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SUMMARY

In this paper, we investigate the normwise, mixed, and componentwise condition numbers and their upper
bounds for the Moore–Penrose inverse of the Kronecker product and more general matrix function com-
positions involving Kronecker products. We also present the condition numbers and their upper bounds
for the associated Kronecker product linear least squares solution with full column rank. In practice, the
derived upper bounds for the mixed and componentwise condition numbers for Kronecker product linear
least squares solution can be efficiently estimated using the Hager–Higham Algorithm. Copyright © 2012
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Condition numbers play an important role in the study of stability of numerical algorithms and com-
plexity analysis. They measure the sensitivity of the solution of a problem to perturbations in the
data. Recently, Cucker, Diao, and Wei [1] presented sharp bounds for the condition numbers for
the linear least squares (LS) problems. Xu, Wei, and Qiao [2] derived the condition numbers for
structured least squares problem. In this paper, we consider the LS problem involving Kronecker
products [3–10]

min
v
k.A˝B/v � ck2, (1.1)

where A˝ B has full rank. The LS problem involving Kronecker products arises in many applica-
tions, such as structured linear total least norm on blind deconvolution problem [11] and constrained
LS problem with Kronecker product structure [3]. A well known and important application of the
problem is the bivariate problem of surface fitting, where the data points lie on the vertices of a
rectangular grid. The least squares approximation can be given by (see e.g., [12,13]),

min
X

.p,q/2M

Œg.xp, yq/� fp,q �
2,

*Correspondence to: S. Qiao, Department of Computing and Software, McMaster University, Hamilton, Ontario L8S
4K1, Canada.

†E-mail: qiao@mcmaster.ca

Copyright © 2012 John Wiley & Sons, Ltd.



CONDITION NUMBERS FOR KRONECKER PRODUCT LEAST SQUARES 45

where M D f1, 2, : : : ,m1g � f1, 2, : : : ,m2g, f.xp, yq/ 2 R2
ˇ̌
.p, q/ 2 M g is a finite set of data

points with a scalar value fp,q associated with each .xp, yq/, and g is a suitable approximation
function in a finite dimensional vector space V . When V is a tensor product of function spaces, then
the least squares problem involving Kronecker products is obtained.

Normwise perturbation analysis, which measures both the input and output data errors by norms,
is classical in numerical analysis. Since 1980s, componentwise analysis, which often gives sharper
error bounds, has been used. In fact, most error bounds in LAPACK [14] are based on componen-
twise perturbation analysis. There are two kinds of condition numbers in componentwise analysis:
the mixed condition numbers and componentwise condition numbers [15]. The mixed condition
numbers use the componentwise error analysis for the input data, whereas the normwise error
analysis for the output data. On the other hand, the componentwise condition numbers use the
componentwise error analysis for both input and output data. In practice, because of rounding errors
and data storage limitation, it is reasonable to measure the input errors componentwise instead of
normwise. Moreover, a condition number gives the worst case sensitivity measurement. Normwise
condition number may overestimate the errors. For example, let
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in the least squares problem (1.1), then Corollary 4.1 gives the mixed, componentwise condition
number and their upper bounds

mls.A˝B , c/Dmls.A˝B , c/upper D cls.A˝B , c/D cls.A˝B , c/upper D 3,

and the normwise condition number

�ls.A˝B , c/D 4.8990eC 006.

The mixed and componentwise condition numbersmls.A˝B , c/ and cls.A˝B , c/ are much smaller
than the normwise condition number �ls.A˝B , c/. Consequently, the perturbation bounds based on
the mixed and componentwise condition numbers are more effective and sharper than those based
on the normwise condition number.

We first give a brief review of some previous work on the normwise, mixed, and componentwise
perturbation analysis for linear system and LS. Skeel [16] introduced the mixed perturbation analy-
sis of nonsingular linear systems of equations, a mixed error analysis of Gaussian elimination, and
obtained the mixed condition number for the solution of nonsingular linear systems. In [17], Rohn
derived a new relative condition number measuring the perturbations in both the input and output
componentwisely, which was named as componentwise condition number. In [18] and [19], tight
upper bounds for the mixed condition numbers for LS problem are given. For structured compo-
nentwise perturbation, Rump [20] concentrated on the linear systems with some special structures,
such as Toeplitz and Hankel. Cucker and Diao [21] derived an exact expression for LS problems
with structures. Arioli et al. [22], using normwise perturbation of inputs, obtained expressions of
condition numbers for some components of the LS solution. In [23], using dual techniques, the exact
expression of the linear functional of LS solution is given.

In this paper, we investigate the normwise, componentwise, and mixed condition numbers for a
Kronecker product linear least squares (KPLS)problem. By applying the chain rule to derive the
corresponding Fréchet derivatives and then take the appropriate norm, we derive the exact expres-
sions of the condition numbers, which are useful for hybrid symbolic-numeric computations [24].
When the problem size is small, we can obtain the exact condition numbers by using symbolic com-
putations. Moreover, we also derive the corresponding upper bounds. Thus, when the problem size
is large, we can apply fast algorithms for solving least squares problems [25] and our upper bounds
to numerically estimate the condition numbers. We show that using the Hager–Higham condition
estimation algorithm [26, 27], we can efficiently estimate the upper bounds for mixed and compo-
nentwise condition numbers, which can be used to estimate the accuracy of the computed solution
and the conditioning of the problem.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:44–59
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This paper is organized as follows. In Section 2, we review some concepts related to this paper.
In Section 3, we investigate the normwise, mixed, and componentwise condition numbers and their
upper bounds for the Moore–Penrose inverse of a Kronecker product. In Section 4, the condition
numbers for the associated LS problem involving Kronecker products are studied. In Section 5, a
numerical example is provided. Finally, in Section 6, concluding remarks for the future research
are presented.

