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Abstract

We study the problem of minimizing the norm, the norm of the inverse
and the condition number with respect to the spectral norm, when a sub-
matrix of a matrix can be chosen arbitrarily. For the norm minimization
problem we give a different proof than that given by Davis/Kahan/Weinberger.
This new approach can then also be used to characterize the completions
that minimize the norm of the inverse. For the problem of optimizing the
condition number we give a partial result.
Keywords: condition number, norm of a matrix, matrix completion, dila-
tion theory, robust regularization of descriptor systems

1 Introduction

We study the following optimization problem: Given integers n, m,N > n, m
and matrices A ∈ Cn,m, B ∈ Cn,N−m, C ∈ CN−n,m, find X ∈ CN−n,N−m such
that the matrix

W (X) =
[

A B
C X

]
(1.1)
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satisfies

cond(W (X)) = minZ∈CN−n,N−m{‖W (Z)‖‖W (Z)−1‖}
= minZ∈CN−n,N−m{cond(W (Z))}. (1.2)

Throughout the paper ‖ ‖ will denote the spectral norm and N the order of
W (X). In order to study the solution of this problem, we study the following
two related problems:

Find X ∈ CN−n,N−m such that W (X) as in (1.1) satisfies

‖W (X)‖ = min
Z∈CN−n,N−m

‖W (Z)‖, (1.3)

and find X ∈ CN−n,N−m such that W (X) as in (1.1) satisfies

‖W (X)−1‖ = min
Z∈CN−n,N−m

‖W (Z)−1‖. (1.4)

Problem (1.3) is well known in dilation theory and was solved by Davis/Kahan/Weinberger,
see [3] and the references therein. It has many applications in perturbation the-
ory for eigenvalues, e.g. Parlett [9] and numerical quadrature, e.g. Davis/Kahan/Weinberger
[3].

Problems (1.2) and (1.4) are not as well studied but they have applica-
tions in the construction of numerically stable parallel methods for block struc-
tured linear systems, e.g. Mehrmann [7] and in robust control, e.g. Bunse-
Gerstner/Mehrmann/Nichols [1, 2]. Consider for example the descriptor control
problem:

Eẋ = Fx + Gu, y = Hx (1.5)

with E,F ∈ Cn1,n1 , G ∈ Cn1,m1 ,H ∈ Cp1,n1 . Here x is the state, u the input
and y the output of the system and E is assumed to be singular. Without loss
of generality let us assume that

E =
[

Σ 0
0 0

]
, F =

[
F11 F12

F21 F22

]
, G =

[
G1

G2

]
, H =

[
H1 H2

]
,

with Σ square, nonsingular and diagonal. This can easily be achieved via a
singular value decomposition of E. If F22 is nonsingular, then problem (1.5)
can be reduced to a lower order ordinary control system, by eliminating the
second block row. For details see [1, 2].

Using a linear feedback u = My in (1.5), we can modify the properties of the
matrix F . In particular under some regularizability assumptions, (see [1, 2]),
we can choose the feedback matrix M to make F22 + G2MH2 nonsingular. If
we have done so, we can transform the system to a reduced order ordinary
control system. To do this in practice, however, we need that the matrix F22 is
well-conditioned with respect to inversion. Thus, it is obvious that we should
choose the feedback M such that F22 + G2MH2 is well-conditioned. Using
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singular value decompositions of G2,H2 the problem of choosing the feedback
that minimizes the condition number of F22 + G2MH2 is easily transformed to
problem (1.2).

In [3] explicit solutions for problem (1.3) are given. Here we will give explicit
solutions for problem (1.4). In fact, problems (1.3) and (1.4) are equivalent to
Riccati inequalities which have explicit solutions. Using this characterization,
we give elementary representations of solutions to problems (1.3) and (1.4).
We discuss the two problems separately in the Hermitian case, i.e. A = AH ,
C = BH and X = XH in Section 2 and in the non-Hermitian case in Section 3.

For problem (1.2) we give bounds for the solutions in terms of Riccati in-
equalities for solutions of (1.3) and (1.4) in Section 4. In general the solution
of (1.2) is an open problem, except for the case that either n or m is 0. In this
case particular solutions were given in [1]. A complete characterization of the
solutions for this case is also given in Section 4.

