4.6)
(i) (i3) k=1 =K k=1 F K
g1 pid) k= =

Condition (4.5)* is easy to check: the right hand side can be
directly evaluated, and the left hand side requires the compu-
tation of the shortest route flow under the metric {lk}.

If we represent the m.c. flow as a collection of weighted
routes (see Section 1), Equation (4.6) becomes:

NP
min )} fr,.= ) )} f(ar. ) (4.7)
T kem! ki3 m=1 ksvm komo1]

where

m' is any (i,3j) route
Wnﬁ m=1, ..., NP, are the (i,j) routes used by commodity (i,])

am, m=1, ..., NP, are the associated weights

NP is the total number of routes used by commodity (i,3j)

Let %(w) £ E Lyi Equation (4.7) becomes:
kew
NP
min 2(n') = J a &(m ) (4.8)
m' m=1

*4 different derivation of Equation (4.5) is given in [19].
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NP
Recalling that am > 0, ¥m, and 2 am = 1, we obtain, for all
m=1
commodities (i,3):
- = '
l(wl) z(nz) ‘e R(WNP) < &(m'") (4.9)

where 7' is any (i,j) route.

Condition (4.9) is stated also in [17]1; a similar equi-
librium condition was mentioned by Wardrop [20]. In fact, the
condition is very intuitive: it states that all non-zero weight
routes must have the same marginal "gain," whereas the zero-
weight routes must be less (or, at most, equally) convenient
than the weighted ones. For an immediate interpretation of
Equation (4.9), suppose there are two paths, NP and ﬂq, both

with non-zero weight, which do not satisfy Equation (4.9), i.e.,
z(np) > l(ﬂq), say. An infinitesimal deviation of commodity

(i,3) £from ﬂp to vq produces a variation 8P < 0; therefore, the

initial flow configuration was not statiocnary.

Notice that test (4.5) is computationally more convenient
than test (4.9), as (4.5) only requires the knowledge of the
global flow, while (4.9) requires the knowledge of all the paths
[19].

The question remains, whether the stationary point is a
local (or global) minimum. If P(f) is strictly convex, the
stationary point, if it exists, is unique and is a global min.
If P(f) is not convex, further considerations are required.

5. DESCRIPTICN OF THE FD METHOD

The results of the previous section indicate that, if f is
not a stationary flow, then the shortest route flow (evaluated
under the metric Rk = SP/Bfk) represents the flow deviation of

steepest decrease for P. This fact suggests a method, which we
call Flow Deviation method, for the determination of stationary
solutions of unconstrained, non-linear, differentiable flow prob-
lems P(f).

The FD can be regarded as an operator (denoted by FD(v,A) ©)
which maps an m.c. flow £ into another m.c. flow f' and is de-
fined as follows:

FD(y,\) ® £ 2 (1 - Mf+ Ay = £ (5.1)
where - -

v is a properly chosen m.c. flow ¢ F

A is the step size (0 < X < 1)
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Clearly FD is a map of F onto itself:
FD(v,A): F->F

Now, for each £ ¢ F, we want to determine a pair (y,A) in such
a way that the repeated application of FD(v,A) (starting from

any flow fo), produces a sequence {f } which converges to a
stationary flow. If we can define such a FD(v,A), then we have
an algorithm for the determination of stationary flows.

It can be shown [21] that, for a function P(f) which is
continous, nondegenerate* and lower bounded, the following con-
ditionsT are sufficient for the convergence of an FD-mapping
to a stationary flow:

(i) AP(f) >0 v feF
(i1} AP(f) = 0 => £ stationary
where AP(g) = P(g) - P(FD @ f)

Conditions (i) and (ii) require that the FD method be a true
steepest descent method.

Again in [21] it was shown that under reasonable assump-
tions¥ on P(f), the following definition of FD(v,A) satisfies
conditions (i) and (ii):

v

~

A

shortest route flow under metric lk“

minimizer of P[(L - M)f + Ayl, 0 <A <1 (5.2)

e i

*P(f) is defined to be nondegenerate if, for any two distinct
stattonary flows, say fl and f2, we have:
p(sl) # (50,

tSimilar, but more restrictive conditions were stated by Dafermos
in [17].

§The assumptions are: P(f) continuous and lower bounded; first
partial derivatives continuous and nomnegative; second partial
derivatives < + =3 P(f) nondegenerate. The nonnegativity of
the first partial derivatives is a reasonable assumption, as,
in general, the performance that we want to minimize is an in-
ereasing function of the flow in each arc.

