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Abstract

Circulant matrices play a central role in a recently proposed formulation of three-way
data computations. In this setting, a three-way table corresponds to a matrix where
each “scalar” is a vector of parameters defining a circulant. This interpretation provides
many generalizations of results from matrix or vector-space algebra. We derive the power
and Arnoldi methods in this algebra. In the course of our derivation, we define inner
products, norms, and other notions. These extensions are straightforward in an algebraic
sense, but the implications are dramatically different from the standard matrix case. For
example, a matrix of circulants has a polynomial number of eigenvalues in its dimension;
although, these can all be represented by a carefully chosen canonical set of eigenvalues
and vectors. These results and algorithms are closely related to standard decoupling
techniques on block-circulant matrices using the fast Fourier transform.

Keywords: block-circulant, circulant module, tensor, FIR matrix algebra, power
method, Arnoldi process

1. Introduction

We study iterative algorithms in a circulant algebra, which is a recent proposal for a
set of operations that generalize matrix algebra to three-way data (Kilmer et al., 2008).
In particular, we extend this algebra with the ingredients required for iterative methods
such as the power method and Arnoldi method, and study the behavior of these two
algorithms.

Given an m× n× k table of data, we view this data as an m× n matrix where each
“scalar” is a vector of length k. We denote the space of length-k scalars as Kk. These
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scalars interact like circulant matrices. Circulant matrices are a commutative, closed
class under the standard matrix operations. Indeed, Kk is the ring of circulant matrices,
where we identify each circulant matrix with the k parameters defining it.

Formally, let α ∈ Kk. Elements in the circulant algebra are denoted by an underline
to distinguish them from regular scalars. When an element is written with an explicit
parameter set, it is denoted by braces, for example

α = {α1 ... αk} .

In what follows, we will use the notation ↔ to provide an equivalent matrix-based no-
tation for an operation involving Kk. We define the operation circ(·) as the “circulant
matrix representation” of a scalar:

α ↔ circ(α) ≡









α1 αk . . . α2

α2 α1
. . .

...
...

. . .
. . . αk

αk . . . α2 α1









. (1)

Let α be as above, and also let β ∈ Kk. The basic addition and multiplication operations
between scalars are then

α+ β ↔ circ(α) + circ(β) and α ◦ β ↔ circ(α) circ(β). (2)

We use here a special symbol, the ◦ operation, to denote the product between these
scalars, highlighting the difference from the standard matrix product. Note that the
element

1 = {1 0 ... 0}
is the multiplicative identity.

Operations between vectors and matrices have similar, matricized, expressions. We
use Kn

k to denote the space of length-n vectors where each component is a k-vector in Kk,
and K

m×n
k to denote the space of m × n matrices of these k-vectors. Thus, we identify

each m × n × k table with an element of Km×n
k . Let A ∈ K

m×n
k and x ∈ Kn

k . Their
product is:

A ◦ x =

[ ∑
n
j=1

A1,j ◦ xj

...∑
n
j=1

Am,j ◦ xj

]

↔
[

circ(A1,1) ... circ(A1,n)

...
. . .

...
circ(Am,1) ... circ(Am,n)

][
circ(x1)

...
circ(xn)

]

. (3)

Thus, we extend the operation circ to matrices and vectors of Kk scalars so that

circ(A) ≡
[

circ(A1,1) ... circ(A1,n)

...
. . .

...
circ(Am,1) ... circ(Am,n)

]

and circ(x) ≡
[

circ(x1)

...
circ(xn)

]

. (4)

The definition of the product can now be compactly written as

A ◦ x↔ circ(A) circ(x). (5)

Of course this notation also holds for the special case of scalar-vector multiplication. Let
α ∈ Kk. Then

x ◦ α↔ circ(x) circ(α).
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The above operations define the basic computational routines to treat m × n × k
arrays as m× n matrices of Kk. They are equivalent to those proposed by Kilmer et al.
(2008), and they constitute a module over vectors composed of circulants, as shown
recently in Braman (To appear). Based on this analysis, we term the set of operations
the circulant algebra. We note that these operations have more efficient implementations,
which will be discussed in Sections 3 and 6.

The circulant algebra analyzed in this paper is closely related to the FIR matrix al-

gebra due to Lambert (1996, Chapter 3). Lambert proposes an algebra of circulants; but
his circulants are padded with additional zeros to better approximation a finite impulse
response operator. He uses it to study blind deconvolution problems (Lambert et al.,
2001). As he observed, the relationship with matrices implies that many standard de-
compositions and techniques from real or complex valued matrix algebra carry over to
the circulant algebra.

The circulant algebra in this manuscript is a particular instance of a matrix-over-a-
ring, a long studied generalization of linear algebra (Mcdonald, 1984; Brewer et al., 1986).
Prior work focuses on Roth theorems for the equation AX−XB = C (Gustafson, 1979);
generalized inverses (Prasad, 1994); completion and controllability problems (Gurvits et al.,
1992); matrices over the ring of integers for computer algebra systems (Hafner and McCurley,
1991); and transfer functions and linear dynamic systems (Sontag, 1976). Finally, see
Gustafson (1991) for some interesting relationships between vectors space theory and
module theory. A recent proposal extends many of the operations in Kilmer et al. (2008)
to more general algebraic structures (Navasca et al., 2010).

Let us provide some further context on related work. Multi-way arrays, tensors,
and hypermatrices are a burgeoning area of research; see Kolda and Bader (2009) for
a recent comprehensive survey. Some of the major themes are multi-linear operations,
fitting multi-linear models, and multi-linear generalizations of eigenvalues (Qi, 2007).
The formulation in this paper gives rise to stronger relationships with the literature
on block-circulant matrices, which have been studied for quite some time. See Tee
(2005) and the references therein for further historical and mathematical context on
circulant matrices. In particular, Baker (1989) gives a procedure for the SVD of a block
circulant that involves using the fast Fourier transform to decouple the problem into
independent sub-problems, just as we shall do throughout this manuscript. Other work
in this vein includes solving block-circulant systems that arise in the theory of antenna
arrays: (Sinnott and Harrington, 1973; De Mazancourt and Gerlic, 1983; Vescovo, 1997).

The remainder of this paper is structured as follows. We first derive a few necessary
operations in Section 2, including an inner product and norm. We then continue this dis-
cussion by studying these same operations using the Fourier transform of the underlying
circulant matrices (Section 3). A few theoretical properties of eigenvalues in the circulant
algebra are analyzed in Section 4. That section is a necessary prelude to the subsequent
discussion of how the power method (von Mises and Pollaczek-Geiringer, 1929) and the
Arnoldi method (Krylov, 1931; Lanczos, 1950; Arnoldi, 1951) generalize to this algebra,
which comes in Section 5. We next explain how we implemented these operations in
a Matlab package (Section 6); and we provide a numerical example of the algorithms
(Section 7). Section 8 concludes the manuscript with some ideas for future work.
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Figure 1: The power method for a matrix A ∈ Rn×n.

Require: A,x(0), τ

1: x(0) ← x(0)
∥
∥x(0)

∥
∥
−1

2: for k = 1, . . . , until convergence do
3: y(k) ← Ax(k−1)

4: α(k) ←
∥
∥y(k)

∥
∥

5: x(k) ← y(k)α(k)−1

6: if ‖sign(x(k)
1 )x(k) − sign(x

(k−1)
1 )x(k−1)‖ < τ then

7: return x(k)

8: end if
9: end for

2. Operations with the power method

In the introduction, we provided the basic set of operations in the circulant algebra
(eqs. (1)-(5)). We begin this section by stating the standard power method, and then
follow by deriving the operations it requires.

