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Broadcasting is an information dissemination problem in which information originating at one node of a
communication network (modeled as a graph) must be transmitted to all other nodes as quickly as possible.
A broadcast graph is a graph which permits broadcasting from any originator in minimum time. In this paper,
we present new methods for constructing sparse broadcast graphs. Our constructions are based on graph
compounding operations which are relative to vertex sets with certain properties that depend on the broadcast
protocols of the graphs. We show that many previous methods for constructing sparse broadcast graphs
are special cases of our methods. We demonstrate our constructions by producing new sparse broadcast

graphs and by showing how many previously constructed graphs can be obtained in a systematic way.

1. INTRODUCTION

Broadcasting is the process of distributing information
from an originator to all other nodes of a communication
network. The problem addressed in this paper is that of
constructing broadcast networks under the assumptions
that only one piece of information is to be distributed,
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each communication involves exactly two adjacent nodes
and takes one unit of time, and no node is involved in
two or more simultaneous communications. It is easy to
see that at least [log n] time units are required to complete
a broadcast under these assumptions since the number of
informed nodes can at most double during each step. The
goal is to minimize the number of communication lines
needed to ensure that broadcasting can be achieved in
minimum time starting from any originator.

In a connected graph G with r vertices, a broadcast
originated by a vertex u determines a spanning tree rooted
at u called a broadcast tree or broadcast protocol for .
The vertices of a broadcast protocol can be labeled to
indicate the times at which the vertices receive the infor-
mation. The minimum time needed to complete a broad-
cast originated by vertex u is the broadcast time of u and
is denoted b(u). The broadcast time of G is the maximum



of the broadcast times of the vertices of GG and is denoted
b(@). If b(G) = llog n), then G is a broadcast graph. The
broadcast function B(n) is the minimum number of edges
in any broadcast graph with # nodes, and a broadcast
graph with n nodes and B(n) edges is called a minimum
broadcast graph or mbg.

Minimum broadcast graphs are difficult to construct
and there is no known method for constructing an mbg
for arbitrary n. Furthermore, there is no known method
for determining B(n) for arbitrary ». In fact, even deter-
mining the value of d(x) for an arbitrary vertex u in an
arbitrary graph is NP-complete (see [16]). Since mbg’s are
so difficult to find, various methods for constructing sparse
broadcast graphs have been proposed [2-6, 8-10, 13, 17-
19]. Most of these methods, including the new methods
described in this paper, construct broadcast graphs by
adding matchings or partial matchings among two or more
smaller broadcast graphs. One feature that distinguishes
our methods from others is the way in which we exploit
properties of the broadcast protocols of graphs to reduce
the sizes of the partial matchings.

The compound of a graph G into a graph H is obtained
by replacing each vertex of H by a copy of G and each
edge of H by a matching between the vertices of the two
corresponding copies of G. Our new construction methods
use compounds relative to carefully chosen subsets of ver-
tices of G. In these compounds, the matchings corre-
sponding to the edges of H are restricted to edges with
endpoints in the chosen subsets of vertices.

Our starting point is a method of Khachatrian and
Harutounian [10] in which the chosen subset is a verfex
cover for G (i.e., every edge of G has at least one endpoint
in the subset), H is K5, and the maximum degree in G is
bounded by [log #]1— 1 (where # is the number of vertices
in G). In Section 2, we present a more general version of
this construction in which we replace the maximum de-
gree restriction on G with a condition that there exist
broadcast protocols in which certain vertices are idle at
certain times. We then further generalize the method to
allow H to be any broadcast graph. Of course, a vertex
cover for G is a cover of all paths of length 1. In Section
3, we show how to modify the conditions about idle ver-
tices so that subsets which are covers of all paths of length
2 (2-path covers) can be used. Our constructions can be
further generalized to h-path covers for any h > 2. We
use /1-path covers to construct families of broadcast graphs
on n = 2F — 2 vertices in which the difference between
maximum and minimum degrees can be varied between
Oandj— L.

Some previous methods are not special cases of our A-
path cover methods for any . Farley [6] proposed meth-
ods which construct broadcast graphs by adding matchings
among two or three smaller broadcast graphs. Farley’s
constructions are not compounds in the sense described
above because the smaller broadcast graphs can be dif-

ferent. Farley’s constructions were generalized by Chau
and Liestman [3] to obtain the 5-way, 6-way, and 7-way
split methods. In Section 4, we present the k-way split
method which generalizes the constructions of [3], and
we determine the conditions under which a k-way split
could give better results than can our method based on
2-path covers. We have not found any cases for which
these conditions are satisfied.

In Section 3, we show that many previous constructions
are special cases of our new constructions. Then, we il-
lustrate our methods by presenting an annotated table of
the sparsest known broadcast graphs on # vertices for n
< 64 and a sample of new results for larger values of 7.
For many values of n for which mbg’s were not previously
known, our new methods produce the sparsest-known
graphs.

2. PARTIAL MATCHINGS AND SOLID
1-COVERS

In [10], Khachatrian and Harutounian showed that a
broadcast graph with 2» vertices can be constructed from
a broadcast graph G with n vertices and maximum degree
Mog nl — 1 by finding a vertex cover S for G and then
joining two copies of G with a matching that joins each
vertex in the vertex cover of one copy of G with its image
in the other copy of G. (Recall that a vertex cover of a
graph is a subset of vertices that includes at least one end-
point of each edge.) Theorem 1 below is a generalization
of their result in which we replace the maximum degree
condition with a condition involving idle vertices and solid
1-covers.

Definition 1. Given a broadcast protocol in a broadcast
graph G on n vertices, a vertex u is idle at time ¢ < [log
nlif and only ifu is aware of the message at (the beginning
of) time step t and u does not communicate with any of
its neighbors during time step t.

For example, in any broadcast protocol for Cg, the first
informed vertex is idle at time 3. For Cs, there is a broad-
cast protocol in which the first informed vertex is idle at
time 2. Note that being idle at time ¢ does not imply being
idle at any time greater than ¢.