Notice that, by assumption, % = aP/afk > 0; this fact excludes

the presence of negative cycles, which would have caused the
failure of the shortest route computation (and therefore of the
FD algorithm).
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Another valid definition of FD is the following.

Let:
nﬁj = ghortest (i,j) path (under metric lk)
q A . . q
Wij longest (i,j) path, with aij > 0

Define (i,j) - deviation as the deviation of commodity (i,3)
P
ij?
as the composition of all (i,j) deviations: such a definition
satisfies (i) and (ii).*

A general algorithm, based on the first definition of the
FD operator, is outlined as follows:

from ngj to 7 which minimizes P(f). Define the FD operator

1. Find a feasible starting flow fo

2. Letn=20
3. fn+l - FD(yn,Kn) @ J:En

) b
4. 1 (Y - e <6, forif T o2 (2 =P < ')
S 2 oy Kk 'k

where € and €' are acceptable positive tolerances, stop.

Otherwise, let n = n + 1 and go to 3.

The algorithm converges to stationary points; however, the
only stationary points of stable equilibrium are the local minima,
so we can assume that the algorithm converges to local minima.

In the case of P(f) strictly convex, the algorithm converges
to the global min (see Appendix I for a proof of convergence and
an upper bound on the error).

For P{f) non-convex, one should explore all local minima,
in order to find the global minimum. However, a systematic
search is impossible, for large-size networks, so heuristic ap-
proaches (like the repeated application of the FD algorithm to
various initial flow configurations) have to be devised. 1In the
case of P(f) concave (or quasi-concave [23]), the local minima
correspond to extreme points of F, i.e., to shortest route flows
[23]: this property, as shown later, greatly simplifies the FD
algorithm and speeds up its convergence.

In the following sections, the FD method is applied to the
solution of Problems A and B.

*Such an FD operator is essentially the "equilibration operator"
defined by Dafermos [17]1.

TSuch a test is obtained directly from the stationarity condi-
tion (3.6).
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6. THE ROUTING ASSIGNMENT

Let us consider Problem A in Section 2. The performance
T(f) (see Equation (2.3)) is strictly convex (separable sum of
strictly convex functions), and the feasible set FA is a convex

polyhedron. Therefore, if the problem is feasible, there is a
unique stationary point, which is the global minimum. The ad-
ditional constraints are included in T(g) as penalties; there-

fore, if we can find a feasible starting flow fo € FA’ Problem

A can be regarded as an unconstrained m.c. flow problem and
solved with the FD method.

Let us check if T(f) satisfies the conditions for the con-
vergence (see Section 5). The first and second partial deriva-
tives are:

C.
g—g—= 1 ..__._.J;.__._.z_.,. p;_ (6.1)
i Y (C. - £.)
i i
0 for i # j
327
Y Y P . (6.2)
i 7] - for i = j

Y (c. - £.)°
1 1

From Equation (2.3), the optimal solution g*, if it exists (i.e.,
if the problem is feasible), satisfies the capacity constraints
as strict inequalities (f; < Ci ¥i). Therefore, we can find an
e > 0 s.t.:

£* ¢ F;éFﬂ{flfif_Ci- e} (6.3)

The application of the FD method can be restricted to F; CIFA;
for £ ¢ FA, the sufficient conditions on the first two deriva-

tives of P(f) (as from Section 5) are satisfied; therefore the
FD algorithm converges to the global minimum.

In order to find a flow fo € FA’ several methods are avail-

able. One of them was described in [19]. Another method (ap-
plied below) consists of picking any f ¢ f, and then reducing
the flows in all arcs by a scaling factor RE, until a feasible
flow fo = RE-f ¢ FA is obtained; fo satisfies a reduced require-

. . R 0]
ment matrix RO = RE*R. The FD method is applied using f as
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starting flow and R A as starting requirement; after each FD

0
iteration, the value of RE is increased up to a level very close
to saturation. The search for a feasible flow terminates when
one of the two following cases occurs: either RE > 1, and a
feasible flow is found; or the network is saturated, T(f) is
minimized and RE < 1. In the latter case the problem is in-
feasible and we are finished.

