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ABSTRACT

- In the network désign problem we are given a weighted undirected graph.
We wish to flnd a subgraph which connects all the original vertices and
minimizes the sum of the shortest path weights between all vertex pairs,
subject to a budget constraint on the sum of its edge welghts. In this
note we establish NP-completeness for the network design problem, even
for the simple case where all edge weights are equal and the budget
restricts the choice to spanning trees. This result justifies the
development of enumeratlve optimization methods and of approximation

algorlthms, such as those described in a recent paper by R. Dionne and
‘M. Florian.




In the network design problem we are given a weighted undirected graph. We
wish to find a subgraph which connects all the original vertices and minimizes
the sum of the shortest path weights between all vertex pairs, subject to a
budget constraint on the sum of its edge weights. In this note we establish
NP-completeness [73;8] for the network design problem. Briefly, this result
implies that a polynomial-bounded method for its solution could be used to
construct similar algorithms for a large number of éombinatorial problems
which are notorious for their computational intractability, such as the
travelling salesman problem and the multicommodity network flow problem.
Since none of these problems is known to be solvable in polynomial time,
NP-completeness of the network design problem justifies the development of
enumerative optimization methods and of approximation algorithms, such as-
those described by R. Dionne and M. Florian [2].

For our purposes, we formulate the problem in the following way.

NETWORK DESIGN PROBLEM (NDP): Given an undirected graph G = (V,E), a
weighﬁ function L: E +~ N, a budget B and a criterion threshold C
(B,C € ), does there exist a subgraph G' = (V,E') of G with weight
X{i,j}eE' L({i,j}) < B and criterion value F(G') < C, where F(G')

- denotes the sum of the weights of the shortest paths in G' between all

vertex pairs?

By way of introduction to a quite involved NP-completeness proof for a sim-
plified version of NDP, we shall first present a simple proof establishing

NP-completeness for the general NDP.

'

THEOREM 1. NDP 7s NP-complete.
Proof. Consider the following problem.

KNAPSACK: Given positive integers t,a1,...,at,b, does there exist a

subset S ¢ T = {1,...,t} such that Ziesiai =Db ?

We will show that KNAPSACK is reducible to NDP, Z.e., that for any instance
of KNAPSACK an instance of NDP can be constructed in polynomial-bounded time

such that solving the instance of NDP solves tne instance of INAP'SACK as well.




KNAPSACK:

NDP: G &

B = 39, C = 249.
Figure 1 Equivalent instanges of KNAPSACK and NDP.

The theorem then follows from the NP-completeness of KNAPSACK [7] and the

fact that NDP belongs to NP, since any feasible subgraph can be recognized

~as such in polynomial time.

Given any instance of KNAPSACK, we write A = zieT a, and define an

instance of NDP as follows:
V={0} u{i,i': ie T},
E = {{0,i},{0,i'},{1,i'}: i e T},
L({O,i})‘=vL({O,i'}) = L({i,i'}) = a; (i e T),
B.= 2A+b,

C = LtA-b.

Figure 1 illustrates this reduction. We claim that KNAPSACK has a solution if

and only if G = (V,E) contains a subgraph with weight at most B and criterion
value at most C. -

It is easily seen that any feasible NDP solution can be assumed to con-
tain a star graph G* = (V,{{0,i},{0,i'}: i € T}); G* has weight 2A = B-b and

criterion value 4tA = C+b. Adding an edge {i,i'} to G* increases the weight




by a. and decreases the criterion value by as, since {i,1'} will appear only
L
in the shortest path between i and i'. The equivalenceé now follows in a

straightforward way. ' 0

However, since KNAPSACK can be solved in O(tb) time [ 1], Theorem 1 does not
exclude the existence of a similar pseudopolynomial algorithm [U4] for NDP;
the above construction crucially depends on allowing arbitrary positive
integers.as edge weights and budget. As a stronger result, we shall now prove
that NDP is NP-complete even in the simple case where all edge weights are

equal and the budget restricts the choice to spanning trees.