Definition 2. Given a broadcast graph G, a subset of ver-
tices C is a solid 1-cover if and only if C is a vertex cover
of G, and for each u & C, there is a broadcast protocol for
u such that at least one neighbor of u is idle at some time
during the broadcast.

For any n > 2, n # 4, there is a solid 1-cover of C, of
size [n/21. There is no solid 1-cover of C, of size less than
4. In fact, there is no solid 1-cover of size less than 29 in



Fig. 1. A graph and broadcast protocol based on a solid 1-
cover.

the d-dimensional hypercube for any ¢ because there are
no idle vertices in any broadcast protocol for a hypercube.
Also, in any graph on n vertices with maximum degree
lMog 11 — 1, any vertex cover is a solid 1-cover, and, in
this special case, the following theorem and proof reduce
to results in [10]:

Theorem 1. Let G = (V, E) be a broadcast graph on n
vertices. If C is a solid 1-cover of G, then B(2n) < 2| E|
+ |C].

Proof. Let (' be the graph constructed from two iso-
morphic copies G, and G,. of &, by joining these copies
with a perfect matching between C, and C, (each vertex
i, € C is joined to its “‘copy™ ; € C,). G has 2n vertices
and 2| E| 4+ | C| edges. We show that A(G') = [log n1+ 1.

Let 1, € V() be the originator of the broadcast.

If , € C,, then u, sends the message to its copy s,
and then u, and 1, broadcast in G, and G5, respectively.
This takes [log 11 + 1 time steps.

Suppose that i, & C,, and let P be any broadcast pro-
tocol for uw in Gy. Letoy(i),i=1,2,.... be the neighbors
of 11, in G, that are informed by u, at timesi =1, 2, .. ..
Since C, is a vertex cover, all of the v(/)’s belong to C,.
We can extend P to inform the vertices of (G5 as follows:
When a v,(i) receives the message, it first sends it to its
copy Uy(i) € G,. Then, v,(i) and v,(i) both complete
broadcasts according to ? in G, and G, respectively.
Thus. all vertices of G, and all vertices of G, except i1,
will be informed after [log n1+ 1 time steps. Since Cisa
solid 1-cover of G. we can choose 7 to be a broadcast
protocol which ensures that some neighbor of 1, in G, is
idle at some time step during the broadcast and this vertex
can inform 1, during its idle time step. |

Since Cy has a solid l-cover of size 3. the theorem
shows that B(12) < 15. Figure 1(a) shows a broadcast
protocol for Cg and Figure 1(b) shows the 12 vertex graph
and broadcast protocol that result when the construction
of Theorem | is applied. Of course, we already know that
B(12) = 15, and the graph in Figure 1(b) is a graph which

appears in [18]. Figure 2 shows a solid 1-cover of cardi-
nality 7 of a broadcast graph on 14 vertices. Therefore.
B(28) = 49, duplicating a result in [10] and improving on
the best previously known bound of B(28) < 52 [2]. There
are many applications of Theorem 1 that improve pre-
viously known bounds on B(n). We refer to Table 1 for
other applications.

Theorem 1 is a special case of the following more gen-
eral result based on a graph compounding operation which
is relative to solid 1-covers.

Definition 3. Let G = (I(G). E(G)) and H = (W{H), E(H))
be two graphs. The compound of G into H relative to a
set S < WG), denoted Gs[H), is obtained by replacing
each vertex x of H by a graph G, isomorphic to G and
adding a matching between two sets Sy and S, if x and v
are adjacent in H. More precisely, the matching between
S.and S, connects each vertex in Sy with its copy in S,.
For any vertex u € S, we use H, to denote the graph iso-
morphic to H which interconnects the copies of u € W(G).

Theorem 2. Let G = (V(G), E(G)) and H = (V(H), E(H)
be broadcast graphs on n and k vertices, respectively, and
let C be a solid 1-cover of G. If Tlog knl = llog k1 + log
n\, then Ge[H] is a broadeast graph and, therefore,

B(kn) < k| E(G)| + 1C| | E(H)].

Proof. G¢[H] has kn vertices and k|E(G)|
+ |CI|E(H)| edges. We need to show that b(G[H])
= [log knl = llog k1 + [log nl. Let u, € I(G,) be the
originator of the broadcast. i.e.. u, is the copy of 1t € 1(G)
in G, for some x € (/). Let £ be a broadcast protocol
for vertex 1 in G, and @, a broadcast protocol for vertex
xin H.

If u, € C,. then 1w, uses @ to broadcast in H, during
the first [log A1 time steps. During the next [log #1 time
steps, each copy of w uses ? to broadcast in its corre-
sponding copy of G to complete the broadcast in G¢[H]
in [log &1+ lNog nltime steps.

If i, & C,, then i, performs its broadcast in G, using
a protocol P for i in & which ensures that i has an idle

Fig. 2. A solid 1-cover of a broadcast graph on 14 vertices.



neighbor at some time during its broadcast. It is always
possible to choose such a  because C is a solid 1-cover
of G.Letv,(i).i=1.2,....bethevertices of G, informed
by i, at times i = 1, 2, ... . Since C, is a vertex cover,
all of the v {i)’s belong to C,. When a v,(i} receives the
message {rom ., it first uses protocol @ to broadcast in
H,yand then completes its broadcast in G, according 1o
P. Each vertex of I, ., upon receiving the message, first
completes the broadcast in f7, (i) according to @ and
then completes a broadcast in its copy of ¢ according
to protocol . This broadcast protocol for G¢{H ] ensures
that all vertices of G[H], except the copies of the orig-
inator 1t,, are informed after [log A1+ og 1] time steps.
Furthermore, each copy of #, has a neighbor which is
idle at some time step during the broadcast, and these
neighbors can inform the copies of u, during their idle
time steps. [ |

Again, we can recover previously known values of B(n).
For example, the mbg on 3 vertices has a solid 1-cover of 2
vertices. When G and H are both the mbg on 3 vertices, our
construction vields an mbg with 9 vertices and 10 edges
which appears in [6]. More importantly. there are many
applications of Theorem 2 that improve previously known
bounds on B(n). For example, when G and /{ are the mbg'’s
on 6 and 7 vertices. respectively, we obtain B(42) < 66.
whereas the best previously known bound was B{42) = 80
[2]. Of course, Theorem 1 is the special case of Theorem 2
with H = K. See Table I for other applications.

