
A Capacity Scaling Algorithm for
The Constrained Maximum Flow Problem

Ravindra K. Ahuja
I. I. T. Kanpur

and
James B. Orlin, MIT

WP# 3587-93-MSA July 1993

A CAPACITY SCALING ALGORITHM

FOR

THE CONSTRAINED MAXIMUM FLOW PROBLEM

Ravindra K. Ahuja
Department of Industrial and Management Engineering

Indian Institute of Technology
Kanpur - 208016, INDIA

James B. Orlin
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

A CAPACITY SCALING ALGORITHM
FOR

THE CONSTRAINED MAXIMUM FLOW PROBLEM

Ravindra K. Ahuja and James B. Orlin

ABSTRACT

The constrained maximum flow problem is to send the maximum possible flow from a

source node s to a sink node t in a directed network subject to a budget constraint that the cost of

flow is no more than D. In this paper, we consider two versions of this problem: (i) when the

cost of flow on each arc is a linear function of the amount of flow; and (ii) when the cost of flow

is a convex function of the amount of flow. We suggest capacity scaling algorithms that solve

both versions of the constrained maximum flow problem in O((m log M) S(n, m)) time, where n is

the number of nodes in the network, m is the number of arcs, M is an upper bound on the largest

element in the data, and S(n, m) is the time required to solve a shortest path problem with

nonnegative arc lengths. Our algorithms are modifications of the capacity scaling algorithms

for the minimum cost flow and convex cost flow problems, and illustrate the power of capacity

scaling algorithms to solve variants of the minimum cost flow problem in polynomial time.

1

III

1. INTRODUCTION

Let G = (N, A) be a directed network consisting of a set N of nodes and a set A of arcs. In

this network, each arc (i, j) has an associated cost cij and a capacity uij. The linear cost

constrained maximum flow problem is to send the maximum possible flow from a source node s to

a sink node t subject to the cost of flow being less than or equal to a budget D. This problem can

be formulated as the following linear program:

Maximize v (la)

subject to

v for i =s
xij ° XJ = O for all i N-s and t) , (lb)

(j:(i)eA) (j:(j@i) -v for i = t

0 < xij < uij for (i, j) E A, (Ic)

Z cij xij < D. (ld)
(ij)E A

Similarly, we can define the convex cost constrained maximum flow problem. In this
problem, the cost of flow on each arc (i, j) E A is Cij(xij), which is a convex function of the flow

xij. The formulation of this problem is the same as that of the linear cost constrained maximum

flow problem given in (1) except that (ld) is replaced by the following constraint:

Cij(xij) < D. (le)
(i, j) A

We shall now focus on the linear cost constrained maximum flow problem and postpone

the discussion on the convex cost constrained maximum flow problem until Section 5.

Let n = INI denote the number of nodes in the network, m = IAI denote the number of arcs,

C denotes the largest arc cost, and U denote the largest of the finite arc capacities in the

network. We consider the linear cost constrained maximum flow problem subject to the

following three assumptions:

Assumption 1 Integrality assumption). All arc capacities and arc costs are integers.

Assumption 2 (Connectivity assumption). The network is strongly connected; i.e., there is a

directed path of sufficiently large capacity between every pair of nodes.

3

Assumption 3 (Nonnegative cost assumption). Each arc cost is a nonnegative integer, and every

directed path from the source node s to the sink node t has a cost greater than zero.

We point out that there is some loss of generality in the first assumption and our

proposed algorithm does really require that arc capacities are integral. Notice, however, that

rational arc capacities can be made integral by multiplying them by a suitably large number.

We also point out that we can satisfy the connectivity assumption by adding the arcs (s, i) and

(i, s) for each node i N - s) of infinite capacity with cost D + 1; since these arcs have a high

cost, no feasible solution can have a positive flow on these arcs. In Section 4, we explain how to

transform a problem with negative costs into an equivalent problem satisfying Assumption 3. It

follows from the integrality and nonnegative cost assumptions that D is an upper bound on the

maximum amount of flow that can be sent from node s to node t.

Fulkerson [19591 describes an interesting application of the constrained maximum flow

problem arising in the capacity expansion of a network. A network is used to send flow from

node s to node t, and the arc capacities are insufficient for meeting anticipated future demands.
Suppose that we can purchase additional capacities of some arcs at a cost of cij per unit increase

in the capacity of arc (i, j). Suppose further that we have an available budget of D units for

purchasing additional capacities. We want to purchase additional capacities so as to keep the

cost of expansion within the budget and such that the maximum flow from node s to node t is as

large as possible. It is easy to observe that this problem is an instance of the convex cost
constrained maximum flow problem where the cost of flow on arc (i, j) remains zero as long as xij

< uij but then increases at the rate of cij per unit additional flow on the arc.

The linear cost constrained maximum flow problem is very closely related to the

minimum cost flow problem. We shall show that the well-known successive shortest path

algorithm can be used to solve the constrained maximum flow problem in pseudo-polynomial

time. One can also develop a binary search algorithm that solves the constrained maximum

flow problem within O(log M) applications of any minimum cost flow algorithm. This

approach yields a polynomial-time algorithm for the constrained maximum flow problem if we

use a polynomial-time minimum cost flow algorithm as a subroutine. Currently, the best

available time bound to solve the minimum cost flow problem is O(min(nm log(n2 /m) log(nC),

nm(log log U) log(nC), m log n (m + n log n))), and the three time bounds in this expression are,

respectively, due to Goldberg and Tarjan [1987], Ahuja et al. 11992], and Orlin [19881.

