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ROBUST MULTILEVEL METHODS FOR QUADRATIC FINITE ELEMENT
ANISOTROPIC ELLIPTIC PROBLEMS

J. KRAUS, M. LYMBERY, AND S. MARGENOV

Abstract. This paper discusses a class of multilevel preconditioners based on approximate block fac-
torization for conforming finite element methods (FEM) employing quadratic trial and test functions.
The main focus is on diffusion problems governed by a scalar elliptic partial differential equation
(PDE) with a strongly anisotropic coefficient tensor. The proposed method provides a high robust-
ness with respect to non-grid-aligned anisotropy, which isachieved by the interaction of the following
components: (i) an additive Schur complement approximation to construct the coarse-grid operator;
(ii) a global block (Jacobi or Gauss-Seidel) smoother complementing the coarse-grid correction based
on (i); and (iii) utilization of an augmented coarse grid, which enhances the efficiency of the interplay
between (i) and (ii); The performed analysis indicates the high robustness of the resulting two-level
method. Moreover, numerical tests with a nonlinear algebraic multilevel iteration (AMLI) method
demonstrate that the presented two-level method can be applied successfully in the recursive con-
struction of uniform multilevel preconditioners of optimal or nearly optimal order of computational
complexity.

1. Introduction

Numerous papers have previously dealt with the construction and the analysis of robust multilevel
methods and algorithms for linear finite element (FE) elliptic systems where hierarchical basis (HB)
approaches as proposed in [6] have been further exploited, see, e.g., [19, 28]. Regarding related
quadratic FE discretizations little exists in the literature, see, e.g., [1]. Moreover, in [22] and [2]
it has been indicated that for highly anisotropic elliptic problems hierarchical two-level splittings
which apply both piecewise linear and piecewise quadratic basis functions do not lead to robust
multilevel preconditioners. The use of semi-coarsening has led to the first optimal order multilevel
algorithms for biquadratic FE systems arising from grid aligned discretizations of elliptic problems
with an orthotropic diffusion tensor, cf. [20] and [21] for details.

In the general setting of an arbitrary elliptic operator, however, for quadratic FE discretizations
the standard HB techniques do not result in splittings in which the angle between the coarse space
and its hierarchical complement is uniformly bounded with respect to the mesh and/or the coefficient
anisotropy, cf. [10]. The direct application of the two-level Schur complement based preconditioner,
as first suggested in [15], avoids the construction of a hierarchical basis but still does not result
in a robust multilevel algorithm as the numerical results in[11] demonstrate. The purpose of this
work is to develop a class of robust multilevel methods for quadratic finite element anisotropic
elliptic problems. An essential building block of the preconditioners proposed in this paper is a
technique referred to as additive Schur complement approximation (ASCA), which can be viewed
as a generalization of the method introduced in [15], later also considered in [4, 23, 24], and evolves
the idea suggested in [16, 17]; The ASCA algorithm is based oncomputing and assembling exact
Schur complements of local (stiffness) matrices associated with a covering of the entire domain by
overlappingsubdomains.
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Although this technique was originally developed and described for elliptic problems with highly
oscillatory coefficients discretized by linear and bilinear conforming finiteelements, it provides a ba-
sic tool for the solution of more general problems includingnon-symmetric and indefinite problems
and using more general discretization techniques including non-conforming methods and higher or-
der elements. In this article, ASCA is investigated for quadratic elements and strongly anisotropic
elliptic problems with a main emphasis on non-grid aligned anisotropy.

Multilevel methods based on ASCA, similarly to element-based algebraic multigrid [7, 13] and
smoothed aggregation multigrid [26, 29], rely on energy minimization principles. Distinctive fea-
ture, however, is that no interpolation operator is required when ASCA is used to compute the
coarse-grid operator. Moreover, since the ASCA is assembled from local contributions, which
makes a global triple-matrix product redundant, the presented preconditioners can be implemented
efficiently on parallel computer architectures.

Another innovative feature of the preconditioners studiedin this work is that they are based on a
multilevel (approximate) block factorization algorithm (see, e.g., [27]) that relates the matrix blocks
to a sequence of nested augmented grids. Augmenting the standard (coarse) grids allows to incor-
porate an effective complementary correction step which can be accomplished by block smoothing.
The latter is important in the case of nearly grid aligned anisotropy because there the AMLI proce-
dure based on ASCA does not reduce all error modes effectively.