We can also use Theorem 2 to find infinite families
of broadcast graphs. The infinite family of mbg’s with
n = 2K — 2 vertices [5. 10] is a family of bipartite graphs
of maximum degree A — 1 and establishes that B(2*
=2y = (k — 1)}2%' — 1). These graphs were used by
Khachatrian and Harutounian [10] to construct broad-
cast graphs with 2 — 2/ vertices. Their result is a simple
corollary of Theorem 2.

Corollary 1 (Khachatrian and Harutounian). B(2X — 2
<[RK=9)4)Qk—j— Dforamy 1 <=j<k—2andk
> 4,

Proof. The family of mbg’s with n = 2% — 2 vertices
establishes the result for j = 1. Forj > 1. let G be a regular
bipartite mbg on 17 = 277! — 2 vertices. Either component
of the bipartition of G is a vertex cover. Furthermore. any
vertex cover is a solid l-cover because the degree is
Mog n1— 1. Applving Theorem 2 with |C| = 27 — | and
H a hypercube of dimension j — 1 gives the result, [ |

The graphs on 2% — 2 vertices that result from Corollary
I are not regular since half of the vertices are of degree &
— j and the other half are of degree & — 1. In the next
section, we use a more sophisticated construction to find

new families of graphs on 2¥ — 2/ vertices with smaller
differences between the maximum and minimum degrees.

Theorem 2 also gives a new upper bound on B(kn) in
terms of B(k) and B(n).

Corollary 2. If n and k are integers such that Tog knl
=Tlog k1 + [log nl, and v(n) is the size of the smallest
solid I-cover of any mbg on n vertices, then

B(kn) = kB(n) + v(m)B(k).

The upper bound of Theorem 2 is not always mini-
mized by choosing G to be an mbg. For large k especially.
it is more important to minimize the size of the solid 1-
cover of G than the number of edges in G. For example.
all mbg's on 7 vertices have 8 edges and must have solid
l1-covers of size at least 5, since a smaller solid 1-cover
would give B(14) < 21 and we know that B(14) = 21.
Figure 3(a) shows a solid 1-cover of size 5 of an mbg on
7 vertices. Applying the formula from Corollary 2 with n
=k =T gives B(49) < 7B(7) + SB(7) = 96, which is better
than the best previous value 99 [2]. However, Figure 3(b)
shows a solid 1-cover of size 4 of a broadcast graph on 7
vertices which is not an mbg because it has 9 edges. Ap-
plving Theorem 2 with n = k = 7 gives B(49) = 7 X 9
+ 4B(7) = 95. See Table I for other applications.

Remark. Since & and /H do not play the same role in
Theorem 2, compounding is neither a commutative op-
eration nor an associative operation. For example, com-
pounding a broadcast graph with 7 vertices into the mbg
with 6 vertices requires at least 78 edges, whereas com-
pounding in the other order uses 66 edges.

3. SOLID 2-COVERS AND SOLID h-COVERS

The conditions in the previous section based on solid |-
covers ensure that all copies of the originator can be in-
formed. Stated another way. if the originator u is not in
the solid 1-cover, then there is a broadcast tree (protocol)

(a) (b)

Fig. 3. Solid 1-covers of broadcast graphs on 7 vertices.



P rooted at u in which each copy of i has at least one
neighbor which has an idle time unit sometime during
the broadcast. In this section, we generalize these condi-
tions so that there are enough idle vertices in 7 to inform
all copies of the originator and all copies of one of its
neighbors. These generalized conditions are based on solid
2-covers. We then use solid h-covers and generalize the
conditions further so that there are enough idle vertices
to inform all copies of the vertices on a path through u
of length at most /# — 1.

Definition 4. Given a broadcast graph G on n vertices, a
subser of vertices M is a solid 2-cover if and only if M
covers all the paths of length 2 in G. and for each u & M,
there is a broadeast protocol from u such that at least one
of the following three conditions holds:

1. All neighbors of 1 belong 1o M and at least one neighbor
of 1 is idle at some time during the broadcast.

2. Exactly one neighbor v of ut does not belong to M, at
least one of the neighbors of u distinct from v is idle at
some time during the broadcast. and at least one of the
neighbors of v distinct from w is idle at some time during
the broadcast.

3. Exactly one neighbor v of u does not belong to M and
al least one of the neighbors of u distinet from v or at
least one of the neighbors of v distinct from u is idle at
some time t < [log nl during the broadcast.

For example. Figure 4 shows a solid 2-cover of size 2
for Cs and a solid 2-cover of size 3 for an mbg with 9
vertices. The vertex labeled xin Figure 4(a) has a broadcast
protocol for which the solid cover satisfies condition 3 of
Definition 4. The vertices labeled 1 and = in Figure 4(b)
have broadcast protocols for which the solid cover satisfies
conditions 2 and 1, respectively. Matching with solid 2-
covers 1s often more efficient than with solid 1-covers since
solid 2-covers of graphs are often smaller than solid 1-
COVETS.

Theorem 3. Let G = (M(G). E(G)) and H = (V(H), E(H))
be broadcast graphs on n and k vertices, respectively,
and let M be a solid 2-cover of G. If Tlog knl = log k1
+Mog n. then Gy, [H] is a broadcast graph and, therefore,

B(kn) < k| E(G)| + | MIE(H)|.

(a) (b)

Fig. 4. Solid 2-covers of mbg's on 5 and 9 vertices.

Fig. 5. Solid 2-cover of an mhg on 13 vertices.

Proof. The proof'is similar to the proof of Theorem 2.
G y[H] has kn vertices and k| E(G)| + | M| | E(H)| edges,
so we need to show that H(G[H]) = Nog knl = lNog k1
+[log nl. Let u be the originator of the broadcast. If u
belongs to M, then we can use the same arguments as in
the proof of Theorem 2.