We use the following notation:
By Cn,m we denote the set of complex n × m matrices. For A ∈ Cn,m we

denote by AH the conjugate transpose of A. For Hermitian matrices A,B ∈
Cn,n we write A < B (A ≤ B) if B−A is positive definite (positive semidefinite).
For a matrix A ∈ Cn,m, we denote by 0 ≤ σp(A) ≤ σp−1(A) ≤ . . . ≤ σ1(A) the
singular values of A, where p = min{m,n}.

We make use of the Sherman-Morrison-Woodbury formula in the form

(A + UV H)−1 = A−1 −A−1U(I + V HA−1U)−1V HA−1, (1.6)

e.g. [5] and we also use the congruence, e.g. [8][
A B

BH D

]
∼=

[
A 0
0 D −BHA−1B

]
∼=

[
A−BD−1BH 0

0 D

]
(1.7)

with the Schur complements

D −BHA−1B

and
A−BD−1BH ,

provided that the inverses of A and D exist.

2 Minimizing the norm and the norm of the
inverse. The Hermitian case.

In this section we discuss the Hermitian case. We discuss the minimization of
the norm and the norm of the inverse jointly and show that both results can be
obtained in a similar fashion. To do this we give a proof for the minimization
of the norm different from that given in [3].
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Let

W (X) =
[

A B
BH X

]
∈ CN,N , (2.1)

where A is Hermitian and X ∈ Cm,m is required to be Hermitian, too. The
main idea for the solution of problems (1.3) and (1.4) is to consider the limiting
case of the following two problems.

For σ1([A,B]) < β find an X such that

‖W (X)‖ ≤ β, (2.2)

and for 0 < α < σn([A,B]), find an X such that

‖W (X)−1‖ ≤ 1
α

. (2.3)

Here we assume that 0 < σn([A,B]) in order to guarantee that W (X) is
invertible for some X. We call Hermitian matrices X satisfying (2.2) or (2.3)
solutions of (2.2) or (2.3), respectively.

The theory that we develop depends strongly on the following Lemma, which
shows that both problems (2.2) and (2.3) are equivalent to Riccati inequalities.
Introduce the matrix function

R(X, γ) :=
(BHB + X2 − γ2I)− (BHA + XBH)(A2 + BBH − γ2I)−1(AB + BX).

(2.4)

Lemma 1 Let W (X) be as in (2.1).
(i) If σ1([A,B]) < β, then problem (2.2) and the Riccati inequality

R(X, β) ≤ 0 (2.5)

have the same set of solutions.
(ii) Let 0 < σn([A,B]). If 0 < α < σn([A,B]), then problem (2.3) and the
Riccati inequality

R(X, α) ≥ 0 (2.6)

have the same set of solutions.

Proof. (i) To prove that (2.2) and (2.5) have a common set of solutions note
that if ‖W (X)‖ ≤ β has a solution X, then

W (X)2 ≤ β2I

or equivalently [
A2 + BBH AB + BX

BHA + XBH BHB + X2

]
− β2I ≤ 0.
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We have A2+BBH−β2I < 0, since σ1([A,B]) < β. Since positive definiteness
is preserved when taking Schur complements, see (1.7), it follows that

R(X, β) = (BHB+X2−β2I)−(BHA+XBH)(A2+BBH−β2I)−1(AB+BX) ≤ 0.

Therefore, X is a solution of R(X, β) ≤ 0. Observe that every step of above
proof is reversible, so (2.2) and (2.5) have a common set of solutions.

In the same way it follows that (2.3) and (2.6) have a common set of solutions,
since α2I ≤ W (X)2 and from 0 < α < σn([A,B]) it follows that A2 + BBH −
α2 > 0.

Lemma 1 shows that problems (2.2) and (2.3) are equivalent to the Riccati in-
equalities (2.5) and (2.6) which are well studied, since they are central problems
in control theory, e.g. [11].

To proceed, we consider a general Riccati equation of the form

XRX −XV − V HX −Q = 0, (2.7)

where R and Q are Hermitian matrices with R invertible and V is a square
matrix.

Several papers are devoted to give explicit Hermitian solutions of (2.7) under
the condition that RV H = V R and some further control theoretic conditions,
e.g. [6, 10]. The main idea is to rewrite (2.7) as

(X − V HR−1)R(X −R−1V ) = Q + V HR−1V. (2.8)

Here we are not interested in these problems of control theory, but this ap-
proach of solving Riccati equations plays a central role in solving our problems.