SIMPLE NETWORK DESIGN PROBLEM (SNDP): NDP with L({i,j}) = 1 for all
{i,j} € E and B = |V|-1.

- THEOREM 2. SNDP 18 NP-complete.
Prooy. As a starting point.we'take the following NP-complete problem [33;6].

EXACT 3-COVER: Given a family S = {01,...,05} of 3-element subsets of a
set T = {T1,...,T3t}, does there exist a subfamily S' c S of pairwise

disjoint sets such that UG€ o =T 2

We will show that EXACT 3-COVER is reducible to SNDP.
Given any instance of EXACT 3-COVER, we define an instance of SNDP as

follows..

=RusSulclT,

- {{pgopgl: 1= 1,..0,r} v {{pg,0): o € S} u {{o,1}: T € 0 € S},

Cer * Crs * Crp * Css * Cor * Crppo

2 2
= Ort+6t, Cgg = 8°-5, C

where CRR =r, CRS = 2rs+s, C

i8t2-12t.
Figure 2 illustrates this reduction. We will prove that EXACT 3-COVER

RT sp = 9st-6t, Cpp =




EXACT 3-COVER: t = 2, s = 4,

S = {{Tl,Tz,T3},{T2,T3,T5},{T2,T4,T5},{T4,TS,T6}}.

C = 17656.
Figure 2 Equivalent instances of EXACT 3-COVER and SNDP.
flgure o

has a solution if and only if G = (V,E) contains a spanning tree with crite-

rion value at most C. We assume that G is connected, Z.e., erS o =T.

Let G' = (V,E') be some spanning tree of G and let FPQ(G') denote the
sum of the weights of all shortest paths in G' between vertex sets P and Q
(P,Q ¢ V). We clearly have {pi,po} € E' for all i = 1,...,r. If.{po,o} ¢ E!
for some o ¢ S, then

F(G') FRR(G') + FRS(G') + FRT(G')
2 Cpp + Cpg + 2(r+1) + Cap
> C;

therefore, we may assume that {po,o} € E' for all 0 ¢ S. It follows that in

G' each vertex in T is adjacent to exactly one vertex in S. Straightforward

calculations show that we now have

1 = - m
FPQ(G ) cPQ for P = R,S and Q = R,S,T.

Denoting the number of vertices in S being adjacent in G' to exactly h ver-

tices in T by s, (h =0,1,2,3), we have




L(3t(3t-1)/2)

-2[{{r,t"): t #1, {{o,1},{0,1'}} © E' for some 6 ¢ S}|
(18t°%-6t) - (232+653) |

CTT + 6(t—s3) - 252.

It is easily seen that-FTT(G') =C

T if and only if 53 =5, = 0,

Sy = s-t. The first condition is now equivalent to F(G') < C, the second one

to the existence of an EXACT 3-COVER solution. This:cémpiéteé”fh;'proof. il

Various related types of network design problems have been discussed in the
literature; an excellent survey has been given by R.T. Wong [10]. For instance,
the problems dealt with by A.J. Scott [9] are generalizations of NDP and hence
NP-complete.

Another variation has been introduced by T.C. Hu [5]. Given a compléte
graph with a distance and a requirement for each vertex pair, we wish to find
a spanning tree which minimizes the total cost of communication, where the
cost of communication for a pair of vertices is the distance of the path
between them multiplied by their requirement. The case where all distances
are equal can be solved in polynomial time [5]; for the case where all
requirements are equal, NP-completeness follows easily as a corollary to
Theorem 2. .

Finally, we mention some results with respect to the complexity of a
network design problem due to F. Maffioli. Given a weighted graph with a
specific vertex p and an integer k, we wish to find a spanning tree of
minimum total weight subject to the constraint that each subtree incident
with p contains at most k other vertices. The case k = 2 can be formulated
as a matching problem; the case k = 3 can be proved NP-complete by a reduction

of 3-DIMENSIONAL MATCHING, even if all edge weights are equal.
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