Suppose that 1 does not belong to M. Since M is a
solid 2-cover of G, one of the three conditions in Defi-
nition 4 holds. If the first condition is true. then all neigh-
bors of 1t belong to Af and we can use the same arguments
as in the proof of Theorem 2. If the second or third con-
dition is true, then the same broadcasting protocol as in
the proof of Theorem 2 can be used to ensure that all
vertices, except the copies of i and the copies of one
of its neighbors v & M. are aware of the message at time
log k1 + llog nl. Since A is a solid 2-cover. there are
enough idle vertices to inform all copies of 17 and v by the
end of time step [log A1+ [og nl. |

As with Theorems 1 and 2. we can recover previously
known values of B(n). For example. Theorem 3 with /
= K, can be used with the graph of Figure 4(a) to construct
an mbg on 10 vertices which appears in [14]. Theorem 3
with H = K, and the graph of Figure 4(b) gives an mbg
on 18 vertices which appears in [4]. With ¢ = Csand
the mbg on 7 vertices in Figure 3(a). we obtain a new
value B(35) = 51, whereas the best previously known
bound on B(35) was 54 [2]. Figure 5 shows a solid 2-cover
of'size 7 for an mbg on 13 vertices. Therefore, B(26) < 43.
whereas the best previous bound was 48 [2]. We refer to
Table I for other applications.

Theorem 3 gives another new upper bound on B(kn)
in terms of B(k) and B(n).

Corollary 3. If n and k are integers such that Tlog knl
=[log k1 + log nl. and w(n) is the size of the smallest
solid 2-cover of any mbg on n vertices, then

B(kn) < kB(n) + p(n)B(k).

The constructions of Theorems | and 3 can be com-
bined to give a family of regular broadcast graphs with 2*



8 vertices. The family of graphs is the same as the family
found by Mahéo and Saclé [13]. However, our proof below
is considerably simpler than is the proof in [13].

Corollary 4 (Mahéo and Saclé). There are regular broad-
cast graphs of degree k — 2 with 2 — 8 vertices and [(2*
— 8)/2) (k — 2) edges for k = 5.

Proof. Let G be a regular bipartite mbg on n = 2+
— 2 vertices. Recall that either component of the bipar-
tition is a solid 1-cover because G has degree [log n1 — 1.
Let S be one of the components and apply Theorem | to
construct a graph G' on ' = 27! — 4 vertices. This graph
is composed of two copies, G, and G,. of G, connected
with a perfect matching between the copies. S, and s,
of S (see Fig. 6). We claim that the set S, U S, = (I'(G))
— S U (G,) — S5) of vertices not involved in the perfect
matching is a solid 2-cover of (. To see this. first notice
that every vertex in S, U S, has all but one neighbor in
S, U S,. Now, since all of the vertices in §; U S, have
degree flog #'1 — 2. the third condition of Definition 4
holds. The result now follows by Theorem 3 using G = G
and i = K. [ |

The construction in the proof of Corollary 4 can be
generalized to give new families of graphs with 28 — 2/
vertices by using solid h-covers for h > 2. We will not give
a formal definition of the conditions for a subset of vertices
to be a solid /i-cover since the following theorem can be
proved more easily with a direct argument that avoids
explicit reference 1o solid /i-covers. Intuitively. a subset
of vertices is a solid fi-cover if it covers all paths of length
/1 and. for each vertex i not in the cover, there is a broad-
cast protocol for 1 with enough idle vertices to inform all
vertices on a path through « of length at most /1 — 1.

Theorem 4. There are broadcast graphs with 25 — 2/ ver-
tices and [(2% — 2)/4) 2k — j — 1) edges for which the
difference between the maxinmum and minimum degrees
is | for any integers j, k, and lwith | <j <k —2, k= 4,

Fig. 6. Solid 2-cover of broadcast graph on 27! — 4 vertices.

and 1 <! <j— 1. Ifjisodd, there are also regular broad-
cast graphs (i.e., [ = 0).

Proof. Let G be a regular bipartite mbg on n = Pl el

- 2 vertices. Choose one of the components of the bi-

partition to be S and denote the other component S. S

and S are both solid 1-covers for G since both are vertex

covers and the degree of G is [log #1 — 1. Choose non-

negative integers p and g such that p + g =j — 1 and p
—qg=1

Construct the graph G’ = Gs[H], where H is the p-
dimensional hyvpercube. ' is a broadcast graph by Theo-
rem 2. Now construct the graph G" = Gg[H'], where /'’
is the g-dimensional hypercube. Notice that the same
graph (" is obtained by performing the two compoundings
in the other order. In particular, construct G' = Gg[H']
and then G" = G's[H]). G’ is also a broadcast graph by
Theorem 2 because S is a solid 1-cover for G.

Each vertex of G” that is in a copy of S has k — j
neighbors in its copy of G and p neighbors from the com-
pounding with H. Each vertex of G” that is in a copy of
S has k — j neighbors in its copy of G and g neighbors
from the compounding with H’, It is easy to verify that
G" is a graph with 2% — 2/ vertices. [(2¥ — 2/)/4) (2k —
— 1) edges. and difference p — ¢ between the maximum
and minimum degrees. To complete the proof, we need
to show that broadcasting in G” can be completed in &
= [log M1 + p + ¢ time steps from any originator.