These important characteristics of the algorithm, as proved and demonstrated in the next sec-
tions, improve the convergence of the related subspace correction methods significantly providing
robustness when solving quadratic FE systems evoked by highly anisotropic elliptic problems. The
proposed new constructions are followed by new ideas for convergence analysis.

The remainder of the paper is organized as follows. Formulation of an anisotropic elliptic model
problem and its discretization by quadratic finite elementsare presented in Section 2. In Section 3
the advantages of introducing an augmented coarse grid are discussed along with the required pre-
liminary reduction step. The construction of a recursive two-level block factorization method based
on ASCA on a sequence of nested augmented coarse grids is expounded in Section 4. Section 5 con-
tains the analysis of a block Jacobi smoother for the first level of the recursively applicable two-level
method. This type of smoother is well suited to complement a stationary iterative method based on
the two-level preconditioner obtained from ASCA, which is analyzed in Section 6. The resulting
preconditioner (with a global block smoother) can serve as abuilding block in a nonlinear algebraic
multilevel iteration (AMLI) procedure. The numerical results presented in Section 7 demonstrate the
potential of this approach for quadratic finite element approximations of anisotropic elliptic prob-
lems where the direction of dominating anisotropy does not have to be aligned with the grid. The
paper concludes with final remarks.

2. Problem formulation

2.1. The elliptic model problem. Consider the second-order elliptic boundary-value problem

−∇ · (k(x)∇u(x)) = f (x) in Ω,(2.1a)

u = 0 on ΓD,(2.1b)

(k(x)∇u(x)) · n = 0 on ΓN.(2.1c)

HereΩ denotes a convex polygonal domain in IR2, f is a given function inL2(Ω), andu is the
unknown function that we seek in the space

H1(Ω) = {v ∈ L2(Ω) :
∫

Ω

∇v · ∇v dx < ∞}
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subject to the boundary conditions (2.1b)–(2.1c). The boundaryΓ = ∂Ω is the union of a nonempty
partΓD on which the homogeneous Dirichlet condition (2.1b) is imposed and a (possibly empty)
part ΓN on which the solutionu has to satisfy the homogeneous Neumann condition (2.1c), i.e.,
Γ = ΓD ∪ΓN. The coefficient tensork(x) = (ki j (x))2

i, j=1 is a symmetric positive definite (SPD) matrix
onΩ, andn denotes the outward unit vector normal to the boundaryΓ = ∂Ω.

The domain is assumed to be discretized by a partitionTh on which the functionski j (x) are smooth
over each elemente ∈ Th. Hence, the tensork(x) can be well approximated by a piecewise constant
SPD matrixke, i.e.,

(2.2) k(x) ≈ ke =


ke:11 ke:12

ke:21 ke:22

 ∀x ∈ e ∀e ∈ Th,

whereke:i j , i, j = 1, 2, are constants and det(ke) > 0.
Later two variants of Problem (2.1) are considered which correspond to the following choices of

the coefficient ke:
(a) The(an)isotropic/(non)orthotropic problemassociated with

(2.3) ke =


1 δ(1− 10−k1)10−

k2
2

δ(1− 10−k1)10−
k2
2 10−k2

 ,

wherek1 andk2 are nonnegative integers andδ = ±1.
(b) Therotated diffusion problemassociated with

(2.4) ke =


ε + cos2 θ cosθ sinθ

cosθ sinθ ε + sin2 θ

 = εI + bbT,

whereε > 0 andbT = (cosθ, sinθ) for a piecewise constant angleθ = θe.
Choosingk1 = 0 in (2.3) corresponds to the orthotropic problem which for large values ofk2

is strongly anisotropic, i.e., the coefficient matrix is nearly singular. If for a fixed value ofk2 we
increase the value ofk1 the problem becomes more and more nonorthotropic and the coefficient
approaches a (second type of) singularity.

The setting of (2.4) allows to study problems with a given fixed or varying direction (angle) of
anisotropy. Non-grid-aligned anisotropy in general is much more difficult to handle than orthotropy
(or grid-aligned anisotropy) thus far.