Since most of the available polynomial-time algorithms for the minimum cost flow

problem are scaling based algorithms, a natural question arises whether we can modify any

scaling algorithm for the minimum cost flow problem so that it solves the constrained maximum

flow problem in the same time. In this paper, we answer this question in the affirmative for

capacity scaling algorithms and modify Edmonds and Karp's [19721 capacity scaling algorithm

�IX__1_____�_ _��

for the minimum cost flow problem so that it solves the constrained maximum flow problem in

the same time (see also Ahuja, Magnanti and Orlin [19931). This approach yields an O(m log M

S(n, m)) time algorithm to solve the constrained maximum flow problem, where S(n, m) is the

time needed to solve a shortest path problem with nonnegative arc lengths. Currently, S(n, m)

=- inm + n log n, m + n og C)11/ 2 , m loglog C), where C is the largest arc cost encountered in the

shortest path problem; the three time bounds in this expression are due to Fredman and Tarjan

11984], Ahuja et al. [1990], and Johnson [19821. For some classes of minimum cost flow problems,

this approach provides the fastest available algorithm to solve the constrained maximum

flow problem. We also generalize this algorithm to solve the convex cost constrained maximum

flow problem. This generalized algorithm obtains an integer optimal solution of the convex cost

constrained maximum flow problem in the same time as for the linear cost case.

2. RELATIONSHIP TO THE MINIMUM COST FLOW PROBLEM

The constrained maximum flow problem is closely related to the minimum cost flow

problem and understanding this relationship is essential for its algorithmic development. In

this section, we study the relationship between these two problems.

One version of the minimum cost flow problem is to determine the least cost shipment of

v units of a commodity from the source node s to the sink node t. This minimum cost flow problem

can be formulated as the following linear programming problem:

Minimize X cij xij, (2a)
(i,j)e A

subject to

v for i = s
Z xij x i = O for all i N- s and t) , (2b)

(j:(ij)eA) (j:(ji)EA) -v for i = t

0 < xij < uij for all (i, j) e A. (2c)

Our algorithms rely on the concept of residual networks. The residual network G(x)

corresponding to a flow x (for the the minimum cost flow problem as well as for the constrained

maximum flow problem) is defined as follows: We replace each arc (i, j) E A by two arcs (i, j)
and (j, i). The arc (i, j) has cost cij and residual capacity rij = uij -xi j, and the arc (j, i) has cost cji

= -cij and residual capacity rji = xij. The residual network consists only of arcs with positive

residual capacity.

In this formulation of the minimum cost flow problem, we associate a dual variable x(i)

with the mass balance constraint (2b) of node i; we refer to a(i) as the potential of node i. With

respect to a set of node potentials x, we define the reduced cost c of an arc (i, j) as c = cij - X(i)

II

+ x(j). In our subsequent discussion, we shall make use of the following well-known optimality

conditions for the minimum cost flow problem (see, for example, Ahuja, Magnanti and Orlin

[19931).

Optimality Conditions. A feasible solution x' of the minimum cost flow problem is an optimal

solution if and only if there exists a set of node potentials x satisfying the following optimality

conditions:

co 0 for every arc (i,j) inGx. (3)

We now prove a result that establishes a close relationship between the minimum cost

flow problem and the constrained maximum flow problem. We use this relationship to prove

the correctness of our proposed algorithms for the latter problem.

Theorem 1. Let x' be an optimal solution of the minimum cost flow problem when the supply of

the source node is constrained to be equal to v. Then x' is also an optimal solution of the

constrained maximum flow problem with solution value v° if D = cx'.

Proof. We prove this result by contradiction. Suppose that x* is not an optimal solution of the

constrained maximum flow problem with D = cx*. Instead, x1 is an optimal solution with v1 > v*

and cx1 <5 D. According to the flow decomposition theory (see, for example, Ahuja, Magnanti

and Orlin [1993]), the flow x1 can be decomposed into flows along directed paths from node s to

node t and flows along cycles. From Assumption 3, each directed path from node s to node t has a

positive length. Therefore, starting with the flow x1, we can reduce the flow along some

directed paths from node s to node t and obtain a flow x2 of lesser cost whose flow value equals

v2 = v*. This implies that x2 has a flow value v* and its cost is cx2 < cx1 < D = cx*. This

contradicts our assumption that x* is an optimal solution of the minimum cost flow problem with

flow value v'. -

This theorem has several implications. It shows a connection between the minimum

cost flow problem and the constrained maximum flow problem and allows us to solve the latter

problem by an algorithm for the former problem. Suppose that we have an algorithm for the

minimum cost flow problem that parametrically increases flow from node s to node t, i.e., we

find the minimum cost flow when the supply v* at the soure node is parametrically increased

from 0. If we apply this algorithm and terminate its execution when either the maximum

possible flow has been obtained from node s to node t or the flow cost exactly equals D, then the

resulting solution is an optimal solution of the constrained maximum flow problem.

