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1. Introduction. Algorithms for reordering sparse matrices play a vital role in our

ability to perform many large-scale matrix.computations. Ordering algorithms such as

minimum-degree and nested dissection have been developed for reducing fill in direct

methods for solving sparse, symmetric positive definite systems of equations [7, 12, 27].

Various ordering algorithms for reducing the envelope (variable band or profile) of

sparse matrices, such as the reverse Cuthill-McKee (RCM), Gibbs-Poole-Stockmeyer

(GPS), and Gibbs-King (GK) algorithms, have also been designed [12, 15, 21]. Al-

though envelope-reducing orderings were developed for use in envelope schemes for

direct factorization, these orderings have been used in the past few years in several

other applications. The RCM ordering has been found to be an effective preordering in

computing incomplete factorization preconditioners for preconditioned conjugate gra-

dients methods [6, 8]. Such orderings have also been used in parallel matrix-vector

multiplication and tridiagonalization of sparse symmetric matrices.

The wider applicability of envelope-reducing orderings justifies a fresh look at the

algorithms currently available and the development of new algorithms. In this paper we

present a new spectral algorithm for computing an envelope-reducing ordering of sparse,

symmetric matrices. The ordering algorithm uses a.n eigenvector corresponding to the

smallest positive eigenvalue of the discrete Laplacian matrix associated with the given

symmetric matrix. (If the matrix is irreducible, or equivalently if its adjacency graph is

connected, then this eigenvector corresponds to the second smallest eigenvalue. Hence

we call this asecond Laplacian eigenvector or Fiedler vector.) The ordering is computed

by permuting the components of a second Laplacian eigenvector in nonincreasing (or

nondecreasing) order. For large matrices, the eigenvector computation is performed by

a 'multilevel' approach described in [3].

Earlier, we had used a second eigenvector of the Laplacian matrix for computing

a spectral nested dissection ordering, and for partitioning computations on finite ele-

ment meshes on a distributed-memory multiprocessor [29, 30, 31]. The eigenvector of

the adjacency matrix corresponding to the largest eigenvalue has been used to find a

pseudoperipheral node by Grimes et al. [17].

A companion paper [13] provides theoretical justification for the spectral envelope-

reduction algorithm by considering a closely related problem called the 2-sum problem.

(This problem is defined in the next section.) It is shown there that this problem

can be formulated as a quadratic assignment problem involving the Laplacian matrix.

Lower bounds for the 2-sum are obtained in terms of the smallest positive Laplacian

eigenvalue. These bounds appear to be reasonably tight, and hence indicate how close

the computed orderings are to the optimal orderings. Further, permuting the matrix

in nonincreasing (or nondecreasing) order of the components of a second Laplacian

eigenvector is shown to yield a feasible solution to the 2-sum problem that is closest to

an infeasible solution for which the lower bound is attained.

Fiedler [9, 11] studied the properties of the second Laplacian eigenvalue and a

corresponding eigenvector and their relationship to the connectivity of a graph, and

also observed [10] that the differences in the components of this eigenvector is an ap-

proximate measure of the distance between the vertices. Juvan and Mohar [19] have





advocated the use of this eigenvector to compute bandwidth and p-sum reducing or-

derings. Mohar and Poljak [25] have recently provided a comprehensive survey of the

applications of Laplacian spectra to combinatorial problems.

The spectral envelope-reduction algorithm has several features which set it apart

from the earlier reordering algorithms such as the GPS, GK, or RCM algorithms [5, 12,

15, 21]. These algorithms employ local-search in the adjacency graph of the matrix. All

of them try to find a pseudo-diameter in the graph by generating a long level-structure

by breadth-first-search beginning from a suitable vertex. These types of algorithms

generally do not vectorize, and there is no obvious way to implement them in parallel. In

contrast the new algorithm proposed here is based on the computation of an eigenvector

of a special matrix, and hence involves standard floating point operations, such as

matrix vector multiplications, dot products etc. The algorithms for these operations

not only vectorize easily, but also can be implemented in parallel with little effort.