Let A ∈ Rn×n and let x ∈ Rn be an arbitrary starting vector. Then the power
method proceeds by repeated applications of A; see Figure 1 for a standard algorithmic
description. (Line 6 checks for convergence and is one of several possible stopping crite-
ria.) Under mild and well-known conditions (see Stewart (2001)), this iteration converges
to the eigenvector with the largest magnitude eigenvalue.

Not all of the operations in Figure 1 are defined for the circulant algebra. In the first
line, we use the norm

∥
∥x(0)

∥
∥ that returns a scalar in R. We also use the scalar inverse

α−1. The next operation is the sign function for a scalar. Let us define these operations,
in order of their complexity. In the next section, we will reinterpret these operations in
light of the relationships between the fast Fourier transform and circulant matrices. This
will help illuminate a few additional properties of these operations and will let us state
an ordering for elements.

2.1. The scalar inverse

We begin with the scalar inverse. Recall that all operations between scalars behave
like circulant matrices. Thus, the inverse of α ∈ Kk is

α−1 ↔ circ(α)−1.

The matrix circ(α)−1 is also circulant (Davis, 1979).

2.2. Scalar functions and the angle function

Other scalar functions are also functions of a matrix (see Higham (2008)). Let f be
a function, then

f(α)↔ f(circ(α))

where the right hand side is the same function applied to a matrix. (Note that it is not
the function applied to the matrix element-wise.)
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The sign function for a matrix is a special case. As explained in Higham (2008), the
sign function applied to a complex value is the sign of the real-valued part. We wish to
use a related concept that generalizes the real-valued sign that we term “angle.” Given
a complex value reıθ, then angle(reıθ) = eıθ. For real or complex numbers x, we then
have

angle(x) |x| = x.

Thus, we define
angle(α)↔ circ(abs(α))−1 circ(α).

2.3. Inner products, norms, and conjugates

We now proceed to define a norm. The norm of a vector in Kn
k produces a scalar in

Kk:

‖x‖ ↔ (circ(x)∗ circ(x))1/2 =

(
n∑

i=1

circ(xi)
∗ circ(xi)

)1/2

.

For a standard vector x ∈ Cn, the norm ‖x‖ =
√
x∗x. This definition, in turn, follows

from the standard inner product attached to the vector space Cn. As we shall see, our
definition has a similar interpretation. The inner product implied by our definition is

〈x,y〉 ↔ circ(y)∗ circ(x).

Additionally, this definition implies that that the conjugate operation in the circulant
algebra corresponds to the transpose of the circulant matrix

α↔ circ(α)∗.

With this conjugate, our inner product satisfies two of the standard properties: conjugate
symmetry 〈x,y〉 = 〈y,x〉 and linearity 〈α ◦ x,y〉 = α ◦ 〈x,y〉. The notion of positive
definiteness is more intricate and we delay that discussion until after introducing a de-
coupling technique using the fast Fourier transform in the following section. Then, in
Section 3.3, we use positive definiteness to demonstrate a Cauchy-Schwarz inequality,
which in turn provides a triangle inequality for the norm.

3. Operations with the fast Fourier transform

In Section 2, we explained the basic operations of the circulant algebra as operations
between matrices. All of these matrices consisted of circulant blocks. In this section, we
show how to accelerate these operations by exploiting the relationship between the fast
Fourier transform and circulant matrices.

Let C be a k× k circulant matrix. Then the eigenvector matrix of C is given by the
k × k discrete Fourier transform matrix F , where

Fij =
1√
k
ω(i−1)(j−1)

and ω = e2πı/k. This matrix is complex symmetric, F T = F , and unitary, F ∗ = F−1.
Thus, C = FDF ∗, D = diag(λ1, . . . , λk). Recall that multiplying a vector by F or F ∗

5



Figure 2: The sequence of transformations in our cft operation. Given a circulant A, we convert it
into a matrix by circ(A). The color of the circles in the figure is emphasizing the circulant structure,
and not equality between blocks. In the third figure, we diagonalize each circulant using the Fourier
transform. The pattern of eigenvalues is represented by squares. Here, we are coloring the squares to
show the reordering induced by the permutation at the final step of the cft operation.

can be accomplished via the fast Fourier transform in O(k log k) time instead of O(k2)
for the typical matrix-vector product algorithm. Also, computing the matrix D can be
done in time O(k log k) as well.

To express our operations, we define a new transformation, the “Circulant Fourier
Transform” or cft. Formally, cft : α ∈ Kk 7→ Ck×k and its inverse icft : Ck×k 7→ Kk

as follows:

cft(α) ≡
[

α̂1

. . .
α̂k

]

= F ∗ circ(α)F , icft

([
α̂1

. . .
α̂k

])

≡ α↔ F cft(α)F ∗,

where α̂j are the eigenvalues of circ(α) as produced in the Fourier transform order.
These transformations satisfy icft(cft(α)) = α and provide a convenient way of moving
between operations in Kk to the more familiar environment of diagonal matrices in Ck×k.

The cft and icft transformations are extended to matrices and vectors over Kk

differently than the circ operation we saw before. Observe that cft applied “element-
wise” to the circ(A) matrix produces a matrix of diagonal blocks. In our extension of the
cft routine, we perform an additional permutation to expose block-diagonal structure
from these diagonal blocks. This permutation PmAP T

n transforms an mk × nk matrix
of k× k diagonal blocks into a block diagonal mk× nk with m× n size blocks. It is also
known as a stride permutation matrix (Granata et al., 1992). The construction of Pm,
expressed in Matlab code is

p = reshape(1:m*k,k,m)’;

Pm = sparse(1:m*k,p(:),1,m*k,m*k);

The construction for P n is identical. In Figure 2, we illustrate the overall transformation
process that extends cft to matrices and vectors.

Algebraically, the cft operation for a matrix A ∈ K
m×n
k is

cft(A) = Pm(Im ⊗ F ∗) circ(A)(In ⊗ F )P T
n ,

where Pm and P n are the permutation matrices introduced above. We can equivalently

6



write this directly in terms of the eigenvalues of each of the circulant blocks of circ(A):

cft(A) ≡
[

Â1

. . .

Âk

]

, Âj =





λ1,1

j
... λ1,n

j

...
. . .

...
λm,1

j
... λm,n

j



 ,

where λr,s
1 , . . . , λr,s

k are the diagonal elements of cft(Ar,s). The inverse operation icft,
takes a block diagonal matrix and returns the matrix in K

m×n
k :

icft(A)↔ (Im ⊗ F )P T
mAP n(In ⊗ F ∗).

Let us close this discussion by providing a concrete example of this operation.

Example 1. Let A =
[

{2 3 1} {8 -2 0}
{-2 0 2} {3 1 1}

]

. The result of the circ and cft operations, as

illustrated in Figure 2, are:

circ(A) =












2 1 3 8 0 -2

3 2 1 -2 8 0

1 3 2 0 -2 8

-2 2 0 3 1 1

0 -2 2 1 3 1

2 0 -2 1 1 3












,

(I ⊗ F ∗) circ(A)(I ⊗ F ) =












6 6

-
√
3ı -9+

√
3ı

√
3ı -9−

√
3ı

0 5

-3+
√
3ı 2

-3−
√
3ı 2












,

cft(A) =













6 6

0 5

-
√
3ı -9+

√
3ı

-3+
√
3ı 2

√
3ı -9−

√
3ı

-3−
√
3ı 2













.

3.1. Operations

We now briefly illustrate how the cft accelerates and simplifies many operations. Let
α, β ∈ Kk. Note that

α+ β = icft(cft(α) + cft(β)), and

α ◦ β = icft(cft(α) cft(β)).