Another implication of Theorem 1 is that one can readily solve the constrained

maximum flow problem when the budget constraint is redundant. The budget constraint is said

to be redundant if and only if there is a maximum flow from node s to node t that satisfies the

6

constraint (Id). We can determine the redundancy of the budget constraint using the following

method. We first solve a maximum flow problem to determine the maximum possible flow, say

v °, that can be sent from node s to node t. We then solve a minimum cost flow problem with v =

v ° . If the cost of the optimal solution is less than or equal to D, then the budget constraint is

redundant, and non-redundant otherwise. For the simplicity of exposition, we shall henceforth

assume that the budget constraint is always nonredundant, ie., is a binding constraint.

Assumption 4 (Tight budget assumption). In the constrained maximum flow problem (1), every

optimal solution x satisfies cx* = D.

Theorem 1 also implies that we can solve the constrained maximum flow problem using

binary search and using any minimum cost flow algorithm as a subroutine. In the minimum cost

flow problem, we can perform a binary search on the integer flow values v and determine the

minimum cost flow solutions x1 and x2 whose integer flow values satisfy v1 and v2 satisfying (i)

v2 = v1 + 1, and (ii) cx1 < D < cx2. Then the optimal flow value v* satisfies v1 < v* < v2 . We

determine v* and its associated arc flow x* in the following manner. We determine shortest

path distances d(-) from node s to all other nodes in the residual network G(xl) and augment (D -

cxl)/d(t) units of flow from node s to node t along the shortest path. The resulting flow is an

optimal flow of the constrained maximum flow problem. (For justification, see Lemma 1.) This

approach requires solving O(log D) minimum cost flow problems, because the flow values v

tested by the binary search technique lie in the range [0, D]. When we allow the constrained

maximum flow problem to have negative arc lengths and perform the transformation described

in Section 4, then the binary search technique would require solving O(log M) minimum cost

flow problems, where M = max(n, m, C, U, D). The running time of this approach is

O((log MXmin(nm log(n2 /m) log(nC), nm(log log U) log(nC), m log n (m + n log n))).

We point out that the optimal solution of the constrained maximum flow problem may

not be integer. However, if one adds the additional constraint that the flows be integral, then

an optimal solution of the modified problem is easy to obtain. Suppose that x* is a (real)

optimal solution of the constrained maximum flow problem with flow value v*. It can be easily

verified that the solution x' obtained by solving a minimum cost flow problem (2) with flow

value v' = Lv*J is an optimal solution of the constrained maximum flow problem, requiring flows

to be integral. We refer to x' as an optimal integer flow of the constrained maximum flow

problem.

3. SUCCESSIVE SHORTEST PATH ALGORITHM

The successive shortest path algorithm is a well-known algorithm to solve the

minimum cost flow problem, and by modifying it slightly we can solve the constrained

maximum flow problem. This (modified) successive shortest path algorithm forms the basis of

7

the scaling algorithms for linear and convex cost constrained maximum flow problems. In this

section, we present a brief description of the successive shortest path algorithm and its proof of

correctness. For a more detailed description of this algorithm, we refer the reader to Ahuja,

Magnanti and Orlin [19931].

In order to describe this algorithm as well as several later developments, we first

introduce the concept of pseudoflows. A pseudoflow is a function x defined on arcs that satisfies

only the capacity and nonnegativity constraints; it need not satisfy the mass balance

constraints. For any pseudoflow x, we define the imbalance of a node i as

e(i) =b(i) + , xji - I xij forall i e N. (4)
(j:(j, i)e A) j:(i, j)e A }

If e(i) > 0 for some node i, then we refer to e(i) as the excess of node i; if e(i) < 0, then we

refer to -e(i) as the node's deficit. We refer to a node i with e(i) = 0 as balanced. The residual

network for a pseudoflow is defined in the same way that we define the residual network for a

flow.

The successive shortest path algorithm for the constrained maximum flow problem

maintains a special type of pseudoflow, for which imbalances at all nodes, except the source

and sink nodes, are zero. Further, this pseudoflow satisfies the optimality conditions (3). At

each step, the algorithm identifies a shortest path in the residual network from node s to node t

and augments the maximum possible flow along the path. The algorithm also keeps track of

the cost of flow and terminates when the cost of flow equals D. Figure 1 gives an algorithmic

description of the successive shortest path algorithm.

algorithm successive shortest path;
begin

x:=0; x:=O;v:=O;
determine shortest path distances d(-) from node s using c' as arc lengths

and update a: = - d;
let P be the shortest path from node s to node t;
while (D - cx) > 0 do
begin

compute 8: = min[minrij: (i, j) E P), (D - cx)/(-x(t))];
augment 8 units of flow along the path P in G(x) from node s to node t;
update x, cx, v, and G(x);
determine shortest path distances d(.) from node s using

cx as arc lengths and update : = - d;
let P be the shortest path from node s to node t;

end;
end;

Figure 1. The successive shortest path algorithm for the constrained maximum flow problem.