(Parallel implementation of the basic spectral method, which uses the Lanczos algorithm

to find eigenvectors, is straightforward. Parallel implementation of the 'multilevel'

enhancements described in Section 3 is more difficult, but possible in principle.) The

algorithm is also iterative in nature, in the same sense that SOR or the Lanczos methods

are iterative. It allows a user to terminate the reordering process depending on a

stopping criterion, thus permitting the user to make trade-offs in ordering time versus

storage efficiency.

Before we end this introduction, some comments axe in order about the applicabil-

ity of the results to envelope factorization schemes. Frontal methods related to envelope

or profile schemes are still the method of choice for solving large-scale systems of linear

equations in many structural engineering applications, for example in the computa-

tional structural mechanics testbed (CSM) at NASA Langley [20]. Implementations of

these methods are also widely distributed in most of the finite element software pack-

ages such as MSC/NASTRAN or ANSYS. Parallel algorithms for the actual numerical

factorization of a matrix in envelope format have been investigated [28, 33].

Efficient implementations of sparse matrix algorithms [1, 2, 22, 32] on supercom-

puters demonstrate that very high levels of performance are attainable with general

sparse algorithms. Hence there are no good reasons to use envelope schemes for sparse

matrix factorizations for the sake of performance alone. Furthermore, it has long been

known that general sparse methods axe considerably more efficient with respect to stor-

age [12]. Ashcraft et al. [2] presented numerical evidence that general sparse methods

outperform envelope methods in both respects. However, envelope methods and related

methods such as frontal or skyline methods continue to be the standard solution option

in many commercial structural analysis packages. Thus, demonstrating the efficiency of

the new spectral algorithm offers potential performance improvements in these packages

without making substantial changes to the underlying data structures. Further, Liu [23]

has described a generalized envelope algorithm for computing the numerical factoriza-

tion by rows, and his results show that such a scheme can compete with general sparse

algorithms.

The following is an outline of the rest of this paper. In Section 2 we formulate the





problemsassociatedwith the minimization of envelope parameters and describe related

problems called the 1-sum and 2-sum problems. We describe some theoretical results

to justify the proposed new algorithm. The second Laplacian eigenvector solves a con-

tinuous relaxation of a discrete problem related to the envelope problem, the minimum

2-sum problem. Further, it is proved that the permutation vector computed by the

spectral algorithm is a closest (in the 2-norm sense) permutation vector to a second

Laplacian eigenvector. In Section 3 we discuss the spectral algorithm and its numeri-

cal implementation. The multilevel algorithm, which uses coarsening of the underlying

graph combined with Rayleigh Quotient iteration [3], to compute the eigenvector is de-

scribed. Numerical results and comparisons with GPS, GK, and RCM are presented in

Section 4. These results indicate that the new algorithm is often considerably more effi-

cient in reducing the storage requirements. The spectral algorithm does require greater

execution time for computing the ordering, but the new ordering often yields greatly

reduced factorization times for the spectrally reordered matrices.

2. The envelope reduction problem.

2.1. The envelope of a matrix. Let A be an n x n symmetric matrix with

elements aij, whose diagonal elements are nonzero. We consider various parameters of

the matrix A associated with its envelope.

We denote the column indices of the nonzeros in the lower triangular part of the

i-th row by vow(i) = {j: aij _ O, and 1 < j < i}. For the i-th row of A we define

(2.1) f_(A) = min{j:j E row(i)}, and

(2.2) ri(A) = i- fi(A).

Here f_(A) is the column index of the first nonzero in the i-th row of A (by our assump-

tion of nonzero diagonals, 1 < f_ < i), and the parameter r_(A) is the vow-width of the

i-th row of A. The bandwidth of A is the maximum row-width

bw(A) = max{ri(A) : i = 1,...,n}.

The envelope of A is the set of column indices that lie between the first nonzero

column index and the diagonal in each row:

Env(A) = {(i,j) : fi(A) _< j </,and i = 1,... ,n}.

