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ABSTRACT

Conditions for a matrix to be totally unimodular, due to
Camion, are applied to extend and simplify proofs of other

characterizations of total unimodularity.
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A matrix is totally unimodular if every square submatrix has
determinant +1, -1, or 0. The concept of total unimodularity has
been investigated in relation to electrical networks as well as to
combinatorial mathematical programming problems. These matrices have
been studied extensively since the discovery of Hoffman and Kruskal
[13] who proved that an integral matrix A is totally unimodular if
and only if the extreme points of X*(A,b) = {x : Ax < b, x > 0} are
integral for all integer b. A much simpler proof of this character-
ization was given by Veinott and Dantzig (16]. For further contri-
butions in characterizing totally unimodular matrices the interested

reader is referred to (7,8,9,10,11,15].

One of the earliest results in this field is due to Camion (4]}
who characterized totally unimodular matrices in termg of Eulerian
matrices, (see([l]). The main purpose of our paper is €o indicate
and expose the great potential of Camion's result, which seems to
have been ignored in several newer works, by applying ft to extend
and refine theorems reported in a more recent work of Chandrasekaran
[5]. It is also demonstrated that Camion's characterization pro-
vides a short and more elementary proof for a recently derived
sufficient condition for total unimodularity [6].

We start with our derivation of the sufficient condition.



In a recent paper, Commoner [6] provided a sufficient condition
for a matrix to be totally unimodular. This condition {s based upon
a directed bipartite graph obtained from a {1,-1,0} - valued matrix by
associating a node with every row and column, and drawing an edge
between a row node and a column node if the entry in that row and
column is nonzero. The sign of the entry determines the orientation

of the edge.

We first introduce several definitions and a few results
of [4,5,6]. Let A be a matrix with entries equal to 1, -1
or 0. A submatrix B of A is said to be Eulerian if e’B = 0 (mod 2)
and Be = 0 (mod 2) where e is the summation vector (i.e. all its
entries equal to 1) of the appropriate dimension. The following

two characterizations are given in [4].

Theorem 1
A matrix A is totally unimodular if:and only if every square

Eulerian submatrix is singular.

Theorem 2
A matrix A is totally unimodular if and only if for every

(square) Eulerian submatrix B e ‘Be = 0 (mod 4).

Camion's proofs of the above theormes are based on the

following observation due to Gomory and reported in [4].



Theorem 3
If A is a {1,-1,0} - valued matrix which is not totally

unimodular, then A has a submatrix of determinant + 2.

Simple proofs of Gomory's result (due to Tamir and Truemper)
as well as its application in implying other characterizations will
appear in a survey paper currently in preparation [14].

To present Commoner's result we introduce the necessary concepts
from graph theory. A net is a finite directed bipartite graph G, such

that any two nodes are connected by at most one arc. An elementary

circuit C of the given graph is a connected subgraph all of whose
nodes have degree 2. (The degree of a node is the number of arcs
incident to the node.) A chord on an elementary circuit C is an
arc of G that connects two nodes of C but is not an arc of the sub-
graph C. An elementary circuit with no chord is called a minimal.
‘circuit. If T and J are the two parts (sets of nodes) of G

"(i.e. no two members of I(J) are connected by an arc), then de-
fine the incidence matrix A of the net G as follows.

For i€l and jeJ.define aij to be zero if i and j are not con-
nected, +1 if i and j are connected by an arc directed from i to j
(we use the notation (i,j?) and -1 if the direction is from j to 1
({(j,i)). The incidence matrix A is then defined by A = (aij)'
Notice that the assumption of a net that two nodes are cénnected
by at most one arc ensures that the correspondence between nets

and {1,-1,0} - valued matrices is well defined.



Let A be the given incidence matrix of net G. Given an ele-
mentary circuit C in the nét G we define the sign of C as follows.
Let I1 (Jl)’be the set of nodes of C contained in I(J).

Since G is bipartite |[I;]| = [J;| and each node i of I, is connected to

exactly two nodes of J1s k(i) and j(i). The sign of C, o¢(C), is then

defined (C) = n

('aij(i)'aik(i))‘ The elementary circuit is even
i€l

1
(odd) if o(C) is +1(-1).

We now introduce Commoner's sufficient condition for total

unimodularity.

Theorem 4

If each elementary circuit of a net {s even then the in-

cidence matrix of the net is totally unimodular.

Applying a result due to Camion [4], we give a simple and more

elementary proof of Theorem 4. The proof will be based on the

following lemma.

Lemma

Let A be the incidence matrix corresponding to a net all of
whose elementary circuits are minimal. Suppose fhat A §s not
totally unimodular and let B be a minimal square submatrix of A
which is not totally unimodular (i.e. each preoper submatrix of B
is totally unimodular). Then every column (row) of B contains exactly

two nonzero entries, and B is the incidence matrix of an elementary

circuit.



