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Minimal Diameter Double-Loop Networks:
Dense Optimal Families

J.-C. Bermond*
Bét 4, Rue A. Einstein, Sophia Antipolis, 06560 Valbonne, France

Dvora Tzvieli® .
AT&T Bell Laboratories, Holmdel, New Jersey 07733

This article deals with the problem of minimizing the transmission delay in Illiac-type
interconnection networks for parallel or distributed architectures or in local area net-
works. A double-loop network (also known as circulant) G(n,h), consists of a loop of
n vertices where each vertex i is also joined by chords to the vertices i = hmod n. An
integer n, a hop h, and a network G(n,h) are called optimal if the diameter of G(n,h)
is equal to the lower bound k when n € R[k] = {2k* =2k +2,...,2k* + 2k + 1}. We
determine new dense families of values of n that are optimal and such that the compu-
tation of the optimal hop is easy. These families cover almost all the elements of R[k]
if k or k + 1 is prime and cover 92% of all values of n up to 10

1. INTRODUCTION

This article deals with a combinatorial problem arising from studies in distrib-
uted and parallel architectures and in local area networks. Several topologies
have been proposed for interconnection networks [2,6]. One that is widely used
because of its simplicity is the loop topology [8] that can be modeled by a cycle.
This topology has some disadvantages, in particular, its high vulnerability to
node or link failure and its large diameter (corresponding to a large transmission
delay). One way to improve the performance of a network is to increase its
connectivity and decrease its diameter. This can be done by adding links, but
usually it is desirable to add as few links as possible, preferably in a homogerie-
ous way, to allow for uniform hardware components and simpler data routing
algorithms. :

A simple way to achieve this improvement is by adding chord-links to a cycle
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in a regular manner, by joining vertex i to the vertices i = 2 mod n, for some
given h. Although the graph obtained in this way is regular of degree 4 (if
1<h <n/2), 4-connected [5], and is the union of two Hamiltonian cycles [3],
the computation of its minimal diameter over all possible % is not immediate.
Here we exhibit dense infinite families of networks for which the diameter is
the smallest possible and for which the hop % can be easily computed. these
networks can be viewed as generalized Illiac-type parallel computers.

Let us first introduce some definitions and notations -and some relevant re-
sults. For a survey of various types of loop-networks, we refer the reader to
[1]. Let s4, 52, n be positive integers such that s; <s, < n/2. Let G(n;=xs;,*s,)
be the undirected graph with vertex set {0,1, ... ,n — 1}, corresponding to the
integers modulo 7, where vertex i is joined to the four vertices i & s1,i + s,. Let
diam G denote the diameter of G(n; £s1,%5,), namely, the maximum distance
between any pair of vertices in the graph. Following the notation used in Ref.
9, let us define

ne=202+2k+1; RIKl={m1+1,... m}

Thus, |R[k]| = 4k. Let D, = min{diam G(n;=s;,+5,)|0 <s1 <52 <n/2}.
Theorem 1 provides a lower bound on D,, (see [4,5,11,12]).

Theorem 1. For all n € R[k], D, = k.

The next theorem asserts that the lower bound on D, can always be achieved
(see [4,5,12]).

Theorem 2.
(i) diam G(n;xk,=(k + 1)) = k for all n € R[k],
(ii) diam G(n;*(k — 1),%k) =k for all n € R[k],n = 2k* + 1.

The networks in which we are interested in this work correspond to the
special case when s; = 1 and can be represented by a cycle with chords. In what
follows we shall denote these networks by G(m,h); Figure 1 corresponds to
n =16, h = 4. We shall refer to s as the hop size, or just the hop, antd use the
notation

D% = min{diam G(nh)|1<h< g} ,

The lower bound on D} equals the one mentioned in Theorem 1 for D, but
unlike the case of G(n;=*s1,%s,), the lower bound for D may never be achieved
for some values of n. In particular, we have [see [4,12] for (a) and [7,9] for

®1: .

Theorem 3. Let k=2, then
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FIG, 1.