Since the solution satisfies the optimality conditions c! 2 0 for every arc (i, j) in the

residual network, we can use any shortest path algorithm for the nonnegative arc lengths to

obtain the shortest path distances d(-). The algorithm then updates the node potentials as x =

- d. Since the vector d represents the shortest path dist path distances with as the arc lengths in

the residual network G(x), it satisfies the shortest path optimality conditions, i.e., d(j) < d(i)

+ i for all (i, j) in G(x) (see, e.g., Ahuja, Magnanti and Orlin [19931). Substituting = cij - x(i)

+ x(j) in the preceding inequality, we obtain d(j) 5 d(i) + cij - x(i) + x(j). Alternatively, cij -

(r(i) - d(i)) + ((j) - d(j)) Ž 0, or cai > 0. This establishes that the pseudoflow x satisfies the

optimality conditions with respect to the node potentials x' = x- d, and in the next iteration

the reduced arc costs are again nonnegative. Now consider a shortest path P from node s to node

t. For each arc (i, j) in this path, d(j) = d(i) + c!. Substituting cj = cij - x(i) + (j) in this

equation, we obtain cJ = 0. In other words, every arc in the path P has a zero reduced cost.

Augmenting flow on any such arc might add its reversal (j, i) to the residual network. But since

ci = 0 for each arc (i, j) E P, c!j = 0, and the arc (j, i) also satisfies the reduced cost optimality

condition (3). Hence the following result:

Lemma 1. Suppose that a pseudoflow (or a flow) x satisfies the optimality conditions with

respect to the potentials xf and the vector d denote the shortest path distances from node s (or
node k) to all other nodes with respect to the arc lengths c. Then the following properties

hold:

(a) The pseudoflow x satisfies the reduced cost optimality conditions with respect to the

potentials r' = r - d.

(b) If we obtain x' from x by sending flow along a shortest path from node s (or node k) to node t

(or node 1), then x' satisfies the optimality conditions with respect to the potentials Ar'. *

We also point out that (-I'(t)) is the cost of sending one unit of flow from node s to node t

along the shortest path P. This can be easily observed by using (i) X'(s) = 0; and (ii) c^ = cij -

C'(i) + iX(j) = 0 for every arc (i, j) E P. Also notice that in the algorithm the flow is integral in

all iterations except the last iteration. In the last iteration, however, if we augment LJ units

of flow instead of units, then we get an optimal integer flow. The preceding lemma

establishes that the successive shortest path algorithm always maintains a solution that

satisfies the minimum cost flow optimality conditions. At termination, this solution x satisfies

cx = D. It follows from Theorem 1 that the solution x is an optimal solution of the constrained

maximum flow problem.

The successive shortest path algorithm is quite a straightforward algorithm to solve

the constrained maximum flow problem; however, an important theoretical limitation is that

II

9

it doesn't run in polynomial time. In the next section, we develop a capacity scaling version of

this algorithm which makes it a polynomial-time algorithm.

4. CAPACrr SCALING ALGORITHM

In this section, we present a capacity scaling algorithm to solve the constrained

maximum flow problem. This algorithm is a scaling version of the successive shortest path

algorithm described in Section 3 and borrows ideas from the variants of the capacity scaling

algorithm for the minimum cost flow problem described in Orlin [19881, and Ahuja, Magnanti

and Orlin [1993].

A scaling algorithm typically solves a series of approximate versions of the original

problem and the degree of approximation gradually improves. A capacity scaling algorithm

approximates arc capacities to varying degrees of accuracy in stages, called scaling phases.

Each scaling phase has an associated value A of a parameter, which is a suitable power of 2,

and we refer to a specific scaling phase as the A-scaling phase. In the A-scaling phase, we
denote arc capacities by uij(A) and define them as per the following formula:

uij(A) = l J A for every arc (i, j) e A. (5)

In other words, we define uij(A) as the greatest multiple of A less than or equal to uij.

For example, if uij = 13, then uij(16) = 0; uij(8) = 8; uij(4) = 12; uij(2) = 12; and uij(1) = 13 = uij.

The following property is immediate from this definition.

Lemma 2. For every arc (i, j) A, if 2k > uij, then 0 = uil2k) • ui2k l) <... ui2) < uil) = uij..

We refer to the constrained maximum flow problem with uij(A) as arc capacities as the

A-scaled problem. When defining the residual network, if we replace the arc capacities uij by

uij(A), then the resulting residual network is called the A-residual network. We denote the A-

residual network by G(x, A). Notice that in the A-residual network, each residual capacity is a

multiple of A.

We are now in a position to describe the capacity scaling algorithm. The capacity

scaling algorithm solves a sequence of A-scaled problems with decreasing values of A. But

instead of solving each such problem exactly, it solves it approximately and obtains a A-

optimal solution. We refer to a solution of the A-scaled problem as a A-optimal solution if (i) it

satisfies the optimality conditions (3); (ii) all arc flows are integral multiples of A; and (iii)

sending A additional units from node s to node t along the shortest path in G(x, A) violates the

budget constraint. In other words, a A-optimal solution solves the A-scaled problem subject to

the additional constraint that all arc flows are multiples of A. Therefore, a 1-optimal solution

is an optimal integral flow for the constrained maximum flow problem. Let x1 be an 1-optimal

10

solution of the constrained maximum flow problem. We can convert this 1-optimal solution into

a real-valued optimal solution by determining the shortest path distances d(-) from node s to

all other nodes in G(x1) and augmenting (D - cx)/d(t) units of flow from node s to node t.