We denote the size of the envelope by Esize(A) = IEnv(A)l. The work in the Cholesky

factorization of A that makes use of an envelope storage scheme can be bounded from

above by (1/2)_"___2 r_(r_ + 3). Hence hereafter we will denote Ework(A) = _=1 r_ as

a measure of the work in such a factorization. We stress that this estimate is an upper

bound on the actual work in an envelope factorization scheme.

The values of these parameters strongly depend on the choice of an ordering of the

rows and columns, and thus we consider how these parameters vary for a symmetrically

permuted matrix pTAp, where P is a permutation matrix. We define Esize,_i,,(A),

the minimum envelope size of A, to be the minimum size among the envelopes of all
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permuted matrices pTAp. The quantities Eworkmi,,(A) and bw,,,=(A) are defined in

similar fashion. In general the minima for these three quantities will not be attained

by the same permutation.

The envelope parameters can also be defined with respect to the adjacency graph

G = (V, E) of A. Denote nbr(v) = {v} U adj(v). In terms of the graph G and an

ordering a of its vertices, we can define

= : w e <

Hence we can write the envelope size and work associated with an ordering a as

Esize(G,a) = _ r(v) =
vEV

Ewo k(C, ) = =
vEV

max{c_(v)- c_(w) : w E nbr(v),c_(w) g c_(v)}
vEV

max{(cr(v) - a(w))2 : w e nbr(v),c_(w) < c_(v)}.
vEV

The goal is to choose a vertex ordering a : V _ {1,...,n} to minimize one of the

parameters described above. We denote by Esize_i,(G) (Ework,,i,(G)) the minimum

value of Esize(G,a) (Ework_i,(G,a)) over all orderings 5, where again (in general)

the minima will not all be attained by the same a. We will use the definitions in terms

of matrices throughout the rest of the paper.

It will be helpful to consider quantities related to the envelope size and envelope

work: the 1-sum, al(A), and the 2-sum, a_(A). We write the envelope size and 1-sum,

and the envelope work and the 2-sum in a way that shows their relationships:

Esize(A) = _ .ma,x..,(i- j),
3ErowO )

n

(71(A) = E E (i--j),

i=l jErow(i)

n

Ework(A) = _ max (i-j)2
j_,o_o(i)"

n

a_(A) = E E (i-J) 2"
i----1 jErow(i)

The parameters a,,m,,(A) and a_,,,,,(A) are the minimum values of these parameters

over all permuted matrices pTAp.

It is known that minimizing the bandwidth and the 1-sum are NP-complete prob-

lems, the former even for trees with degree bounded by three. Minimizing any of the

other quantities considered here is likely to be intractable as well, so one has to settle

for heuristic orderings to reduce the quantity.

Recently it has been shown that the envelope size problem is intimately related

to the 1-sum problem, and that the envelope work problem is related to the 2-sum

problem [13]. Let A denote the maximum number of off-diagonal nonzeros in a row of

A. (This is the maximum vertex degree in the adjacency graph of A.)
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THEOREM 2.1 ([13]). Let A be a symmetric matrix. The minimum values of the

envelope size, estimate of the envelope work in the Cholesky factorization, 1-sum, and

2-sum of a symmetric matrix A are related by the following inequalities:

(2.3) Esize,,,i,_(A) < al,_,,(A) < AEsize,,,,,_(A).

(2.4) Ework_i,(A) < o'22,mi,,(A) < AEwork,,,i,(A).

(2.5) a2,m,n(A) <_ al,m,_(A)<_ I_[a2,,,,i,,(A).

2.2. The Laplacian matrix and bounds on envelope parameters. The Lapla-

cian matrix Q(G) of an undirected graph G is the n x n matrix D - B, where D is

the diagonal degree matrix and B is the adjacency matrix of G. If G is the adjacency

graph of a symmetric matrix M, then we could define the Laplacian matrix Q directly:

-1 ifi_j and m 0_0,
qij = 0 if i # j and mij = O,

-E,_lqo ifi=j.
j#i

The eigenvalues of Q(G) are the Laplacian eigenvalues of G, and we list them as

A1 < A2 < ... _< An. An eigenvector corresponding to Ak will be denoted by x_k, and will

be called a kth eigenvector of Q. It is well-known that Q is a singular M-matrix, and

hence its eigenvalues are nonnegative. Thus _1 = 0, and the corresponding eigenvector

is any nonzero constant vector c. If G is connected, then Q is irreducible, and A2 > 0.