(a) For n = n, D% = diam G(n.,2k + 1) = k.
(b) Forn=mn,—1,D¥=k+ 1.

Let n € R[k]. If a hop A} exists such that G(n,h}) = &, then we shall refer
to n, k¥, and G(n,h}) as optimal. A subset ® of the natural numbers is an
optimal family if all of its members n are optimal.

Du et al. [7] identified such an infinite optimal family. That family intersects
with each R[k], k=3, at 10 values, independently of k. (The cases k= 0,1,2
are trivial.) Note that in [7] the term “optimal” is used in a somewhat different
sense than here. . ‘

In [9], Tzvieli has identified several optimal families of networks, each of |

which intersects each R[k] in a set of cardinality O(\/%). It can be shown that
the families in [9] include those mentioned in [7]. Results in [9] also include
bounds on optimal hops and an algorithm that computes those hops whenever
they exist; sets of optimal hops are identified for some special values of # in
each R[k]. | '

Here we identify “dense” optimal families of values of n, along with the
corresponding optimal hops £ that render optimal networks G(n,h). Although
by no means exhaustive, those families cover 92% of all values of n up to
1,000,000. Also, when k or k + 1 is a prime, we settle almost completely the
question of determining optimality in R[k]. (In this case, all but one or two
values in R[k] are optimal.). |



Additional optimal, suboptimal, and other families are identified in chapters
5 and 6 in [10].

2. DENSE INFINITE OPTIMAL FAMILIES

In the following, gcd(a,b) will denote the greatest common divisor of the
integers ¢ and b. |

Lemma 1. Let k=1, n € R[k], and let g be relatively prime to n. Then

(i) diam G(n;xqk,*q(k + 1)) =k,
(ii) diam G(n;£q(k — 1),£qk) = k, if n. =<2k + 1;

where gk, g(k + 1), g(k — 1) are all computed modulo 7.

Proof. (i) Consider the mapping f: {0, ... ,n — 1}—{0, ... ,n — 1} where for
each i, 0=i=n-—1, f(i)=qgimodn. Since gcd(g,n) =1, f is bijective and
therefore f is a graph isomorphism mapping of G(n;tk,=(k+ 1)) onto
G(n;xqk,=q(k + 1)). As the diameter of a graph is preserved under isomorph-
ism, the result follows from (i) in Theorem 2. The proof of (ii) is similar. W

Lemma 2. Let n € R[k], then n is optimal in each of the cases:

(a) ged(n.k) =1,
(b) ged(n,k+1)=1,
(c) ged(n,k—1)=1 and n=2k*+1,

and in each case the associated optimal hop is easily determined.

Proof. Two integers m and n are relatively prime if and only if there exist
integers g and r such that gm — rn = 1, or equivalently if and only if there exists
a g such that gm =1 mod n. Note that g is necessarily relatively prime to n, as
ged(q,n) must divide 1. Thus, parts (a), (b), and (c) of Lemma 2 follow from
Lemma 1 by choosing m = k, k + 1, and k — 1, respectively. Furthertnore, if g
satisfies gm = 1mod n, then g + an satisfies the same congruence and n — g

satisfies (n — g)m = —1 mod n, so we can always choose g such that 0 < g <n/2.
2

*

Example 1.

(a) Let n=n,=2k*+2k+1. We can easily prove that n is optimal
[Theorem 3(a)]. Indeed, gecd(n,k) = ged(n,k + 1) = 1. The choices g =
2k + 2 and g = 2k correspond to cases (a) and (b) of Lemma 2, respec-
tively, with 2 = 2k + 1 in both cases.

(b) Similarly, n = n; — 2 = 2k? + 2k — 1 is optimal. W& can either use (a) of
Lemma 2 with ¢ =2k +2 and h =2k + 3 or (b) with g =2k and h =
2k — 1.



(c) n=2k>— 3 is optimal, using case (c) of the lemma, with ¢ = 2k + 2 and
h=2k+ 3.

