
The Flow Deviation Method: An 
Approach to Store-and-Forward 
Communication Network Design 

L. Fratta 
lnstituto di Elettrotecnia ed Elettronica 
Poiitecnico di Miiano, Italy 

h. Gerla 
hetwork-finalysis Corporation 
Glen Cove, New York 

L. Kleinrock 
University of California 
Los Angeles, California 

ABSTRACT 

mo problems reZevant t o  the design of a store-and-forward 
communication network ( the  message routing problem and the chan- 
neZ capacity assignment problem) are formulated and are recog- 
nized t o  be essentiaZ Zy non- Zinear, uncoMnA;tcained muZticomodity 
(m. c .  1 fZm problems. A " F Z m  Deviation" ( F D )  method fo r  the 
soZution o f  these non-linear, unconstrained m.c. fZm probZems 
i s  described which i s  qui te  simiZar t o  the gradient method fo r  
functions o f  continuous variables; here the concept of gradient 
i s  repZaced by  the concept of "shortest  route" flow. A s  i n  the 
gradient method, the application of successive flow deviations 
leads t o  ZocaZ minima. 
of the FD method t o  the design of the  ARPA Computer Network are 
discussed. 

FinaZ l y ,  two in teres t ing  applications 

1. INTRODUCTION 

I n  t h i s  paper we consider a procedure ( t h e  "flow deviation' '  
method) f o r  ass igning flow wi th in  store-and-forward communica- 
t i o n  networks so as  t o  minimize c o s t  and/or delay f o r  a given 
topology and €or given ex te rna l  flow requirements. 
def ining the  bas ic  model below and follow t h a t  with some examples. 
We then d iscuss  various approaches t o  the  problem and then in-  
troduce and descr ibe the  "flow deviat ion" method. This method 
is  evaluated under some f u r t h e r  r e s t r i c t i o n s  and is then appl ied 
t o  var ious problem formulations f o r  the  ARPA network [61, [71. 

a r e  required t o  route  a quan t i ty  r of type ( i , j )  commodity 

from N t o  N through a given network (Figure 1). 

We begin by 

Suppose we have a co l l ec t ion  of nodes N (i=l, ..., n ) ,  and i' 

i j  

i j 
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Fig. 1 Example of rou t ing  of t he  ( i f  j )  commodity. 

The multicommodity (m.c.) flow problem c o n s i s t s  of f ind ing  
the  routes  f o r  a l l  such commodities, which minimize (o r  maxi- 
mize) a well-defined performance funct ion (e.g. ,  c o s t  or d e l a y ) ,  
such t h a t  a se t  of c o n s t r a i n t s  ( e -g . ,  channel capac i ty  con- 
s t r a i n t s )  a r e  s a t i s f i e d .  

formally i n  t h e  following way: 
T h e  m o s t  genera l  mult icomodity  problem can be expressed 

Given: A network of n nodes and b 
An n x n matr ix  R = [r 1 , 
ment mat r ix ,  whose e n t r i e s  

i j  

kfinirnize: ( o r  maximize)* P(@) 

a r c s  
c a l l e d  t h e  require-  

a r e  non-negative 

over 0 where @ is t he  flow conf igura t ion  and P i s  a 
well-defined performance func t ion  

Furthermore, must s a t i s f y  t h e  following c o n s t r a i n t s :  

Constraints: 

1. CP must be a multicommodity flow s a t i s f y i n g  requirement 

Conservation of the  flow a t  nodes, commodity by commodity: 
R. For this, t h e  following condi t ions must be v e r i f i e d :  

*Without loss of general i ty ,  a d y  ,the minimum pkoblm is con- 
sidered in the  following. 
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Non-negativity of flow in directed arcs: 

(ij) is the portion of commodity (i,j) flowing on arc kR where f 

( k , R ) .  

from problem to problem (e.g., capacity constraints on each 
channel and/or cost constraints). 

2. Q, must satisfy some additional constraints,* different 

Let us define the ( i , j l  comodi ty  fZow f (ij) as: - 

where f (ij) is the portion of (i,j) commodity flowing in arc m, 

and define the  global f l o w  f as: 
m 

In the sequel, we restrict our analysis to m.c. problems in 
which the performance depends solely on the global flow: 

P(@) P ( f )  ( 1 - 3 )  

However, most of the arguments and techniques presented in the 
paper can be extended to the general case of P ( @ )  explicitly 
depending upon various types of commodities. 

So far, we represented the flow configuration 0 in terms 

An equivalent representation is obtained by providing for 

from k = 1, . . ., kij, k 
i j’ each commodity (i ,j) a set of routes TT 

node i to node j ,  associated with some weights a 

Ki j 
by this we mean that commodity (i,j) is trans- 

k= 1 
ferred from i to j along K routes, and route TI carries an 

amount a r of commodity (i, j) . 

k k  
ij (aij > 0, 

k 1 aij = 1): 

k 
ij ij 

k 
ij ij 

* I f  an m.c. f l ow  problem has no additional constraints,  We de- 
f i n e  it t o  be an unconn&cLined m.c.  flow problem; such a de f i -  
n i t i on  w i l l  be motivated i n  one of  the following sections.  
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As a third representation, we can consider the global flow 
It can very easily be seen that ,f does not completely char- f. 

acterize @ :  for instance, two different sets of routes might 
yield the same f. However, from Equation (1.31, it turns out 
that such a representation is sufficient for many considerations, 
and is certainly more compact than the previous two. In the fol- 
lowing we use whichever of these representations is most con- 
venient. 

straints (1.1) and (1.2) is convex. In particular, if we let 

F = { f l f  is an m.c. flow satisfying constraints (1.1) and (1.2)], 
we have that F is a convex polyhedron. 
responding to the "corners" (extreme points) of F have an inter- 
esting property: they are shortest route* flows 191. 

It can be seen that the set of m.c. flows satisfying con- 

A 

The global flows cor- 

2 .  MULTICOMMODITY PROBLEMS IN THE DESIGN OF S/F NETWORKS 

Let us now consider a store-and-forward (S/F) communication 
network [l]. In such a network, messages traveling from N to i 
N. axe "stored" in queue at any intermediate node N while 

awaiting transmission, and are sent "forward" to N the next 

node in the route from N to N when channel (k,R) permits. 

Thus, at each node there are different queues, one for each out- 
put channel. 
at random times and the messages are of random lengths; therefore 
the flows in the channels and the queue lengths in the nodes are 
random variables. 
of the system can be carried out [l]; in particular, it is POS- 
sible to relate the average delay T suffered by a message travel- 
ing from source to destination (the average is over time and over 
all pairs of nodes) to the average flows in the channels. 

7 k' 

R' 

i j' 

The message flow requirements between nodes arise 

Under appropriate assumptions, t an analysis 

The result of the analysis is: 

hi 
T =  1 - - T  

i=l Y i  
(2.1) 

*A shortest route f low i s  an m.c. flow whose routes can be de- 
cribed by a shortest route matrix, computed for  an arbitrary 
assignment of lengths to the  arcs. 

tAsswrrptions : Poisson arrivals a t  nodes, exponentia 2 distribu- 
tion of message Zength, independence of arrival processes a t  
di f ferent  nodes, independence assumption o f  service times a t  
successive nodes [ I  I .  
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b 1 

Y 1  
T = - 1  

where 

T = t o t a l  average delay p e r  message [sec/messg] 
b = number of a r c s  i n  t h e  network 

A .  = message r a t e  on channel i [messg/secl 
1 

y = i r = t o t a l  message a r r i v a l  rate from 
i=l j=l  ex te rna l  sources  [messg/secl 

channel i [sec/messgl 

i j  

= average delay suf fered  by a message wai t ing f o r  Ti 

T .  i s  the  sum of two components: 
1 

Ti = TI + TI.' 
I 1 

where 

i f 

C i - f  i 
I + f . p !  