In the Fourier space – the output of the cft operation – these operations are both
O(k) time because they occur between diagonal matrices. Due to the linearity of the
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cft operation, arbitrary sequences of operations in the Fourier space transform back
seamlessly, for instance

(α + β) ◦ (α+ β) ◦ . . . ◦ (α+ β)
︸ ︷︷ ︸

j times

= icft((cft(α) + cft(β))j).

But even more importantly, these simplifications generalize to matrix-based operations
too. For example,

A ◦ x = icft(cft(A) cft(x)).

In fact, in the Fourier space, this system is a series of independent matrix vector products:

cft(A) cft(x) =

[
Â1

. . .

Âk

][
x̂1

. . .
x̂k

]

=

[
Â1x̂1

. . .

Âkx̂k

]

.

Here, we have again used Âj and x̂j to denote the blocks of Fourier coefficients, or
equivalently, circulant eigenvalues. The rest of the paper frequently uses this convention

and shorthand where it is clear from context. This formulation takes

O(mnk log k + nk log k)
︸ ︷︷ ︸

cft and icft

+O(kmn)
︸ ︷︷ ︸

matvecs

operations instead of O(mnk2) using the circ formulation in the previous section.
More operations are simplified in the Fourier space too. Let cft(α) = diag [ α̂1, ..., α̂k ].

Because the α̂j values are the eigenvalues of circ(α), the following functions simplify:

abs(α) = icft(diag [ |α̂1|, ..., |α̂k| ]),

α = icft(diag [ α̂1, ..., α̂k ]) = icft(cft(α)∗), and

angle(α) = icft(diag [ α̂1/|α̂1|, ..., α̂k/|α̂k| ]).

Complex values in the CFT. A small concern with the icft operation is that it may
produce complex-valued elements in Kk. It suffices to note that when the output of a
sequence of circulant operations produces a real-valued circulant, then the output of icft
is also real-valued. In other words, there is no problem working in Fourier space instead
of the real-valued circulant space. This fact can be formally verified by first formally
stating the conditions under which icft produces real-valued circulants (icft(D) is real
if and only if F 2DF 2 = D∗, see Davis (1979)), and then checking that the operations
in the Fourier space do not alter this condition.

3.2. Properties

Representations in Fourier space are convenient for illustrating some properties of
these operations.

Proposition 2. The matrix circ(angle(α)) is orthogonal.

Proof. We have

circ(angle(α))∗ circ(angle(α))↔

angle(α) ◦ angle(α) = icft

([
α̂1α̂1/|α̂1|2

. . .

α̂kα̂k/|α̂k|2

])

= 1.
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Additionally, the Fourier space is an easy place to understand spanning sets and bases
in Km

k , as the following proposition shows.

Proposition 3. Let X ∈ K
m×n
k . Then X spans Km

k if and only if circ(X) and cft(X)
have rank km. Also X is a basis if and only if circ(X) and cft(X) are invertible.

Proof. First note that rank(cft(X)) = rank(circ(X)) because cft is a similarity trans-
formation applied to circ. It suffices to show this result for cft(X), then. Now consider
y = X ◦ a:

cft(y) = cft(X) cft(a);
[

ŷ1

. . .
ŷk

]

=

[
X̂1

. . .

X̂k

][
â1

. . .
âk

]

.

Thus, if there is a y that is feasible, then all X̂j ∈ Cm×n must be rank m. Conversely, if

cft(X) has rank km then each X̂j must have rank m, and any y is feasible. The result
about the basis follows from an analogous argument.

3.3. Inner products, norms, and ordering

We now return to our inner product and norm to elaborate on the positive-definiteness
and the triangle inequality. In terms of the Fourier transform,

〈x,y〉 = icft(cft(y)∗ cft(x)).

If we write this in terms of the blocks of Fourier coefficients then

cft(x)∗ cft(y) =

[
ŷ∗

1
x̂
1

. . .
ŷ∗

kx̂k

]

.

For y = x, each diagonal term has the form x̂∗
j x̂j ≥ 0. Consequently, we do consider

this a positive semi-definite inner product because the output circ(〈x,y〉) is a matrix
with non-negative eigenvalues. This idea motivates the following definition of element
ordering.

Definition 4 (Ordering). Let α, β ∈ Kk. We write

α ≤ β when diag(cft(α)) ≤ diag(cft(β)) element-wise, and

α < β when diag(cft(α)) < diag(cft(β)) element-wise.

We now show that our inner product satisfies the Cauchy-Schwarz inequality:

abs 〈x,y〉 ≤ ‖x‖ ◦
∥
∥y
∥
∥ .

In Fourier space, this fact holds because |ŷ∗
j x̂j | ≤ ‖x̂j‖ ‖ŷj‖ follows from the standard

Cauchy-Schwarz inequality. Using this inequality, we find that our norm satisfies the
triangle inequality:

∥
∥x+ y

∥
∥
2
= 〈x+ y,x+ y〉 ≤ 〈x,x〉+ 2 ◦ ‖x‖ ◦

∥
∥y
∥
∥ + 〈y,y〉 = (‖x‖ +

∥
∥y
∥
∥)2.

In this expression, the constant 2 is twice the multiplicative identify, that is 2 = {2 0 ... 0}.
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4. Eigenvalues and Eigenvectors

With the results of the previous few sections, we can now state and analyze an
eigenvalue problem in circulant algebra. Braman (To appear) investigated these already
and proposed a decomposition approach to compute them. We offer an extended analysis
that addresses a few additional aspects. Specifically, we focus on a canonical set of
eigenpairs.

Recall that eigenvalues of matrices are the roots of the characteristic polynomial
det(A − λI) = 0. Now let A ∈ K

n×n
k and λ ∈ Kk. The eigenvalue problem does not

change:
det(A− λ ◦ I) = 0.

(As an aside, note that the standard properties of the determinant hold for any matrix
over a commutative ring with identity; in particular, the Cayley-Hamilton theorem holds
in this algebra.) The existence of an eigenvalue implies the existence of a corresponding
eigenvector x ∈ Kn

k . Thus, an eigenvalue and eigenvector pair in this algebra is

A ◦ x = λ ◦ x.

Just like the matrix case, these eigenvectors can be rescaled by any constant α ∈ Kk:
A ◦ α ◦ x = λ ◦ α ◦ x. In terms of normalization, note that

∥
∥β ◦ x

∥
∥ = ‖x‖ if circ(β) is

an orthogonal circulant. This follows most easily by noting that

∥
∥β ◦ x

∥
∥ ↔

(
n∑

i=1

circ(β)∗ circ(xi)
∗ circ(xi) circ(β)

)1/2

↔ ‖x‖ ,

because circulant matrices commute and circ(β) is orthogonal by construction. For this
reason, we consider orthogonal circulant matrices the analogues of angles or signs, and
normalized eigenvectors in the circulant algebra can be rescaled by them. (Recall that
we showed that angle(α) is an orthogonal circulant in Section 3.)

The Fourier transform offers a convenient decoupling procedure to compute eigenval-
ues and eigenvectors, as observed by Braman (To appear). Let A ∈ K

n×n
k and let x ∈ Kn

k

and λ be an eigenvalue and eigenvector pair: A◦x = x◦λ and det(A−λ◦I) = 0. Then
it is straightforward to show that the Fourier transforms cft(A), cft(x), and cft(λ)
decouple as follows:

cft(A ◦ x) = cft(x ◦ λ);
cft(A) cft(x) = cft(x) cft(λ);

[
Â1

. . .