The capacity scaling algorithm performs a number of scaling phases, and in a scaling

phase converts a 2A-optimal solution of the 2A-scaled problem into a A-optimal solution of the

A-scaled problem. The algorithm starts with A: = 2logDJ. Notice that this value of A

satisfies D/2 < A < D, and D is an upper bound on the maximum flow that can be sent from node s

to node t (from the nonnegative cost assumption). The algorithm converts a 2A-optimal solution

into a A-optimal solution in two subphases. In the first subphase, by using the procedure called

restore-feasibility, the algorithm converts the terminal solution of the 2A-scaled problem into

a dual feasible solution (i.e., satisfying the optimality conditions (3)) of the A-scaled problem.

In the second subphase, by using the procedure called restore-optimality, the algorithm

converts this dual feasible solution into a A-optimal solution of the A-scaled problem. At the

end of the last scaling phase, A = 1, and the algorithm obtains an integer optimal solution.

Next, the algorithm augments a fractional flow along the shortest path from node s to node t to

obtain a real-valued optimal solution of the constrained maximum flow problem. Figures 2 and

3 give the algorithmic description of the capacity scaling algorithm for the constrained

maximum flow problem, which is followed by its explanation and analysis.

algorithm scaling;
begin

x: =O; i: =0; v: =0;
A: = 2LogDJ;
while A 1 do
begin

(A-scaling phase begins here)
restore feasibility;
restore-optimality;
A: = A/2;
(A-scaling phase ends here)

end;
determine the shortest path distances d(-) from node s and update t: = x - d;
augment 6: = (D - cx)/(-x(t)) units of flow along the shortest path

from node s to node t;
update x, cx, and v;

end;

Figure 2. The capacity scaling algorithm for the constrained maximum flow problem.

III

1l

procedure restore-feasibility;
begin

for every arc in the A-residual network G(x, A) do

if rij > O and c < O then send A units of flow along (i, j), update x, and

the imbalances e(i) and e(j);
while there is an imbalanced node do
begin

select a node k with e(k) > 0 and a node I with e(l) < 0;
determine shortest path distances d(*) from node k with respect to the arc

lengths c and update : = x - d;
augment A units of flow along the shortest path P from

node k to node I in G(x, A);
update x, cx, e(.), and G(x, A);

end;
end;

procedure restore-optimality;
begin

determine shortest path distances d() from node s and update z: = - d;
while (D - cx) 2 (-:(t))A do
begin

augment A units of flow along a shortest path from node s to node t;
update x, v, and G(x, A);
determine shortest path distance d(-) from node s with respect to the arc

lengths c:j and update x: = - d;
end;

end;

Figure 3. Procedures of the capacity scaling algorithm.

We now explain various steps of the capacity scaling algorithm. First, we take a detailed

look of the procedure improve-feasibility. Let x*(2A) denote the flow at the end of the 2A-

scaling phase and v(2A) denote its value. When we go from the 2A-scaled problem to the A-

scaled problem, the capacities of all arcs increase by 0 or A units. Consequently, the residual

capacities too increase by 0 or A units. As a result, the A-residual network G(x, A) may contain

some new arcs that were not present in G(x, 2A). If for any such arc (i, j), cl < 0, then it violates

the optimality condition. (Notice that all other arcs continue to satisfy the optimality

condition.) We restore the optimality condition of this arc (i, j) by sending A units of flow on it

so that it gets saturated in G(x, A) and drops out of the residual network G(x, A). This operation

might add the reversal arc (j, i) to the residual network, but since c < 0, we have c = c >

0, and the reversal satisfies the optimality conditions. This explains the preprocessing step we

perform at the beginning of the procedure restore-optimality.

Saturating some arcs of the residual network, however, creates imbalances at some nodes.

This solution is a dual feasible pseudoflow (i.e., satisfies the optimality conditions) but

possibly violates primal feasibility. We restore its primal feasibility by performing shortest

�__1_1_^_1___1_1_____�--.�-. __

12

path augmentations. We augment A units of flow from excess nodes to deficit nodes along

shortest paths. The strong connectivity assumption implies that we can send flow from any

excess node to any deficit node. The residual capacities are always an integral multiple of A as

may be proved via induction on the number of steps performed by the algorithm, and this

allows A units of flow to be sent along the shortest paths. These shortest path augmentations

preserve the dual feasibility of the solution (see Lemma 1) and gradually reduce the

imbalances at nodes. Eventually, all nodes become balanced and the procedure terminates. Let

x° (A) denote the flow at this point, and vO(A) denote the value of this flow. Notice that v°(A)

= v"(2A), because this procedure does not send any additional flow from the source node or into

the sink node.

Let us now study the impact of the shortest path augmentations on the cost of flow. It

follows from Theorem 1 that x*(2A) is an optimal solution of the minimum cost flow problem in

the 2A-scaled problem with flow value equal to v*(2A). Next, observe that x*(2A) is a feasible

solution of the minimum cost flow problem in the A-scaled problem with flow value equal to

v*(2A), because uij(A) 2 uij(2A) for every arc (i, j) E A. Further, since x(A) satisfies the

optimality condition (3), it is an optimal solution of the minimum cost flow problem with flow

value equal to v°(A) = v*(2A). The preceding two observations imply that cx°(A) < cx*(2A).