If the originator i is in a copy of S, it is interconnected
with 2¢ — 1 copies of itself by a g-dimensional hypercube
H',. it first broadcasts in /1, so that each copy of G’ has
an informed vertex after ¢ time steps. Since G' is a broad-
cast graph. the broadcast in G" can be completed in [log
1l + p mare time steps. If the originator ¢ is in a copy of
S. an analogous argument can be used with » broadcasting
first to the 27 copies of G'. [ |

At first, it may not be easy to see the solid /i-cover in
the construction above, In fact, the set $*, which is the
union of all copies of S, is a solid 2°-cover for G". To see
this, consider a vertex u which is in $*, the complement
of $*. 11 is interconnected with 27 — 1 copies of itself by
a p-dimensional hypercube 1, and all of these copies of
irare in S*. The Hamilton paths of /1, are paths of length
27 — | containing no vertices of $*, so S$* is not a (27
— 1)-cover. Since all other neighbors of i are in S*, S$*
is a cover for all paths of Tength 27, If we were 1o define
solid A-covers formally and generalize the construction of
Theorem 3 to obtain a broadcast protocol based on solid
h-covers. then the protocol would satisfy a condition sim-
ilar to Condition | of Definition 4.

The construction of Theorem 4 with / = j — 1 gives
the graphs of Khachatrian and Harutounian [10] (see
Corollary 1). The graphs of Mahéo and Saclé [13] with



2% — 8 vertices result when y = 3 and / = 0 (see Corollary
4). All other families of broadcast graphs resulting from
Theorem 4 are new families.

4. k-WAY SPLITS

Some previous methods for constructing sparse broad-
cast graphs are not special cases of the solid cover meth-
ods that we have discussed so far. The simplest of these
is a method of Farley [6] which constructs a broadcast
graph G on #n vertices from two broadcast graphs G,
and G, with n, and n, vertices such that n, + n; = n
and [log 1,1 = Tlog 121 =Tllog 11 — 1. Assuming that n,
> 1,, a matching with n, edges is added between the
vertices of &, and G, to obtain a broadcast graph G
with n vertices. Broadcasting in G involves two cases:
If the originator i is an endpoint of one of the edges of
the matching, it broadcasts first on this edge to a vertex
1’ wand ' now initiate broadcasts in &, and G, which
complete in [log 71— 1 more time units. If # is not an
endpoint of a matching edge. it must be in G, . it initiates
a broadcast in &, which completes in [log n1 — | time
units. In the last time unit, the edges of the matching
are used to inform all vertices of &>, This construction
proves the following result;

Theorem 5 (Farley). If n, and n, are two integers such
that Nog n,1 = lNog n21 = log (n, + n2)1— 1, then B(n,
+ 1) < B(my) + B(n) + min(n,, n,).

The graphs produced by Farley's construction are not
compounds when G, and G, are different, so it is not a
special case of our constructions based on solid /i-covers.
(If G, and G, are the same, then the result is a compound
relative to the entire set of vertices.) Chau and Liestman
[3] gave three constructions which they called 5-way, 6-
way, and 7-way splits. These constructions are similar
Farley’s construction and it is possible to include all three
split constructions in a more general approach which we
call k-way spfit. Our goal is to construct broadcast graphs
on kn + j vertices, where 1 is not a power of 2 and k and
J are two integers such that 0 < j < k. We need two def-
initions before introducing the general k-way split con-
struction.

Definition 5 [3). A graph G on n vertices has an even
adjacency split if there exists a partition of the vertices
into two dominating sets with cardinalities (nf21 and |n/2).

Chau and Liestman showed that for each # in the range
2 < n < 17 there is a minimum broadcast graph having
an even adjacency split. They also showed that all graphs
produced by Farley’s construction and by their split con-
structions have even adjacency splits. Since Farley’s con-

struction can be used to produce a broadcast graph for
any 1, there is at least one broadcast graph with an even
adjacency split for each n.

Definition 6. A broadcast graph H = (1{H), E(H)) on 2k
vertices has a broadcast-compatible perfect matching if
H has a perfect matching, and for each x € V(H), there
exisis a broadcast protocol from vertex x in H such that
at least one endpoint of each edge of the matching is aware
of the message after [log k1 time steps.

Figure 7 shows two examples of broadcast graphs with
broadcast-compatible perfect matchings. The graph and
matching in Figure 7(a) are the basis for Chau and Liest-
man’s S-way split.

Now, let G, and G, be two broadcast graphs on 1 and
n + 1 vertices, respectively, each having an even adjacency
split. We use S, and S, to denote the subgraphs induced
by the two dominating sets in G,. Similarly, S, and S,
are the subgraphs induced by the dominating sets in G,.
Let H = (V(H), E(/1)) be a broadcast graph on 2k vertices
having a broadcast-compatible perfect matching.

We construct a graph G’ using an operation similar to
compounding. The difference is that compounding re-
places each vertex of H with the same graph, whereas our
k-way split construction will replace the vertices of H with
copies of S,. S5,. S». and S,. Viewed another way, our k-
way split construction replaces each edge of the broadcast-
compatible perfect matching in H with a copy of G, or
(5. More precisely, choose & — j edges of the broadcast-
compatible perfect matching in /. Replace one endpoint
of each of these edges by a copy of S, and the other end-
point by S,, and join the copies of S, and S, with edges
in the same way that they are joined in G,. Perform a
similar operation on the remaining j edges of the perfect
matching using S, and S,. The edges of H which do not
belong to the perfect matching are replaced by connections
between the subgraphs that have replaced their endpoints.
If the two subgraphs have the same number of vertices,
they are joined by a perfect matching. If the subgraphs
have different numbers of vertices, then the cardinalities
of the vertex sets differ by 1. | 71/2] vertices of each subgraph

@ (&)

Fig. 7. Broadcast-compatible perfect matchings.



are joined by a perfect maiching, and the last vertex of
the larger subgraph is connected to any vertex of the
smaller subgraph. This gives a graph G’ on kn + j vertices
with at most (k — )| E(Gy)| + JIEG.)| + [(n + 1)
20| E(H)| — k) edges.

Lemma 1. [f'Tlog (kn + j)1 = llog k1 + log 1, then G’ is
a broadcast graph.