Let n € R[k]. To establish #’s optimality according to Lemma 2, the coprimality
of n and &k (or £+ 1, or kK — 1) needs to be checked. This would be simplified
if the quadratic term &? could be purged from #n. In fact, as already hinted in
Theorem 3(b), in each R[k], the element n; — 1 = 2k + 2k plays a special role,
and we will show that it is sufficient to consider » in terms of its displacement
p from n; — 1. In the following theorem, we reformulate Lemma 2 by identifying
three optimal families of values of #. (Recall that a family is said to be an
optlmal family if all of its members are optimal.)

Theorem 4, Let ng = 2k? + 2k + 1. The families ¥; = U=, V;[k], 1 =i =3, are
optimal, where

(@) Ui[k]={n=m—1—-p|l=p<4k -1, ged(k,p) =1} U {n},
(b) Ukl ={n=n,—1—p|l=p<dk—1,gcd(k + 1,p) = 1} U {n.},
() Uslkl={n=n,—1-p|2k—1=p<dk—1,gcd(k—1,p —4)=1}.

In each case, a corresponding optimal hop is glven by k* = min{a,n — h},
where

(@) A=2s(k+ 1) —t-+1; (s,f) is an integer solution to sp —thk=1,

(b) A=2sk —t+1; (s,f) is an integer solution to t(k+ 1) —sp =1,

(c) h=2s(k +2) —t+ 1; (s,f) is an integer solution to s(p —4) —t(k — 1) =
1 :

and where 7 denotes the smallest nonnegative integer such that m = ri(mod n).

Proof. (a) By Lemma 2(a), n is optimal if ged(n,k) =1. Letting n=

n,—1—p=2k(k+ 1) — p, this condition is equivalent to gecd(p,k) =1 and,
hence, to the existence of nonnegative integers s,f such that sp —tk=1. Let
q =2s(k + 1) — t, then gk = 2sk(k + 1) — tk = s(n + p) — tk = 1 mod n, and ac-
cording to Lemma 2(a), =g+ 1 is an optimal hop. Then, taking’ /* =
min{h,n — h} ensures that 0 < k* < n/2. n, is already known to the optimal by
Example 1. The proofs of parts (b) and (c) are similar to that of part (a); for
part (c), note that n =2k>+2k—p=2(k+2)(k— 1) — (p — 4). H
Example 2. Let k =11, n = 257. Here, n;; =265 and p =17.
Since ged(p,k) =1, n is in W;. The equation 7s — 11t =1 has the smallest
positive integer solution s =8, =5, and so h=16-12—-5+1=188. h*=
min{188,257 — 188} = 69. In this case we also have gcd(p,k + 1) = 1; hence,
n € ¥,. The smallest solution to the equation 12t —7s=1iss =35, t=3, and,
thus, £* = 108 is also an optimal hop for n = 257. '

For the subsequent discussion, we shall distinguish in each range R[k] the

L}



“quartile points’’:

qulk] =2k —k;  q[k]=2k*  qs[k]=2k>+k;
© qalk] =2k + 2k =n; — 1.

Example 3.

(a) Let k be arbitrary, n = g,[k] — 1 = 2k? — 1 corresponding to p = 2k + 1.
Here, gcd(p,k) = gcd(p,k+1)=ged(p — 4,k —1)=1; hence, all parts of
Theorem 4 are applicable. The solution (s,f) = (1,2) will produce the values
2k + 1 and 2k — 1 for h*, corresponding to parts (a) and (b) of the theorem.
The value A% = 2k + 1 is also obtained from part (c), using s = k — 2, t =2k — 5.

(b) For each k=1, g;[k] is not in ¥4[k], i = 1,2,3,4, since those values of n
correspond to p =3k, 2k, k, 0, respectively. Yet, g:[k] € ¥s[k] and
qs[k] € W,[k]. If k is even, then g,[k] € W,[k] N ¥s[k].

For some values of k, the families W;[k] cover large continuous segments of
R[k], and in some cases, the determination of optimal values in R[k] is com-
pletely settled, as is shown next.

Corollary.