Âk

][
x̂1

. . .
x̂k

]

=

[
x̂1

. . .
x̂k

] [
λ̂1

. . .

λ̂k

]

;

[
Â1x̂1

. . .

Âkx̂k

]

=

[
λ̂1x̂1

. . .

λ̂kx̂k

]

,

where λ̂j ∈ λ(Âj) and x̂j 6= 0. The last equation follows because

cft(det(A− λ ◦ I)) = diag [ det(Â1−λ̂1I), ..., det(Âk−λ̂kI) ] = 0.

10



The decoupling procedure we just described shows that any eigenvalue or eigenvector
of A must decompose into individual eigenvalues or eigenvectors of the cft-transformed
problem. This illustrates a fundamental difference from the standard matrix algebra.
For standard matrices, requiring det(A − λI) = 0 and finding a nonzero solution x for
Ax = λx are equivalent. In contrast, the determinant and the eigenvector equations are
not equivalent in the circulant algebra: A ◦ x = x ◦ λ actually has an infinite number of
solutions λ. For instance, set x̂1, λ̂1 to be an eigenpair of Â1 and x̂j = 0 for j > 1, then

any value for λ̂j solves A ◦ x = x ◦ λ. However, only a few of these solutions also satisfy
det(A− λ ◦ I) = 0.

Eigenvalues of matrices in K
n×n
k have some interesting properties. Most notably, a

matrix may have more than n eigenvalues. As a special case, the diagonal elements of a
matrix are not necessarily the only eigenvalues. We demonstrate these properties with
an example.

Example 5. For the diagonal matrix

[
{2 3 1} {0 0 0}
{0 0 0} {3 1 1}

]

we have

Â1 =

[
6 0
0 5

]

, Â2 =

[
-ı
√
3 0

0 2

]

, Â3 =

[
ı
√
3 0

0 2

]

.

Thus,

λ1 = icft(diag [ 6 2 2 ]) = (1/3) {10 4 4} λ2 = icft(diag [ 5 -ı
√
3 ı

√
3 ]) = (1/3) {5 2 2}

λ3 = icft(diag [ 6 -ı
√
3 ı

√
3 ]) = {2 3 1} λ4 = icft(diag [ 5 2 2 ]) = (1/3) {3 1 1} .

The corresponding eigenvectors are

x1 =

[
{1/3 1/3 1/3}
{2/3 -1/3 -1/3}

]

; x2 =

[
{2/3 -1/3 -1/3}
{1/3 1/3 1/3}

]

;

x3 =

[
{1 0 0}
{0 0 0}

]

; x4 =

[
{0 0 0}
{1 0 0}

]

.

There are still more eigenvalues, however. The four eigenvalues above all correspond

to elements in Kk with real-valued entries. We can combine the eigenvalues of the Âj’s

to produce complex-valued elements in Kk that are also eigenvalues. These are

λ5 = icft(diag [ 6 -ı
√
3 2 ]) λ6 = icft(diag [ 6 2 ı

√
3 ])

λ7 = icft(diag [ 5 -ı
√
3 2 ]) λ8 = icft(diag [ 5 2 ı

√
3 ]).

For completeness and further clarity, let us extend this example a bit by presenting also

the eigenvalues of the non-diagonal matrix from Example 1. Let A =
[

{2 3 1} {8 -2 0}
{-2 0 2} {3 1 1}

]

.

The cft produces:

Â1 =

[
6 6
0 5

]

, Â2 =

[
-
√
3 -9 + ı

√
3

-3 + ı
√
3 2

]

, Â3 =

[
ı
√
3 -9− ı

√
3

-3 + ı
√
3 2

]

.
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The numerical eigenvalues of Â1 are {6, 5}; of Â2 are {-0.0899 + 6.4282ı, 2.0899 −
4.6962ı}; and of Â3 are {-0.0899 − 6.4282ı, 2.0899 + 4.6962ı}. The real-valued eigen-

values of A are

λ1 = {1.9401 -1.6814 5.7413} λ2 = {3.0599 3.6814 -1.7413}
λ3 = {3.3933 4.0147 -1.4080} λ4 = {1.6067 -2.0147 5.4080} .

The complex-valued eigenvalues of A are

λ5 = {4.6966−1.5654ı, -0.7040+1.9114ı, 2.0073−0.3461ı}
λ6 = {3.6367+2.1427ı, 3.0373+0.3980ı, -0.6740−2.5407ı}
λ7 = {4.3633−1.5654ı, -1.0373+1.9114ı, 1.6740−0.3461ı}
λ8 = {3.3034+2.1427ı, 2.7040+0.3980ı, -1.0073−2.5407ı} .

We now count the number of unique eigenvalues and eigenvectors, using the decou-
pling procedure in the Fourier space. To simplify the discussion, let us only consider the
case where each Âj has simple eigenvalues. Consider an A ∈ K

n×n
k with this property,

and let mj be the number of unique eigenvalues and eigenvectors of Âj . Then the number
of unique eigenvalues ofA is given by the number of unique solutions to det(A−λ◦I) = 0

which is
∏k

j=1 mj . The number of unique eigenvectors (up to normalization) is given by

the number of unique solutions to A ◦ x = x ◦ λ, which is also
∏k

j=1 mj.

This result shows there are at most nk eigenvalues if λ ∈ Kk is allowed to be complex-
valued, even when A ∈ Kk is real-valued. If A ∈ Kk is real-valued, then there are at
most n⌈(k+1)/2⌉ “real” eigenvalues. For this result, note that icft(diag [ α1 ... αk ]) is real-
valued if and only if diag [ α1 ... αk ]

∗
= F 2 diag [ α1 ... αk ]F 2 (Davis, 1979), where F is the

Fourier transform matrix. This implies α1 is real-valued, and αj = αk−j+1. Applying
this restriction reduces the feasible combinations of eigenvalues to n⌈(k+1)/2⌉.

Given that there are so many eigenvalues and vectors, are all of them necessary to
describe A? We now show this is not the case by making a few definitions to clarify the
discussion.

Definition 6. Let A ∈ K
n×n
k . A canonical set of eigenvalues and eigenvectors is a set

of minimum size, ordered such that abs(λ1) ≥ abs(λ2) ≥ . . . ≥ abs(λk), which contains
the information to reproduce any eigenvalue or eigenvector of A

In the diagonal matrix from Example 5, the sets {(λ1,x1), (λ2,x2)}, {(λ3,x3), (λ4,x4)},
and {(λ1,x1), (λ3,x3), (λ4,x4)} contain all the information to reproduce any eigenpair,
whereas the set {(λ1,x1), (λ3,x3)} does not (it does not contain the eigenvalue 5 of Â1).
In this case, the only canonical set is {(λ1,x1), (λ2,x2)}. This occurs because, by a
simple counting argument, a canonical set must have at least two eigenvalues, thus the
set is of minimum size. The choice of λ1 and λ2 is given by the ordering condition.
Among all the size 2 sets with all the information, this is the only one with the property
that abs(λ1) ≥ abs(λ2).

Theorem 7 (Unique Canonical Decomposition). Let A ∈ K
n×n
k where each Âj in the

cft(A) matrix has distinct eigenvalues with distinct magnitudes. Then A has a unique

canonical set of n eigenvalues and eigenvectors. This canonical set corresponds to a basis

of n eigenvectors, yielding an eigendecomposition

A = X ◦Λ ◦X−1.

12



Proof. Because all of the eigenvalues of each Âj are distinct, with distinct magnitudes,
there are nk distinct numbers. This implies that any canonical set must have at least n
eigenvalues.