We rewrite R(X, β) = 0 with R(X, β) as in (2.5) in the form of (2.7) and
obtain

R(X, β) = XRβX −XVβ − V H
β X −Qβ = 0, (2.9)

where
Rβ = I −BH(A2 + BBH − β2I)−1B,
Vβ = BH(A2 + BBH − β2I)−1AB,
Qβ = BHA(A2 + BBH − β2I)−1AB + β2I −BHB.

(2.10)

Now we have that RβV H
β = VβRβ . Before verifying this fact, we note that

R−1
β = I + BH(A2 − β2I)−1B, (2.11)

which is a direct consequence of the Sherman-Morrison-Woodbury formula (1.6)
and the fact that A2 − β2I is invertible. Thus, we have that

R−1
β Vβ = BH(A2 + BBH − β2I)−1AB+

BH(A2 − β2I)−1BBH(A2 + BBH − β2I)−1AB
= BH(I + (A2 − β2I)−1BBH)(A2 + BBH − β2I)−1AB
= BH(A2 − β2I)−1AB.

(2.12)
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This shows V H
β R−1

β = R−1
β Vβ and RβV H

β = VβRβ from which we obtain
that the Riccati equation R(X, β) = 0 has solutions, and also obtain general
solutions of R(X, β) ≤ 0.

Replacing β by α in (2.9) we obtain formulas analogous to (2.9)-(2.12) for
R(X, α), Rα, Vα, Qα, R−1

α .
Before we establish the structure of solutions for R(X, β) ≤ 0 and R(X, α) ≥

0, let us discuss the inertias of the Hermitian matrices R−1
β and R−1

α . This is
done in the following Lemma.

Lemma 2 (i) Let σ1([A,B]) < β. Then R−1
β given by (2.11) is positive definite.

(ii) Let 0 < α < σn([A,B]). Suppose that α is not a singular value of A, and
that the inertia of A2 − α2I corresponding to the numbers of positive, negative
and zero eigenvalues of A2 − α2I is (p, n − p, 0). Then, the inertia of R−1

α is
(N + p− 2n, n− p, 0).

Proof. Taking Schur complements in[
β2In −A2 B

BH IN−n

]
we obtain as in (1.7) the following congruences[

β2In −A2 −BBH 0
0 IN−n

]
∼=

[
β2In −A2 B

BH IN−n

]
∼=

[
β2In −A2 0

0 R−1
β

]
.

The left matrix is positive definite by assumption. Thus, we have R−1
β is positive

definite.
Similarly, taking Schur complements in[

−(A2 − α2In) B
BH IN−n

]
we obtain the congruences[

−(A2 + BBH − α2In) 0
0 IN−n

]
∼=

[
−(A2 − α2In) B

BH IN−n

]
∼=

[
−(A2 − α2In) 0

0 R−1
α

]
.

Since α < σn([A,B]), it follows that the left matrix has the inertia (N−n, n, 0)
and the inertia of the right matrix is the sum of (n− p, p, 0) and the inertia of
R−1

α . Thus, the inertia of R−1
α is (N+p−2n, n−p, 0).

It is immediate from the fact that R−1
β is positive definite and R−1

α is indefinite
that solving R(X, β) ≤ 0 is easier than solving R(X, α) ≥ 0, though both
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problems are solvable. In fact σ1([A,B]) < β implies σ1(A) < β. However,
when 0 < α < σn([A,B]), (A − αI)−1 may have several poles in this interval.
This fact makes numerical calculations in the latter case more complicated than
in the definite case.

Theorem 1 Let W (X) be as in (2.1).
(i) Let σ1([A,B]) < β. Then,

‖W (X)‖ ≤ β

always has a solution. In fact it has the two extremal solutions

X1 = βI + BH(A− βI)−1B,
X2 = −βI + BH(A + βI)−1B,

(2.13)

and the set of solutions is the ‘interval’ of matrices given by

X2 ≤ X ≤ X1. (2.14)

(ii) Let 0 < σn([A,B]). If 0 < α < σn([A,B]) and α is not a singular value of
A, then

‖W (X)−1‖ ≤ 1
α

always has a solution. In fact it has the two solutions

Y1 = αI + BH(A− αI)−1B,
Y2 = −αI + BH(A + αI)−1B,

(2.15)

and general solutions are of the form

X = Y1 + Y (2.16)

or
X = Y2 − Y, (2.17)

where Y satisfies

Y ≥ Y (
BH(A2 + BBH − α2I)−1B − I

2α
)Y. (2.18)

Proof. According to Lemma 1, we only need to solve R(X, β) ≤ 0 to solve
(2.2) and R(X, α) ≥ 0 to solve (2.3).