The smallest nonzero eigenvalues and the corresponding eigenvectors have important

properties that make them useful in the solution of various partitioning and ordering

problems. These properties were first investigated by Fiedler [9, 11]; more recently

several authors have studied their application to such problems.

Juvan and Mohar [19] have obtained bounds for bandwidth and p-sums in terms

of Laplacian eigenvalues. They have also suggested the use of a second eigenvector to

compute orderings to reduce bandwidth, 1-sum, and 2-sum. Helmberg, Mohar, Poljak,

and Rendl [18] have obtained additional lower bounds on the bandwidth. The 1- and

2-sum problems have been recently formulated as quadratic assignment problems and

thus bounds have been obtained for the envelope size and work [13]. The following

result describes two of the simpler bounds:

THEOREM 2.2 ([13]). The envelope size of a symmetric matrix A can be bounded

in terms of its second and largest Laplacian eigenvalues as

A2(A) A,_A) (n 26A (n2- 1) < Esize,,,,(A) < - 1).

Our estimate of the envelope work in the Cholesky factorization of A can be bounded as

A2(A) - 1) < Ework. ,.IA) < - 1).
12A -- - 12





2.3. Approximate minimization of envelope work. We now otter some justi-

fication for the spectral envelope-reduction algorithm, which computes an ordering by

sorting the components of a second Laplacian eigenvector. The idea is to consider the

related 2-sum problem, and then to show that a second Laplacian eigenvector x_2 solves

a continuous relaxation of the problem. We then prove that the permutation vector

computed by the spectral algorithm is a closest vector (in the 2-norm sense) among the

permutation vectors to the eigenvector _2.

For odd n, let 7_ denote the set of n-vectors pp_whose components are permutations

of {-(n- 1)/2,...,-1,0,1,...,(n- 1)/2}. For even n, let _ denote vectors that

are permutations of {-n/2,...,-1, +1,..., n/2}. We denote the i-th component of a

vector x_ by xi. We consider the 2-sum of a symmetric matrix A, defined with respect

to vectors in 7_:
n

min_ _ (x, xs) 2 1 .- =-mm _(xi-xj) 2.
_x_' i=l je,o,,(i) 2 _x_' a_#o

A strategy to approach this hard discrete problem is to relax the condition that x_ must

belong to the set of permutation vectors and instead to minimize the objective function

over a suitable class of n-vectors. This yields an easier continuous problem; we can then

find the permutation vector closest to the solution vector of the continuous problem,

and consider the former as an approximate solution of the combinatorial problem.

Note that any p_ • 7_ satisfies pTu__ = 0, and g -----pWp = (n/12)(n 2 _ 1) for odd n, and

l = (n/12)(n + 1)(n + 2) for even n, where u = (1,1,...1) w. Given a vector x_ • N_,

we can define a permutation vector p_ induced by x_ by the rule pi _< pj if and only if

xi <_ xj. Note that the ordering of the columns and rows is unique except when two or

more components have the same value xi. Hence to obtain a continuous relaxation of

the discrete problem, we consider the set X of vectors _x • _R" satisfying x_ ¢ 0, xTu = O,

and xTx = l. This is now a continuous optimization problem:

1
- min _ (xl - xj) 2
2 x__ex-_i#0

= min _d,x_-2 E xlxi
X.XE,l" i=1 ._<i /

aij_O /

= minxTDx -- xTBx = minx_TQx
x_ex-- -- x_e_

Hence a second Laplacian eigenvector _ solves the continuous approximation to

the 2-sum problem. Now we prove that a permutation vector p_,_ induced by x__ is a

closest vector in _ to x2. Earlier a similar result was obtained by Chan and Szeto [4]

for the graph bisection problem.