1 1  

Tf = 
= t ransmission and queueing delay llc: - A ,  

TY = pi = propagation delay 

and 

= capaci ty  of channel i [b i t s / sec l  

l/p = average message length  [bits/messgl 
'i 

W e  can r ewr i t e  Equation ( 2 . 1 )  a s  'follows: 

Le t t ing  Ai/p = fiJ Equation ( 2 . 2 )  becomes: 

where 

f .  = average b i t  r a t e  on 
1 

P i  = VPi 

(2.3) 

channel i [b i t s / sec l  

The average delay T i s  the  most common performance measure 
f o r  S/F networks, and t h e  multicommodity problem c o n s i s t s  of 
f inding t h a t  rou t ing ,  o r  flow p a t t e r n  F, which minimizes T. 
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W e  may now pose two problems: 

Frob Zem A :  "Routing assignment" 

Topology, channel capac i t ies  and a require- 
ment matrix R 

Given: 

1 b 1 Minimize: 

Constraints: (i) f i s  an m.c. flow 

T ( f )  = - 1 (c - f i  + Pi '  f i  
over f Y i=l i 

I 

(ii) f .  L C i ,  i = 1, ..., b 
1 

The problem is  i n  the standard multicommodity form* and the 
additional constraints  are capacity constraints .  

s e t  of feas ib le  flows f o r  Problem A: FA = F fl ( g i g  < C). 
Clearly FA i s  a convex set  ( in te rsec t ion  of convex sets). 

A second in te res t ing  problem i n  S/F networks i s  formulated 
below. 
the channel capaci t ies  have to  be assigned. A cost  i s  associated 
with the values of the capac i t ies ,  and the t o t a l  cos t  of the net- 
work is  given. In  addition, the  flow routes  must be determined. 
The problem statement is: 

L e t  FA be the 

- 

A s s u m e  t h a t  w e  have a given network topology i n  which 

Given: 

Prob Zem B ': "Routing and capaci t ies  assignment, general 
cost-capacity function" 

Topology, requirement matrix R,  number of 
do l l a r s  available D 

Minimize : T ( C , g )  
over C , f  
Constraints: (i) 

(ii) 

The minimiz 
and then on 

t ion  c 
f .  

(iii) 

where 

f i s  an m.c. flow 
f .  5 C i ,  i = 1, ..., b 
1 
b 

di(Cil 5 D 
i= 1 

c = (Cl,C2, . - ..Cb) 

di (Ci) = a rb i t r a ry  cost-capacity 
function fo r  arc  i 

n be carr ied out f i r s t  on C ,  keeping f f ixed,  
-, 

*The p o s s i b i l i t y  of  f o m Z a t i n g  the routing problem as a m u l t i -  
commodity flow problem was already recognized by Frank and Chou 
i n  [241 .  A n  in teres t ing  l inear programming approach i s  pre- 
sented there.  
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I f  the cost-capacity functions a re  l i nea r  ( i .e . ,  
di(Ci) = d.C.) , then the  minimization over C 
formed by the method of Lagrange mult ipl iers  
following optimum capaci t ies  a s  functions of 

1 1  

D e 
d, 

ci = f i  + - 
I 

rn 
1 1  

b 

j=1 

can eas i ly  be per- 

and we  get  the 
the flows 111: 

(2.4) 

where 
b 

D e = D -  
i= 1 

By introducing Equation (2.4) i n to  the expression of T(C,F) we 
have: 

Since 

b 

and 

D - > 1 diCi 
i=l 

fo r  (iii) 

b b 
1 diCi 2 1 difi for (ii) 

i=l i=l 
then 

b 
D - > 1 difi 

i= 1 
and 

I t  is  easy t o  see from Equation (2 .4 )  t ha t  ( iv )  implies a l so  
(ii) and (iii) ; hence both (ii) and (iii) can be replaced by 
( iv)  . 

By introducing Equation (2.5) i n to  Problem B' and using 
r e s u l t  ( i v ) ,  we obtain: 
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ProbZem B: "Routing and capaci t ies  assignment, l i n e a r  
co s t-capaci t y  function" 

Topology, requirement matrix R, number of 
do l l a r s  D 

Given: 

T(f )  = 
a 

Minimize : 
YDe over ,f 

Constraints: (i) f m.c. flow 
(ii) D > 0 e -  

Again the problem i s  reduced t o  an optimal flow problem of the  
standard multicomodity form. The additional constraint  i s  now 
a cost  constraint .  
Problem B: 

L e t  FB be the  s e t  of feas ib le  flows f o r  

b 
1 d . f .  > 0) 

i=l 
F, = F n { f  ID - 

1 1 -  

Clearly fB is  convex. 

important observation: 

Observation: 

The inspection of Problems A and B motivates the following 

I n  both Problems A and B ,  the performance T(g) goes t o  
whenever f approaches t h e  boundaries defined by the ad- 
d i t i ona l  cons t ra in ts  ( i .e. ,  when any channel becomes 
saturated i n  A, o r  when the excess do l l a r s  D reduce t o  
zero i n  B ) .  

e 

Using mathematical programming terminology, the performance 
T(f )  incorporates the addi t ional  constraints  a s  penazty fUnCtiOnS. 
From a prac t ica l  point of view, such a property i s  very important: 
it guarantees the f e a s i b i l i t y  of the  solut ion (with respect to 
the  additional constraints)  during the  application of usua l  non- 
l i nea r  minimization techniques, provided a feas ib le  s t a r t i ng  flow 
is  found. 

additional constraints  a re  s a t i s f i e d  with equality,  usually some 
saturat ion occurs, the queues a t  nodes grow large and the delay 
T increases rapidly. 

A s  a consequence of t he  above observation, i f  we assume 
that a feas ib le  s t a r t i n g  solut ion can be found,* w e  can disregard 

The property i s  qu i t e  general f o r  S/F networks: when the 

"Techniques for  finding feasible  starting soZutions m e  shown i n  
the appZications section. 
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t h e  add i t iona l  c o n s t r a i n t s  and approach Problems A and B as 
unconstrained m.c. flow problems. Problems A and B w i l l  be 
inves t iga ted  f u r t h e r  i n  later sec t ions .  