(i) We begin with the Riccati inequality based on the equation (2.9). With
Rβ , Vβ and Qβ as in (2.10), we have to solve

R(X, β) = (X − V H
β R−1

β )Rβ(X −R−1
β Vβ)− (Qβ + V H

β R−1
β Vβ) ≤ 0. (2.19)
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From (2.12) and the Sherman-Morrison-Woodbury formula (1.6)

A(A2 − β2I)−1A− I = β2(A2 − β2I)−1,

we obtain

Qβ + V H
β R−1

β Vβ = BHA(A2 + BBH − β2I)−1AB

+β2I −BHB + BHA(A2 + BBH − β2)−1BBH(A2 − β2)−1AB
= BHA(A2 − β2)−1AB −BHB + β2I
= β2(BH(A2 − β2I)−1B + I) = β2R−1

β .

So the above Riccati inequality (2.19) is equivalent to

ZRβZ ≤ R−1
β , (2.20)

where Z = (X − V H
β R−1

β )/β. Two particular solutions of (2.20) are Z1 = R−1
β

and Z2 = −R−1
β . This implies that we have the two particular solutions

X1 = V H
β R−1

β + βZ1 = βI + BH(A− βI)−1B (2.21)

and
X2 = V H

β R−1
β + βZ2 = −βI + BH(A + βI)−1B (2.22)

for (2.5).
As R−1

β is positive definite, the set of solutions of (2.20) is the ‘interval’

Z2 ≤ Z ≤ Z1

implying that the set of solutions of (2.5) is given by

X2 ≤ X ≤ X1.

(ii) Following the proof of (i), we can verify in the same way that Y1 and Y2

defined by (2.15) are solutions of R(X, α) = 0.
However, to get the general structure of solutions of R(X, α) ≥ 0, the pro-

cedure of (i) is not satisfactory as (2.20) with indefinite R−1
α is hard to solve.

Thus, we prefer the form X = Y1 +Y or X = Y2−Y . Recall that by (2.11) and
(2.12) with β replaced by α we have

R(Y1 + Y, α) = R(Y1, α) + Y 2 + Y1Y + Y Y1−
Y BH(A− αI)−1B −BH(A− αI)−1BY − Y BH(A2 + BBH − α2I)−1BY
= Y 2 + 2αY − Y BH(A2 + BBH − α2I)−1BY.

Thus, R(Y1 + Y, α) ≥ 0 if and only if Y satisfies

Y ≥ Y (
BH(A2 + BBH − α2I)−1B − I

2α
)Y. (2.23)

Similarly we can prove that X = Y2−Y with Y satisfying (2.18) is also a solution
of R(X, α) ≥ 0.
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Remark 1 For the two particular solutions X1 and X2 of R(X, β) ≤ 0, we
always have

X1 −X2 = 2βR−1
β ≥ 0

and the “central” solution of R(X, β) ≤ 0 is

X1 + X2

2
= −BH(β2I −A2)AB. (2.24)

However, for R(X, α) ≥ 0, the two special solutions Y1 and Y2 do not have a
natural order, as

Y1 − Y2 = 2αR−1
α (2.25)

is indefinite. Only in the case that 0 < α < σn(A), we have that Rα is positive
definite by Lemma 2 and

Y2 ≤ Y1

holds.

Remark 2 If Y as in (2.23) is chosen to be nonsingular, then (2.18) implies
that

Y −1 ≥ BH(A2 + BBH − α2I)−1B − I

2α
= −Rα

2α
.

In particular when α < σn(A), Rα is positive definite and Y2 ≤ Y1, and thus
any positive definite matrix Y will satisfy (2.18).

Thus, in this case we have that the solutions of (2.2) lie inside of X2 ≤ X ≤
X1, and those of (2.3) lie outside of Y2 ≤ Y ≤ Y1.

Remark 3 Note that the solutions X1 and X2 of (2.2) depend on the inverses of
(A−βI) and (A+βI), or more precisely on BH(A−βI)−1B and BH(A+βI)−1B.