The FD algorithm for the solution of the routing problem
consists of two phases, Phase 1 and Phase 2. In Phase l a

feasible flow fo is found (if it exists), or the problem is de-
clared infeasible. In Phase 2 the optimal routing is obtained.
The algorithm is outlined as follows:

Phase 1:
0. With RE0 =1, let fo be the shortest route flow computed at
f =0, i.e. with metric 2 4 [3T/5f, ] = 1/y(1/C_ + p,).*
~ k k £ =0 k k
Let n = 0. k
f
1. Let on = max | —
C
kK \"x
If on/REﬁ<l, let go = gn/REn and go to Phase 2. Otherwise,
let REn+l = REn(l - e (1 - on))/cn, where ¢ is a proper
tolerance, 0 < g < 1,
n+l _ +
Let g = f (REn+l/REn). Go to 2.
2. Let £ - o &

where FD is defined as in Equation (5.2).
3. Ifn=0, go to 5.

*The shortest route "ij 18 therefore the route for which

ks%i' (Pé + J/Ck) 18 minimum., Notice that J/Ck i8 the trans-

mission delay per bit on channel k and pé 18 the propagation

delay. No queueing delay is considered as the traffic is zero
(fk = 0). BSo, as we expect, for fk + 0, the shortest route

i minimizes the swn of transmission + propagation delay.

n+1
Tg

is a feasible m.c. flow with requirement RE .-
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n+l

b
4. If Ikzl gy, =g | <eand |RE_,, - RE| <3,

+1
where 8 and § are proper positive tolerances, and v is the

+
shortest route flow computed at gn l, stop: the problem is
infeasible within tolerances 6 and 8. Otherwise, go to 5.
5. Letn=n+1 and go to 1.

Phase 2:
0. Let n = 0.
1. £ oo

2. If ]Z lk(vk - fi)] < 6, where 8 is a proper positive tol-

n
erance, stop: f is optimal within a tolerance 8.
Otherwise, let n = n + 1 and go to 1.

The algorithm, in the form described above, provides only
the optimum global flow f. If complete information about the
routes taken by each commodity is required, a simple updating
of routing tables at each FD iteration allows one to recover it
at the end of the algorithm (see [19]).

7. NON-BIFURCATED ROUTING FOR LARGE AND BALANCED NETS

An m.c. flow is defined to be non-bifurcated if each com-
modity flows along one route only. Some applications require
a non-bifurcated routing assignment; in some other applications
the non-bifurcated solution is a very good approximation to the
optimum bifurcated one, and is obtained with considerable saving
in the amount of computation (see below). The above reasons
motivate an investigation of the non~bifurcated routing assign-
ment.

The introduction of the "non-bifurcation" constraint re-
duces the set of feasible m.c. flows to a discrete set: the
number of elements in the set is equal to the number of all
possible combinations of Wij paths, ¥ i,j. Continuous tech-

nigues, like the FD method, cannot in general be used; discrete
techniques, on the other hand, are very involved and computa-
tionally prohibitive already for networks of medium size (on

the order of ten nodes). It is of interest to devise, therefore,
efficient sub-optimum techniques. We will show that, in the
important case of "large and balanced networks," a modification
of the FD method can be successfully applied.
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A network is said to be large if it has a large number of
nodes; ‘it is said to be balanced if the elements i3 of the re-

quirement matrix R are not highly diversified one from the other.
For a more precise definition of "balanced," let r:

ré—.—.—l_.__ r
(n - 1)n i3 ij

be the average regquirement per pair of nodes and let m:

m A max I[r../r]
(13)
be the ratio between the max and the average requirement.* No-
tice that m > 1 and that m = 1 corresponds to a uniform require-
ment matrix. A network is said to be balanced if m is close to
1.
We now combine these ideas into the notion of "large and

balanced net." Let:

A __ Km

n (7.1)

(n - 1)p

where: K 4 b/n, the average arc to node density of the graph.

E' 4 z TPy z ij? where pi. is the length of the

i3 3713 J
shortest (i,j) path (length of a path 4 number of
arcs in the path); p' is therefore the average

path length, when all commodities are routed along
the shortest paths.