Alternatively, the shortest path augmentations maintain the flow value but may decrease

the cost of flow (because some arc capacities increase and we optimize over a larger set of

feasible solutions). As the cost of flow may decrease, we may send additional flow from node s

to node t and still satisfy the budget constraint of D units on the cost of flow. The procedure

restore-optimality accomplishes this task by sending A units of flow from node s to node t along

shortest paths as long as it is permitted by the budget constraint. The algorithm repeatedly

determines shortest path distances d() from node s, updates a: = x - d, and augments A units of

flow from node s to node t along a shortest path. Recall from Section 3 that -(t) is the

minimum cost of sending one unit of flow from node s to node t; hence as long as (D - cx) > (-(t))A,

we keep augmenting flows along shortest paths. When (D - cx) < (-x(t))A, then the solution is

A-optimal and the A-scaling phase terminates.

We now discuss the worst-case complexity of the capacity scaling algorithm. We will

show that the capacity scaling algorithm performs O(log D) scaling phases, O(m) shortest

path augmentations in each scaling phase and, consequently, runs in O(m log D S(n, m)) time. It

is easy to see that the capacity scaling algorithm performs O(log D) scaling phases. The

algorithm starts with A = 2Llog DJ and in each scaling phase it reduces A by a factor of 2. After 1

+ Llog DI scaling phases, A = 1, and the algorithm terminates at the end of this scaling phase.

Clearly, the bottleneck operation in a scaling phase is the shortest path augmentations the

algorithm performs in the procedures restore-feasibility and restore-optimality. We now focus

on the number of shortest path augmentations performed by these two procedures.

13

The procedure restore-feasibility saturates some arcs at the beginning of the procedure by

sending A units of flow on them. As a result of these saturations, we create excess and deficit

nodes. As we saturate at most m arcs, the total excess created at all the nodes is at most rnmA.

Each subsequent shortest path augmentation reduces the amount of excess at some node by A

units (as this augmentation carries A units). Consequently, this procedure will perform at most

m shortest path augmentations. Notice, however, that in the first scaling phase, the procedure

restore-feasibility will not saturate any arc and therefore no such augmentation will be

performed.

We next consider the shortest path augmentations performed by the procedure restore-

optimality. In the first scaling phase, each shortest path augmentation sends A > D/2 units of

flow and there can be at most two such augmentations. We now focus on the augmentations

performed in scaling phases other than the first scaling phase. The procedure restore-

feasibility obtains a feasible solution x(A) of value v°(A) for the A-scaled problem, which

may not be A-optimal. The procedure restore-optimality converts this solution into a A-

optimal solution x*(A) of value v*(A) by performing shortest path augmentations from node s to

node t, each carrying A units. We now show that v*(A) < v(2A) + mA, which would

immediately imply that the procedure restore-optimality would perform at most m shortest

path augmentations because v°(A) = v*(2A). This result is the subject of our next lemma.

Lemma 3. *(A) v*(2A) + mA.

Proof. In the A-scaled problem, some arc capacities are A units higher than the corresponding

arc capacities in the 2A-scaled problem. Suppose, for simplicity, that in the A-scaled problem

the capacity of only one arc, say (k,), is A units higher, and all other arc capacities are the

same as in the 2A-scaled problem. We claim that in this case, the constrained maximum flow

value will increase by at most A units. Suppose that the claim is not true and v*(A) > v*(2A) +
2A. We assume that xA) = uij(A) > uij(2A), since otherwise x*(A) is feasible to the 2A-scaled

problem. Let us consider a flow decomposition of x*(A), where the flow is expressed as flows

along paths carrying A units. There must be some path that passes through the arc (k,).

Eliminating flow on this path yields a flow, say x', that is feasible to the 2A-scaled problem

(because the resulting flow on arc (k,) does not use the additional capacity) and has a flow

value equal to v*(A) - > v*(2A). This contradicts the optimality of the flow x*(2A) for the

2A-scaled problem. We have thus established that if the capacity of exactly one arc increases

by A units, then the constrained maximum flow value increases by at most A units. In case the

capacity of each of the m arcs increases by at most A units, then we can apply the preceding

argument inductively to show that the constrained maximum flow value increases by at most

mA units. This establishes the lemma. +

1__^____1_1___1__11___�-.-�

14

This lemma implies that the procedure restore-optimality performs O(m) shortest path

augmentations. The procedure restore-feasibility has already been shown to perform O(m)

shortest augmentations. As the capacity scaling algorithm executes these procedures 0(log D)

times, it performs O(m log D) shortest path augmentations and runs in O(m log D S(n, m)) time.

Hence the following theorem.

Theorem 2. The capacity scaling algorithm obtains an optimal real (or, integer) solution of the

constrained maximum flow problem with integer arc capacities in O(m log D S(n, m)) time,

where S(n, m) is the time needed to solve a shortest path problem with nonnegative arc

lengths. ,

Lastly, we indicate how can we satisfy the nonnegative cost assumption that we stated in

Section 1. To satisfy the assumption, we execute the following procedure:

Step 1. Add an uncapacitated arc (t, s) with zero cost to the network and solve the minimum

cost circulation problem in the network (i.e., the minimum cost flow problem with the

supply/demand of each node equal to zero). If the optimal solution is unbounded, then the

constrained maximum flow problem is also unbounded, and we stop. Otherwise, let x* be the
optimal flow and n° be the optimal node potentials. Redefine arc costs as ci = cij - X*(i) + *(j) >

O for each arc (i, j) A, D' = D + I cx* I, and go to Step 3.