Proof. Tt is easy to see that &(G") = log k1 4 [log n.
The originator broadcasts first “in /77" using a protocol
which ensures that at least one endpoint of each edge of
the matching is aware of the message after [log A1 time
steps. This ensures that one vertex of each copy of G, or
G is aware of the message after [log A1 time steps. Each
of these vertices then broadcasts internally in its copy of
G, or G, in [log il steps. ]

The construction above includes the 5-way, 6-way, and
7-way split constructions of Chau and Liestman [3] as
special cases which use graphs / with broadcast-compat-
ible perfect matchings on 10, 12, and 14 vertices, respec-
tively. Figure 7(a) shows the graph used for the S-way split
in [3]. Moreover, our construction can be used to con-
struct k-way splits for many other values of k. For ex-
ample, Figure 7(b) shows a broadcast graph on 18 vertices
with a broadcast-compatible perfect matching which can
be used to construct a 9-way split. Notice that the graph
in Figure 7(b) is not an mbg.

Farley [6] proposed a second construction which is
similar to the k-way split construction for & = 3. This **3-
way split”™ is not a direct application of Lemma 1 because
it uses H = Cg which does not have a broadcast-compatible
perfect matching. Also. Farley's construction is less re-
strictive about the sizes of the three graphs than is our
construction above. Qur construction requires only minor
modifications to the broadcast protocol of G’ and to the
way in which spare vertices are interconnected when n is
odd to obtain a 3-way split. However. the 6-way split can
be used whenever Farley’s 3-way split can be used and
gives bounds that are at least as good [3). The k-way split
construction establishes the following behavior of B(n):

Theorem 6. Let n. k, and j be integers such that n is
not a power of 2,0 < j < k, andTlog (kn + /)1 = log k]
+ [log nl. If there exist mbg’s on n and n + 1 vertices,
each having an even adjacency split, and there exisis a
mininuun broadcast graph on 2k vertices having a broad-
cast-compatible perfect matching, then

(k — j)B() + jB(n + 1)
Bkn+jy= |+ |22 mak -k ifj > o
kB(n) + H (B2k) — k) ifj=0.
2

Let us compare the formulas from Corollary 3 and
Theorem 6 (with j = 0). We recall that u(n) is the mini-
mum size of a solid 2-cover of an mbg on 1 vertices. If
both formulas apply, then the k-way split will give a better
upper bound if

w(n) > F} —-—~B(2k) " ;
2 B(k)

For small values of 17 and &, we can check that this formula
never holds. For large values, the constructions in [8] and
[18] always seem to give better bounds. Moreover, even
for j # 0. using the solid 2-cover construction and applying
vertex deletion also seems to give better upper bounds
than does the k-way split.

The fact that the solid 2-cover method always seems
to perform better than does the k-wav split method is
probably a consequence of the smaller matchings used by
the solid 2-cover construction. Unfortunately, we have
not been able to prove that the solid /-cover methods are
always better.

5. COMPARISONS WITH PREVIOUS
METHODS

The values of B(n) for | = n =< 135, and some mbg’s re-
alizing these values. were found by Farley et al. [7]. They
also showed that hypercubes are mbg’s. thus establishing
that B(2¥) = k-25"'. Since then, a few more values of
B(n). for small # (and mbg’s realizing these values). have
been determined [2. 12-14, 19] and several papers, in-
cluding [4, 14. 18, 19)]. contain new mbg’s for previously
known values of B(11). Recently. a second infinite family
of mbg's was independently discovered by Khachatrian
and Harutounian [10] and by Dinneen et al. [5]. It is
interesting that this infinite family, which establishes that
B(2¥ — 2) = (2¥") - (k — 1), is implicit in an early paper
by Knédel [11]. (See [1] for a proof by B, Monien.) The
construction methods for this infinite family do not seem
to be closely related to our methods. However, notice that
a hypercube is a compound of one smaller hypercube
into another relative to a solid 0-cover. i.e., the entire ver-
tex set, of one of the smaller hypercubes.

In 1988, Bermond et al. [2] used four new construction
methods to improve most of the bounds for n < 64 that
were known at that time..Most applications of their in-
terconnection of cycles method can be seen as applications
of our solid cover methods. A second method, vertex ad-
dition, used a restricted version of the idle vertices con-
ditions that we use in this paper and is one of the few
previous construction methods to explicitly use infor-
mation about the broadcast protocols. The vertex deletion
method, due to Wang (see [2] or [19]). was used in [2]



and is also used below to derive new bounds for values
of n which are prime or which have “awkward™ prime
decompositions. The fourth method. cycles with chords,
was used in [2] to produce Cayley graphs similar to the
family of mbg’s with 2% — 2 vertices.

The constructions of Gargano and Vaccaro [8] are
based on hypercubes. Their first construction is a vertex
deletion method. Their second construction is an appli-
cation of Theorem 2, with G the mbg on 3 vertices with
its solid 1-cover of size 2, and H a hypercube, plus vertex
deletion. Their third construction is also an application
of Theorem 2 followed by vertex deletion, where G is an
mbg on 10 vertices (with a solid 1-cover of size 8!) and /7
is a hypercube. The first construction of Chen [4] is con-
ceptually similar to the second construction in [8). The
difference is that the copies of one vertex of the solid 1-
cover of the mbg on 3 vertices are interconnected with a
graph F, while the copies of the other vertex of the solid
cover can use a different graph /.. Since the smaller of
H, and H, cannot necessarily be obtained by vertex dele-
tion from the larger, the construction is not a direct ap-
plication of Theorem 2 and vertex deletion. Chen’s sub-
sequent constructions are recursive applications of the
first and most of the graphs used are hypercubes.

The constructions of Ventura and Weng in [17] are
applications of Theorems 2 and 3 followed by vertex dele-
tion. They divide the values of 1 between two consecutive
powers of 2 into 8 ranges and give a construction with a
different graph G for each range. Asin [8]. /{ is always a
hypercube. For example. in the first range. (7 is the mbg
in Figure 4(b) with 9 vertices and a solid 2-cover of size
3:in the second range, G is an mbg with 10 vertices from
[14] with solid 2-cover of size 4; and in three other ranges.
the graphs in Figures 8-10 are used. In the last range.
Ventura and Weng improved the bounds by combining
compounding and splitting constructions followed by
vertex deletion.