A network is defined large and balanced if n << 1. 1In order to
motivate such a definition, let us consider, for an arbitrary
m.c. flow f, the ratio of the total flow £ in arc k, versus the

(i3) K

contribution f given by any commodity (i,j). Let us evalu-

ate the average of this ratio, taken over all arcs:
fk b £

1 k
—]|= — — f 7.2
(13) b kzl f(lj) “'bmr kg k ( )
k k

|C>

average
£

*Many other appropriate definitions of m are possible, for ex-
.\21/2
ample m' =|J(1 - , in which case m' = 0 corresponds

to the uniform traffic requirement.
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It was shown by Kleinrock [1] that:

z fk = r(n - 1)n - 5

= A . .
where: p = 2 z 5 and p;. 1s the number of arcs in
i3 ij lJ ij
(i,3) route, relative to the routing assignment under considera-
tion; p is therefore the average path length.¥*
Equation (7.2) becomes:

f - .

kY. (n—l)n-p> (n - 1)p
f]iij) - bm - Km

average = 1/n (7.3)

From (7.3) the following property holds:

Property (7.1): In a large and balanced net, on the average,
the contribution of one single commodity in any are can be con-
sidered infinitesimal, as compared to the total flow in that
are,

In order to show how the FD method applies to the non-
bifurcated solution of large and balanced nets, let us consider
a new version of flow deviation, defined as the composition of
deviations involving only one commodity at a time. Suppose
that the flow f is non~bifurcated; that commodity (i,j) flows
on nlj; and that "lj is the shortest (i,j) route, under the

usual metric {Rk}. The FD method deviates a proper amount
« . . L}
A rij’ (0 <X <1), of (i,j) commodity from Fij to ﬂij’ such

that the performance T (}):

T(A)

where: £ contains Wij

T(E(L = A) + yA) (7.4)

. 1]
v contains T,.

1]
is minimized. We can rewrite Equation (7.4) as follows:
b
T(A) =T(0) + A ] 2. (v, - £) + Oy - £)] (7.5)
k—

*Notice that P depends on the particular routing assignment,

while p depends_?n requirement matrix and topology only; also

notice that p > p'.
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where 0( ) contains the terms of order higher than 1. Due to
Property (7.1), the terms (vk - fk) can be considered as in-

finitesimal, and the term O0( ) is infinitesimal of order higher
than 1. Therefore, as long as 6, defined as:

b
A
B = 2 L (v, -
k=1 k' k

fk)

is sufficiently negative, the term 0( } can be disregarded and
the minimizer of T()A) in Equation (7.5) is at the boundary
(Amin = 1); hence the FD method preserves the non-bifurcated
characteristic of the flow. On the other hand, if 6 wvanishes,
the higher order terms become important and it might happen
that Amin < 1; however, 6 = 0 implies that f is very close to

optimum (see Appendix for bounds on the error). Therefore, the
FD method provides non-bifurcated solutions which are very good
approximations to the optimum bifurcated solution, and, as a
consequence, very good approximations also to the optimum non-
bifurcated solution.

The non-bifurcated FD algorithm is next introduced:

Non-Bifurcated FD Algorithm

Let ﬁo be a starting feasible non-bifurcated flow,*
Let n = 0.

1. Compute SR(gn), defined as the set of shortest routes under
metric {lk}.

2. Let g-= fn.
For each commodity (i,j):

2.a Let v be the flow configuration obtained from g by

deviating commodity (i,j) to the shortest route 7',
13
given by SR(f").

2.b If [v feasible and T(y) < T(g)l, go to 2.c. Other-
wise, go to 2.d.
2.c g=1v
2.d If all commodities (i,j) have been processed, go to 3.
Otherwise, go to 2.a.

3. If g = f%, stop. The FD method cannot improve the non-
N +3
bifurcated solution any further. Otherwise, let gn = g,

n=mn+1 and go to 1. N

*Such a starting flow can be found with a Phase 1 procedure,
similar to that described in Section 6.
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The algorithm converges in a finite number of steps, as there
are only a finite number of non-bifurcated flows, and repeti-
tions of the same flow are excluded by the stopping condition.

An application of the algorithm to a large and balanced
net is presented in the application section.

8. THE ROUTING AND CAPACITIES ASSIGNMENT

It was shown in Section 2, that FB’ the feasible set for

Problem B, is a convex polyhedron; it was also shown that the
additional constraint is included in the performance T(f) as
penalty function, so that Problem B can be regarded as an un-
constrained m.c. flow problem,

Let us now investigate the properties of T(f). Recall
{(see Equation 2.5):

b 2
( Y /f.d.)
i=1 7
T(f) = = + ] £.p) (8.1)
Yip - Z f.d.)
( i=1

Kleinrock, in [1l], considered this case and also dealt exten-
sively with a simplified version of Equation (8.1)* He showed

2 .
that, whenever two routes, say Wij and vij’ with the same num-

ber of intermediate arcs, are available for commodity (i,3),
then T(f) is minimized when the entire commodity is routed on
one of the two routes only. Such a result, cobtained under re-
strictive assumptions, suggests the conjecture that the optimal
flow be, in general, non-bifurcated. In fact, further research
has been done [21], [22], and it can be shown that T(f) in

in Equation (8.1) is quasi-concave on FB’ i.e., given any two

feasible flows fl and fz [23]:

T(gl) iT(fz) => T(§l) < Tl( - A);El + Ale
where: 0 < A < 1.