Step 2. Let G' be a subgraph of G for which cij = 0 for each arc (i, j). Starting with the flow x*,

solve a maximum flow problem from node s to node t in G', and send this flow on arc (t, s) so that

x' is a circulation. Let x' denote the resulting flow in the original network.

We now consider the residual network G(x') with arc costs c'. It can be easily verified that

c' > 0, and each directed path from node s to node t in G(x') has a positive length. As all arc

lengths are integer, each directed path from node s to node t will have length at least one. We

now solve the constrained maximum flow problem with the available budget equal to D'. The

running time of the constrained maximum flow problem depends on the maximum possible value

of D' which we study next. The flow x' is a circulation and it follows from the flow

decomposition theory that it can be decomposed into at most m cycle flows each of which

saturates at least one finite capacity arc (see, for example, Ahuja, Magnanti, and Orlin [1993]).

As there are at most m finite capacity arcs each with capacity at most U, and the minimum

possible cost of a cycle is -nC, we obtain cx' > -nmCU. Consequently, D' < D + nmCU. Notice

that log D' < log D + log n + log m + log C + log U = O(log M), where M is the largest single

element in the data. Therefore, the running time of our capacity scaling algorithm for the

constrained maximum flow problem discussed in this section becomes O(m log M S(n, m)).

15

5. Convex Cost Flows

In this section, we study the constrained maximum flow problem in a network where the cost
of flow on any arc (i, j) E A is given by a convex function Cij(xij). The cost function Cij(xij) may be

a piecewise linear convex function (as shown in Figure 4(a)); or a continuous function stated

concisely (as shown in Figure 4(b)).

4U

30

1 20

Cij(j)

10

0

-10
0 2 4 6 8 10

xij I

(a)

16

1 _I~IV
1,a

1000

800

600

Cij(xj) 400

200

xi,

(b)

Figure 4. Two examples of convex cost functions.

We consider the convex flow problem subject to the following assumptions:

1. The cost function Cij(xij) is linear between successive integers. (This ensures that there is an

optimal solution which is integral.)

2. Each arc (i, j) has a finite capacity uij.

3. The network does not contain any negative cost cycle. (Note that we can satisfy this

assumption using a method similar to the one described in Section 4, where we solve a minimum

cost flow problem with convex costs.)

In this section, we generalize the capacity scaling algorithm described in the previous

section to obtain a polynomial-time algorithm for the constrained maximum flow problem in

convex cost networks. Our algorithm is a modification of the capacity scaling algorithm for the

convex cost flow problem described in Chapter 14 of Ahuja, Magnanti and Orlin [1993], which in

turn is a variant of a scaling algorithm due to Minoux [1984, 1986].

The capacity scaling algorithm for the convex cost flow problem solves a sequence of A-

scaled problems for decreasing values of A. Initially A = 2L0og U], and in each subsequent scaling

phase, A decreases by a factor of 2. For the A-scaled problem, we define the arc cost function

A

II

I

17

Cij(xij) in the following manne = whenever xij is is an integer multiple of A, and

C A (xij) is linear between multiples of A. Consider, for example, the function Cij(xij) = xi for 0 <

xij < 12 and Cij(xij) = for xij > 12. In the first scaling phase, the algorithm linearizes the

function into segments of length 8, in the second scaling phase, the algorithm linearizes the

function into segments of length 4, and so on until the segment lengths become 1. Figure 5 shows

the linearizations of the function in Figure 4(b) for A = 2.

1000

800

600

i 400

Cij(xij)200

0
0 2 4 6 8 10

Xij v

Figure 5. Linearizations of a convex function.

The A-scaled problem for the convex cost flow problem differs from the A-scaled problem

for the minimum cost flow problem in the sense that the cost of flow on each arc is a piecewise

linear convex function instead of a linear function. We now use a well-known result that a

mathematical programming problem with piecewise linear convex cost functions and linear

constraints can be transformed to a linear programming problem by introducing a separate

variable for each linear segment (see, e.g., Murty [1976]). This result implies that the A-scaled

problem for the convex cost case can be transformed into the A-scaled problem for the linear cost

case problem by introducing a separate arc for each linear segment. For instance, consider the

cost function of arc (i, j) for the 2-scaled problem shown in Figure 5, for which the transformed

minimum cost flow problem will contain 5 arcs with different arc costs. We refer to these arcs as

(i, j)l, (i, j)2, ..., (i, j)5.