3 .  THE FD METHOD AS AN APPROACH TO THE SOLUTION OF 
NON-LINEAR M.C. FLOW PROBLEMS 

In  order  t o  p lace  t h e  Flow Deviation (FD) method i n  t h e  
proper perspec t ive  i n  r e l a t i o n  t o  t h e  e x i s t i n g  methods, it i s  
convenient t o  c l a s s i f y  the  var ious  m.c. flow problems i n t o  
ca tegor ies ;  f o r  each category, t h e  so lu t ion  techniques ava i l -  
a b l e  i n  the  l i t e r a t u r e  are reviewed and t h e  cont r ibu t ion  of 
t h e  FD method i s  discussed.  

a )  Unconstrained M.C. FZow ProbZems 
a.1) Linear performance. The l i n e a r  min c o s t  flow problem with 
no cons t r a in t s  on capac i ty  has t h e  wel l  known s h o r t e s t  rou te  
so lu t ion  (where the  a r c  length  i s  equivalent  t o  the  l i n e a r  c o s t  
of t he  a rc )  19,121. Very e f f i c i e n t  techniques a r e  ava i l ab le  f o r  
t h e  evaluat ion of a l l  s h o r t e s t  rou te s  on a graph and f o r  t h e  
rout ing of t h e  commodities along such rou te s  [9,161; t he re fo re  
it appears convenient t o  reduce complicated flow problems ( i . e . ,  
non-linear, or  constrained)  t o  t h e  l i n e a r ,  unconstrained form, 
which can be solved e f f i c i e n t l y .  

a.2)  Non-linear performance. The most n a t u r a l  th ing  t o  do is  
t o  l i n e a r i z e  the problem. Problems which a r e  separable* and 
convex can be l i nea r i zed  by approximating the  convex func t ions  
w i t h  piecewise l i n e a r  func t ions  and by introducing one supple- 
mentary va r i ab le  and one c o n s t r a i n t  equation f o r  each l i nea r i zed  
segment [11,15,241. This method has two se r ious  drawbacks: 
f i r s t ,  it can be appl ied only t o  separable  and convex problems; 
secondly, t he  number of va r i ab le s  and c o n s t r a i n t s  becomes pro- 
h i b i t i v e l y  l a r g e  f o r  l a r g e  networks. 

Another method, which app l i e s  t o  d i f f e r e n t i a b l e  problems, 
cons i s t s  of approximating the  performance funct ion with t h e  
tangent hyperplane, which i s  expressed i n  terms of t h e  p a r t i a l  
de r iva t ives  (aP/afi) .  The min c o s t  so lu t ion  of t he  l i nea r i zed  

problem i s  the  s h o r t e s t  rou te  flow, where the  length  of a r c  i 
i s  defined a s  aP/af . A s  it w i l l  be shown la te r ,  such s h o r t e s t  

rou te  flow represents  t h e  d i r e c t i o n  of t h e  steepest  descent flow 
deviat ion.  

i 

*A separable m.c .  f l o w  problem has the form: 
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The above idea is the essence of the FD method, which con- 
sists of repeated evaluations of steepest descent directions and 
of one variable minimizations along such directions; the method 
(described in Section 5 )  is conceptually very similar to the 
gradient method applied to non-linear minimization problems. If 
the problem is differentiable, the F D  method is clearly superior 
to the supplementary variables method mentioned before: it does 
not add new variables and constraints, and can be applied to non- 
convex, non-separable cases. 

partial derivatives) for the solution of non-linear problems is 
not new: using such techniques, Dafermos [17] solved various 
traffic problems, formulated as unconstrained, convex m.c. flow 
problems, and Yaged [181 solved a min cost capacity assignment 
for a communications network, which was formulated as an uncon- 
strained, concave m.c. flow problem. 

solution and proposed an algorithm for finding the optimal rout- 
ing in the convex case; the algorithm, however, is impractical 
for large nets, as it requires the bookkeeping of all paths for 
all commodities [17]. Yaged's results, on the other hand, are 
very restricted: they apply only to a separable, concave prob- 
lem 1181. 

In this paper, we attempt a more general, systematic in- 
vestigation of the method; we introduce the main results in a 
more straightforward way and in a simpler formulation than in 
[171. We indicate an algorithm which is applicable to non- 
separable problems and which has been efficiently applied to 
large nets. 

In fact, the idea of using shortest routes (computed with 

Dafermos stated the conditions for the optimality of the 

b )  Constrained M.C. Flow Problems 
b. 1) Linear performance, linear constraints. The classical, 
and most efficient, approach is the Dantzig-Wolfe decomposition 
[13,141, which reduces the solution of the main problem to the 
repeated solution of a Master Problem and a Subproblem. The 
Master is a linear program containing the additional constraints, 
and the Subproblem, which generates new columns to introduce 
into the Master, is an unconstrained linear min cost flow prob- 
lem. 

b. 2 )  Non- linear performance, non- Zinear constraints. The 
general theory of non-linear problems with non-linear constraints 
is very hard. The special case of convex performance and concave 
non-negativity constraints, however, can be attacked efficiently 
with the Dantzig-Wolfe decomposition for convex programs [ll]; 
the Master Problem is a linear program, and the column generating 
Subproblem is an unconstrained convex min cost flow problem. 
Here is another important area of application for the FD method. 
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We showed that the two design problems considered in the 
paper can be regarded as unconstrained m.c. flow problems; 
therefore, in the sequel, unless otherwise specified, we refer 
to unconstrained problems. 

4. STATIONARITY CONDITIONS 

Let us assume that p(f) is continuous with its first par- 
tial derivatives. 
conditions for f to be stationary.* 

The most general perturbation (which we define as f z O W  
deviat ion)  around f can be obtained as a convex combination of 
f with any m.c. flow x. 
is expressed as: 

We want-to establish necessary and sufficient 

The result of such flow deviation, f', 

f' = 

v ~ f , O < X < l  

(1 - h ) f  4- xv = f + X(y - $1 
N N - .  

where 

- -  
If X -+ 0, the flow deviation is in f in i tes imal .  
we have : 

For X = bh << 1, 

b 

where 

From Equation (4.1) and from the definition of stationarity, f 
is stationary if: 

b 

.., 

We can also produce infinitesimal perturbations that involve 
only one of the commodities; f must be stationary with respect 
to any one of them separately. 
if, for all (i,j) commodities: 

It follows that f .., is stationary 

*f i s  defined as stationary i f ,  f o r  any in f in i tes imal  perturba- 
t i o n  Sf (such t h a t  f + Sf i s  a lso ,  m.c. flow) ue have 

.., - 
P ( f  -. + sf) - 2 P ( f )  - 

A locaZ minimum i s  aZways stationary; the opposite, however, 
is not true.  
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where F ( i j )  i s  t h e  set  of t h e  f e a s i b l e  ( i , j )  commodity flows. 
I n  f a c t ,  Equations (4.2) and (4.3) are equivalent ,  as w i l l  be 
seen from t h e  subsequent der iva t ions .  Condition (4.2) can be 
r ewr i t t en  as: 

b b 
min 1 R v > 1 R k f k  
VEF k = l  k=l k k -  

But, as f E F,  Equation (4.4) becomes: 

S imi l a r ly ,  Equation (4.3) becomes: 

(4.4) 

(4.5) 

(4.6) 

Condition (4.5)"  is  easy t o  check: t h e  r i g h t  hand s i d e  can be 
d i r e c t l y  evaluated,  and t h e  l e f t  hand s i d e  r equ i r e s  the  compu- 
t a t i o n  of  t he  s h o r t e s t  rou te  flow under t h e  metr ic  {Rk}. 

I f  we r ep resen t  t he  m.c. f l o w  as a c o l l e c t i o n  of weighted 
rou te s  ( see  Sec t ion  11, Equation (4.6) becomes: 

N P  
min 1 ekrij = 1 1 nk(olmrij) (4.7) 
IT ' k m '  m = l  k m  m 

where 

'TT' i s  any ( i , j )  rou te  
IT m = 1, . . . , N P ,  are t h e  (i, j )  r o u t e s  used by commodity ( i , j )  

a m = 1, ..., N P ,  are t h e  assoc ia ted  weights 

N P  

m' 

m' 
is  t h e  t o t a l  number of rou te s  used by commodity ( i , j )  

A 
L e t  R(T) = 1 R k ;  Equation (4.7) becomes: 

k m  

*A di f ferent  derivation of Equation ( 4 . 5 )  i s  given i n  1191. 