In Section 2. we showed that the main construction
method in [10] is a restricted version of our solid 1-
cover method. Khachatrian and Harutounian also used
vertex deletion in [10] for values of » that are not of
the form 2¥ — 2/, In Section 3, we showed that the con-
structions of [13] involve one application of our solid
I-cover method and one application of our solid 2-cover
method. Theorem 4, which uses solid /i-covers. together
with vertex deletion, generalizes all of the construction
methodsin [8. 10, 13, 17]. the method in [19] which is
vertex deletion from hypercubes. and most of the con-
structions in [2] and [4]. Our k-way split method gen-
eralizes the constructions in [3] and includes restricted
versions of Farley’s two methods [6] which are variants
of 1-way and 3-way splits.

The constructions of Grigni and Peleg [9] are based
on hypercubes and generalized Fibonacci numbers. Their
constructions produce broadcast graphs with O(B(n))

edges. but, in practice, other methods always scem to use
fewer edges. We can see no obvious relationships between
our constructions and the constructions in [9].

6. CONCLUSIONS

We have presented new methods for constructing sparse
broadcast graphs based on graph compounding operations
which are relative to vertex sets with certain properties
and we have shown that many previous construction
methods are applications of our methods. We believe that
our methods based on solid covers are always better than
1s our A-way split method, but we have not been able to
prove that this is true. An important advantage of our
construction methods is that the resulting broadcast pro-
tocols are easily verified.

Table 1 summarizes our results for | <= n =< 63. The
“OIld™ values are the best upper bounds on B(n) known
to the authors before applving the methods of this paper.
The “New™ values are obtained using the methods of this
paper. Mbg’s [and, hence, optimal values of B(n)] are
known for 25 values of nin the range 1 < n < 63. Optimal
values of B(n) are indicated by *'s in the *Old” column.
In this paper. we have improved the bounds on B(n) for
nearly half of the 38 values of n for which improvement
is possible. Twelve new values are obtained using our
constructions based on solid covers. and five more are
obtained by applving the vertex deletion method to our
new graphs. These new values of B(n) appear in the “New™
column of the table and the “Ref.” column indicates
which method was used. In 15 more cases. indicated by
+'s in the “*New" column, our solid cover methods give
graphs that match the best previous values of B(n). The
main advantage of using our methods in these cases is
that the broadcast protocols are easy to verify. Comments
and construction details related to this table are given in
the Appendix.

In addition to the results summarized in Table I, we
have applied our methods to several larger values of n.
Our solid cover constructions improve the upper bounds
on B(n) for all nin the range 65 < n < 105 except n = 96
where we matched the bound of [10]. We also compared
our methods with those of Farley [6]. Chau and Liestman
[3], Gargano and Vaccaro [8]. Chen [4]. Grigni and Peleg
[9]. Ventura and Weng [17], and Khachatrian and Ha-
rutounian [10] for n = 513. n = 896. n = 1008, and n =
16128. The results are summarized in Table 1I. When
choosing the values of n for Table II. we tried to select
values for which most methods apply and for which pre-
vious methods exhibit their best behaviors. The values
for the methods of Farley and Chau and Liestman that
appear in Table Il are from [8] and were computed by
using the mbg’s that were known at that time (i.e., for n
=< 17) and applyving split constructions recursively. The



values in these two rows can be improved by building on
graphs produced by the other methods instead of using
recursive splits and small mbg’s. These improved values
could then be used to improve the results in the “This
paper” row, and so on. We have chosen not to perform
this recursive computation because it quickly becomes
impossible to identify a construction as the result of a
particular method. The results in the “Grigni-Peleg” row
use a construction from [15] which gives slightly better
values than the constructions in [9].

The graphs in the row labeled “This paper™ were con-
structed as follows: The graph with n = 513 vertices uses

TABLE |. Upper bounds on B(n)

N New Old Ref.

| 0* [7]
2 s [7]
3 2 (7]
4 4* (7]
5 5* [7]
6 4 6* 7
7 8* [7]
8 [2* [7]
9 + 10* (7]
10 + 12* (7]
11 13* (7
12 + 15* [7]
13 18* [7]
14 + 21* [7]
15 24* (7]
16 32" (7]
17 4 22* [14)
18 + 23 [2.19]
19 25 [2,19]
20 26* [13]
21 28* [13]
22 F 31* [13]
23 34 [13]
24 + 36 [2]
25 40 [2]
26 43 48 Thm. 3
27 49 51 Vertex Del.
28 £ 49 [10]
29 58 2]
30 + 60* [2]
31 65* [2]

32 80* (7

Theorem 3 where G is the 9 vertex graph in Figure 4(b)
with a solid 2-cover of size 3, and #{ is the graph on 57
vertices from [2]. For n = 896, Corollary 1 or Theorem
4 with k = 10 and j = 7 can be used. The graph with 1008
vertices uses Theorem 2 where G is the 63 vertex mbg
from [12] with a solid 1-cover of size 36, and H is the 4-
dimensional hypercube. The 16,128 vertex graph is ob-
tained with Theorem 4 where k = 14 and j = § or with
Corollary 1.

Finally, we mention that the question of whether the
function B(n) is monotonically increasing between powers
of 2 is still an open problem.

n New Old Ref.

33 + 48 [18]

34 + 49 (18]

35 51 54 Thm. 3

36 52 54 Thm. 3

37 57 [2]

38 57 2]

39 60 [2]

40 60 [2]

41 65 70 Vertex Del.
42 66 80 Thm. 2

43 71 84 Vertex Del.
44 72 88 Thm. 3

45 81 90 Vertex Del.
46 82 92 Thm. 1

47 83 94 Thm. 2

48 83 96 Thm. 3

49 95 99 Thm. 2

50 95 100 Thm. |

51 103 [2]

52 100 104 Thm. 3

53 107 [2]

54 108 [2]

55 112 (2]

56 + 112 [2]

57 126 [2]

58 131 140 Thm. |

59 133 147 Vertex Del.
60 + 135 [10]

61 155 [2]

62 155* [5.10]
63 162* [12]

64 192%* [7]




TABLE |l. Comparison of upper bounds on B(n) from several methods

n= 16,128

Method n=>513 n = 896 n= 1008

This paper 948 2688 3744 76.608
Khachatrian-Harutounian [10] 1505 2688 3780 76,608
Weng-Ventura [17] 1026 2880 4832 108,032
Gargano-Vaccaro [8] 1408 3456 4960 100.864
Chen [4] 1368 3968 4960 111,104
Chau-Liestman [3] 1986 4032

Farley [6] 1946 4288 4992 112,128
Grigni-Peleg [9] 1539 3584 7056 112,896

Fig. 8. A solid 2-cover of a broadcast graph on 11 vertices.