Proof:

The minimality of B and Theorem 2 imply that B is an Eulerian
submatrix. Consider the bipaftite subgraph Gy having B as its incidence
matrix, then the degree of each node of G1 is even (0 mod 2). We
also note that the minimality of B ensures that Gy is connected, since
otherwise we would have the contradiction 1< |detB}= |det By | | det B, <1
where B, and B, are proper submatrices of B. Thus the degree of each
node of G; is even and at least two. Therefore (see [2,p.229]) there exists
an Eulerian tour on Gl' It is easily seen that the tour can be
decomposed into k > 1 elementary circuits. The assumption that each
elementary circuit is minimal implies that the incidence matrix of
each elementary circuit of the tour is a submatrix of B. Hence B can
be partitioned into k submatrices, Bl""’Bk’ of ‘the appropriate dimensions,
where any two matrices can overlap only on zero elements of B.

Suppose now that there existed a column (row) of B with more than
2 nonzero entries. . This would imply that G1 contains a aode with.
degree greater than two. Therefore the Eulerian tour would consist
of more than one circuit and k > 2. .

Observe first that e ’Be = e’Ble + ... + e’Bke, where e is a
summation vector of the apprbpriate dimension. Next note that from
Theorem 2 e’Bie =0 (mod 4) i=1l,..., k, since Bl,...,Bk are proper
submatrices of B. Thus e’Be = 0 (mod 4) which contradicts the
minimality of B.

We can now prove Theorem 4.

Suppose that each elementary circuit of a net is even. It
is then easily verified that each elementary circuit is minimal (see
Commoner [6]). If the incidence matrix A isn't totally unimodular,

there exists a minimal submatrix B which is not totally unimodular.
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From the Lemma each column (row) of B contains exactly two nonzero
entries. Further B is the incidence matrix of a minimal circuit. Hence
by relabeling the nodes we assume without loss of generality (sincé

|det B|] is not changed by permuting the rows and columns of B) that

amual -u
a 0. . . .. Obn
0
B = .
0
0 . 0 b__1 3,
where as» bi are equal to +1 or ~1. Therefore det B = may + (_1)n+1 ﬂbi
= may; - n(-by) « maj (-bj)-1 Thus |det B} > 1 {mplies that
: m(~b,)
i

nai(-bi) = -1; a ceontradiction to the evenness of the minimal circuit
corresponding to B.

Several comments are in order. First note that the sufficient
conditions of Theorem 4 are not necessary (not even for (0,1} matrices).

This is demonstrated by the following tdtally unimodular indicence matrix

1 1 1
A = 1 1 0
0 1 1

b

that corresponds to a mnet, containing an odd elementary circuit.
It is shown in [6 ] that evenness of minimal circuits is required for
total unimodularity. But the latter condition is not in general

sufficient as shown by the incidence matrix

1 01 1 1

1
1
1 1
1
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In fact, when dealing with {0,l}matrices, evenness of minimal circuits
has been shown to be equivalent to the matrix being balanced. Note
that the latter property is weaker than total unimodularity. In
view of Hoffman and Kruskal [13] characterization of totally uni=-
modular matrices, balanced matrices, first introduced by Berge [3],
are those myn {0,1} matrices A that satisfy the following.

For every {0,1} vector w in R™ and for every {0,1} vector b

m

in R® the linear program min{ zy

31y A>b, 0 <y < w} provides
i=1

an integral solution.

Finally we mention a comment of a referee that Theorem 4

had been communicated to him by Edmonds in 1961.

.We’next turn to a necessary and sufficient condition for
total'unimodularity given by Commoner [6,(2.5),(A.9)]. To our knowledge
this characterization (given as Theorem 55, was first proved by
A. Ghouila-Houri [7]. (Also reported in [2,p.468j). For the séke

of completeness we provide a simple proof which is based on Theorem 1.

Theorem 5
An mxn matrix A = (aij) is totally unimodular if and only if each
set J < {1,2,...,n} can be divided into two disjoint sets J, and I such
that
| 2 a,. - Z a,.| <1 foralll<i <m,
jey, M jeg,
Proof
An equivalent statement of the theorem is the following:
A is totally unimodular if and only if for each submatrix B
there exists a vector ) (of the appropriate dimension) all of whose

components equal to +1 and all the components of B\ are 0, +1 or -1,



The condition is sufficient: By Theorem 1 it is sufficient to show

that‘every square Eulérian submatrix of A is singular. Let B = (bij)’
1€I, j€J be Eulerian. There exists two disjoint sets J and JZ such

that
t; =X b,, = Z bij is either 0, +1 or -1 for all icI.