THE FLOW DEVIATION METHOD 109 

NP 

m = l  
Recall ing t h a t  ci > 0 ,  vm, and 1 ci = 1, we ob ta in ,  f o r  a l l  m m 

commodities ( i , j )  : 

(4.9) 

where T '  is  any ( i , j )  route .  

l ibr ium condi t ion w a s  mentioned by Wardrop 1201. I n  f a c t ,  t he  
condi t ion i s  very i n t u i t i v e :  
rou tes  must have the  same marginal "gain,"  whereas the  zero- 
weight rou te s  must be less (o r ,  a t  m o s t ,  equally) convenient 
than t h e  weighted ones. For an immediate i n t e r p r e t a t i o n  of 
Equation (4.91, suppose the re  are t w o  pa ths ,  71 

wi th  non-zero weight, which do no t  s a t i s f y  Equation (4.91, i .e. ,  
R  IT^) > R (rrq),  say. 

( i , j )  from IT t o  IT produces a v a r i a t i o n  6P < 0; t he re fo re ,  t he  
P 9 

i n i t i a l  flow configurat ion was not  s ta t ionary .  

than t e s t  (4.9) , as  (4.5) only r equ i r e s  t h e  knowledge of t h e  
global  flow, while (4.9) r equ i r e s  t h e  knowledge of all t h e  pa ths  

Condition (4.9) i s  s t a t e d  also i n  [171; a similar equi- 

it states t h a t  a l l  non-zero weight 

and 2 both P 

An i n f i n i t e s i m a l  devia t ion  of commodity 

Notice t h a t  t e s t  (4.5) i s  computationally more convenient 

[I91 * 
The quest ion remains, whether t h e  s t a t iona ry  po in t  is  a 

l o c a l  (or g loba l )  minimum. I f  P ( _ f )  is  s t r i c t l y  convex, t h e  
s t a t iona ry  po in t ,  i f  it e x i s t s ,  i s  unique and i s  a global  min. 
I f  P ( f )  - i s  not  convex, f u r t h e r  considerat ions are required.  

5. DESCRIPTION OF THE FD METHOD 

The r e s u l t s  of t he  previous sec t ion  ind ica t e  t h a t ,  i f  f i s  
not  a s t a t i o n a r y  flow, then the  s h o r t e s t  rou te  flow (evaluated 
under t h e  metr ic  R = aP/af ) represents  t he  flow devia t ion  of 

steepest  decrease f o r  P. This f a c t  suggests  a method, which we 
c a l l  F l o w  Deviation method, €or  the  determination of s t a t iona ry  
so lu t ions  of unconstrained, non-linear, d i f f e r e n t i a b l e  flow prob- 
l e m s  P ( f ) .  

The FD can be regarded as an opera tor  (denoted by FD(y,h) 3) 
which maps an m.c. flow f i n t o  another m.c. flow f '  and i s  de- 
f ined  as follows: 

( 5 . 1 )  

k k 

A FD(y,X) 0 f = (1 - X ) f  - + Ay = f '  ." ... 
where 

y i s  a properly chosen m.c. flow E F 
X i s  t h e  s t e p  s i z e  (0  < X 5 1) - 
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Clearly FD is a map of F onto itself: 
FD(v,X): F + F 

Now, for each 2 E F ,  we want to determine a pair (v,X) in such 
a way that the repeated application of FD(v,A) 
any flow f 1 ,  produces a sequence { f  1 which converges to a 
stationary flow. If we can define such a FD(v,X), then we have 
an algorithm for the determination of stationary flows. 

continous, nondegenerate" and lower bounded, the following con- 
ditions? 
to a stationary flow: 

(starting from 
0 n 

It can be shown 1211 that, for a function P(f) which is 

are sufficient for the convergence of an FD-mapping 

(i) AP(f) > 0 v f E 

(ii) AP(~) o => stationary 

AP(f) = P ( f )  - P(FD @ f) " where 

Conditions (i) and (ii) require that the FD method be a true 
steepest descent method. 

Again in I211 it was shown that under reasonable assump- 
tions§ on P(i?), the following definition of FD(y,X) satisfies 
conditions (i) and (ii) : 

A 

A 
y = shortest route flow under metric R ll 

X = minimizer of P[ (1 - A) f + Xyl , 0 < X < 1 
k 

(5.2) - -  
*P(f) i s  defined t o  be nondegenerate i f ,  for any tuo d i s t inc t  
stationary fZms, say f7 and f2, we have: 

i(f5 4. # - P ( f ) .  
k 3 h i l a r ,  but more re s t r i c t i ve  conditions were stated by Dafermos 
i n  [ 1 7 ] .  

§The assumptions are: P(f) continuous and lower bounded; f i r s t  
partia 2 derivatives con%nuous and nonnegative; second partial  
derivatives < f a; P ( f )  nondegenerate. The nonnegativity of 
the f i r s t  partial  derivatives i s  a reasonable assumption, as, 
i n  general, the performance that we want t o  minimize i s  an in-  
creasing function o f  the flow i n  each arc. 

qflotice that,  by assumption, k k  = aP/afk 2 0; t h i s  fac t  excludes 
the  presence of negative cycles, which would have caused the 
fa i lure  of the shortest route computation (and therefore of the 
FD aZgorithm) . 
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Another valid definition of FD is the following. 

rp.  L shortest (i, j) path (under metric a,) 
Let: 

1 7  

71.9. L longest (i,j) path, with > 0 
1 7  

Define (i,j) - deviation as the deviation of commodity (i,j) 
which minimizes P ( f )  . Define the FD operator from T~~ to rij, 

as the composition of all (i,j) deviations: such a definition 
satisfies (i) and (ii) .* 

A general algorithm, based on the first definition of the 
FD operator, is outlined as follows: 

q 

0 1. Find a feasible starting flow ,f 
2 .  Let n = 0 

3 .  

where E and E '  are acceptable positive tolerances, stop. 

Otherwise, let n = n + 1 and go to 3. 

only stationary points of stable equilibrium are the local minima, 
so we can assume that the algorithm converges to local minima. 

to the global min (see Appendix I for a proof of convergence and 
an upper bound on the error). 

in order to find the global minimum. However, a systematic 
search is impossible, for large-size networks, so heuristic ap- 
proaches (like the repeated application of the FD algorithm to 
various initial flow configurations) have to be devised. In the 
case of P ( f )  concave (or quasi-concave [231)  , the local minima 
correspond to extreme points of f, i.e., to shortest route flows 
1231: this property, as shown later, greatly simplifies the FD 
algorithm and speeds up its convergence. 

In the following sections, the FD method is applied to the 
solution of Problems A and B. 

The algorithm converges to stationary points; however, the 

In the case of P ( _ f )  strictly convex, the algorithm converges 

For P(g) non-convex, one should explore all local minima, 

*Such an FD operator i s  essent ia l ly  the "equiZibration operator" 

+Such a t e s t  i s  obtained directZy from the s ta t ionar i ty  condi- 
defined by Dafermos 1171. 

t i o n  (3.5). 
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6. THE ROUTING ASSIGNMENT 

Let us consider Problem A in Section 2. The performance 
T(f) (see Equation (2.3)) is strictly convex (separable sum of 
strictly convex functions), and the feasible set F 
polyhedron. Therefore, if the problem is feasible, there is a 
unique stationary point, which is the global minimum. The ad- 
ditional constraints are included in T ( g )  as penalties; there- 

fore, if we can find a feasible starting flow f E FA, Problem 
A can be regarded as an unconstrained m.c. flow problem and 
solved with the FD method. 