Let λ̂
(i)
j be the ith eigenvalue of Âj ordered such that |λ̂(1)

j | > |λ̂
(2)
j | > . . . > |λ̂(n)

j |.
Then λi = icft(diag

[

λ̂
(i)
1 , . . . , λ̂

(i)
k

]

) is a canonical set of eigenvalues. We now show

that this set constitutes an eigenbasis. Let Âj = X̂jΛ̂jX̂
−1

j be the eigendecomposition

using the magnitude ordering above. Then X = icft(diag
[

X̂1, . . . , X̂k

]
) and Λ =

icft(diag
[

Λ̂k, . . . , Λ̂k

]
) is an eigenbasis because the matrixX satisfies the properties

of a basis from Theorem 3. Note that Λi,i = λi.
Finally, we show that the set is unique. In any canonical set abs(λ1) ≥ abs(λi) for

i > 1. In the Fourier space, this implies |λ̂(1)
j | ≥ |λ̂

(i)
j |. Because all of the values |λ̂(i)

j |
are unique, there is no choice for λ̂

(1)
j in a canonical set and we have |λ̂(1)

j | > |λ̂
(i)
j |, i > 1.

Consequently, λ1 is unique. Repeating this argument on the remaining choices for λi

shows that the entire set is unique.

Remark 1. If Âj has distinct eigenvalues but they do not have distinct magnitudes,

then A has an eigenbasis but the canonical set may not be unique, because Âj may have
two distinct eigenvalues with the same magnitude.

Next, we show that the eigendecomposition is real-valued under a surprisingly mild
condition.

Theorem 8. Let A ∈ K
n×n
k be real-valued with diagonalizable Âj matrices. If k is odd,

then the eigendecomposition X ◦Λ ◦X−1 is real-valued if and only if Â1 has real-valued

eigenvalues. If k is even, then X ◦Λ ◦X−1 is real-valued if and only if Â1 and Âk/2+1

have real-valued eigenvalues.

Proof. First, if A has a real-valued eigendecomposition, then we have that X̂1 is real
and also that X̂k/2+1 is real when k is even. Likewise, Λ̂1 is real and Λ̂k/2+1 is real when

k is even. Thus, Â1 (and also Âk/2+1 when k is even) have real-valued eigenvalues and
vectors.

When Â1 (and Âk/2+1 for k even) have real-valued eigenvalues and vectors, then note

that we can choose eigenvalues and eigenvectors of the other matrices Âj , which may
be complex, in complex-conjugate pairs so as to satisfy the condition for a real-valued
inverse Fourier transforms. This happens because when A is real, then Â1 is real and

Âj = Âk−j+2 by the properties of the Fourier transform (Davis, 1979). Thus for each

eigenpair λ̂j , x̂j of Âj , the pair λ̂j , x̂j is an eigenpair for Âk−j+2. Consequently, if we
always choose these complex conjugate pairs for all j besides j = 1 (and j = k/2 + 1 for
k even), then the result of the inverse Fourier transform will be real-valued.

Finally, we note that if the scalars of a matrix are padded with zeros to transform
them into the circulant algebra, then the canonical set of eigenvalues are nothing but
tuples that consist of the eigenvalues of the original matrix in the first entry, padded with
zeros as well. To justify this observation, let A ∈ K

n×n
k have Ai,j = {Gi,j , 0, ..., 0} for a

matrix G ∈ Rn×n. Also, let λ1, . . . , λm (m ≤ n) be the eigenvalues of G ordered such

13



Require: A,x(0), τ

1: {Kept for alignment}

2: x(0) ← x(0) ◦
∥
∥x(0)

∥
∥
−1

3: for k = 1, . . . until convergence do

4: y(k) ← A ◦ x(k−1)

5: α(k) ←
∥
∥y(k)

∥
∥

6: x(k) ← y(k) ◦ α(k)−1

7: if converged then

8: return x(k)

9: end if
10: end for

Require: A,x(0), τ

1: Â← cft(A), X̂
(0) ← cft(x(0))

2: X̂
(0) ← X̂

(0)
(

X̂
(0)∗

X̂
(0)
)−1/2

3: for k = 1, . . . until convergence do

4: Ŷ
(k) ← ÂX̂

(k−1)

5: R̂
(k) ← Ŷ

(k)∗
Ŷ

(k)

6: X̂
(k) ← Ŷ

(k)
R̂

(k)−1/2

7: if converged then

8: return icft(X̂
(k)

)
9: end if

10: end for

Figure 3: The power method in the circulant algebra (left) and the power method in the circulant
algebra after transformation with the fast Fourier transform (right). We address convergence criteria in
Section 5.1

.

that |λ1| ≥ |λ2| ≥ · · · ≥ |λm|. Then cft(Ai,j) = diag [Gi,j , ..., Gi,j ] and thus Âj = G for

all j. Thus, we only need to combine the same m eigenvalues of each Âj to construct
eigenvalues of A. For the eigenvalues λi, we have cft(λ) = diag [ λi, ..., λi ], thus the
given set is canonical because of the same argument used in the proof of Theorem 7.

We end this section by noting that much of the above analysis can be generalized to
non-simple eigenvalues and vectors using the Jordan canonical form of the Âj matrices.

5. The power method and the Arnoldi method

In what follows, we show that the power method in the circulant algebra computes
the eigenvalue λ1 in the canonical set of eigenvalues. This result shows how the circulant
algebra matches the behavior of the standard power method. As part of our analysis, we
show that the power method decouples into k independent power iterations in Fourier
space and is equivalent to a subspace iteration method. Second, we demonstrate the
Arnoldi method in the circulant algebra. In Fourier space, the Arnoldi method is also
equivalent to the Arnoldi algorithm on independent problems, and it also corresponds to
a particular block Arnoldi procedure.

5.1. The power method

Please see the left half of Figure 3 for the sequence of operations in the power method
in the circulant algebra. In fact, it is not too different from the standard power method
in Figure 1. We replace Ax with A ◦ x and use the norm and inverse from Section 2.
We’ll return to the convergence criteria shortly. As we show next, the algorithm runs k
independent power methods in Fourier space. Thus, the right half of Figure 3 shows the
equivalent operations in Fourier space.
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To analyze the power method, consider the key iterative operation in the power
method when transformed into Fourier space:

cft(A ◦ x ◦ (‖A ◦ x‖)−1)

= cft(A) cft(x)(cft(x)∗ cft(x))−1/2

=

[
Â1x̂1

. . .

Âkx̂k

]([
Â1x̂1

. . .

Âkx̂k

]∗ [
Â1x̂1

. . .

Âkx̂k

])−1/2

.

Now,

([
Â1x̂1

. . .

Âkx̂k

]∗ [
Â1x̂1

. . .

Âkx̂k

])−1/2

=

[
x̂∗

1
Â

∗

1
Â1x̂1

. . .

x̂∗

kÂ
∗

kÂkx̂k

]−1/2

=





‖Â1x̂1‖−1

. . .

‖Âkx̂k‖−1



 .

Thus

cft(A ◦ x ◦ (‖A ◦ x‖)−1) =





Â1x̂1/‖Â1x̂1‖
. . .

Âkx̂k/‖Â1x̂1‖



 .

The key iterative operation, A◦x◦ (‖A ◦ x‖)−1, corresponds to one step of the standard

power method on each matrix Âj . From this derivation, we arrive at the following theo-
rem, whose proof follows immediately from the convergence proof of the power method
for a matrix.

Theorem 9. Let A ∈ K
n×n
k have a canonical set of eigenvalues λ1, . . . , λn where |λ1| >

|λ2|, then the power method in the circulant algebra convergences to an eigenvector x1

with eigenvalue λ1.