Throughout this paper, Rm�nr denotes the set of real m � n matrices of rank r . For a matrix
A 2 Rm�n, AT is the transpose of A; rank.A/ denotes the rank of A; kAk2 is the spectral norm of
A, and kAkF is the Frobenius norm of A. The identity matrix of order n is denoted by In. For a
vector a, kak1 is its1-norm, and kak1 is the 1-norm. For any matrixAD Œa1 a2 � � � an� 2Rm�n,
we define vec.A/ 2Rmn by vec.A/D ŒaT1 aT2 � � � a

T
n �
T , by stacking the columns ofA. For a vector

a, jaj is the vector whose components are the absolute values of the corresponding components of
a. Also for two vectors a, b 2 Rn, a 6 b means ai 6 bi with ai being the i th component of a. If
a 2Rn, then we denote byDa D diag.a1, a2, : : : , an/ the n�n diagonal matrix with a1, a2, : : : ,an
in its diagonal. In general, DA DDvec.A/, where A is a matrix.

2. PRELIMINARIES

In this section, we review some concepts and properties that are useful for this paper. First, we define
a componentwise vector division. For any vectors a, b 2Rn, we define the componentwise division
a
b
D Œc1 c2 � � � cn�

T by

ci D

8<
:
ai=bi if bi ¤ 0,
0 if ai D bi D 0,
1 otherwise.

Using the aforementioned definition, we then define a distance function. Let c D a�b
b

, then the
distance d.a, b/ D kck1 D maxi .jci j/. In the rest of this paper, we will only consider vector
pairs .a, b/ satisfying d.a, b/ < 1. For matrices, we have the matrix componentwise division
A
B
D vec.A/

vec.B/
. Accordingly, a matrix distance function d.A,B/ D d.vec.A/, vec.B//. Also, we can

define a matrix norm kAkmax WD kvec.A/k1, which equals maxi ,j .jaij j/.
A general theory of condition numbers can be found in [28]. Gohberg and Koltracht [15] gave

a useful lemma for exact expressions of the condition numbers. Before presenting their lemma,
which relates the condition numbers to the Fréchet derivative, we recall the definition of the Fréchet
derivative of a function.

Definition 2.1
Let X and Y be Banach spaces andD �X be an open subset ofX . A functionL WD! Y is called
Fréchet differentiable at a 2D, if there exists a bounded linear operator Fa WD! Y such that

lim
t!0

kL.aC t /�L.a/�Fa.t /kY
ktkX

D 0,

where k � kX and k � kY are norms defined in X and Y , respectively. Then, the linear operator Fa is
called the Fréchet derivative of L at a.

Lemma 2.1 ([15])

(a) Let F W Rp �! Rq be Fréchet differentiable at a and a continuous mapping defined on an
open set SF � Rp such that 0 … SF . For a given vector a 2 SF such that F.a/ ¤ 0 and the
ball B.a, �/ D fx 2 Rp j kx � ak2 6 �kak2g for a sufficiently small � > 0, the normwise
condition number of the mapping F at the point a is

�.F , a/D lim
�!0

sup
x2B.a,�/
x¤a

kF.x/� F.a/k2=kF.a/k2

kx � ak2=kak2
D
kF 0.a/k2kak2

kF.a/k2
,
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where F 0.a/ denotes the Fréchet derivative of F at a.
(b) Under the assumptions in (a), let B0.a, �/ D fx j jxi � ai j 6 � jai j, i D 1, 2, : : : ,pg � SF ;

the mixed condition number of F at a becomes

m.F , a/D lim
�!0

sup
x2B0.a,�/
x¤a

kF.x/�F.a/k1

kF.a/k1

1

d.x, a/
D
kF 0.a/Dak1

kF.a/k1
,

where Da D diag.a1, a2, : : : ,ap/.
(c) Suppose F.a/D Œf1.a/ f2.a/ : : : fq.a/�T such that fj .a/¤ 0, for j D 1, 2, : : : , q. Then, the

componentwise condition number of F at a is

c.F ,a/D lim
�!0

sup
x2B0.a,�/
x¤a

d.F.x/,F.a//

d.x, a/
D kD�1F .a/F

0.a/Dak1,

where DF .a/ D diag.f1.a/,f2.a/, : : : ,fp.a//.

Remark 2.1

(a) It is easy to see that B0.a, �/ � B.a, �/. Because the condition numbers are the limits of the
supremum over some sets, the mixed condition numbers must be smaller than the normwise con-
dition number. If there is small component in the output data, then the componentwise condition
number may be bigger than the normwise condition number.
(b) From the definitions of condition numbers, we see that they can give a posteriori error
estimations for the computed solution F.x/. For example,

kF.x/� F.a/k2

kF.a/k2
/ �.F ,a/

kx � ak2

kak2
6 �.F , a/",

kF.x/� F.a/k1

kF.a/k1
/ m.F , a/d.x,a/6m.F ,a/",����F.x/� F.a/F.a/

����
1

D d.F.x/,F.a/// c.F ,a/d.x, a/6 c.F ,a/",

for all x 2 B0.a, "/, can be used to estimate the accuracy of the computed solution F.x/.