Let us check if T(f) satisfies the conditions for the con- 
vergence (see Section 5 ) .  The first and second partial deriva- 
tives are: 

is a convex 
A 

0 

a 2T 
afiaf 

j 

for i # j 
2ci 

3 (Ci - fi) 
(6.2) 

for i = j 

From Equation (2.3) , the optimal solution g*, if it exists (i-e. , 
if the problem is feasible), satisfies the capacity constraints 
as strict inequalities (f* < Ci Ui). 
E > 0 s.t.: 

Therefore, we can find an 

The application of the FD method can be restricted to F i C  FA; 
for f E FA, the sufficient conditions on the first two deriva- 
tives of P(f) (as from Section 5) are satisfied; therefore the 
F D  algorithm converges to the global minimum. 

0 

able. One of' them was described in [19]. Another method (ap- 
plied below) consists of picking any f E F, and then reducing 
the flows in all arcs by a scaling fakor RE, until a feasible 

flow go = RE-? E F 
ment matrix R = REOR. 

In order to find a flow E FA, several methods are avail- 

0 is obtained; ,f satisfies a reduced require- A 
The F D  method is applied using ,fo as 

0 
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starting flow and R as starting requirement; after each FD 

iteration, the value of RE: is increased up to a level very close 
to saturation. The search for a feasible flow terminates when 
one of the two following cases occurs: either RE > 1, and a 
feasible flow is found; or the network is saturatez, T(f) is 
minimized and RE < 1. In the latter case the problem is in- 
feasible and we are finished. 

consists of two phases, Phase 1 and Phase 2. In Phase 1 a 

feasible flow f is found (if it exists), or the problem is de- 
clared infeasible. In Phase 2 the optimal routing is obtained. 
The algorithm is outlined as follows: 

Phase I :  

0 .  

0 

The FD algorithm for the solution of the routing problem 

0 

0 With REo = 1, let f be the shortest route flow computed at - 
f = 0, i.e. with metric R =h [aT/afkl = l/Y(l/Ck + Pi’ .* 

k fk’0 Let n = 0. 

1. Let an = m a  (z). 
k 

. .  

If an/=$ 1, let fo = fn/REn and go to Phase 2. 

let 

Otherwise, 

= REn(l - E (1 - an) 1 /a,, where E is a proper 
tolerance, 0 < E < 1, 

n+l Let g = fn(RE:n+l/mn) - .+ GO to 2. 

n+l n+l 
2. Let f = FD 0 g 

3 .  If n = 0, go to 5. 
where FD is defiEed as in Equation (5.2). 

“The shortest  route T~~ i s  therefore the route for  which 
I 1 

ksnii 
mission delay per b i t  on channel k and p i  i s  the propagation 
delay. 
(f = 0). So, as we expect, f o r  f -+ 0, the  shortest  route 
7~ 

( p k  + l / ck )  i s  m i n i m .  Notice t h a t  I / c k  i s  the trans- 

No queueing delay is considered as the t r a f f i c  is zero 

k k 
minimizes the sum of transmission + propagation delay. ij 

fgn+’ i s  a feas ib le  m.c. flow with requirement REn+l. 
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where 8 and 6 are proper positive tolerances, and v is the 
n+l shortest route flow computed at g , stop: the problem is 

infeasible within tolerances 8 s d  6. Otherwise, go to 5. 
5. Let n = n + 1 and go to 1. 
Phase 2: 
0. Let n = 0. 

1. fn+l = FD @ fn - 
n 

2. If 11 Rk(vk - fk)  1 < 8, where 8 is a proper positive tol- 

n erance, stop: ,f is optimal within a tolerance 8. 
Otherwise, let n = n + 1 and go to 1. 

The algorithm, in the form described above, provides only 
the optimum global flow f .  If complete information about the 
routes taken by each commodity is required, a simple updating 
of routing tables at each FD iteration allows one to recover it 
at the end of the algorithm (see [191). 

7. NON-BIFURCATED ROUTING FOR LARGE AND BALANCED NETS 

An m.c. flow is defined to be non-bifurcated if each com- 
modity flows along one route only. Some applications require 
a non-bifurcated routing assignment; in some other applications 
the non-bifurcated solution is a very good approximation to the 
optimum bifurcated one, and is obtained with considerable saving 
in the amount of computation (see below). The above reasons 
motivate an investigation of the non-bifurcated routing assign- 
ment. 

duces the set of feasible m.c. flows to a discrete set: the 
number of elements in the set is equal to the number of all 
possible combinations of IT paths , i , j . Continuous tech- 

niques, like the FD method, cannot in general be used; discrete 
techniques, on the other hand, are very involved and computa- 
tionally prohibitive already for networks of medium size (on 
the order of ten nodes). It is of interest to devise, therefore, 
efficient sub-optimum techniques. We will show that, in the 
important case of "large and balanced networks," a modification 
of the FD method can be successfully applied. 

The introduction of the "non-bifurcation" constraint re- 

ij 
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A network is said to be large if it has a large number of 
nodes;'it is said to be balanced if the elements r of the re- 

quirement matrix R are not highly diversified one from the other. 
For a more precise definition of "balanced," let r: 

ij 

l r  ij (n - l)n i j  
A 1 r =  

be the average requirement per pair of nodes and let m: 

m = max [rij/rl A 

(ij) 
be the ratio between the max and the average requirement." No- 
tice that m - > 1 and that m = 1 corresponds to a uniform require- 
ment matrix. A network is said to be balanced if m is close to 
1. 

balanced net." Let: 
We now combine these ideas into 

A K m  n =  
(n - 1);' 

the notion of "large and 

(7.1) 

A where: K = b/n, the average arc to node density of the graph. 

5' ( 1 rijpij)/l r i j' where p' ij is the length of the 
ij ij 

a shortest (i,j) path (length of a path = number of 
arcs in the path); 5' is therefore the average 
path length, when all commodities are routed along 
the shortest paths. 

A network is defined large and balanced if q << 1. 
motivate such a definition, let us consider, for an arbitrary 
m.c. flow f, the ratio of the total flow f in arc k, versus the 

contribution f 

ate the average of this ratio, taken over all arcs: 

In order to 

" k 
given by any commodity (i,j). Let us evalu- (ij) 

k 

*Many other appropriate def ini t ions of m are possible, for  ex- 

ample m' = [lb - >rr'2 , i n  which case m' = 0 corresponds 
t o  the uniform t r a f f i c  requirement. 
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It was shown by Kleinrock [l] that :  

b 

where: ( :j rijpij)/ijrij, and Pij i s  the  number Of in 
- 

( i , j )  route, r e l a t ive  t o  the  routing assignment under considera- 
t ion;  f, i s  therefore the  average path length.* 

Equation (7.2) becomes: 

From (7.3) the following property holds: 

Property ( 7 . 1 ) :  In a large and baZanced net,  on the average, 
the contribution of one single commodity i n  any arc can be con- 
sidered infinitesimal,  as compared t o  the totaZ flow in that 
arc 

I n  order t o  show how the FD method applies t o  the non- 
bifurcated solution of la rge  and balanced ne ts ,  l e t  us consider 
a new version of flow deviation, defined as the  composition of 
deviations involving only one commodity a t  a t i m e .  Suppose 
t h a t  the  flow f i s  non-bifurcated; t h a t  commodity ( i , j )  flows 
on IT - and t h a t  IT '  i s  the  shor tes t  ( i , j )  route,  under the  i j '  i j  
usual m e t r i c  {Rk}. 
X * r i j ,  (0  - -  < X < l ) ,  of ( i , j )  commodity from IT 

t h a t  t he  performance T(X)  : 