B

Fig. 12. A solid 1-cover of a broadcast graph on 23 vertices.
Fig. 9. A solid 1-cover of a broadcast graph on 12 vertices. . ahek

-

Fig. 10. A solid 1-cover of a broadcast graph on 15 vertices. Fig. 13. A solid 2-cover of a broadcast graph on 24 vertices.



Fig. 16. A solid 1-cover of a broadcast graph on 30 vertices.

We would like to thank Luisa Gargano and Ugo Vaccaro for
bringing the results of Khachatrian and Harutounian to our at-
tention and the weather in Vancouver for eliminating distractions
that might have delaved the completion of this research.

APPENDIX

Notation: K, is the complete graph on n vertices. C,, is the
cvele on i vertices. and Qs the d-dimensional hypercube

on 1 = 24 vertices. The vertex deletion method is deseribed
in [2] and [19].

e ;1 = 6: Theorem 1, where G is the mbg on 3 vertices,
gives the mbg (Cy) in [7].

e i = 9: Theorem 2, where G and H are both the mbg
on 3 vertices, gives an mbg in [6].

e ;7 = 10: Theorem 3. where G = Cs with a solid 2-cover
of size 2 and /1 = K, gives an mbg in [14].

e 5 = 12: Corollary 1, where G = C4 gives an mbg in
[10].

e ;1 = l4: Theorem 1. where G is the mbg in Figure 3(a)
gives an mbg in [18].

e n = 17: Vertex deletion from any mbg on 18 vertices.

e ;7 = 18: Theorem 3. where G is the graph on 9 vertices
in Figure 4(b) with a solid 2-cover of size 3 and { = K,
gives an mbg in [4].

e i = 22: Theorem 3. where G is the mbg on 11 vertices
in Figure 8 with a solid 2-cover of size 5 and i = K,
gives a new mbeg.

e n = 24: Theorem |, where G is the mbg on 12 vertices
in Figure 9, gives a new broadcast graph. Corollary 1.
where G = Cg and H = Q,, gives a result in [10]. Cor-
ollary 4 gives a 3-regular graph from [2] shown in Figure
13

e ;= 26: Theorem 3. where G is the mbg on 13 vertices
in Figure 5 with a solid 2-cover of size 7 and H = K.
(Note that G is a new mbg on 13 vertices.)

® ;1 = 27: Vertex deletion from n = 28.

e jy = 28: Corollary 1, where (G is the mbg on 14 vertices
in Figure 2 and /1 = K, gives a result in [10].

o 1 = 30: Theorem 1. where G is the mbg on 15 vertices
in Figure 10, gives a new mbg.

e n = 33: Vertex deletion from the graph below with 34
vertices gives a graph in [18].

e ;7 = 34: Theorem 3, where G is the mbg on 17 vertices
in Figure 11 with a solid 2-cover of size 5 and I{ = K>,
gives a graph in [18]. Note that the mbg of Figure 11
is obtained by vertex deletion from an mbg on 18 ver-
tices constructed with Theorem 3. (See description for
n = 18 above.)

¢ 17 = 35: Theorem 3. where G = Cs with a solid 2-cover
of size 2 and H is the mbg on 7 vertices in Figure 3(a).
Also by vertex deletion from n = 36.

e 1 = 36: Theorem 3, where G is the mbg on 9 vertices
in Figure 4(b) with a solid 2-cover of size 3 and /I{ = Q-.

e 7 = 41: Vertex deletion from n = 42,

e 1= 42: Theorem 2, where G = Cy and H is an mbg on
7 vertices.

e 7 = 43: Vertex deletion from n = 44.

e i = 44: Theorem 3. where G is the mbg on |1 vertices
in Figure 8 with a solid 2-cover of size 5 and H = Q.



e n = 45: Two applications of vertex deletion from »
= 47,

e n = 46: Theorem |, where G 1s the broadcast graph
from [2] on 23 vertices with 335 edges. (See Fig. 12.)
Also by vertex deletion from n = 47.

e i1 = 47: Vertex deletion from the graph on 48 vertices
with 84 edges constructed by Theorem 2, where G = Cg
and H = Q;.

e ;1 = 48: Theorem 3. where ( is the graph on 24 vertices
in Figure 13 with a solid 2-cover of size 11 and H = K.

e 5 =49: Theorem 2, where G is the graph on 7 vertices
in Figure 3(b) with a solid I-cover of size 4 and / is
the mbg on 7 vertices in Figure 3(a). Also by vertex
deletion from n = 50.

e ;1 = 50: Theorem 1. where G is the graph on 25 vertices
in Figure 14 with a solid 1-cover of size 15.

® ;1 = 52: Theorem 3. where ( is the mbg on 13 vertices
in Figure 5 with a solid 2-cover of size 7 and H = 0.

e ;1= 56: Corollary 1, where G is the mbg on 14 vertices
in Figure 2 and /1 = Q,. gives aresult in [10]. Corollary
4 gives a 4-regular graph from [13].

e 51 = 58: Theorem 1. where (5 is the graph on 29 vertices
in Figure 15 with a solid 1-cover of size 15,

e ;1= 59: From n = 60 using a modified form of vertex
deletion similar to the method used in [2] for n = 29.

e i1 = 060: Corollary | gives a result in [10]. Theorem 1.
where G is the graph on 30 vertices in Figure 16 with
a solid I-cover of size 15 gives a new broadcast graph.
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