For A 2 Rm�n and B 2 Rp�q , their Kronecker product A ˝ B 2 Rmp�nq is defined by
A˝B D ŒaijB� [29]. The following results can be found in [29] and [30]:

vec.AXB/ D .BT ˝A/vec.X/, (2.1)

vec.A˝B/ D .In˝Kqm˝ Ip/ .vec.A/˝ vec.B// , (2.2)

a˝ b D vec.baT /, (2.3)

where Kmn is the commutation matrix defined by

Kmn D

mX
iD1

nX
jD1

Eij .m� n/˝Ej i .n�m/, (2.4)

where Eij .m � n/ D e
.m/
i .e

.n/
j /T 2 Rm�n denotes the .i , j /th elementary matrix and e.m/i is the

i th column vector of the m-by-m identity matrix Im. For C 2 Rm�n and y 2 Rn, the following
relations hold [29,30]: Knmvec.C /D vec.CT /; Kmn.y˝C/D C ˝ y, and KT

mn DKnm.
For an m-by-n matrix A, its Moore–Penrose inverse [31], denoted by A� 2 Rn�m, is the unique

matrix satisfying AA�A D A, A�AA� D A�, .AA�/T D AA�, and .A�A/T D A�A. The solution
of the LS problem minu kAu� bk2 can be obtained by A�b.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:44–59
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3. CONDITION NUMBERS FOR THE MOORE–PENROSE INVERSE OF A
KRONECKER PRODUCT

In this section, we will consider the normwise, mixed, and componentwise condition numbers for
the Moore–Penrose inverse of a Kronecker product A ˝ B , which plays an important role in the
associated least squares problem minv2Rnq k.A˝B/v � ck2.

We begin with the general case of the s � t matrix function [32],

�.X/D

2
6664
f11.X/ f12.X/ � � � f1t .X/

f21.X/ f22.X/ � � � f2t .X/
...

...
. . .

...
fs1.X/ fs2.X/ � � � fst .X/

3
7775

of a matrix X . In particular, let A 2 Rm�n and B 2 Rp�q and set X D A ˝ B , we obtain the
functional composition involving Kronecker products,

�.A˝B/D

2
6664
f11.A˝B/ f12.A˝B/ � � � f1t .A˝B/
f21.A˝B/ f22.A˝B/ � � � f2t .A˝B/

...
...

. . .
...

fs1.A˝B/ fs2.A˝B/ � � � fst.A˝B/

3
7775 . (3.1)

Next, we extend the three types of the condition numbers in [1] to the functional composition
�.A˝B/ (3.1). We can define the normwise condition number for its Moore–Penrose inverse,

�.��.A˝B// WD lim
�!0

supq
k�Ak2

F
Ck�Bk2

F

6�
q
kAk2

F
CkBk2

F

����..AC�A/˝ .B C�B//� ��.A˝B/��
F

�
����.A˝B/��

F

,

the mixed condition number,

m.��.A˝B// WD lim
�!0

sup
k�AA k16�
k�BB k16�

��vec ���..AC�A/˝ .B C�B//� ��.A˝B/���
1

�
��vec ���.A˝B/���

1

,

and the componentwise condition number,

c.��.A˝B// WD lim
�!0

sup
k�A
A
k16�

k�BB k16�

1

�

���� ��..AC�A/˝ .B C�B//� ��.A˝B/��.A˝B/

����
1

.

Remark 3.1
In the aforementioned definitions of the condition numbers, we assume that both A and B are
nonzero matrices.

The matrix of partial derivatives is referred as the Jacobian matrix of �.X/ at X [30,33]. Suppose
now that each of f1,f2, : : : , fm is a real-valued differentiable function of the same n � 1 vector
x D Œx1 x2 � � � xn�

T . Then, we denote f .x/ D Œf1.x/ f2.x/ � � � fm.x/�T ; the Jacobian matrix of
f at x is given by

@f .x/

@xT
D

2
66664

@
@x1
f1.x/

@
@x2
f1.x/ � � �

@
@xn
f1.x/

@
@x1
f2.x/

@
@x2
f2.x/ � � �

@
@xn
f2.x/

...
...

...
@
@x1
fm.x/

@
@x2
fm.x/ � � �

@
@xn
fm.x/

3
77775 ,
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which is just the Fréchet derivative of f at x. Before deriving the Fréchet derivative of the vec-
torized form of the mapping A˝ B 7�! ��.A˝ B/, we quote the following lemma regarding the
derivatives of the Moore–Penrose inverse.

Lemma 3.1 (Theorem 8.3 [30])
If X is an m� n matrix of full rank and X� denotes its Moore–Penrose inverse, then the derivative
dX� takes the form

dX� D .In �X
�X/.dXT /X�

T
X�CX�X�

T
.dXT /.Im �XX

�/�X�.dX/X�

and the Jacobian matrix takes the form

@vec.X�/

@vec.X/T
D
n
X�

T
X�˝ .In �X

�X/C .Im �XX
�/˝X�X�

T
o
Kmn � .X

�T ˝X�/,

where Kmn is defined in (2.4).

Now, we present the Fréchet derivative of the mapping .vec.A/, vec.B// 7�! vec.��.A˝ B//.
For simplicity, �� denotes ��.A˝B/.