More generally, T(f) can be shown to be quasi-concave for all
"routing and capacities assignment" problems with concave cost-
capacity functions [21]; the linear case is therefore a special
case.

*Essentially, d, = 1 and pé =0, wt.
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As a consequence of such a property, the local minima are
at extreme points of FB’ i.e., they correspond to shortest

route flows (see Section 3), which are a subclass of the class
of non-bifurcated flows.

The FD method, when applied to Problem B, can be greatly
simplified: the step size A is always equal to 1 (if we find
a downhill direction, we go all the way down, due to the quasi-
concavity of T(A)), and the flow patterns generated are com-
pletely defined by just one (n X n) matrix, the shortest route
matrix.

A schematic description of the FD algorithm, as applied
to Problem B, is as follows:

0. Suppose* fo € FB; let n = O.

1. et " - o £

2. If (T(§n+l) z_T(fn)), stop; fn local minimum. Otherwise

let n=n+ 1 and go to 1.

The convergence of the algorithm is guaranteed by the fact that
there are only a finite number of shortest route flows, and repe-

titions of the same flow are not possible, as T(gn) is strictly
decreasing.

The partial derivatives, used for the shortest route compu-
tation, have the following expression:

S VE.4. 3 VE.d.\2 .
T 1 33 i1 3] Py
Y F ) d; + —

e 1

I

Notice that QI—-Z_O; negative loops cannot exist. Alsc notice

3fi
that:
lim g%}-= o
fi+0 i

which means that, whenever the flow (and therefore the capacity,
from Equation (2.4)) of an arc is reduced to zero at the end of

*The problem of finding a feasible starting flow is discussed
later in the section.
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an FD iteration, then in such an arc, the flow and capacity are
zero for all subsequent iterations, as the incremental cost of
restoring the flow (= aT/afi) is infinity.*

k=20

Lengths ’Q'i
assigned at random

]

Y
SR mtx
and flow assignment

no

feasible

i yes

Apply FD method

Find local min.

k=k+1

no

k = 100

yes

Choose global optimum

Fig. 2 Block diagram of the FD algorithm for Problem B.

*This property suggests a method for the design of the topology:
we can start from a topology which is highly connected, and

eliminate arcs with the FD method, until a suboptimal configura-

tion is obtained [21). A similar approach is used by Yaged in
[18].
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The FD method leads to a local minimum, which depends on
the choice of the feasible starting flow. In order to find
several local minima, a mechanism that produces a large variety
of feasible flows is required. We propose the following ran-
domized procedure for the generation of feasible flows:*

1. Assign initial equivalent lengths {zg} to the arcs at random.

2. Compute the shortest route flow £9 according to the metric

0
{25}
b

3. IfD - 2 fidi > 0, go is feasible and can be used to start
i=1

the FD algorithm. Otherwise fo is rejected.

The initial random choice of the lengths guarantees a cer-
tain randomness in the starting feasible flow, thus providing a
method for finding several local minima. After a convenient
number of iterations, the global minimum is chosen as the mini-
mum of the local minima. This provides a "suboptimal” solution.
A block diagram of the method is given in Figure 2.

SRI UTAH NCAR AWS CASE CMU MITRE
AMES
ILLINOIS
ucsB LINCOLN ETAC
LAB
soOC
™~ STANFORD MIT
HARVARD
UCLA RAND AFWL 88BN BURROUGHS

Fig. 3 A 2l1-node ARPA topology.
9. APPLICATIONS
As an application of the FD method, Problems A and B are
solved for the ARPA Computer Network. The ARPA Computer Network

is a S/F communication network connecting several computer

*Another procedure was proposed by Yaged [18].
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facilities in the United States. A detailed description of the
network is given in [3] - [8], [25] - [29]. Due to the fact
that new computer centers are continually joining the network,
its topology has been changing quite rapidly; in these applica-
tions we refer to one of the earlier proposed topologies, with
21 nodes connected by 26 full duplex channels (see Figure 3).
We also assume that the traffic requirement is uniform between
all pairs of nodes.