A bit tangentially, an eigenpair in the Fourier space is a simple instance of a multivari-

ate eigenvalue problem (Chu and Watterson, 1993). The general multivariate eigenvalue
problem is

∑

j Ai,jxj = λixi i = 1, . . ., whereas we study the same system, albeit
diagonal. Chu and Watterson (1993) did study a power method for the more general
problem and showed local convergence; however our diagonal situation is sufficiently
simple for us to state stronger results.

Convergence Criteria. A simple measure such as
∥
∥x(k) − x(k−1)

∥
∥ ≤ τ , with τ = {τ 0 ... 0}

will not detect convergence. As mentioned in the description of the standard power
method in Figure 1, this test can fail when the eigenvector changes angle. Here, we have
the more general notion of an angle for each element, and eigenvectors are unique up
to a choice of angle. Thus, we first normalize angles before comparing the we use the
convergence criteria

∥
∥
∥angle(x

(k)
1 )−1 ◦ x(k) − angle(x

(k−1)
1 )−1 ◦ x(k−1)

∥
∥
∥ < τ. (6)
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In the Fourier space, this choice requires that all of the independent problems have con-
verged to a tolerance of τ , which is a viable practical choice. An alternative convergence
criteria is to terminate when the eigenvalue stops changing, although this may occur
significantly before the eigenvector has converged.

Subspace iteration. We now show that the power method is equivalent to subspace iter-
ation in Fourier space. Subspace iteration is also known as “orthogonal iteration” or the
“block-power method.” Given a starting block of vectors X(0), the iteration is

Y ← AX(k), X(k+1),R(k+1) = qr(Y ).

On the surface, there is nothing to relate this iteration to our power method, even
in Fourier space. The relationship, however, follows because all of our operations in
Fourier space occur with block-diagonal matrices. Note that for a block-diagonal matrix

of vectors, which is what X̂
(k)

is, the QR factorization just normalizes each column. In
other words, the result is a diagonal matrix R. This simplification shows that steps 5-6 in
the Fourier space algorithm are equivalent to the QR factorization in subspace iteration.

Breakdown. One problem with this iterative approach is that it can encounter “zero
divisors” as scalars when running these algorithms. These occur when the matrices in
Fourier space are not invertible. We have not explicitly addressed this situation and note
that the same issues arise in block methods when some of the quantities become singular.
The analogy with the block method may provide an appropriate solution. For example,

if the scalar α(k) is a zero-divisor, then we could use the QR factorization of Ŷ
(k)

– as
suggested by the equivalence with subspace iteration – instead.

5.2. The Arnoldi process

The Arnoldi method is a cornerstone of modern matrix computations. Let A be an
n× n matrix with real valued entries. Then the Arnoldi method is a technique to build
an orthogonal basis for the Krylov subspace

Kt(A,v) = span{v,Av, . . . ,At−1v},

where v is an initial vector. Instead of using this power basis, the Arnoldi process
derives a set of orthogonal vectors that span the same space when computed with exact
arithmetic. The standard method is presented in Figure 4(a). From this procedure, we
have the Arnoldi decomposition of a matrix:

AQt = Qt+1Ht+1,t

whereQt is an n×tmatrix, and Ht+1,t is a (t+1)×t upper Hessenberg matrix. Arnoldi’s
orthogonal subspaces Q enable efficient algorithms for both solving large scale linear
systems (Krylov, 1931) and computing eigenvalues and eigenvectors (Arnoldi, 1951).

Using our repertoire of operations, the Arnoldi method in the circulant algebra is
presented in Figure 4(b). The circulant Arnoldi process decoupled via the cft is also
shown in Figure 4(c).

We make three observations here. First, the decoupled (cft) circulant Arnoldi process
is equivalent to individual Arnoldi processes on each matrix Âj . This follows by a similar
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(a) Arnoldi for Rn×n

Require: A,b, t
1:

2:

3: q1 ← b/ ‖b‖
4: for j = 1, . . . , t do
5: z← Aq1

6: for i = 1, . . . , i do

7: Hi,j ← q∗
i z

8:

9: z← z−Hi,jqi

10: end for
11: Hj+1,j ← ‖z‖
12:

13: qj+1 ← z/Hj+1,j

14:

15: end for

(b) Arnoldi for Kn×n
k

Require: A,b, t
1:

2:

3: q1 ← b ◦ ‖b‖−1

4: for j = 1, . . . , t do
5: z← A ◦ qj

6: for i = 1, . . . , j do

7: Hi,j ← 〈qi, z〉
8:

9: z← z−Hi,j ◦ qi

10: end for
11: Hj+1,j ← ‖z‖
12:

13: qj+1 ← z ◦H−1
j+1,j

14:

15: end for

(c) Unrolled Arnoldi for Kn×n
k

Require: A,b, t
1: Â← cft(A)
2: B̂ ← cft(b)

3: Q̂1 ← B̂(B̂
∗
B̂)−1/2

4: for j = 1, . . . , t do
5: Ẑ ← ÂQ̂j

6: for i = 1, . . . , j do

7: Ĥ i,j ← Q̂
∗
i Ẑ

8: H i,j ← icft(Ĥ i,j)

9: Ẑ ← Ẑ − Q̂iĤ i,j

10: end for
11: Ĥj+1,j ← (Ẑ

∗
Ẑ)1/2

12: Hj+1,j ← icft(Ĥj+1,j)

13: Q̂j+1 ← ẐĤ
−1

j+1,j

14: qj+1 ← icft(Q̂j+1)
15: end for

Figure 4: Arnoldi methods. Algorithm (a) shows the standard Arnoldi process. Algorithm (b) shows
the Arnoldi process in the circulant algebra, and Algorithm (c) shows the set of operations in (b) but
expressed in the Fourier space.

analysis used to show the decoupling result about the power method. The verification of
this fact for the Arnoldi iteration is a bit more tedious and thus we omit this analysis.
Second, the same decoupled process is equivalent to a block Arnoldi process. This also
follows for the same reason the equivalent result held for the power method: the QR
factorization of a block-diagonal matrix-of-vectors is just a normalization of each vector.
Third, we produce an Arnoldi factorization:

A ◦Qt = Qt+1 ◦Ht+1,t.

In fact, this outcome is a corollary of the first property and follows from applying icft

to the same analysis.
This discussion raises an interesting question, why iterate on all problems simultane-

ously? One case where this is advantageous is with sparse problems; and we return to
this issue in the concluding discussion (Section 8).

6. A Matlab package

The Matlab environment is a convenient playground for algorithms involving ma-
trices. We have extended it with a new class implementing the circulant algebra as a
native Matlab object. The name of the resulting package and class is camat: circulant
algebra matrix. While we will show some non-trivial examples of our package later, let
us start with a small example to give the flavor of how it works.

A = cazeros(2,2,3); % creates a camat type
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A(1,1) = cascalar([2,3,1]); A(1,2) = cascalar([8,-2,0]);

A(2,1) = cascalar([-2,0,2]); A(2,2) = cascalar([3,1,1]);

eig(A) % compute eigenvalues as in Example 2;

The output, which matches the non-diagonal matrix in Example 5, is:

ans =

(:,:,1) = % the first eigenvalue

1.9401

-1.6814

5.7413

(:,:,2) = % the second eigenvalue

3.0599

3.6814

-1.7413

Internally, each element A ∈ K
m×n
k is stored as a k× n×m array along with its cft

transformed data. Each scalar is stored by the k parameters defining it. To describe this
storage, let us introduce the notation

vec(α) ≡
[ α1

...
αk

]

= circ(α)e1,

to label the vector of k parameters explicitly. Thus, we store vec(α) for α ∈ Kk. This
storage corresponds to storing each scalar Kk consecutively in memory. The matrix is
then stored by rows. We store the data for the diagonal elements of the cft transformed
version in the same manner; that is, diag(cft(α)) is stored as k consecutive complex-
valued scalars. The organization of matrices and vectors for the cft data is also by row.
The reason we store the data by row is so we can take advantage of Matlab’s standard
display operations.