Lemma 3.2
Let A 2Rm�n, B 2Rp�q , and the mapping W Rmn�Rpq 7�!Rst be .a, b/D vec.��.A˝B//,
where aD vec.A/, b D vec.B/. If � is continuously differentiable at A˝B and �.A˝B/ has full
rank, then  is continuous and Fréchet differentiable, and its derivative is of the form

 0.a, b/D Œ�.A,B/LB �.A,B/LA�,

where

�.A,B/ D
n
Œ��

T
��˝ .It � �

��/C .Is � ��
�/˝ ����

T
�Kst � .�

�T ˝ ��/
o �

@�.A˝B/

@vec.A˝B/T

� eK
and

LA D vec.A/˝ Ipq , LB D .Imn˝ vec.B//Kmn, eK D In˝Kqm˝ Ip.

Proof
First, we prove that  is differentiable. Because �.A˝B/ has full rank, then from Lemma 3.1, we
know that ��.A˝B/ is differentiable at �.A˝ B/. Also, because � is differentiable at A˝B , we
can conclude that  D vec ı �� is differentiable with respect to Œ.vec.A//T .vec.B//T �T .

Differentiating �.A˝B/, it follows from Lemma 3.1 that

d
�
��.A˝B/

�
D

�
It � �

��
� �
d .�.A˝B//T

�
��
T
��

C����
T
�
d .�.A˝B//T

� �
Is � ��

�
�
� �� .d.�.A˝B/// ��

and

d
�
vec

�
��.A˝B/

��
D
n
Œ��

T
��˝ .It � �

��/C .Is � ��
�/˝ ����

T
�Kst � .�

�T ˝ ��/
o

vec.d.�.A˝B///.

Using (2.1), (2.2), and (2.3), we have

vec.d .�.A˝B///D d.vec .�.A˝B///D
�

@�.A˝B/

@vec.A˝B/T

�
fvec.dA˝B/C vec.A˝ dB/g

D
�

@�.A˝B/

@vec.A˝B/T

�
.In˝Kqm˝ Ip/ fvec.dA/˝ vec.B/C vec.A/˝ vec.dB/g

D
�

@�.A˝B/

@vec.A˝B/T

�
.In˝Kqm˝ Ip/

˚
vec.vec.B/.vec.dA//T /C vec.vec.dB/.vec.A//T /

�
D
�

@�.A˝B/

@vec.A˝B/T

�
.In˝Kqm˝ Ip/

˚
.Imn˝ vec.B//Kmnvec.dA/C .vec.A/˝ Ipq/vec.dB/

�
.
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DOI: 10.1002/nla



50 H. DIAO ET AL.

It follows from the definitions of �.A,B/, LA, and LB that

d
�
vec

�
��.A˝B/

��
D �.A,B/.Imn˝ vec.B//Kmnvec.dA/C �.A,B/.vec.A/˝ Ipq/vec.dB/

D Œ�.A,B/LB �.A,B/LA�

�
d.vec.A//
d.vec.B//

	
.

Then, the Fréchet derivative is found to be  0.a, b/D Œ�.A,B/LB �.A,B/LA�. �

From the aforementioned Fréchet derivative, we have the following theorem providing explicit
expressions of the condition numbers for the Moore–Penrose inverse of the matrix function of
Kronecker products, which will be useful in error free symbolic computation.

Theorem 3.1
Let A 2 Rm�n,B 2 Rp�q and the mapping  .a, b/ D vec.��.A ˝ B//, where a D vec.A/,
b D vec.B/. If � is continuously differentiable at A˝B and �.A˝B/ has full rank, we have

�.��.A˝B// D

��Œ�.A,B/LB �.A,B/LA�
��
2

q
kAk2F CkBk

2
F����.A˝B/��

F

,

m.��.A˝B// D

��j�.A,B/LB jvec.jAj/C j�.A,B/LAjvec.jBj/
��
1��vec.��.A˝B//��

1

.

Furthermore, if there is no zero element in ��.A˝B/, then we obtain

c.��.A˝B//D

���� j�.A,B/LB jvec.jAj/C j�.A,B/LAjvec.jBj/

vec.��.A˝B//

����
1

.

Proof
By Lemmas 2.1 and 3.2, noting that a D vec.A/, b D vec.B/, we obtain the normwise condition
number for ��.A˝B/:

�.��.A˝B// D
k 0.a, b/k2

��.aT , bT /
��
2

k .a,b/k2
D
kŒ�.A,B/LB �.A,B/LA�k2

q
kak22Ckbk

2
2��vec.��.A˝B//��

2

D
kŒ�.A,B/LB �.A,B/LA�k2

q
kAk2F CkBk

2
F����.A˝B/��

F

.

Recalling that DA D Dvec.A/ and denoting Da,b D

�
DA

DB

	
, we obtain the following form

of the mixed condition number for the Moore–Penrose inverse of Kronecker product function

m.��.A˝B// D
k 0.a, b/Da,bk1
k .a, b/k1

D

����Œ�.A,B/LB �.A,B/LA�

�
DA 0
0 DB

	����
1

kvec.��.A˝B//k1

D

����
ˇ̌̌
ˇŒ�.A,B/LB �.A,B/LA�

�
DA 0

0 DB

	ˇ̌̌
ˇ e

����
1��vec.��.A˝B//��

1

D

����ˇ̌Œ�.A,B/LB �.A,B/LA�
ˇ̌ � vec.jAj/

vec.jBj/

	����
1

kvec.��.A˝B//k1

D
kj�.A,B/LB jvec.jAj/C j�.A,B/LAjvec.jBj/k1��vec.��.A˝B//��

1

,

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:44–59
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and the componentwise condition number for ��.A˝B/ is found to be