Taking the limit β → σ1([A,B]) with β > σ1([A,B]), it is known that the
limits of BH(A − βI)−1B and BH(A + βI)−1B always exist even in the case
that σ1([A,B]) = σ1(A) and that they always give a minimizing solution, e.g.
[9]. Thus

‖W (X)‖ = σ1([A,B])

always has a finite solution.
However, when we take the limit α → σn([A,B]) with α < σn([A,B]), the

problem

‖W (X)−1‖ =
1

σn([A,B])

may not have a finite solution.
An example is given by

W (x) =

 1 0 1
0 −1 1
1 1 x

 .
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The minimal singular value of [A, b] is 1. Both 1 and −1 are eigenvalues of A
and neither of the limits in (2.15) for α → 1 exists. Since the minimal singular
value of W (x) is obviously in the interval [0, 1] it follows that ‖W (x)−1‖ has 1
as a minimum, which is only obtained as a limit for x →∞.

Theorem 2 Let W (X) =
[

A B
BH X

]
with A Hermitian.

(i) Then
inf
X
‖W (X)‖ = σ1([A,B]).

Moreover, there exists an Hermitian matrix X such that

‖W (X)‖ = σ1([A,B]).

(ii) Let 0 < σn([A,B]). Then,

inf
X
‖W (X)−1‖ =

1
σn([A,B])

.

Moreover, if σn([A,B]) is not an eigenvalue of both A and −A, then there exists
an Hermitian matrix X such that

‖W (X)−1‖ =
1

σn([A,B])
.

Proof. (i) Since for any X we have ‖W (X)‖ ≥ σ1([A,B]), it follows by
Theorem 1 that

inf
X
‖W (X)‖ = σ1([A,B]).

As already pointed out in the limit discussion of Remark 3, there always exists
an Hermitian matrix X such that ‖W (X)‖ = σ1([A,B]).

(ii) It follows from the Cauchy Interlacing Theorem, (e.g. [5]), that for any
Hermitian matrix X we have

σN (W (X)) ≤ σn([A,B]).

Consequently we have

inf
X
‖W (X)−1‖ ≥ 1

σn([A,B])
.

It follows by Theorem 1(ii) that

inf
X
‖W (X)−1‖ =

1
σn([A,B])

.

Under the condition that σn([A,B]) is not an eigenvalue of both A and −A,
the discussion in Remark 3 shows that there exists an Hermitian matrix X such
that

‖W (X)−1‖ =
1

σn([A,B])
.

Thus, we have finished the proof.
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Remark 4 The minimizing solutions of (1.3) in the Hermitian case satisfy

X2 ≤ X ≤ X1,

where X1 and X2 are given by (2.13) with β = σ1([A,B]).
The minimizing solutions of (1.4) in the Hermitian case are

X = Y1 + Y, or X = Y2 − Y,

where Y1 , Y2 and Y are given by (2.15) and (2.18) with α = σn([A,B]).

3 Minimizing the norm and the norm of the
inverse. The non-Hermitian case.

In this section we discuss the minimization of the norm and the norm of the
inverse of

W (X) =
[

A B
C X

]
, (3.1)

where A ∈ Cn,m, B ∈ Cn,N−m, C ∈ CN−n,m, and X ∈ CN−n,N−m.
In the following let α0, β0 be defined as

β0 = max{σ1([A,B]), σ1(
[

A
C

]
)}, α0 = min{σn([A,B]), σm(

[
A
C

]
)}. (3.2)

We furthermore assume that 0 < α0 in order to guarantee that the inverse of
W (X) exists for some X.

The results of Section 2 are naturally extended to the non-Hermitian case.
As in the previous section we solve the problems

‖W (X)‖ ≤ β, (3.3)

for β0 < β and

‖W (X)−1‖ ≤ 1
α

, (3.4)

for 0 < α < α0, and then take limits for α → α0 and β → β0

The following two lemmata are direct analogues to Lemma 1 and Lemma 2,
and are stated without proofs.

Lemma 3 Let W (X) be as in (3.1).
(i) If β0 < β, then problem (3.3) and the Riccati inequality

R(X, β) = (CCH + XXH − β2I)−
(CAH + XBH)(AAH + BBH − β2I)−1(ACH + BXH) ≤ 0.