THEOREM 2.3. The vector P--minduced by a second Laplacian eigenvector x 2 is a

closest (in the 2-norm) permutation vector to x 2. In other words,

= arg minll p - x__l[2.
p_EP -
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We require the following lemma to prove the theorem.

LEMMA 2.4. Ira1 < a2, bl < bs are reainumbers,

r -- (hi -- b2) s -1- (a2 - bl) 2, and 8 = (a 1 - bl) 2 -_- (a s - b2) 2,

then r > s.

Proof. Suppose that r < s. Then

(hi-b2) 2-_-(a2-b1) s ___ (hi-bl) 2 -31-(a2-b2) 2

a2(b2 - hi) ___ al(b2 -- bl).

Since al < as, it follows that b2 < bl, which is a contradiction. •

Proof of Theorem 2.3: For convenience of notation, let x_ _= x_s in this proof. Let

y # p_,_ be a permutation vector such that there exists a pair of vertices u,v satisfying

x(u) < x(v) and y(u) > y(v). Let z be the ordering such that z(u) = y(v), z(v) = y(u),

and z(w)= y(w) for all other vertices. Then

Ily_-_-IIss -IIz-__l12 s
= (y(u) - x(u))s + (y(v)- x(v))2- (y(v) - x(u))_ - (y(u)- x(v))s
> 0,

where the last inequality follows from the previous lemma. By the swapping of com-

ponents, we have obtained a vector z that is closer than y_ to the eigenvector x_. By

repeating this swapping procedure, we find that P-m is a closest vector in 7:) to the vector

X_. •

Earlier Juvan and Mohar [19] had shown that p_,_ maximized the value of the fol-

lowing inner product over all permutation vectors p.p:

I(_-s,pm)l>-I(_,p)l.

Stronger justification of the spectral algorithm for reducing the 2-sum is obtained

in the companion paper [13] by considering a quadratic assignment formulation of the

problem. This formulation leads to a lower bound for the 2-sum in terms of the second

Laplacian eigenvalue, and the orthogonal matrix attaining this lower bound can be

characterized. It can be shown that a closest permutation matrix (defined in a suitable

sense) to this orthogonal matrix is obtained by sorting the components of a second

Laplacian eigenvector in nondecreasing (nonincreasing) order.

2.4. Adjacency orderings. We now consider the concept of an adjacency order-

ing of a graph G. Let G be the adjacency graph of a matrix A, and suppose that

the vertices of G are ordered in some ordering as {vl,...,v,} (i.e., a(vj) = j), and let

t_ = {vl,..., vj}. For Y C V, define adj(Y) to be the set of vertices in Y \ Y that are

adjacent to some vertex in Y. We will say that an ordering is an adjacency ordering if

Vj+I E adj(Vj), for j = 1,..., n - 1.





The size ladj(_)l hasbeencalled the jth frontwidth [24], and corresponds to the

size of the j-th column of the envelope of A. Hence an alternative expression for the

the envelope size is

n

Esize(A) = _ ladj(V_)l.
j=l

This expression for the envelope size shows the rationale for considering adjacency

orderings for envelope-reduction. The idea is to locally reduce the jth frontwidth by

choosing vj to be a vertex of low degree belonging to adj(Vj_l). The Cuthill-McKee

ordering is an adjacency ordering, but RCM is not an adjacency ordering. The GPS

and GK algorithms attempt to number vertices in the level structures to obtain an

adjacency ordering, as far as is possible.

The ordering induced by a second Laplacian eigenvector is not an adjacency order-

ing, but comes close in the sense described below. The following theorem, proved by

Fiedler [11], provides the necessary insight.

THEOREM 2.5. Let G be a connected graph, and x__= (xl, x2,.., xn) be a second

Laplacian eigenvector of G. For any real p < O, define S(p) = {vj E Y : zj > p}. Then

the subgraph induced on S(p) is connected. Similarly, if p > O, then S'(p) = {vj • Y :

xj < p} induces a connected subgraph.