The F D  method deviates a proper amount 

t o  rij, such i j  

(7.4) A 
T(X) = T ( _ f ( l  - A )  + YX) 
where: f contains 'i j 

i j  y contains T' 

i s  minimized. W e  can rewrite Equation (7.4) a s  follows: 

*Notice that depends on the particuZm routing assignment, 
whiZe F '  depends on requirement matrix and topoZogy only; aZso 
notice that fi - > f ; ' .  
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where O( ) contains the terms of order higher than 1. Due to 
Property (7.11, the terms (v - f 1 can be considered as in- k k  
finitesimal, and the term O( ) is infinitesimal of order higher 
than 1. Therefore, as long as 0 ,  defined as: 

b 
A 

0 = 1 R k h k  - fk)  
k=l  

is sufficiently negative, the term O( ) can be disregarded and 
the minimizer of T(h) in Equation (7.5) is at the boundary 

('min 
characteristic of the flow. 
the higher order terms become important and it might happen 
that Xmin < 1; however, 0 = 0 implies that f is very close to 
optimum (see Appendix for bounds on the error). Therefore, the 
FD method provides non-bifurcated solutions which are very good 
approximations to the optimum bifurcated solution, and, as a 
consequence, very good approximations also to the optimum non- 
bifurcated solution. 

Non-Bifurcated FD AZgorithm 
Let go be a starting feasible non-bifurcated flow. * 
Let n = 0. 

1. 

= 1); hence the FD method preserves the non-bifurcated 

On the other hand, if 0 vanishes, 

The non-bifurcated FD algorithm is next introduced: 

n Compute SR(g 1 ,  defined as the set of shortest routes under 
metric {Rk}. 

2. Let 9 = f". 

For each commodity (i,j) : 

2.a Let y be the flow configuration obtained from g by 
deviating commodity (i,j) to the shortest route T '  

given by SR(_fn). 
If [v feasible and T(y) < T ( 2 ) I ,  go to 2.c. 
wise, go to 2.d. 

ff ail commodities (i,j) have been processed, go to 3 
Otherwise, go to 2.a. 

ij 

Other- 2.b 

2.c g = v 
2.d 

3. If 2 = fn, stop. 

bifurcated solution any further. atherwise, let f - 9, 
n = n + 1 and go to 1. 

The FD method cannot improve the non- 
n+i - I 

- 

*Such a s tar t ing  fZow can be found with a Phase 1 procedure, 
sirni2a.r t o  tha t  described i n  Section 6. 
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The algorithm converges in a finite number of steps, as there 
are only a finite number of non-bifurcated flows, and repeti- 
tions of the same flow are excluded by the stopping condition. 

net is presented in the application section. 
An application of the algorithm to a large and balanced 

8. THE ROUTING AND CAPACITIES ASSIGNMENT 

It was shown in Section 2, that FB, the feasible set for 

Problem B, is a convex polyhedron; it was also shown that the 
additional constraint is included in the performance T(g) as 
penalty function, so that Problem B can be regarded as an un- 
constrained m.c. flow problem, 

Let us now investigate the properties of T(_f). Recall 
(see Equation 2.5) : 

T ( f )  = 

Kleinrock, in [ll, considered this case and also dealt exten- 
sively with a simplified version of Equation (8.1)* He showed 

that, whenever two routes, say .rrl with the same num- 

ber of intermediate arcs, are available for commodity (i,-j), 
then T ( Z )  is minimized when the entire commodity is routed on 
one of the two routes only. Such a result, obtained under re- 
strictive assumptions, suggests the conjecture that the optimal 
flow be, in general, non-bifurcated. In fact, further research 
has been done 1211, [22] , and it can be shown that T(_f )  in 
in Equation (8.1) is quasi-concave on F i.e., given any two 

feasible flows f and f 1231: 

and n2 ij i j' 

B' 1 2 

where: 0 < X < 1. - -  
More generally, T ( f )  can be shown to be quasi-concave for all 
"routing and capacities assignment'' problems with concave cost- 
capacity functions [211; the linear case is therefore a special 
case. 

*Essentially, di = 1 and p '  = 0, vi. i 



THE FLOW DEVIATION METHOD 119 

As a consequence of such a property, the local minima are 
at extreme points of f B' 
route flows (see Section 3 1 ,  which are a subclass of the class 
of non-bifurcated flows. 

The FD method, when applied to Problem B, can be greatly 
simplified: the step size X is always equal to 1 (if we find 
a downhill direction, we go all the way down, due to the quasi- 
concavity of T(A)), and the flow patterns generated are com- 
pletely defined by just one (n x n) matrix, the shortest route 
matrix . 
to Problem B, is as follows: 

0. Suppose* f E fg; let n = 0. 

1. 

2. If (T(fn+l) > T(fn)), stop; f local minimum. Otherwise 

i.e., they correspond to shortest 

A schematic description of the FD algorithm, as applied 

0 

Let gn+l = FD 6 gn. 

let n = n + i an8 go to 1. 
n 

The convergence of the algorithm is guaranteed by the fact that 
there are only a finite number of shortest route flows, and repe- 

titions of the same flow are not possible, as T(f") is strictly 
decreasing. 

tation, have the following expression: 
The partial derivatives, used for the shortest route compu- 

> 0; negative loops cannot exist. Also notice Notice that - 
that: 

aT 
a f .  - 
1 

- m  aT lim - -  
f .+o a fi 
1 

which means that, whenever the flow (and therefore the capacity, 
from Equation (2 .4 ) )  of an arc is reduced to zero at the end of 

*The probZem of f i n d i n s  a feasible starting fZm is discussed 
l a t e r  in the section. 
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-- 
i 

Lengths ti 

assigned at r a n d o m  

v 

Fig. 2 Block diagram of t h e  F D  algorithm for Problem B. 

*This property suggests a method for  the design o f  the topology: 
we can s tar t  from a topoZogy which i s  highly eonnected, and 
eliminate arcs with the FD method, u n t i l  a suboptimal configura- 
t i on  i s  obtained 1211. 
U81. 

A similar approach i s  used by Yaged i n  
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The F D  method leads  t o  a l o c a l  minimum, which depends on 
t h e  choice of t h e  f e a s i b l e  s t a r t i n g  flow. I n  order  t o  f ind  
severa l  local minima, a mechanism t h a t  produces a large v a r i e t y  
of f e a s i b l e  flows is  required.  W e  propose the  following ran- 
domized procedure f o r  t h e  generat ion of f e a s i b l e  flows:* 

1. 

2. 

0 Assign i n i t i a l  equivalent  lengths  { k . )  t o  t he  a r c s  at random. 
Compute t h e  s h o r t e s t  rou te  flow f o  according t o  t h e  metr ic  

1 

.., 
0 I P i l '  

b 

i=l 

0 3. I f  D - 1 f . d .  > 0 ,  f i s  f e a s i b l e  and can be used t o  s ta r t  
1 1  

t he  FD algorithm. Otherwise f o  i s  r e j ec t ed .  

The i n i t i a l  random choice of  t h e  lengths  guarantees a cer- 
t a i n  randomness i n  the  s t a r t i n g  f e a s i b l e  flow, thus  providing a 
method f o r  f ind ing  severa l  l o c a l  minima. After  a convenient 
number of i t e r a t i o n s ,  t he  g loba l  minimum i s  chosen as the  mini- 
mum of the local minima. This provides a "suboptimal" so lu t ion .  