9.1 ARPA Network: The Routing Assignment

The traffic requirement R = {rij} is assumed uniform:

r = 1.187 [kbits./sec.]* for i # j

..
J 0 for 1 =3
First, we show that, for the 21 node ARPA net with uniform
requirement, the "large and balanced net" condition holds. From
Equation (7.1), n is given by:
mb
n= __—___——:T
nin - 1)p

In the present case:
n = 21
p> 1

b = 52 (each full duplex channel represents a pair
of directed arcs: hence 26 x 2 = 52).

Hence: n < 0.12 << 1

The condition is satisfied. We can therefore apply both optimal
and non-bifurcated FD algorithms and compare the results.
The result of the optimal FD algorithm is: Tmin = 0.2406

sec., obtained after 80 shortest route computations, with an

accuracy of 10_4 on T. The result of the non-bifurcated FD
algorithm is: Tmin = 0.2438 sec., obtained after 12 shortest

path computations. The algorithms were programmed in Fortran
and run on an IBM 360/91; the execution time was 30 sec. for

*The traffic requirement at saturation is Pt = 1.250

[kbits./sec.] (see Figure 4). We chose r = 0.95 roe = 1.187

in order to have a feasible, but difficult, requirement.
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the optimal algorithm and 4 sec. for the non-bifurcated one.*
The error of the suboptimal non-bifurcated solution, with re-
spect to the optimum, is less than 2 percent; the fact shows
how powerful the non-bifurcated algorithm is for large and
balanced nets, and suggests that a convenient modification of
it could be useful for the solution of very large nets [21].

400~ Cp -gETI(;AAL ROUTING FOR
| €, =OPTIMAL ROUTING FOR
RE=0.8
C, =OPTIMAL ROUTING FOR
300 |- RE=1.0
—_ r
g |
~§zoo—
- |
Co C,8c,
100 +
! !
[ |
! ;
0 L ] ) [ T 1 i |
o} 0.2 0.4 06 0.8 1.0
RE ’ *
RE, RE,

RESAT, RESAT,

Fig. 4 Average delay T versus normalized traffic RE,
using various routing schemes.

Figure 4 illustrates the application of the non-bifurcated
algorithm. Recall that RE is the traffic level normalized to
r = 1.187 kbits./sec. The traffic is first routed along the

shortest routes computed for REO = 0; curve CO plots the delay

T versus RE, using such a routing scheme (which we refer to as
RSO). With RSO, the saturation level for the traffic is
RESATO = .85 < 1; RE = 1 is infeasible, and therefore we are
. . 1 . .
still in Phase 1. Let f be the flow obtained by routing traf-

fic level REl = .95 RESATO ~ .8, according to RS and apply to

O)
1 . ;
£ the FD algorithm; a new routing scheme RS

1 is obtained, which

improves T(REl). Curve C corresponding to RS

1° saturates at

l:

*We expect to be able to reduce considerably the computation
time by optimizing the code and by improving some hard working
subroutines, like the shortest route and flow assignment rou-
tines [16].
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RESATl = 1.05 > 1; RE = 1 is feasible and Phase 2 is initiated,

with RE2 = 1. At the end of Phase 2, the sub-optimal, non-

bifurcated routing scheme RS is found; curve C2 corresponding

2

to R82 practically coincides with curve Cl’

scale of T is not detailed enough to show differences in values.
Notice that, as expected, the routing RS0 gives the best results

is almost optimal up to

in Figure 4, as the

at low traffic levels; in fact, RS

RE = 0.5. 0

9.2 ARPA Network: Routing and Capacities Assignment

The set of channel capacities available for the ARPA Net-
work is discrete: Table 1 contains the list of capacity options
and corresponding costs considered in the present application
[6]. In order to be able to apply the FD method, the discrete
cost-capacity curves have been approximated with continuous,
piece-wise linear curves (see Figure 5). We do not discuss the
details of the approximation, but merely mention that they must
be concave.* The concavity of the cost~capacity curves implies
that the local minima are shortest route flows (see Section 8).
The FD method can, therefore, be applied in a form similar to
the one presented in Section 8; a few modifications are required
due to the non-linearity of the cost-capacity curves.