(3.5)

have the same set of solutions.
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(ii) Let 0 < α0. If 0 < α < α0, then problem (3.4) and the Riccati inequality

R(X, α) = (CCH + XXH − α2I)−
(CAH + XBH)(AAH + BBH − α2I)−1(ACH + BXH) ≥ 0.

(3.6)

have the same set of solutions.

Proof. Analogous to the proof of Lemma 1.
If we rewrite R(X, β) = 0 in the form

R(X, β) = XRβ,BXH −XVβ − V H
β XH −Qβ = 0, (3.7)

where
Rβ,B = I −BH(AAH + BBH − β2I)−1B
Rβ,C = I − C(AHA + CHC − β2I)−1CH

Vβ = BH(AAH + BBH − β2I)−1ACH

Qβ = CAH(AAH + BBH − β2I)−1ACH + β2I − CCH

(3.8)

then the following formulas are obtained parallel to those in Section 2.

R−1
β,B = I + BH(AAH − β2I)−1B, (3.9)

R−1
β,BVβ = BH(AAH − β2I)−1ACH (3.10)

and
Qβ + V H

β R−1
β,BVβ = β2R−1

β,C (3.11)

where
R−1

β,C = I + C(AHA− β2I)−1CH . (3.12)

Replacing β by α in (3.8), we obtain analogous formulas to (3.9)-(3.12) from

R(X, α) = XRα,BX −XVα − V H
α X −Qα = 0.

For the inertias of Rβ,B , Rβ,C , Rα,B and Rα,C , we have the following Lemma.

Lemma 4 Let β0 < β. Then, both R−1
β,B and R−1

β,C given by (3.9) and (3.12)
are positive definite.
If 0 < α < α0 and α is not a singular value of A and if the inertia of AAH−α2I
is (p, n − p, 0), then the inertia of R−1

α,B is (N + p − n −m,n − p, 0), and that
of R−1

α,C is (N + p−m− n, m− p, 0).

Proof. Analogous to the proof of Lemma 2.
We now prove the main theorem of this section.
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Theorem 3 Let W (X) be as in (3.1).
(i) Let β0 < β with β0 as in (3.2). Then the inequality

‖W (X)‖ ≤ β (3.13)

has a solution. All matrices X solving inequality (3.13) are given by

X = CAH(AAH − β2I)−1B + βR
−1/2
β,C KR

−1/2
β,B , (3.14)

where K is any matrix such that ‖K‖ ≤ 1.
(ii) Suppose that 0 < α0. Let 0 < α < α0 and assume that α is not a singular
value of A. Then the inequality

‖W (X)−1‖ ≤ 1
α

(3.15)

has a solution. All matrices X solving inequality (3.15) are given by

X = CAH(AAH − α2I)−1B + αY, (3.16)

where Y satisfies the inequality

Y Rα,BY H ≥ R−1
α,C . (3.17)

Proof. (i) By formulas (3.8), (3.9) and (3.11) we obtain

R(X, β) = (X − V H
β R−1

β,B)Rβ,B(XH −R−1
β,BVβ)− (Qβ + V H

β R−1
β,BVβ),

where
(Qβ + V H

β R−1
β,BVβ) = β2R−1

β,C .

Consider the inequality
ZRβ,BZH ≤ R−1

β,C , (3.18)

where Rβ,B and R−1
β,C are given in (3.8) and (3.12) and Z = (X − V H

β R−1
β,B)/β.

Both Rβ,B and Rβ,C are positive definite by Lemma 4. Thus, it follows that
Z satisfying (3.18) has the form

Z = R
−1/2
β,C KR

−1/2
β,B ,

where ‖K‖ ≤ 1. So the solution X is given by (3.14).
(ii) As in case (i), R(X, α) ≥ 0 is equivalent to the inequality

Y Rα,BY H ≥ R−1
α,C , (3.19)

where Y = (X − V H
α R−1

α,B)/α.
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By Lemma 4, the inertia of Rα,B is (N +p−m−n, n−p, 0) and that of Rα,C

is (N + p−m− n, m− p, 0) with p being the number of positive eigenvalues of
AAH − α2I. Let Q1 and Q2 be transformations such that