A block diagram of t h e  method i s  given i n  Figure 2 .  

SRI UTAH NCAR AWS CASE CMU MITRE 

( 1  LINCOLN ETAC 

HARVARD 

UCLA RAN0 AFWL BBN BURROUGHS 

Fig. 3 A 21-node AFGA topology. 

9. APPLICATIONS 

A s  an appl ica t ion  of t he  FD method, Problems A and B are 
solved f o r  t h e  ARPA Computer Network. The AFGA Computer Network 
i s  a S/F communication network connecting severa l  computer 

*Another procedure was proposed by Yaged 1181. 
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r =  
r = 1.187 [kbits./sec.l* for i # j 

The condition is satisfied. We can therefore apply both optimal 
and non-bifurcated FD algorithms and compare the results. 

sec., obtained after 80 shortest route computations, with an 

accuracy of 10 on T. The result of the non-bifurcated FD 
algorithm is: 

path computations. The algorithms were programmed in Fortran 
and run on an IBM 360/91; the execution time was 30 sec. for 

The result of the optimal FD algorithm is: Tmin = 0.2406 

-4 

= 0.2438 sec., obtained after 12 shortest *min 

*The t r a f f i c  requirement a t  saturation i s  r = 1.250 s a t  
[kb i t s . / sec .  I (see Figure 4 ) .  We chose r = 0.95 r = 1.287 

i n  order t o  have a feasibZe, but  d i f f i c u z t ,  requirement. 
s a t  
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the optimal algorithm and 4 sec. for the non-bifurcated one.* 
The error of the suboptimal non-bifurcated solution, with re- 
spect to the optimum, is less than 2 percent; the fact shows 
how powerful the non-bifurcated algorithm is for large and 
balanced nets, and suggests that a convenient modification of 
it could be useful for the solution of very large nets [211. 

400 

300 

- 
0 

; 200 - 
b- 

I oo 

- Cg .OPTIMAL ROUTING FOR 

- CI =OPTIMAL ROUTING FOR 
RE=O 

REa0.8 

RE=I.O 
C, =OPTIMAL ROUTING FOR - 

- 

I I 
I 1  I I I I I! I 1  0 

0 0.2 0.4 0.6 I .o 
RE 

RESATO RE 

Fig. 4 Average delay T versus normalized traffic RE, 
using various routing schemes. 

Figure 4 illustrates the application of the non-bifurcated 
algorithm. Recall that RE is the traffic level normalized to 
r = 1.187 kbits./sec. The traffic is first routed along the 
shortest routes computed for RE = 0; curve C plots the delay 

T versus RE, using such a routing scheme (which we refer to as 
RSo).  With No, the saturation level for the traffic is 

RESATo = -85 < 1; RE = 1 is infeasible, and therefore we are 

still in Phase 1. be the flow obtained by routing traf- 
fic level RE = .95 RESAT = .8, according to R S  and apply to 

f the FD algorithm; a new routing scheme RS is obtained, which 

improves T(RE1). Curve C corresponding to Rs saturates at 

0 0 

1 Let f 

1 0 0’ 1 
1 

1’ 1’ 

*We expect t o  be able t o  reduce considerably the  computation 
time by optimizing the code and by improving some hard working 
subroutines, l i k e  the shortest  route and flow assignment rou- 
t i n e s  [ 1 6 ] .  
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mSAT1 = 1.05 > 1; RE = 1 is feasible and Phase 2 is initiated, 

with m2 = 1. 

bifurcated routing scheme RS is found; curve C corresponding 

to Rs2 in Figure 4 ,  as the 

scale of T is not detailed enough to show differences in values. 
Notice that, as expected, the routing Rs gives the best results 

at low traffic levels; in fact, Rs is almost optimal up to 
RE = 0.5. 

9.2  ARPA Network: Routing and Capacities Assignment 

work is discrete: Table 1 contains the list of capacity options 
and corresponding costs considered in the present application 
[ 6 ] .  
cost-capacity curves have been approximated with continuous, 
piece-wise linear curves (see Figure 5). We do not discuss the 
details of the approximation, but merely mention that they must 
be concave.* The concavity of the cost-capacity curves implies 
that the local minima are shortest route flows (see Section 81. 
The FD method can, therefore, be applied in a form similar to 
the one presented in Section 8; a few modifications are required 
due to the non-linearity of the cost-capacity curves. 

At the end of Phase 2, the sub-optimal, non- 

2 2 
practically coincides with curve C 1’ 

0 

0 

The set of channel capacities available for the ARPA Net- 

In order to be able to apply the FD method, the discrete 

CHANNEL CAPACITIES AND CORRESPONDING 
COSTS USED IN THE OPTIMIZATION 

Capacity Termination Cost Line Cost 
[ kbi t s/sec I [$/month1 [ $/month/milel 

7.2 
19 .2  
50 
108 
230.4 

810 
850 
850 

2400 
1300 

.?5 
2.10 
4.20 
4.20 

21.00 

Table 1 

Note: The total cost per month of a channel is given by: 
total cost = termination cost + (line cost) x (length 
in miles). 

*Other concave approximations can be considered: see [61, 1181 
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C i  

d': staircase corresponding to discrete capacity levels. 
d" : piece-wise linear approximation 

Fig. 5 Cost-capacity curves for arc i. 

A schematic description of the algorithm follows here: 

0. Let D be the total dollar investment. 0 
0 

B Let f E F 
0 o *  Let C be the optimal capacities assignment €or fixed f . 

Let T ( f )  be as from Equation (8.11, using linear approxi- 0 
mations of the cost-capacity curves around C . 
Let n = 0. 

0 
- 

1. Let: 
n fn+' = shortest route flow computed at f 

n+ 1 
2 .  Let C be the optimal capacities assignment for fixed 

_fn+', and let T 

linear approximations of the cost-capacity curves around 

( f )  be as from Equation (8.1) , using n+l 

n + l  c -  
n+ 1 n 

3 .  If Tn+l(f - > Tn(snl), stop; is a local minimum. ( 
Otherwise, let n = n + 1 and go to 1. 

*The optima2 assignment of capacities,  given the fZms and the 
totaZ do I Zar investment, for concave cost-capacity functions,  
has been discussed by Kleinrock [61. 
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The r e s u l t  of t h e  above descr ibed algorithm i s  a loca l  
minimum f o r  the  continuous cost-capaci ty  problem. 
g e t  a so lu t ion  for t h e  d i s c r e t e  problem, t h e  c a p a c i t i e s  and 
flows given by the  algorithm are "adjusted" i n  t h e  following 
manner: i n  a l l  a r c s ,  t h e  capac i ty  i s  increased t o  t h e  upper 
value of d i s c r e t e  capac i ty  ava i l ab le  ( thus  increas ing  the  t o t a l  
investment t o  D > D o ) ;  t hen ,  t h e  rout ing  is optimized once again 

with the  FD rout ing  algorithm. 
The above descr ibed technique i s  c l e a r l y  suboptimal. W e  

cannot guarantee t h a t  t h e  so lu t ions  so found a r e  l o c a l  minima; 
i n  f a c t ,  it i s  not  even poss ib l e  t o  def ine a l o c a l  minimum i n  
a d i s c r e t e  problem. Other suboptimal techniques have been pro- 
posed [7,10,21]; however, t h e  opt imizat ion of a network with 
d i s c r e t e  c a p a c i t i e s  s t i l l  remains a formidable (and b a s i c a l l y  
unsolved) problem. * 

I n  order  t o  

140 

I20 

100 
U 

OI 
E - 

80 
I- 

60 

0 r =I005 (EITS/SEC x NODE P A I R )  
r =925 (EITWSEC x NODE PAIR)  

A r.848 (EITS/SEC x NODE PAIR)  
0 r.771 (EITS/SEC x NODE PAIR)  

DO=COST OF A L L  50 K BITS NET 

40 " ' * " " " "  
75 80 
D (K$/MONTH) DO 

Fig. 6 Delay T versus  c o s t  D of var ious  undominated capaci ty  
assignments f o r  d i f f e r e n t  t r a f f i c  l e v e l s .  