18

An advantage of this transformation is that it transforms a A-scaled problem for the convex

cost case into a A-scaled problem for the linear cost case, and thereby allows one to use the

approach discussed in the previous section. However, a drawback of this transformation is

that it expands the size of the network (i.e., the number of arcs) substantially. We can

overcome this drawback by not actually expanding the network and treating the additional

arcs implicitly. We now discuss how can we do that. Consider the residual network

corresponding to the A-scaled problem for the transformed minimum cost flow problem. For this

purpose, we focus on a single arc (i, j) of the original network with multiple copies in the
transformed network. Suppose that xij = 4 in the original network, which translates into 2 units

of flow on each of the arcs (i, j)1 and (i, j)2, and zero flow on the rest of the arcs of the

transformed network. Consequently, the residual network contains the arcs (i, j)3 , ..., (i, j)5 , and

the reversals of the arcs (i, j)1 and (i, j)2 (which we denote by (j, i)1 and (j, i)2). Now observe

that if we have to send flow from node i to node j, we will send it using the arc (i, j)3 (because it

is cheapest). In case we have to send flow from node j to node i, then we will send it using the

arc (j, i)2 . This observation implies that in the A-residual network we need not maintain

multiple copies between this node pair; maintaining just the two arcs, (i, j) 3 and (j, i)2 , is

sufficient because these are the arcs that matter at this point. The preceding discussion suggests

the following method to construct the A-residual network in the A-scaling phase: For each arc

(i, j) E A, the A-residual network contains the arc (i, j) with the residual capacity A and a unit
cost equal to (Cij(xij + A) - Cij(xij))/A. Further, for each arc (i, j) E A with xij > A, the A-residual

network contains the arc (j, i) with a residual capacity A and a unit cost equal to (Cij(xij - A) -

Cij(xij))/A

We are now in a position to describe our algorithm for the constrained maximum flow

problem in convex cost networks. Initially, A = 2lo°8 UJ and we initialize the algorithm with

the zero pseudoflow x and zero node potential a. The algorithm then solves a sequence of A-

scaled problems with decreasing values of A and obtains A-optimal solutions, until A = 1, when

it terminates. We next describe how the algorithm transforms a 2A-optimal solution into a A-

optimal solution. We begin the A-scaling phase when the 2A-scaling phase terminates. In the
2A-scaling phase, we linearize Cij(xij) by segments of length 2A, and in the A-scaling phase we

linearize this cost function by segments of length A. Consequently, the arc costs change. As a

result, the reduced costs of the arcs also change and the new values might become negative. As

shown in Ahuja, Magnanti and Orlin [1993], one can then adjust flow on each arc (i, j) by at most

A units so as to make the reduced costs of both the arcs, (i, j) and (j, i), in the A-residual network

nonnegative.

The preceding discussion shows that by sending A units of flow on at most m arcs, we can

obtain a flow in the transformed network that satisfies the optimality conditions. This,

however, creates excesses and deficits at nodes. We then execute the procedure restore-

19

feasibility which converts the pseudoflow into a flow within m shortest path augmentations.

We next execute the procedure restore-optimality which augments flow from node s to node t

along shortest paths as long as the cost of flow is no greater than D. The correctness arguments

we gave in Section 4 also hold for the convex cost case because we are solving the transformed

problem which has linear costs. It can be easily verified that the result of Lemma 3 holds for

the convex case too and the procedure restore-optimality too performs at most m shortest path

augmentations. We have thus established the following theorem.

Theorem 3. The capacity scaling algorithm obtains an integer optimal flow for the constrained

maximum flow problem with convex costs in O(m log U S(n, m)) time. *

ACKNOWLEDGEMENTS

This research was supported by the Air Force Office of Scientific Research Grant AFORS-

88-0088 as well as grants from UPS and Prime Computer Corporation.

REFERENCES

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms, and

Applications. Prentice-Hall, New Jersey.

Ahuja, R. K., A. V. Goldberg, J. B. Orlin, and R. E. Tarjan. 1992. Finding minimum cost flows by

double scaling. Mathematical Programming 53, 243-266.

Ahuja, R. K., K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. 1990. Faster algorithms for the shortest

path problem. Journal of ACM 37, 213-223.

Edmonds, J., and R. M. Karp. 1972. Theoretical improvements in algorithmic efficiency for

network flow problems. Journal of ACM 19, 248-264.

Fredman, M. L., and R. E. Tarjan. 1984. Fibonacci heaps and their uses in improved network

optimization algorithms. Proceedings of the 25th Annual IEEE Symposium on Foundations

of Computer Science, pp. 338-346. Full paper in Journal of ACM 34 (1987), 596-615.

Fulkerson, D. R., 1959. Increasing the capacity of a network: The parametric budget problem.

Management Science 5, 473-483.

Goldberg, A. V., and R. E. Tarjan. 1987. Solving minimum cost flow problem by successive

approximation. Proceedings of the 19th ACM Symposium on the Theory of Computing, pp

7-18. Full paper in Mathematics of Operations Research 15 (1990), 430-466.

Johnson, D. B. 1982. A prioriti queue in which initialization and queue operations take O(log

log D) time. Mathematical Systems Theory 15, 295-309.

��__I__ ___I_�� ��l�sj� �111I___-�_

20

Minoux, M. 1984. A polynomial algorithm for minimum quadratic cost flow problems. European

Journal of Operational Research 18, 377-387.

Minoux, M. 1986. Solving integer minimum cost flows with separable convex cost objective

polynomially. Mathematical Programming Study 26, 237-239.

Murty, K. G. 1976. Linear and Combinatorial Programming. John Wiley & Sons.

Orlin, J. B. 1988. A faster strongly polynomial minimum cost flow algorithm. Proceedings of the

20th ACM Symposium on the Theory of Computing, pp. 377-387. Full paper in Operations

Research 41(1993) 338-350.