In the notation of the theorem, let the vertices vj • V be ordered such that j < k

if and only if xj < xk. Consider three subsets of vertices corresponding to positive,

zero, and negative entries in the second eigenvector; i.e., define P = {vj : xj > 0},

Z = {vj : xj = 0}, and N = {vj : xj < 0}. Let the vertices in N be numbered

by j = 1,...,k, the vertices in Z by j = k + 1, ..., p - 1, and the vertices in P by

j =p, ..., n. We havek <p. Then Theorem 2.5 implies that forj =p-l, ...,n,

we have vj+l C adj(Vj). A similar statement holds if we add vertices with negative

entries in the eigenvector in decreasing order to the set P U Z. Thus the order implied

by a second Laplacian eigenvector has the property of an adjacency ordering if vertices

with positive components are added in increasing order to N U Z, or if vertices with

negative components are added in decreasing order to PUZ. However, there exist simple

examples, even trees, for which the spectral ordering is not an adjacency ordering.

3. The Spectral algorithm for envelope reduction. Based on the theorems

in Section 2 the following new algorithm for reducing the envelope of a sparse matrix

can be formulated. Since the algorithm is based on properties of the spectrum of the

Laplacian matrix L, it will be called the spectral algorithm. We assume throughout this

section that the adjacency graph of the given matrix is connected, or that the matrix

is irreducible.

ALGORITHM 1. Spectral Algorithm

1. Given the sparsity structure of a matrix M, form the Laplacian matrix L.

_. Compute a second eigenvector x__2 of L.

3. Sort the components of the eigenvector in nondecreasing order, and reorder the

matrix M using the corresponding permutation vector. Also sort the compo-





nents in nonincreasin9order, and compute the corresponding reorderin 9 of the

matriz M. Choose the permutation that leads to the smaller envelope size.

The implementation of steps 1 and 3 are relatively straightforward. The formation

of the Laplacian matrix requires the computation of the degree of the nodes xi. Step

3 is a simple sort of the entries of z__2, and recording the resulting permutation of

indices. This can be done quickly by any efficient sorting algorithm such as quicksort.

Computationally the difficult part is step 2.

The standard algorithm for computing a few eigenvalues and eigenvectors of large

sparse symmetric matrices is the Lanczos algorithm. Since the Lanczos algorithm is

discussed extensively in the textbook literature [16, 26], we do not include a detailed

description of the standard algorithm here. Recently, we have developed a much more

efficient multilevel method for finding a second eigenvector [3]. The multilevel method

requires three elements in addition to the Lanczos algorithm:

• Contraction: Construct a series of smaller graphs that in some sense retain

the global structure of the original large graph.

• Interpolation: Given a second eigenvector of a contracted graph, interpolate

this vector to the next larger graph in a way that provides a good approximation

to an eigenvector of the larger graph.

• Refinement: Given an approximate eigenvector for a graph, compute a more

accurate vector efficiently.

Graph contraction is accomplished by first finding a maximal independent set of ver-

tices, which are to be the vertices of the contracted graph. The edges of the contracted

graph are determined by growing domains from the selected vertices in a breadth-first

manner, adding an edge to the contracted graph when two domains intersect. A series

of smaller contracted graphs is constructed until the size of the vertex set is less than

some number (typically 100). The Lanczos algorithm can then be used to find the

eigenvector of the smallest graph very quickly. This eigenvector is then interpolated

to a vector corresponding to the next larger graph. This interpolated vector yields a

very good approximation to the eigenvector of the larger graph. The approximation

is then refined using the Rayleigh Quotient Iteration algorithm, which, because of its

cubic convergence, usually requires only one or perhaps two iterations to obtain an

acceptable result. This process of interpolation and refinement is continued until the

eigenvector of the original graph is determined.