QH
1 Rα,BQ1 =

[
IN+p−m−n

−In−p

]
and

QH
2 Rα,CQ2 =

[
IN+p−m−n

−Im−p

]
,

then (3.19) is equivalent to

Ỹ

[
IN+p−m−n

−In−p

]
Ỹ H ≥

[
IN+p−m−n

−Im−p

]
, (3.20)

where Ỹ = Q−H
2 Y QH

1 . Inequality (3.20) is always solvable. In fact when n ≤ m,
one possible solution is

Ỹ =

 IN+p−m−n 0
0 −In−p

0 0

 ,

where Ỹ is completed by a 0 block to be an (N − n) × (N −m) matrix, and
when n ≥ m, a possible solution is

Ỹ =
[

IN+p−m−n 0 0
0 −In−p 0

]
.

Remark 5 The general solution (3.14) of (3.3) does not depend on the inverses
of (AAH + BBH − β2I) and (AHA + CHC − β2I) respectively, but instead on
the matrices BH(AAH − β2I)−1B and C(AHA− β2I)−1CH , which both have
limits when β → β0, e.g. [9].

However, the existence of the limiting solutions of (3.4) when α → α0 requires
as an extra condition that α0 is not a singular value of A.

A counterexample is given below, to show that when α0 is a singular value of
A, then problem (1.4) may not have finite solutions. Let

W (x) =
[
−1 0
1 x

]
with α0 = σ1(A) = 1. Now

W (x)−1 =
[
−1 0
1/x 1/x

]
.

Only when we take the limit x →∞, we obtain ‖W (x)−1‖ → 1, the minimum
of ‖W (x)−1‖. So problem (1.4) has no finite solution.
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Now let us come back to problems (1.3) and (1.4). The following theorem
characterizes the solutions for these problems.

Theorem 4 Let W (X) be as in (3.1).
(i) Then

inf
X
‖W (X)‖ = β0.

Furthermore, there exists a matrix X such that

‖W (X)‖ = β0.

(ii) Let 0 < α0. Then

inf
X
‖W (X)−1‖ =

1
α0

.

Furthermore, if we assume that α0 is not a singular value of A, then there exists
a matrix X such that

‖W (X)−1‖ =
1
α0

.

Proof. For any appropriately sized matrix X the Cauchy interlacing theorem,
(e.g. [5]), implies the inequalities

‖W (X)‖ ≥ β0

and
‖W (X)−1‖ ≥ 1

α0

Thus, Theorem 3 and Remark 5 yield the conclusions of Theorem 4.

Remark 6 It should be noted that Theorems 3 and 4 are also valid if n = 0 or
m = 0. The results are immediately modified by removing all terms involving
A,C or A,B, respectively, from the formulas.

4 Minimizing the condition number.

In this section we will discuss problem (1.2) of finding a matrix X such that the

condition number of W (X) =
[

A B
C X

]
is minimal. In general this is still

an open problem.
Since the condition number of W (X) depends continuously on X, and since

any elements of X going to infinity will cause ‖W (X)‖ to go to infinity and
hence also cond(W (X)) to go to infinity, the problem (1.2) always has a finite
minimizing solution.

From Theorem 4, a lower bound of ‖W (X)‖‖W (X)−1‖ is given by β0/α0.
Thus, it follows that

min
X

cond(W (X)) ≥ β0

α0
. (4.1)
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In order to find X such that

‖W (X)‖‖W (X)−1‖ =
β0

α0
,

we have to find a common solution for both Riccati inequalities R(X, β0) ≤ 0
and R(X, α0) ≥ 0. Unfortunately such solutions exist only in special cases.

One such special case is m = 0, i.e. the submatrices A,C of W (X) are void.
In this case we will give the complete set of solutions. This result generalizes
a result of Bunse-Gerstner/Mehrmann/Nichols [2], where partial solutions for
this problem were obtained.

Let W (X) =
[

B
X

]
, with B ∈ Cn,N , X ∈ CN−n,N and let

B = U

 β0In1 0 0 0
0 Σ2 0 0
0 0 α0In3 0

V H (4.2)

be the singular value decomposition of B with U, V unitary and Σ2 diagonal hav-
ing no diagonal element equal to α0 or β0. Let Y = XV =

[
Y1 Y2 Y3 Y4

]
be partitioned analogously, with block sizes n1, n2, n3, n4, each of which may be
0.