The singularity of B will follow if we show that £, = 0 for all ie€l.
Suppose on the contrary that t;, = +1 for some i€l, then
= ., = Zb,.+2ZTb,. =414+ 2 b,
?bij ?lbl_'] AJ2 ij 3, ij - 3, ij

f.e. = bij is odd, contrary to the supposition that B is Eulerian.

The necessity is proved in two steps.

(1) Let B be such that Be = 24, where e is the summation wvector
and ¢ is an integral vector. Using the total unimodularity of
B, there existé an integral vector 0 < A < e such that By=a, [13,15].
Clearly the vector A = e - 23 has all}its components equal to
+1 and B) = 0.
(2) Let B be a (pxtr) submatrix of A, Define
a pyp matrix B as follows. The ith column of B is e, the ith
unit vector, if (Be)i = 1 (mod 2) and the zero vector otherwise .
[B,B] is totally unimodular (since B is) and Be + Be = 0 (mod 2).
Hence, from (1) there exists a (xl,xz), all of whose components
equal to +1 and Bxl + §12 = 0. The proof is now complete since

all the components of B, are equal to 0, +1 or -1.

2
In the next section we apply Theorems 1, 2 to extend and refine
the following characterization of totally unimodular matrices due to

Chandrasekaran [5].



Theorem 6

A matrix A is totally unimodular if and only if for every non-
singular submatrix B = (bij) i,j=1,...,n the g.c.d. of ? ijlj

= a.b

jP250 o z Kjbnj is 1 for any Kj = 0, +1, but not all zero.
J

J

The next result proves that it is sufficient to consider the

case where xj=l, for all j, in the above theorem.

Theorem 7
Suppose that for every nonsingular submatrix B = (bij) of A

=b ,..., is 1. Then A is totally unimodular.

.c.d., of = bq.
the g.c z D1j 13 %oy

J

Proof:

Assume that A isn't totally unimodular. Then by Theorem 1 there

exists an Eulerian submatrix B and det B # 0. We observe that

Be = 0 (mod 2) and det B # O imply that the g.c.d. of £ blj’ = sz,...
3 j

is at least 2 - a contradiction to the theorem assumption.

While Theorem 7vstrengthens the sufficiency condition of
the characterization of Theorem 6, the next result, dealing with
unimodular matrices, refines the necesséry condition of that
theorem. (Note that a square matrix is unimodular if its determi-

nant is equal to + 1.)
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Theorem 8
Let B be a square integer matrix. Then B is unimodular if
and only if for each integer vector A the g.c.d., of the elements

of BA is equal to the g.c.d. of the elements of A.

Proof:
Sufficiency. We first show that det B # 0. Supposing

that det B = 0 and observing that B is an integer matrix defined

on the field of rational numbers we conclude that there exists a

nonzero rational vector u such that Bu = 0. Thus there exists a

nonzero integer vector A and Br = 0. This clearly contradicts

the assumption on the equality of the two greatest common

divisors. Hence, det B # 0.

Suppose now that the order of B is n and let Cso i=1,...,n,
be the ith column of the matrix adj(B). Then Bci = (det B)ei, where
e, is the 1™ unit vector in R®. Thus the g.c.d. of the elements
of c; is |det B|. The latter implies that det (adj(B)) is an integer

multiple of (det B)™. Hence, B (adj(B)) = (det B)I yields

(det B) = det(B(adj(B))) = (det B)(det B)" t

where t is integer. Hence |det B| = 1.
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Necessity:

Let k > 1 be the g.c.d. of the components of i, f.e. XA = ko
where o is an integral vector. If B is a matrix whose order is
equal to the order of the vector ), then B\ = kBa. Bg is integral
and thus the g.c.d. of the components of Bi, g, is at least k.
Assuming that B is unimodular and using B-1 = adj (B)/det B we
obtain that B-1 is an integral matrix. g is the g.c.d. of the
elements of B), i.e. BA = g°*p where B is an integral vector. We

1

then have A = g B "~ 8 which in turn implies that k > g. Thus

k = g.

Fiﬁally, while observing that Theorem 8 is a theorem about
unimodular matrices, we point out that Theorem 6 as well as
Theorem 7 are results about totally unimodular matrices. They
cannot be extended along the lines of Theorem 8. This {s demon-

strated by the following example due to Chandrasekaran [5] .

— —_
1 0 1 0
: 1 1 -1 0
B = ’
0 1 1 -1
0 1 0 1
det B = 5, but there exist no Aj = 0, + 1, not all zero, such

that the g.c.d. of the elements of B) is not equal to 1.
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