c.��.A˝B//D
���D�1 .a,b/ 

0.a, b/Da,b

���
1
D

����D�1vec.��.A˝B//
Œ�.A,B/LB �.A,B/LA�

�
DA 0
0 DB

	����
1

D

����
ˇ̌̌
ˇD�1vec.��.A˝B//

Œ�.A,B/LB �.A,B/LA�

�
DA 0

0 DB

	ˇ̌̌
ˇ e

����
1

D

��������
jŒ�.A,B/LB �.A,B/LA�j

�
vec.jAj/
vec.jBj/

	
vec.��.A˝B//

��������
1

D

���� j�.A,B/LB jvec.jAj/C j�.A,B/LAjvec.jBj/

vec.��.A˝B//

����
1

,

where e is the vector of all ones with compatible dimension. �

The aforementioned theorem shows that the normwise condition number �.�.A ˝ B/ is
proportional to the norms kAkF and kBkF and the reciprocal of k��.A˝B/kF , as expected.

Let us consider two matrix functions �.A/ W Rm�n 7�! Re�f and �.B/ W Rp�q 7�! Rg�h and
assume that �.A˝B/D �.A/˝�.B/. Then, it can be verified that ��.A˝B/D ��.A/˝ ��.B/.
Thus, we have

d
�
��.A˝B/

�
D d

�
��.A/˝ ��.B/

�
D d

�
��.A/

�
˝ ��.B/C ��.A/˝ d

�
��.B/

�
.

Vectorizing the aforementioned equation and using (2.2), we obtain

d
�
vec

�
��.A/˝ ��.B/

��
D vec

�
d
�
��.A/

�
˝ ��.B/C ��.A/˝ d

�
��.B/

��
D
�
Ie ˝Kgf ˝ Ih

� n
vec

�
d
�
��.A/

��
˝ vec

�
��.B/

�
C vec

�
��.A/

�
˝ vec

�
d
�
��.B/

��o
D
�
Ie ˝Kgf ˝ Ih

� n
.Ife ˝ vec

�
��.B/

�
/vec

�
d
�
��.A/

��
C .vec

�
��.A/

�
˝Ihg /vec

�
d
�
��.B/

��o
D
�
Ie ˝Kgf ˝ Ih

� n
.Ife ˝ vec

�
��.B/

�
/fŒ��

T
.A/��.A/˝ .If � �

�.A/�.A//

C .Ie � �.A/�
�.A//˝ ��.A/��

T
.A/�Kef � .�

�T .A/˝ ��.A//gvec.d.�.A///

C .vec
�
��.A/

�
˝ Ihg/fŒ�

�T .B/��.B/˝ .Ih � �
�.B/�.B//

C .Ig � �.B/�
�.B//˝ ��.B/��

T
.B/�Kgh � .�

�T .B/˝ ��.B//gvec.d.�.B///
o

. (3.2)

Suppose that A and B are of full column rank. To present the condition numbers for the LS
problems (1.1), we simply consider the function �.A˝B/DA˝B and obtain

��.A/DA�, ��.B/D B� (3.3)

and

A�AD In, B�B D Iq . (3.4)

Analogous results can be obtained when A and B have full row rank.
Note that �.A/ D A and �.B/ D B; thus, e D m, f D n, g D p, and h D q. As an immediate

consequence of (3.2), by applying (3.3) and (3.4) we have the following corollary regarding the
Fréchet derivative in the condition numbers for the Moore–Penrose inverse of a Kronecker product
A˝B . Recall that Rm�nr denotes the set of real m� n matrices of rank r .
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Corollary 3.1
Let A 2 Rm�nn , B 2 Rp�qq ,  .a, b/ D vec

�
.A˝B/�

�
, a D vec.A/, and b D vec.B/. Then  is

continuous and Fréchet differentiable at all .a, b/. Moreover, it has the matrix expression

 0.a, b/D ŒQBMA PANB �,

where

MA D�.A
�T ˝A�/C .Im �AA

�/˝ .ATA/�1Kmn, PA D .Im˝Kpn˝ Iq/.vec.A
�/˝ Iqp/

and

NB D�.B
�T ˝B�/C .Ip �BB

�/˝ .BTB/�1Kpq , QB D .Im˝Kpn˝ Iq/.Inm˝vec.B�//.

From the aforementioned Fréchet derivative, we have the following corollary giving exact expres-
sions of the condition numbers for the Moore–Penrose inverse of the Kronecker product A ˝ B ,
which will be useful for the symbolic computations in the absence of rounding errors.

Corollary 3.2
Let A 2Rm�nn and B 2Rp�qq . Respectively, the normwise and mixed condition numbers are of the
following forms:

�..A˝B/�/ D
kŒQBMA PANB �k2

q
kAk2F CkBk

2
F

kA�kF kB�kF
,

m..A˝B/�/ D
kjQBMAjvec.jAj/C jPANB jvec.jBj/k1

kvec.A�˝B�/k1
.

Assuming there is no zero element in A� and B�, the componentwise condition number is
expressed as

c..A˝B/�/D

���� jQBMAjvec.jAj/C jPANB jvec.jBj/

vec.A�˝B�/

����
1

.

Corollary 3.2 gives explicit expressions for the condition numbers �..A˝B/�/,m..A˝B/�/, and
c..A˝ B/�/. When B D 1, they essentially reduce to the known �.A�/, m.A�/, and c.A�/ in [1].
Although these expressions are exact using symbolic computation, they may not be easy to compute
numerically because of the large size of the system involved and the commutation matrixKmn. The
following corollary presents simpler and practical upper bounds for the mixed and componentwise
condition numbers.