At the moment, our implementation stores the elements in both the standard and
Fourier transformed space. The rationale behind this choice was to make it easy to
investigate the results in this manuscript. Due to the simplicity of the operations in
the Fourier space, most of the functions on camat objections use the Fourier coefficients
to compute a result efficiently and then compute the inverse Fourier transform for the
vec representation. Hence, rather than incurring for the Fourier transform and inverse
Fourier transform cost for each operation, we only incur the cost of the inverse transform.
Because so few operations are easier in the standard space, we hope to eliminate the
standard vec storage in a future version of the code to accelerate it even further.

We now show how the overloaded operation eig works in Figure 5. This procedure,
inspired by Theorem 8, implements the process to get real-valued canonical eigenvalues
and eigenvectors of a real-valued matrix in the circulant algebra. The slice Af(j,:,:) is

the matrix Â
T

j . Here, the real-valued transpose results from the storage-by-rows instead
of the storage-by-columns. The code proceeds by computing the eigendecomposition of
each Âj with a special sort applied to produce the canonical eigenvalues. After all of the
eigendecompositions are finished, we need to transpose their output. Then it feeds them
to the ifft function to generate the data in vec form.

In a similar manner, we overloaded the standard assignment and indexing opera-
tions e.g. a = A(i,j); A(1,1) = a; the standard Matlab arithmetic operations +, -,
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function [V,D] = eig(A)

% CAEIG The eigenvalue routine in the circulant algebra

Af = A.fft; k = size(Af,1); % extract data from object

if any(imag(A.data(:))), error(’specialized for real values’); end

[Vf,Df] = deal(zeros(Af)); % allocate data of size (k,n,n)

[Vf(1,:,:),Df(1,:,:)] = sortedeig(squeeze(Af(1,:,:)).’);

for j=2:floor(k/2)+1

[Vf(j,:,:),Df(j,:,:)] = sortedeig(sqeeze(Af(j,:,:)).’);

if j~=k/2+1 % skip last when k is even

Vf(k-j+2,:,:) = conj(Vf(j,:,:)); Df(k-j+2,:,:) = conj(Df(j,:,:));

end

end

% transpose all the data back.

for j=1:k, Vf(j,:,:) = Vf(j,:,:).’; Df(j,:,:) = Df(j,:,:).’; end

V = camatcft(ifft(Vf),Vf); % create classed output

D = camatcft(ifft(Df),Df);

function [V,D]=sortedeig(A)

[V,D] = eig(A); d = diag(D); [ignore p] = sort(-abs(d));

V = V(:,p); D = D(p,p); % apply the sort

Figure 5: The implementation of the eigenvalue computation in our package. Please see the discussion
in the text.

for iter=1:maxiter

Ax = A*x;

lambda = x’*Ax;

x2 = (1./ norm(Ax))*Ax;

delta = mag(norm(1./angle(x(1))*x-1./angle(x2(1))*x2));

if delta<tol, break, end

end

Figure 6: The implementation of the power method using our package.

*, /, \; and the functions abs, angle, norm, conj, diag, eig, hess, mag, norm,

numel, qr, rank, size, sqrt, svd.
All of these operations have been mentioned or are self explanatory, except mag. It

is a magnitude function, and we discuss it in detail in Appendix A.
Using these overloaded operations, implementing the power method is straightfor-

ward; see Figure 6. We note that the power method and Arnoldi methods can be further
optimized by implementing them directly in Fourier space. This remains as an item for
future work.

7. Numerical examples

In this section, we present a numerical example using the code we described in Sec-
tion 6. The problem we consider is the Poisson equation on a regular grid with a mixture

19



of periodic and fixed boundary conditions:

−∆u(x, y) = f(x, y) u(x, 0) = u(x, 1), u(0, y) = y(1, y) = 0 (x, y) ∈ [0, 1]× [0, 1].

Consider a uniform mesh and the standard 5-point discrete Laplacian:

−∆u(xi, yj) ≈ −u(xi−1, yj)− u(xi, yj−1) + 4u(xi, yj)− u(xi+1, yj)− u(xi, yj+1).

After applying the boundary conditions and organizing the unknowns of u in y-major
order, an approximate solution u is given by solving an N(N − 1) × N(N − 1) block-
tridiagonal, circulant-block system:









C −I
−I C

. . .

. . .
. . . −I
−I C









︸ ︷︷ ︸

A








u(x1, ·)
u(x2, ·)

...
u(xN−1, ·)








︸ ︷︷ ︸

u

=








f(x1, ·)
f(x2, ·)

...
f(xN−1, ·)








︸ ︷︷ ︸

f

, C =









4 −1 −1
−1 4

. . .

. . .
. . . −1

−1 −1 4









︸ ︷︷ ︸

N×N

,

that is, Au = f . Because of the circulant-block structure, this system is equivalent to

A ◦ u = f

where A is an N − 1×N − 1 matrix of KN elements, u and f have compatible sizes, and

A = circ(A) u = vec(u) f = vec(f).

We now investigate this matrix and linear system with N = 50.

7.1. The power method

We first study the behavior of the power method on A. The canonical eigenvalues of
A are

λj = {4+2 cos(jπ/N),−1,0,...,0,−1} .
To see this result, let λ(µ) = {µ,−1,0,...,0,−1} . Then

(A− λ(µ) ◦ I) =









(4− µ) ◦ 1 −1 ◦ 1
−1 ◦ 1 (4− µ) ◦ 1 . . .

. . .
. . . −1 ◦ 1
−1 ◦ 1 (4− µ) ◦ 1









.

The canonical eigenvalues of A − λ(µ) ◦ I can be determined by choosing µ to be an
eigenvalue of T = tridiag(−1, 4,−1). These are given by setting µ = 4 + 2 cos(jπ/N),
where each choice j = 1, . . . , N−1 produces a canonical eigenvalue λj . From these canon-
ical eigenvalues, we can estimate the convergence behavior of the power method. Recall
that the algorithm runs independent power methods in Fourier space. Consequently,
these rates are given by λ̂2/λ̂1 for each matrix Âj . To state these ratios compactly, let
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γ1 = 4 + 2 cos(π/N) and γ2 = 4 + 2 cos(2π/N); also let δj = 2 cos(−π + 2π(j − 1)/N).
For N even,

cft(λ1) = diag [ γ1+δ1, ...,γ1+δN ]

cft(λ2) = diag [ γ2+δ1, ...,γ2+δN ]

Thus, the convergence ratio for Âj is (γ2 + δj)/(γ1 + δj). The largest ratio (fastest
converging) corresponds to the smallest value of δj, which is δ1. The smallest ratio
(slowest converging) corresponds to the largest value of δj, which is δN/2+1 in this case.
(This choice will slightly change in an obvious manner if N is odd.) Evaluating these
ratios yields

min
j

λ2(Âj)

λ1(Âj)
=

γ2 + δ1
γ1 + δ1

=
2 + 2 cos(2π/N)

2 + 2 cos(π/N)
(fastest)

max
j

λ2(Âj)

λ1(Âj)
=

γ2 + δN/2+1

γ1 + δN/2+1
=

6 + 2 cos(2π/N)

6 + 2 cos(π/N)
(slowest).