CHANNEL CAPACITIES AND CORRESPONDING
COSTS USED IN THE OPTIMIZATION

Capacity Termination Cost Line Cost
[kbits/sec] [$/month] [$/month/mile]
7.2 210 .3
19.2 850 2.10
50 850 4.20
108 2400 4,20
230.4 1300 21.00

Table 1

Note: The total cost per month of a channel is given by:
total cost = termination cost + (line cost) x (length
in miles).

*Other concave approximations can be considered: see [6]1, [18].
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d': staircase corresponding to discrete capacity levels.
d": pilece-wise linear approximation

Fig. 5 Cost-capacity curves for arc i.

A schematic description of the algorithm follows here:

Let DO be the total docllar investment.

0
£ F
Let £ € B
0 . (s . . 0 *
Let ¢ be the optimal capacities assignment for fixed £ .
Let To(g) be as from Equation (8.l1l), using linear approxi-

. . 0
mations of the cost-capacity curves around C .
Let n = 0. -

Let:

+1
fn = shortest route flow computed at fn

(using metric lk = [BTn(ﬁ)/afk]§=§n).

+1 . s . .
Let gn be the optimal capacities assignment for fixed

+ .
fn l, and let Tn+l(§) be as from Equation (8.1), using

linear approximations of the cost-capacity curves around

+
oL,

~

If{T (fn+l) > T (fn)), stop; fn is a local minimum.
n+l "~ — n~ ~

Otherwise, let n=n + 1 and go to 1.

*The optimal assignment of capacities, given the flows and the
total dollar investment, for concave cost-capacity fumctions,
has been discussed by Kleinrock [6].
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The result of the above described algorithm is a local
minimum for the continucus cost-capacity problem. In order to
get a solution for the discrete problem, the capacities and
flows given by the algorithm are "adjusted" in the following
manner: in all arcs, the capacity is increased to the upper
value of discrete capacity available (thus increasing the total
investment to D > DO); then, the routing is optimized once again

with the FD routing algorithm.

The above described technique is clearly suboptimal. We
cannot guarantee that the solutions so found are local minima;
in fact, it is not even possible to define a local minimum in
a discrete problem. Other suboptimal techniques have been pro-
posed [7,10,21]; however, the optimization of a network with
discrete capacities still remains a formidable (and basically
unsolved) problem.*

140 © r=1005 (BITS/SEC x NODE PAIR)
e r =925 (BITS/SEC x NODE PAIR)

A r=848 (BITS/SEC x NODE PAIR)

\ O =771 (BITS/SEC x NODE PAIR)

120 \ Do=COST OF ALL 50 K BITS NET

- \
H \
e
C X
L \
— ~ AN
0y SN \. \
~ ~ ~ Q.
L < \\
~a Y
60 N\
\\
b
40 ST NN S A SN UUD U WD JR SRS S |
75 80
Do D (K$/MONTH)

Fig. 6 Delay T versus cost D of various undominated capacity
assignments for different traffic levels.

*The optimum solution can be obtained, with dynamic programming
techniques, in the special case of a centralized network [30].
In fact, for such a case, the problem reduces to the optimal
assignment of capacities only, as the flows are already deter-
mined by the tree-structure topology.
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The technique has been applied to the design of the ARPA
Network. Four cases have been run, each with a different value
of uniform requirement r (see Figure 5). The initial cost DO

was made equal to the cost of the proposed network with all 50
kbit channels (DO = 71,000 $/month). In order to be able to

compare the 50 kbit capacities assignment to the assignments
found with the FD method, the minimum delay T, with all 50 kbit
capacities (i.e., with total cost D = DO), was reported on the

graph for each value of r (T was obtained from the curves in
Figure 4). The delay T and the total cost D of the undominated*
solutions are plotted in the graph of Figure 6.

10. CONCLUSION

The FD method can be applied to any unconstrained m.c.
flow problem when some reasonable assumptions on P(f) are satis-
fied. It also can be applied to comnstrained flow problems: in
particular to problems that include the constraints as penalties
in P(g), or that have been decomposed with the Dantzig-Wolfe
method. Local minima are in general attained; for convex prob-
lems, the global minimum is found.

The FD method seems to be an efficient tool for the design
of S/F networks: for example, if we consider the optimal rout-
ing problem, it can be shown [19] that the amount of computation
per iteration required by the FD method is comparable to that
of the heuristic techniques so far proposed [16,24].17 A general
statement, however, about the effectiveness of the FD method as
compared to other methods would not be appropriate: many fac-
tors, which depend on the specific application (like trade-off
between precision and computational speed) should be considered
in order to select the proper approach.