4. Numerical results. This section shows numerical results for the envelope sizes

and bandwidths obtained from the spectral, RCM, GPS, and GK algorithms for three

sets of matrices. The first set, shown in Table 4.1, includes matrices for structural

analysis applications from the Boeing-Harwell data set. The next set, shown in Ta-

ble 4.2, consists of miscellaneous matrices from the Boeing-Harwell collection. Finally,

the third set, shown in Table 4.3, is a selection of matrices from structural analysis used

at NASA. The computations were performed on a Silicon Graphics workstation with a

33 MHZ IP7 processor.

The spectral algorithm finds the reordering with the smallest envelope in 14 out of

18 cases (as shown in the "Rank" column of the tables). In those cases in which the re-
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TABLE 4.1

Results (Boeing-Harwell -- Structural Analysis)

Title

(equations)

(nonzeros)
BCSSTK13

(2,003)

(11,973)

BCSSTK29

(13,992)

(316,740)

BCSSTK30

(28,924)

(1,036,208)

BCSSTK31

(35,588)

(608,502)

BCSSTK32

(44,609)
(1,029,655)

BCSSTK33

(8,738)
(300,321)

Envelope

64,486

58,542

57,501

56,299

3,067,004

6,948,091

7,040,998

7,374,140

9,135,742

15,686,968

23,242,990

23,242,990

19,574,992

22,330,987

23,416,579

23,641,124

27,614,531

49,457,764

50,067,390

52,170,122

3,788,702

3,571,395

3,717,032

3,799,285

Bandwidth

455

223

145

198

882

1,505

869

914

4,769

16,947

2,515

2,512

4,763

1,880

1,104

1,176

13,792

3,761

2,339

2,390

1,199

932

519

749

Run time

(see.)

3.92

.64

.57

.08

31.95

9.53

5.29

2.37

78.18

78.10

61.65

6.32

55.06

22.05

9.12

4.69

92.09

102.44

79.48

7.83

31.01

5.20

3.22

1.82

Algorithm

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

Rank

4

3

2

1

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

3

1

2

4
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TABLE 4.2

Results (Boelng-Harwell- Miscellaneous)

Title

(equations)

(nonzeros)
CAN1072

(1,072)

(6,758)

POW9

(1,723)

(4,117)

BLKHOLE

(2,132)

(8,502)

DWT2680

(2,680)

(13,853)

SSTMODEL

(3,345)

(13,047)

Envelope Bandwidth

55,228

48,538

74,067

56,361

29,149

64,788

69,446

79,260

120,767

169,219

173,243

171,437

93,907

96,591

101,769

102,983

86,635

104,562

110,936

105,421

301

234

159

175

264

201

116

133

426

134

106

105

142

92

65

69

228

125

83

88

Run time

(see.)

.51

.20

.13

.05

.45

.14

.10

.05

.56

.17

.12

.07

.78

.28

.19

.11

2.21

.28

.17

.10

Algorithm

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

Rank

2

1

4

3

1

2

3

4

1

2

4

3

1

2

3

4

1

2

4

3
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TABLE4.3

Results (NASA)

Title

(equations)

(non,eros)
BARTH4

(6,019)

(23,492)

SHUTTLE

(9,205)

(45,966)

SKIRT

(12,598)

(1o4,559)

PWT

(36,519)

(181,313)

BODY

(45,087)

(2o8,821)

FLAP

(51,537)
(531,157)

IN3C

(262,620)

(1,026,888)

Envelope

345,623

658,181

669,239

725,950

566,496

531,420

531,422

567,887

688,924

1,013,423

1,039,544

1,068,993

5,101,527

5,520,603

5,638,855

5,652,184

6,706,747

10,526,446

10,658,164

11,470,411

10,471,456

12,367,171

12,339,642

12,598,705

425,232,466

519,316,395

526,302,263

581,700,745

Bandwidth

593

280

213

215

631

92

92

150

1,021

425

309

314

1,627

45O

340

340

2,496

1,081

667

756

1,784

1,019

743

874

9,504

3,780

2,473

2,746

Run time

(see)