Based on this analysis, we expect the eigenvector to converge linearly with the rate
6+2 cos(2π/N)
6+2 cos(π/N) . By the standard theory for the power method, expect the eigenvalues to

converge twice as fast.
Let ρ be the eigenvector change measure from equation (6). In Figure 7, we first show

how the maximum absolute value of the Fourier coefficients in ρ behaves (the red line).

Formally, this measure is
∥
∥cft(ρ)

∥
∥
1
, i.e., the maximum element in the diagonal matrix.

We also show how each Fourier component of the eigenvalue converges to the Fourier
components of λ1 (each gray line). That is, let µ(i) be the Rayleigh quotient x(i)∗◦A◦x(i)

at the ith iteration. Then these lines are the N values of diag(cft(abs(µ(i)−λ1))). The
results validate the theoretical predictions, and the eigenvalue does indeed converge to
λ1.

7.2. The Arnoldi method

We next investigate computing u using the Arnoldi method applied to A. In this
case, f(x, y) to be 1 at x25, y2 and 0 elsewhere. This corresponds to a single non-zero in
vec(f) with value 1/N2. With this right-hand side, the procedure we use is identical to
an unoptimized GMRES procedure. Given a t-step Arnoldi factorization starting from
f , we estimate

u(t) ≈ Qt ◦ argmin
y∈Kk

∥
∥Ht+1,t ◦ y − β ◦ e1

∥
∥ ,

where β = ‖f‖. We solve the least-squares problem by solving each problem inde-
pendently in the Fourier space – as has become standard throughout this paper. Let
ρ =

∥
∥f −A ◦ u(t)

∥
∥. Figure 8 shows (in red) the magnitude of the residual as a func-

tion of the Arnoldi factorization length t, which is
∥
∥cft(ρ)

∥
∥
1
. The figure also shows (in

gray) the magnitude of the error in the jth Fourier coefficient; these lines are the N
values of diag(cft(

∥
∥u− u(t)

∥
∥)). In Fourier space, these values measure the error in each

individual Arnoldi process.
What the figure shows is that the residual suddenly converges at the 26th iteration.

This is in fact theoretically expected (Saad, 2003), because each matrix Âj has N/2+1 =
26 distinct eigenvalues. In terms of measure the individual errors (the gray lines), some
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Figure 7: The convergence behavior of the power
method in the circulant algebra. The gray lines
show the error in the each eigenvalue in Fourier
space. These curves track the predictions made
based on the eigenvalues as discussed in the text.
The red line shows the magnitude of the change
in the eigenvector. We use this as the stopping
criteria. It also decays as predicted by the ra-
tio of eigenvalues. The blue fit lines have been
visually adjusted to match the behavior in the
convergence tail.
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Figure 8: The convergence behavior of a GM-
RES procedure using the circulant Arnoldi pro-
cess. The gray lines show the error in each
Fourier component and the red line shows the
magnitude of the residual. We observe poor
convergence in one Fourier component; until the
Arnoldi basis captures all of the eigenvalues af-
ter N/2 + 1 = 26 iterations. These results show
how the two computations are performing indi-
vidual power methods or Arnoldi processes in
Fourier space.

converge rapidly, and some do not seem to converge at all until the Arnoldi process
completes at iteration 26. This exemplifies how the overall behavior is governed by the
worst behavior in any of the independent Arnoldi processes.

8. Summary

We have extended the circulant algebra, introduced by Kilmer et al. (2008), with new
operations to pave the way for iterative algorithms, such as the power method and the
Arnoldi iteration that we introduced. These operations provided key tools to build a
Matlab package to investigate these iterative algorithms for this paper. Furthermore,
we used the fast Fourier transform to accelerate these operations, and as a key analysis
tool for eigenvalues and eigenvectors. In the Fourier space the operations and algorithms
decouple into individual problems. We observed this for the inner product, eigenvalues,
eigenvectors, the power method, and the Arnoldi iteration. We also found that this
decoupling explained the behavior in a numerical example.

Given that decoupling is such a powerful computational and analytical tool, a natural
question that arises is when it is useful to employ the original circulant formalism, rather
than work in the Fourier space. For dense computations, it is likely that working entirely
in Fourier space is a superior approach. However, for sparse computations, such as the
system A ◦u = f explored in Section 7, such a conclusion is unwarranted. That example
is sparse both in the matrix over circulants, and in the individual circulant arrays. When
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thought of as a cube of data, it is sparse in any way of slicing it into a matrix. After this
matrix A is transformed to the Fourier space, it loses its sparsity in the third-dimension;
each sparse scalarAi,j becomes a dense array. In this case, retaining the coupled nature of
the operations and even avoiding most of the Fourier domain may allow better scalability
in terms of total memory usage.

An interesting topic for future work is exploring other rings besides the ring of circu-
lants. One obvious candidate is the ring of symmetric circulant matrices. In this ring,
the Fourier coefficients are always real-valued. Using this ring avoids the algebraic and
computational complexity associated with complex values in the Fourier transforms.

We have made all of code and experiments available to use and reproduce our results:
http://stanford.edu/~dgleich/publications/2011/codes/camat.
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Appendix A. The circulant scalar magnitude

This section describes another operation we extended to the circulant algebra. Even-
tually, we replaced it with our ordering (Definition 4), which is more powerful as we
justify below. However, it plays a role in our Matlab package, and thus we describe the
rationale for our choice of magnitude function here.

For scalars in R, the magnitude is often called the absolute value. Let α, β ∈ R.
The absolute value has the the property |αβ| = |α| |β|. We have already introduced an
absolute value function, however. Here, we wish to define a notion of magnitude that
produces a scalar in R to indicate the size of an element. Such a function will have
norm-like flavor because it must represent the aggregate magnitude of k values with a
single real-valued number. Thus, finding a function to satisfy

∣
∣α ◦ β

∣
∣ = |α|

∣
∣β
∣
∣ exactly is

not possible. Instead, we seek a function g : Kk 7→ R such that

1. g(α) = 0 if and only if α = 0,

2. g(α ◦ β) ≤ g(α)g(β),

3. g(α+ β) ≤ g(α) + g(β).

The following result shows that there is a large class of such magnitude functions.
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Result 1. Any sub-multiplicative matrix norm ‖A‖ defines a magnitude function g(α) =
‖circ(α)‖ .

This result follows because the properties of the function g are identical to the re-
quirements of a sub-multiplicative matrix norm applied to circ(α). Any matrix norm
induced by a vector norm is sub-multiplicative. In particular, the matrix 1, 2, and ∞
norms are all sub-multiplicative. Note that for circulant matrices both the matrix 1
and ∞ norms are equal to the 1-norm of any row or column, i.e., ‖vec(α)‖1 is a valid
magnitude. Surprisingly, the 2-norm of the vector of parameters, that is ‖vec(α)‖2,
is not. For a counterexample, let α = {1 2} , β = {2 4}. Then α ◦ β = {8 10} and
∥
∥vec(α ◦ β)

∥
∥
2
=
√
164 > ‖vec(α)‖2

∥
∥vec(β)

∥
∥
2
=
√
100. For many practical computa-

tions, we use the matrix 2-norm of circ(α) as the magnitude function. Thus,

|α| ≡ ‖circ(α)‖2 = ‖cft(α)‖1 .

This choice has the following relationship with our ordering:

abs(α) ≤ abs(β) ⇒ |α| ≤
∣
∣β
∣
∣ .

We implement this operation as the mag function in our Matlab package.
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