*The optimwn solut ion can be obtained, wi th  dynamic programming 
techniques, i n  the special case of a centralized network [ 3 0 ] .  
I n  f a c t ,  for such a case, the problem reduces t o  the optirna.2 
assignment of capacities only,  as  the flows are already deter- 
mined by the tree-structure topology. 
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The technique has been applied to the design of the ARPA 
Network. 

0 of uniform requirement r (see Figure 5) .  

was made equal to the cost of the proposed network with all 50 
kbit channels (Do = 71,000 $/month). In order to be able to 

compare the 50 kbit capacities assignment to the assignments 
found with the FD method, the minimum delay T, with all 50 kbit 
capacities (i.e., with total cost D = Do), was reported on the 

graph for each value of r (T was obtained from the curves in 
Figure 4). The delay T and the total cost D of the undominated* 
solutions are plotted in the graph of Figure 6. 

Four cases have been run, each with a different value 
The initial cost D 

10. CONCLUSION 

The FD method can be applied to any unconstrained m.c. 
flow problem when some reasonable assumptions on P(f) are satis- 
fied. It also can be applied to constrained flow pGoblems: 
particular to problems that include the constraints as penalties 
in P(f), or that have been decomposed with the Dantzig-Wolfe 
method. Local minima are in general attained; for convex prob- 
lems, the global minimum is found. 

The FD method seems to be an efficient tool for the design 
of S/F networks: for example, if we consider the optimal rout- 
ing problem, it can be shown [191 that the amount of computation 
per iteration required by the FD method is comparable to that 
of the heuristic techniques so far proposed 116,241.t A general 
statement, however, about the effectiveness of the FD method as 
compared to other methods would not be appropriate: many fac- 
tors, which depend on the specific application (like trade-off 
between precision and computational speed) should be considered 
in order to select the proper approach. 

in 

APPENDIX: CASE OF P (f) STRICTLY CONVEX 

If P ( f )  is strictly convex, a direct proof of convergence 
of the FD algorithm, defined in Section 5, is available and a 
lower bound can be established. 

*A soZution (Ti,Di) i s  said t o  be dominded by (T .,D .) if: 
3 3  

( D .  < D . )  and ( T .  
.I z .I T i )  

A soZution i s  undominated i f  it is-not dominated by any other 
so Zution. 

+The h ~ o  bottZenecks, common t o  both approaches, are the short- 
e s t  route computation and the f low assignment 1161. 
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Convergence 
We want to show that: 

n where f* is the global minimum of P(f) on F ,  and {f } is the 
sequence generated by recursive application of the FD operator 

on a given starting flow f . 
is monotonically non-increasing and lower bounded by P* 
therefore it must converge: 

0 The associated sequence {P (fn) } 

P(f*), 

l im P(fn) = P' - > P" 
w 

Also, recalling that: 
m 

P(fn) - PI = 1 Ap(fll) 
R=n 

where 

R A  L R R R+1 AP(f ) = P(f ) - P(FD 0 f ) = P(f ) - P(f ) 

and recalling that: 

AP(fR) - -  > OvR 
we have, from Equation (A. 2) : 

l im AP(fn) = 0 
w 

(A. 2) 

(A. 3) 

Suppose (A.l) is false; this implies, since P(f) is strictly 
convex, that PI > P". However, in such a case; we are able to 
establish a relation which contradicts Equation (A.3) as fol- 
lows * 

Let us first establish a lower bound on AP(f1. Let: - 
A P(A) = P[(1 - X)f + Xyl, 0 < x < 1 ... - -  

where: 
Taylor ' s expansion : 

y is the shortest route flow computed at f -  Using 
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where 6 i s  a proper value i n  the  i n t e r v a l  (0,A) as usual .  By 
assumption, t h e  second p a r t i a l  de r iva t ives  of P ( f )  a r e  upper 
bounded; t he re fo re ,  t he  second d i r e c t i o n a l  de r iva t ive  is a l s o  
upper bounded, and Equation (A.4 )  becomes: 

where 

(A. 5) 

2 2 *  M: upperbound on d P/dX . 
A f t e r  minimizing both s ides  of Equation (A.5) over A ,  and re- 

c a l l i n g  t h a t  min [P(A) - P ( 0 )  I = -AP(f) , we ge t :  A 

052M i f  -0/M < 1 

M/2 i f  -B/M > 1 I - 
A P ( f )  > - -  

Equation ( A . 6 )  can be r ewr i t t en  as follows: 

(A.6 )  

Inequal i ty  (A.6)  r epresents  a use fu l  lower bound on AP(f) . -. 
Consider now: 

A P O )  = P [ ( 1  - A):" + X . f * l  

where: 0 < X < 1 - -  
P(A) i s  s t r i c t l y  convex, t he re fo re  it l i e s  above i t s  tangent  
l i n e  a t  h = 0: 

where : 'k = [k]cn 
Lett ing A = 1 i n  (A.7) and r e c a l l i n g  from ( A . 2 )  t h a t  P ( f n )  - > P I :  

V o t i c e  tha t  M > 0 as P O )  is s t r i c t l y  convex. 



130 FRATTA, GERLA AND KLEINROCK 

n L e t  v be t h e  s h o r t e s t  rou te  flow computed a t  f ; w e  have, from 
EquaEion (A.8) : - 

b n P* - > P' + 1 !Lk(Vk - f k )  
k= 1 

From (A. 9) , using d e f i n i t i o n  (A. 5 )  ' , w e  have: 

P '  - P* / e l  
Introducing ( A . l O )  i n t o  (A.6) ' w e  ge t :  

* 2  (P' - P f 

(A. 10) 

The r .h .s .  of Equation ( A . l l )  i s  independent of n and s t r i c t l y  
p o s i t i v e ,  therefore :  

l i m  AP(fn) > 0 
n- 

(A. 1 2 )  

Equation ( A . 1 2 )  con t r ad ic t s  Equation (A.3). Therefore ( A . l )  is 
t rue .  

Lower Bound 
n 

By replacing f wi th  a gener ic  f E F i n  (A.71, and l e t t i n g  
X = 1, we g e t ,  a f t e r  a few s t eps :  

b 

k=l  
P( f*)  - > P ( f )  + 1 Rk(Vk  - fk) (A. 13) 

where: f* i s  t h e  g loba l  minimum 

y is  the  s h o r t e s t  rou te  
flow computed a t  - f 

From (A.13), lower and upper bounds on P ( f * )  are r e a d i l y  ava i l -  
ab le  : 

b 

k= 1 
P ( f )  - > P( f* )  - > P ( f 3  + 1 Rk(Vk - fk)  

b 
Notice t h a t  t h e  t e s t  f o r  op t imal i ty  based on 

(see  Sect ion 5) i s  very powerful i n  t h e  case of P ( f )  s t r i c t l y  
convex, as it provides an upper bound on the  optimal value 
e r ro r .  
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