1.60

.54

.33

.21

2.59

1.12

.93

.32

5.14

3.20

2.46

.82

13.62

29.65

28.27

1.67

26.60

13.60

8.42

2.23

45.90

24.96

19.08

4.19

117.83

56.97

26.28

12.88

Algorithm

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

SPECTRAL

GK

GPS

RCM

Rank

1

2

3

4

3

1

2

4

1

2

3

4

1

2

4

3

1

2

3

4

1

3

2

4

1

2

3

4
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sult of the spectral algorithm is not the best (i.e., BCSSTK13, BKSSTK33, SHUTTLE,

and CAN1072), it is still fairly close to the best result. In several cases, however, the

spectral algorithm finds a reordering with an envelope substantially smaller than any

of the other algorithms, sometimes by a factor of more than two. Note also that the

spectral algorithm clearly outperforms the others on the larger problems in the Tables.

The run time of the spectral algorithm is usually, but not always, greater than that

of the other algorithms. We expect the differences in runtimes between the ordering

algorithms to be smaller on computers with vector-processing capabilities, such as the

Crays.

The GPS, GK, and RCM algorithms, which are all closely related, use local search

(breadth-first search) from a pseudo-peripheral vertex to generate a long rooted level

structure. The RCM algorithm then numbers the vertices by increasing level values,

where the vertices in each level are numbered in nondecreasing order of their degrees.

The final RCM ordering is obtained by reversing the ordering thus obtained. The GPS

and GK algorithms use more sophisticated techniques to create a more general level

structure by combining the information from two rooted level structures obtained from

the endpoints of a pseudo-diameter in the RCM algorithm. They also use more refined

numbering techniques to reduce the size of the envelope and the bandwidth. This is

the reason why the latter two algorithms require more time than the RCM algorithm.

Generally the GPS algorithm yields a lower bandwidth while the GK algorithm

yields a lower envelope size [14, 21]. Our results are in agreement with this conclusion.

It should be pointed out that n - 2680 was the largest order of the problems considered

in earlier work, and that the results reported here are for much larger problems.

In contrast to the above algorithms, the spectral algorithm relies on the global

information in the components of a second Laplacian eigenvector. The results show

that the bandwidths of the spectral reorderings are often much greater than those of

the other reorderings, even when the spectral envelopes are much smaller. This can be

seen in Figures 4.1 through 4.5, which show the sparse matrix structure of the original

BARTH4 matrix and of the four reorderings considered here. A black dot indicates a

nonzero element. The GK, GPS, and RCM reorderings all look very similar, whereas

the SPECTRAL reordering has a quite different appearance.

TABLE 4.4

Factorization times

Title Envelope Factor time Algorithm

(sec)
BCSSTK29 3,067,004 257 SPECTRAL

7,374,140 1,677 RCM

BCSSTK33 3,788,702 670 SPECTRAL

3,799,285 685 RCM

BARTH4 345,623 8.19 SPECTRAL

725,950 35.17 RCM

Juvan and Mohar [19] had suggested the use of the spectral ordering for reducing
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the bandwidth (and p-sums), but our results show that the GPS algorithm is much

more effective than the spectral algorithm in reducing the bandwidth. A possibility is

to make limited use of a local reordering strategy based on the adjacency structure to

improve the envelope parameters obtained from the spectral method. Such reordering

strategies will be considered elsewhere since the evaluation of the various possibilities

will require much effort.

Finally we list in Table 4.4 the factorization times for a few matrices, reordered

with both the spectral algorithm and with RCM. These times are for the envelope

factorization routine from SPARSPAK, and are measured again on a SGI worksta-

tion. We selected one example where the spectral algorithm is comparable in storage

requirements to RCM (BCSSTK33), and two examples where the spectral algorithm

yields considerably lower storage memory requirements. The results demonstrate the

quadratic behavior of the factorization time as a function of the envelope size. There-

fore we conclude that spectral reordering not only reduces the memory requirements,

but also improves execution times.
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FIG. 4.5. Structure of the Spectral reordering of BARTH4.
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