Due to the special form of the matrix W (X), the Riccati inequalities (3.5)
and (3.6) simplify to

X(I −BH(BBH − β2I)−1B)XH − β2I ≤ 0 (4.3)

and
X(I −BH(BBH − α2I)−1B)XH − α2I ≥ 0. (4.4)

A simple calculation shows that (4.3) is equivalent to

Y


− β2

β2
0−β2 In1 0 0 0

0 −β2(Σ2
2 − β2In2)

−1 0 0
0 0 − β2

α2
0−β2 In3 0

0 0 0 In4

Y H ≤ β2IN−n

(4.5)
and (4.4) is equivalent to

Y


− α2

β2
0−α2 In1 0 0 0

0 −α2(Σ2
2 − α2In2)

−1 0 0
0 0 − α2

α2
0−α2 In3 0

0 0 0 In4

Y H ≥ α2IN−n

(4.6)
Taking limits α → α0 and β → β0 we obtain from (4.5) that Y1 has to be the
zero matrix and from (4.6) that Y3 has to be the zero matrix.

We combine these considerations in the following proposition:
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Proposition 1 Let W (X) =
[

B
X

]
, with B ∈ Cn,N , X ∈ CN−n,N and let B

be factorized as in (4.2). Then the set of solutions of problem (1.1) is given by
all matrices Y =

[
0 Y2 0 Y4

]
with Y2, Y4 satisfying the inequality

α2
0(IN−n + Y2(Σ2

2 − α2
0In2)

−1Y H
2 ) ≤ Y4Y

H
4

≤ β2
0(IN−n + Y2(Σ2

2 − β2
0In2)

−1Y H
2 ). (4.7)

A necessary and sufficient condition for the existence of a matrix Y4 satisfying
(4.7) is that

α2
0(IN−n + Y2(Σ2

2 − α2
0In2)

−1Y H
2 ) ≤ β2

0(IN−n + Y2(Σ2
2 − β2

0In2)
−1Y H

2 ) (4.8)

and
0 ≤ IN−n + Y2(Σ2

2 − β2
0In2)

−1Y H
2 . (4.9)

Inequality (4.8) is equivalent to

Y2Σ2
2(Σ

2
2 − α2

0)
−1(β2

0 − Σ2
2)
−1Y H

2 ≤ In2 , (4.10)

i.e.
‖Y2Σ2(Σ2

2 − α2
0)
−1/2(β2

0 − Σ2
2)
−1/2‖ ≤ 1

and (4.9) is equivalent to

‖Y2(β2
0 − Σ2

2)
−1/2‖ ≤ 1.

Clearly for Y2 = 0 and Y4 = δIN−n with α0 ≤ δ ≤ β0 we obtain a solution.
This solution was obtained already in [2] via a different approach, but there are
obviously more solutions to (4.7). For n = 0,m > 0 we get an analogous result
by transposition.

To characterize the complete set of minimizing solutions for (1.2) for m >
0, n > 0 is still an open problem. If we are just interested in one solution,
then since problem (1.2) is an optimization problem with (N − n)(N −m) free
variables, we could use numerical optimization to find the solution. In the case
that X is a scalar one can apply the standard scalar Newton method, since in
this case the derivative of the condition number can be explicitely computed
via formulas given in [4]. Using the solution of problem (1.3) or (1.4) that
gives the smaller condition number as starting point for Newton’s method, the
convergence is usually very fast. Consider the following numerical example:

Example 1 Let

A = diag(−0.5, 1, 2, 3), c = [1, 1, 1, 1], b = cT .

The minimizing solutions of (1.3) and (1.4) are x1 = x2 = −2.2980 and y1 =
y2 = 4.8405, respectively. We obtain

min
x
‖W (x)‖ = 3.2480, min

x
‖W (x)−1‖ = 1.3708
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and a lower bound for the condition number is

min
x

cond(W (x)) ≥ β0/α0 = 4.4523.

The minimizing point obtained by Newton’s method is at x∗ = 3.8885 with
minx cond(W (x)) = 7.7633.

5 Conclusion

We have given explicit solutions for the problem of minimizing the norm and
the norm of the inverse of a matrix, for which a submatrix can be assigned ar-
bitrarily. The solution sets are characterized completely and from these results
lower bounds for the optimal solution for the problem of minimizing the condi-
tion numbers are obtained. In the special case that n = 0 or m = 0 a complete
characterization is given for this problem.
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