Corollary 3.3
For the mixed and componentwise condition numbers in Corollary 3.2, the following simpler upper
bounds hold:

m..A˝B/�/ 6 m..A˝B/�/upper WD
kjA�j ˝

�
jB�jjBjjB�j C j.BTB/�1jjBjT jIp �BB

�j
�
kmax

kA�˝B�kmax

C
k
�
jA�jjAjjA�j C j.ATA/�1jjAjT jIm �AA

�j
�
˝ jB�jkmax

kA�˝B�kmax
,

c..A˝B/�/ 6 c..A˝B/�/upper WD

����� jA
�j ˝

�
jB�jjBjjB�j C j.BTB/�1jjBjT jIp �BB

�j
�

A�˝B�

�����
max

C

�����
�
jA�jjAjjA�j C j.ATA/�1jjAjT jIm �AA

�j
�
˝ jB�j

A�˝B�

�����
max

.
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Proof
Using (2.1), (2.2), and (2.3), we have

jQBMAjjvec.A/j 6 j.Im˝Kpn˝ Iq/.Inm˝ vec.B�//j jŒ�.A�
T

˝A�/

C .Im �AA
�/˝ .ATA/�1Kmn�jjvec.A/j

6 .Im˝Kpn˝ Iq/.Inm˝ vec.jB�j//..jA�
T

j ˝ jA�j/

C jIm �AA
�j ˝ j.ATA/�1jKmn�jjvec.A/j

6 .Im˝Kpn˝ Iq/.Inm˝ vec.jB�j//vec.jA�jjAjjA�j

C j.ATA/�1jjAjT jIm �AA
�j/

D .Im˝Kpn˝ Iq/vec.vec.jB
�j/vec.jA�jjAjjA�j

C j.ATA/�1jjAjT jIm �AA
�j/T /

D .Im˝Kpn˝ Iq/
h
vec.jA�jjAjjA�j

Cj.ATA/�1jjAjT jIm �AA
�j/˝ vec.jB�j/

i
D vec

�
.jA�jjAjjA�j C j.ATA/�1jjAjT jIm �AA

�j/˝ jB�j
�

.

Also, we can prove the following inequality:

jPANB jvec.jBj/6 vec
�
jA�j ˝ .jB�jjBjjB�j C j.BTB/�1jjBjT jIp �BB

�j/
�

.

Note that kvec.A/k1 D kAkmax and the infinity norm is monotonic. The upper bounds can be
obtained by applying the aforementioned two inequalities to the exact expressions of the condition
numbers m..A˝ B/�/ and c..A˝ B/�/ in Corollary 3.2 and by using the matrix norm triangular
inequality. �

4. CONDITION NUMBERS FOR THE LINEAR LEAST SQUARES PROBLEM INVOLVING
KRONECKER PRODUCTS

As we know, the LS problem

min
u2Rn

kAu� bk2,

where A 2Rm�n is of full column rank and b 2Rm, has a unique solution x DA�b [25,32,34–37].
Now that we have derived the condition numbers for the Moore–Penrose inverse .A ˝ B/� in
Section 3, we are ready to study the condition numbers for the associated KPLS problem

min
v2Rnq

k.A˝B/v � ck2, (4.1)

where A 2 Rm�nn , B 2 Rp�qq , and A˝B 2 Rmp�nqnq , c 2 Rmp , (see e.g., [3–10] for details). It has
a unique minimal 2-norm solution

x D .A˝B/�c D .A�˝B�/c D ..ATA/�1˝ .BTB/�1/.AT ˝BT /c. (4.2)

Our results generalize the perturbation analysis of the nonsingular linear equations .A˝B/x D d
[38,39] to the LS problem involving Kronecker products.

The perturbed system of (4.1) is

min
v2Rnq

kŒ.AC�A/˝ .B C�B/�v � .c C�c/k2,

where �A, �B , and �c have the same dimensions as A, B , and c, respectively.
Similar to Lemma 3.2, we first consider the Fréchet derivative.
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Lemma 4.1
Let the mapping ' W Rmn � Rpq � Rmp 7�! Rnq be defined by '.a, b, c/ D .A˝ B/�c, where
a D vec.A/ and b D vec.B/. Assuming that A and B are of full column rank, then ' is continuous
and Fréchet differentiable at all .vec.A/, vec.B/, c/. Moreover,

'0.a, b, c/D ŒQP A�˝B��,

where, denoting r D c � .A˝B/x, we obtain the following expressions for P and Q:

QD .rT ˝ ..ATA/�1˝ .BTB/�1//.Im˝Kpn˝ Iq/.Imn˝ vec.BT //Kmn

� .xT ˝ .A�˝B�//.In˝Kqm˝ Ip/.Imn˝ vec.B//,

P D .rT ˝ ..ATA/�1˝ .BTB/�1//.Im˝Kpn˝ Iq/.vec.AT /˝ Ipq/Kpq
� .xT ˝ .A�˝B�//.In˝Kqm˝ Ip/.vec.A/˝ Ipq/.