(a) If k is prime, then every n € R[k], n # n,— 1, is optmal..
(b) If £+ 1 is prime, then every n € R[k], n # n, — 1 is optimal with the
possible exception of g,[k] — 2 = 2k* — 2. '

Proof. (a) If k is prime, W1[k] = R[K] — {q:1[K].q.[k],qs[k],qalk]}. But gi[K]
and gs[k] are optimal, according to Example 3(b); g»[k] was shown to be
optimal in [9]; and g4[k] = nx — 1 is not optimal by Theorem 3(b).
~ (b) In this case, Wo[k] = R[k] — {gi[k] — 3; g2[k] — 2; gs[k] — 1; ga[K]}, but

qs[k] — 1 € W4]k] (corresponding to p = k + 1) and g, [k] — 3 was proven in [9]
to be optimal. H

3. RELATIONSHIPS BETWEEN THE OPTIMAL FAMILIES »

e The families W;[k], W,[k], and W5[k] are neither comparable nor exclusive,
as shown in the following examples (compare to Example 3): '

g.[k] — 1 € W4[k] N W,[k] N W3[k], for each k =1, .
qs[k] € U,[k] — Wi[k]; gs[k] — 1 € Wy[k] — Vs[k];

q:lk] € Va[k] — W4[k]; qi[k] — 1 € Wy[k] — Vs[k]; |

qs[k] € Walk] — Wslk];  qi[k] € Ya[k] — Wo[k] if kK + 1=0mod3.

e Both optimal and suboptimal values of n exist that are not in ¥=
\P]_ U ‘Ifz U \Fg. '
(a) By Theorem 3 we know that for all k=1, n; — 1 is not optimal.
(b) g2[k] —2 is not in ¥ whenever k=4, k even; this value of » can be

*



optimal (e.g., for k=4, q,[4] -2 = 30 is optimal with & =8; for k=8,
q2[8] —2 =126 is optimal with & =12), or nonoptimal (e.g., for k=6,
q2[6] — 2 = 70, see algorithm in [9]).

o Although ¥ is considerably larger than the optimal families described in [9],
there are infinitely many values of » that are covered by those families but
are not in ¥. (See Example in [9].)

® Table 1 illustrates membership in.the various dense families, for k = 9.

TABLE I. Membership in dense optimal families for k= 9.
n vy v, T, Optimal Suboptimal

146  * *

147 * * ‘&

148 * ' #

149 * * % *

150 X

151 * * # %

152 * *

153 L % %

154 " *

155 % * *

156 X

157 % 0 # %

158 ® "

159 % * %

160 * S »

161 * % * "

162 X

163 * * % %

164 * *

165 X

166 * *

167 * % *

168 X

169 * # * - ¢
170 * ®

171 " *

172 * =

173 % % % : .
174 *
175 i *

176 % *

177 " *

178 % ey

179 % % *

180 d
181 % * # ’

An “x” in the “optimal” column indicates that this value of n,
although not in ¥, is covered by the optimal families in [9].



4. THE BRELATIVE SIZE OF THE ¥ FAMILIES
e The density of a family @ is defiried By

|O[4]| _ |®[X]|
|R[K]| 4k °

fou(® =

where @[k] = ® N R[k]. In our case, we get

¢(k) 1 Pk —1) 1)

Lo+ 1) L1

JelWy) = J2(¥2)

where ¢ denotes Euler’s phi-function, i.e.,
(k) =|{m € Z|1 =m =<k and (m,k) = 1}|.

e Define the cumulative density of a family ® by

Fi(©) = 12f,<®) R[]

Ry j=1

Numerical computation of the actual value of F(¥) corresponding to the
range n = 10° (k = 708) shows

F703(1F1 U qu) = 089, F-mg(qf) = (.92.

Hence, ¥ covers 92% of all values of up to 1,000,000!
e All values of n that were not optimal, up to ~ 8,000,000, were found to be
suboptimal, i.e., D% =k + 1, where n € R[k] (See [10] and the Conjecture

in [9]).
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