APPENDIX: CASE OF P(f) STRICTLY CONVEX

If P(f) is strictly convex, a direct proof of convergence
of the FD algorithm, defined in Section 5, is available and a
lower bound can be established.
%4 solution (Ti’Di) igs said to be dominated by (Tj’Dj) if:
(D. <D.) and (T. < T.)
J 7 J 7

A solution is undominated if it is not dominated by any other
solution.

tThe two bottlenecks, common to both approaches, are the short-
est route computation and the flow assignment [16].
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Convergence
We want to show that:

lim £" = £
N0

(a.1)

where £* is the global minimum of P(f) on F, and {gn} is the
sequence generated by recursive application of the FD operator

on a given starting flow go. The associated sequence {P(gn)}

is monotonically non-increasing and lower bounded by p* 4 P(£¥),
therefore it must converge: -

lim P(f7) = p' > p* (A.2)
>
Also, recalling that:
n ' - 2
P(£) - P' = ] AP(£)
2=n

where

ae(ety A eiehy - pp o £H = pigh - petth

and recalling that:

AR(£Y) > 02

we have, from Equation (A.2):

lim AP(£") = O (a.3)
n>w

Suppose (A.l) is false; this implies, since P(f) is strictly
convex, that p' > p*, However, in such a case, we are able to
establish a relation which contradicts Equation (A.3) as fol-
lows.

Let us first establish a lower bound on AP(f). Let:

P(A) 4 P(1 - Nf + avl, 0<x<1

where: v is the shortest route flow computed at f£. Using
Taylor's expansion:

2
P(A) = P(0) + A[d—P] PES Az[d—z] (A. 4)
axlri=0 2 Llar‘la=t
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where £ is a proper value in the interval (0,A) as usual. By
assumption, the second partial derivatives of P(f) are upper
bounded; therefore, the second directional derivative is also
upper bounded, and Equation (A.4) becomes:

P(A) - P(0) <X 6 + % A°M (A.5)

where

b
8= ) (v, -£) <0 (A.5)"
WLk kT KR =

>

M: upperbound on dzP/dkz-*

After minimizing both sides of Equation (A.5) over A, and re-
calling that min [P(A) - P(0)] é -AP(f), we get:
é?ZM if -e/M < 1
AP(£) > (A.6)
M/2 if -e/M> 1

Equation (A.6) can be rewritten as follows:

=

e2
AP (£) Z_E'min .1 (r.6) "'
M

Inequality (A.6)' represents a useful lower bound on AP(f).
Consider now:

e

P(A) = PI(1L -~ ADE + A-£7]
where: 0 < A <1

P{\A) is strictly convex, therefore it lies above its tangent
line at A = O:

b
PO) > P(E) +A| [ g () - £) (a.7)
k=1

= |22
where: lk = [afk]fn

Letting A = 1 in (A.7) and recalling from (A.2) that P(fn) z_P':

b
>P + ] g (f
k=1

*Notice that M > 0 as P(\) is strictly convex.

* * _ (A.8)

*y
P(f") = P X X
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Let v be the shortest route flow computed at fn; we have, from
Equation (A.8): -
b n
1
+ - .
>P kzl L (v = £)) (A.9)

P*
From (A.9), using definition (A.5)', we have:

Pp' - P* < |g] (A.10)
Introducing (A.10) into (A.6)' we get:
®' - P*)2

M2

8P (£ 1% min ,1) >0 (A.11)

The r.h.s. of Equation (A.1l1l) is independent of n and strictly
positive, therefore:

lim AP(£7) > 0 (A.12)
n—oo

Equation (A.12) contradicts Equation (A.3). Therefore (A.1l) is
true.

Lower Bound

By replacing §n with a generic £ ¢ F in (A.7), and letting
A =1, we get, after a few steps:

b

P(E) > P(E) + ] 4. (v - £) (A.13)
k=1

where: g* is the global minimum

v 1is the shortest route
flow computed at £

From (A.13), lower and upper bounds on P(g*) are readily avail-
able:

b
*
P(f) > P(£7) > P(E) + gy (v = £)
k=1
b
Notice that the test for optimality based on z . (v, = £)
=1 k 'k k

{see Section 5) is very powerful in the case of P(f) strictly
convex, as it provides an upper bound on the optimal value
error.
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