Proof
From Lemma 3.2, we know that A� ˝ B� is continuous and differentiable and so is '.a, b, c/ D
.A˝B/�c. Differentiating both sides of (4.2), we have

dx D d...ATA/�1˝ .BTB/�1/.AT ˝BT /c/

D d..ATA/�1˝.BTB/�1/.AT˝BT /cC..ATA/�1˝.BTB/�1/d.AT ˝BT /cC.A�˝B�/dc

D � ..ATA/�1˝ .BTB/�1/d..ATA/˝ .BTB//..ATA/�1˝ .BTB/�1/.AT ˝BT /c

C ..ATA/�1˝ .BTB/�1/.dAT ˝BT CAT ˝ dBT /c C .A�˝B�/dc

D � ..ATA/�1˝ .BTB/�1/..dATA/˝ .BTB/C .AT dA/˝ .BTB/C .ATA/˝ .dBTB/

C .ATA/˝ .BT dB//xC ..ATA/�1˝ .BTB/�1/.dAT˝BTCAT˝dBT /cC.A�˝B�/dc

D � .A�˝B�/.dA˝BCA˝dB/x�..ATA/�1˝.BTB/�1/.dAT˝BTCAT˝dBT /.A˝B/x

C ..ATA/�1˝ .BTB/�1/.dAT ˝BTCAT˝dBT /cC.A�˝B�/dc

D � .A�˝B�/.dA˝B CA˝ dB/xC ..ATA/�1˝ .BTB/�1/.dAT ˝BT CAT ˝ dBT /r

C .A�˝B�/dc. (4.3)

We then vectorize both sides of the aforementioned equation and obtain

dx D vec.dx/D vec.�.A�˝B�/.dA˝B CA˝ dB/x/

C vec...ATA/�1˝ .BTB/�1/.dAT ˝BT CAT ˝ dBT /r/C vec..A�˝B�/dc/

D � .xT ˝ .A�˝B�//.In˝Kqm˝ Ip/Œvec.dA/˝ vec.B/C vec.A/˝ vec.dB/�

C .rT ˝ ..ATA/�1˝ .BTB/�1//.Im˝Kpn˝ Iq/Œvec.dA
T /˝ vec.BT /

C vec.AT /˝ vec.dBT /�C .A�˝B�/dc

D � .xT ˝ .A�˝B�//.In˝Kqm˝ Ip/Œ.Imn˝ vec.B//vec.dA/C.vec.A/˝ Ipq/vec.dB/�

C .rT ˝ ..ATA/�1˝ .BTB/�1//.Im˝Kpn˝ Iq/Œ.Imn˝ vec.BT //Kmnvec.dA/

C .vec.AT /˝ Ipq/Kpqvec.dB/�C .A
�˝B�/dc.

That is,

dx D ŒQ P A�˝B��ŒdaT dbT dcT �T .

So, the Fréchet derivative is '0.a, b, c/D ŒQ P A�˝B��. �
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From the aforementioned Fréchet derivative, we have the following exact expressions of the con-
dition numbers for the KPLS problem and their upper bounds, which can be used to efficiently
estimate the condition numbers.

Corollary 4.1
Using the notations in Lemma 4.1, we have the following normwise and mixed condition numbers
and their upper bounds:

�ls.A˝B , c/ WD lim
�!0

supq
k�Ak2F C k�Bk

2
F Ck�ck

2
2

6 �
q
kAk2F CkBk

2
F Ckck

2
2

k�xk2

�kxk2

D
kŒQ P A�˝B��k2

q
kAk2F CkBk

2
F Ckck

2
2

kxk2

mls.A˝B , c/ WD lim
�!0

sup
j�Aj6 �jAj
j�Bj6 �jBj
j�cj6 �jcj

1

�

k�xk1

kxk1

D
kjQjvec.jAj/C jPjvec.jBj/C .jA�j ˝ jB�j/jcjk1

kxk1

6
2
��jA�˝B�j.jAj ˝ jBj/jxj��

1

kxk1

C
2
��j.ATA/�1˝ .BTB/�1j.jAjT ˝ jBjT /jr j��

1

kxk1

C

��jA�˝B�jjcj��
1

kxk1

DW mls.A˝B , c/upper.

If there is no zero element in x, then the componentwise condition number is

cls.A˝B , c/ WD lim
�!0

sup
j�Aj 6 �jAj
j�Bj 6 �jBj
j�cj 6 �jcj

1

�

�����xx
����
1

D

���� jQjvec.jAj/C jPjvec.jBj/C .jA�j ˝ jB�j/jcjx

����
1

6 2
���jD�1x jjA� ˝B�j.jAj ˝ jBj/jxj���

1

C 2
��jD�1x jj.ATA/�1˝ .BTB/�1j.jAjT ˝ jBjT /jr j��1

C
���jD�1x jjA�˝B�jjcj���

1

DW cls.A˝B , c/upper.
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Proof
Combining Lemmas 2.1 and 4.1, we obtain the exact expressions for the normwise, mixed, and
componentwise condition numbers. Using (2.1), (2.2), and (2.3), we have

jQjjvec.A/j 6
ˇ̌
.rT ˝ ..ATA/�1˝ .BTB/�1//.Im˝Kpn˝ Iq/.Imn˝ vec.BT //Kmn

ˇ̌
jvec.A/j

C
ˇ̌̌
.xT ˝ .A�˝B�//.In˝Kqm˝ Ip/.Imn˝ vec.B//

ˇ̌̌
jvec.A/j

6


jrT j ˝ j.ATA/�1˝ .BTB/�1j/.Im˝Kpn˝ Iq/.Imn˝ vec.jBT j//

�
vec.jAT j/

C
h
jxT j ˝ jA�˝B�j/.In˝Kqm˝ Ip/.Imn˝ vec.jBj//

i
vec.jAj/

D
�
jrT j ˝ j.ATA/�1˝ .BTB/�1j/.Im˝Kpn˝ Iq

�
vec.vec.jBT j/vec.jAT j/T /

C
�
jxT j ˝ jA�˝B�j

�
.In˝Kqm˝ Ip/vec.vec.jBj/vec.jAj/

T /

D
�
jrT j˝j.ATA/�1˝.BTB/�1j

�
vec.jAT j˝jBTj/C

�
jxT j ˝ jA�˝B�j

�
vec.jAj˝jBj/

D jA�˝B�j.jAj ˝ jBj/jxj C j.ATA/�1˝ .BTB/�1j.jAjT ˝ jBjT /jr j.

Similarly, we can deduce that

jPjvec.jBj/ 6 jA�˝B�j.jAj ˝ jBj/jxj C j.ATA/�1˝ .BTB/�1j.jAjT ˝ jBjT /jr j.

Because of the monotonicity property of the infinity norm, the upper bounds mls.A˝ B , c/upper

and cls.A ˝ B , c/upper can be obtained by applying the aforementioned two inequalities to the
exact expressions of mls.A ˝ B , c/ and cls.A ˝ B , c/ and by using the matrix norm triangular
inequality. �

Remark 4.1
From the small example in Section 1, the derived upper bounds mls.A˝ B , c/upper and cls.A˝
B , c/upper are achievable.

Finally, we present an approach to compute the upper bounds, in particular the second term in
mls.A˝B , c/upper or cls.A˝B , c/upper, involving

��j.ATA/�1˝ .BTB/�1j.jAjT ˝ jBjT /jr j��
1

.
Let ´D .jAjT ˝ jBjT /jr j and e be the vector of all ones, then we have��j.ATA/�1˝ .BTB/�1j.jAjT ˝ jBjT /jr j��

1

D
��j.ATA/�1˝ .BTB/�1j´��

1

D
��j.ATA/�1˝ .BTB/�1jD´e

��
1

D
��j.ATA/�1˝ .BTB/�1jD´��1

D
��..ATA/�1˝ .BTB/�1/D´��1 .

We can apply LAPACK’s condition estimator SLACON, based on the Hager–Higham’s algorithm
[26, 27], to efficiently estimate the aforementioned matrix 1-norm. The estimator involves solu-
tions of some linear systems with the coefficient matrix .ATA/˝ .BTB/. If the Cholesky factors
R1 and R2 of ATA and BTB , respectively, are available, then

.ATA/˝ .BTB/D .RT1 ˝R
T
2 /.R1˝R2/.

Thus, the upper bounds can be efficiently estimated by exploiting the triangular structure of R1
and R2.

5. NUMERICAL EXAMPLE

In this section, we present test results with our computable upper bounds for the condition numbers
of the bivariate least squares tensor product problem. We compare the computable bounds of the
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Table I. Kronecker products linear least squares problems.

m n �ls.V1˝ V2,f / mls.V1 ˝ V2,f / cls.V1 ˝ V2,f /

mls.V1˝ V2,f /upper cls.V1˝ V2, f /upper

4 3 1.4013e+002 7.7233e+001 2.7361e+002
7.3825e+003 2.9440e+004

8 5 1.2264e+004 3.8985e+003 2.6674e+005
5.1227e+006 3.6968e+008

12 6 3.6263e+004 5.1042e+003 2.4146e+004
7.0622e+007 2.0248e+008

condition numbers with their corresponding exact values. All computations were carried out using
MATLAB (MathWorks, Natick, MA, USA) 7.0 with precision � � 2.2�10�16. In our experiments,
when computing the upper bounds, the computed solution was used as an estimation of the exact
solution x.

Example 5.1 ([13])
For i D 1, 2, consider intervals Ii D Œai , bi �, and let Ei be finite-dimensional subspaces of all
functions from Ii to R. Let ni D dim.Ei /, x1, x2, : : : ,xm1 2 Œa1, b1�, y1,y2, : : : , ym2 2 Œa2, b2�
pairwise different in each case. The bivariate least squares tensor product problem is, for a given
f 2Rm1�m2 , to find a tensor product function g 2 E1˝E2 minimizing

m1X
pD1

m2X
qD1

Œg.xp ,yq/� f.p�1/�m2Cq �
2. (5.1)

The aforementioned minimization problem can be rewritten as minx2Rn1�n2 k.V1˝ V2/x � f k2.
In the numerical experiments, we choose I1 D I2 D Œ0, 1�, xi D yi D

i
m

, i D 1, 2, : : : ,m, and
E1 D E2 as the space of all polynomials of degree 6 .n�1/. Let f be a random vector with proper
size. The comparison is given in Table I where each two rows correspond to an array of parameters
.m, n/.

Table I shows that the upper bounds are around three orders of magnitude larger than their
exact counterparts.

We also test our computable bounds for other problems with different settings and obtain results
similar to those in the aforementioned example. That is, the computable upper bounds are around
three orders of magnitude larger than their exact counterparts.

6. CONCLUSION REMARKS

This paper presents three types of condition numbers of the Moore–Penrose inverse of a matrix
with elements generated by a single Kronecker matrix product. From them, the condition numbers
of the Moore–Penrose inverse of a Kronecker product and the associated least squares problem are
derived. Computable upper bounds for the condition numbers are also provided. It is of interest to
extend our results to the corresponding rank-deficient and weighted KPLS problems [25,40] and to
develop extra-precise iterative refinement [34,41] for such problems.
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