2.2. Finite element method using piecewise quadratic functions. (2.1) has the following weak
formulation: Givenf ∈ L2(Ω), find u ∈ V ≡ H1

D(Ω) = {v ∈ H1(Ω) : v = 0 onΓD}, such that

(2.5) A(u, v) = L(v) ∀v ∈ V,
where

A(u, v) :=
∫

Ω

k(x)∇u(x) · ∇v(x)dx,

L(v) :=
∫

Ω

f (x)v(x)dx.

The variational problem (2.5) is discretized via the finite element method using conforming
quadratic elements. That is, the infinite-dimensional space V in (2.5) is replaced by the finite-
dimensional subspaceVh := {vh ∈ C0(Ω) : vh|e ∈ P2(e) for all e ∈ Th} whereP2(e) denotes the set
of quadratic functions on an elemente, andvh|e is the restriction ofvh one.
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The finite element method for (2.1) reads as follows: Finduh ∈ Vh, such that

(2.6) Ah(uh, vh) = Lh(vh) ∀vh ∈ Vh,

where

Ah(uh, vh) :=
∑

e∈Th

∫

e
ke∇uh · ∇vhdx,

Lh(vh) :=
∫

Ω

f (x)vh(x)dx.

The piecewise constant symmetric positive definite matrixke is defined by integral averaged values
of k(x) over the elemente fromTh, i.e.,

ke :=
1
|e|

∫

e
k(x)dx.

Then finding the solution of (2.6) is equivalent to solving a system of linear algebraic equations

(2.7) Ahuh = fh,

whereAh is the global stiffness matrix,fh denotes the global right hand side vector, anduh is the
vector of nodal unknowns (expansion coefficients). The subscripth indicates that the finite element
approximation relates to a partitionTh with mesh parameterh. The stiffness matrixAh can be
assembled from small-sized (6× 6) symmetric positive semidefinite (SPSD) element matricesAe,
i.e.,

(2.8) Ah =
∑

e∈Th

RT
e AeRe.

The operatorRe restricts a global vectorv ∈ IRN to a local vectorve defined on the elemente; the
transpose matrixRT

e defines the natural inclusion ofve in IRN.
Note that for any (anisotropic) SPSD coefficient tensorkẽ and related element matrixAẽ corre-

sponding to the reference element ˜e (with vertices in (0, 0), (1, 0), (0, 1)) there exists a trianglee
(whose shape depends only on the entries ofkẽ) such thatAẽ is proportional toÃe whereÃe is the
element matrix related to the coefficient tensor̃ke = I , cf. [10]. In other words the coefficient and
mesh anisotropy are equivalent when describing local (elementwise) FE analysis. In this paper prob-
lems on uniform structured meshes (in which every trianglee is similar to the reference element ˜e)
and with an arbitrary piecewise constant coefficient matrixke are considered.

3. Augmented coarse grid

3.1. Strong connections.Access to all individual fine-grid element stiffness matrices for a given
initial mesh is assumed subsequently in this paper.

Due to (2.8) the assembled global stiffness matrixAh is sparse; its nonzero pattern, or equivalently,
its adjacency matrix, can be associated with the graph ofAh.

To begin with we split the nodes of the fine mesh into two groupswhere the first group consists of
all nodes that do not belong to the coarser mesh with mesh sizeH = 2hwhile the second one contains
nodes common to the two meshes. By eliminating the unknowns that correspond to the nodes from
the first group (in Fig. 1 they are shown as empty squares and circles) from the linear system (2.7) a
reduced (Schur complement) system with a much denser populated matrixSh is obtained. In terms
of matrix graphs this means that the graph ofSh typically has much more edges (connections); in
the case of a standard (full) coarsening it even becomes a complete graph.
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Figure 1. Uniform mesh consisting of conforming quadratic elements

The aim is to construct such a sparse approximationQh of the Schur complementSh that each row
of Qh to haveO(1) nonzero entries whileQh remains spectrally equivalent toSh, i.e., κ(Q−1

h Sh) =
O(1), with a bound on the relative condition number that does not depend on any possible anisotropy
of the coefficient k(x) in (2.1).

(a) Standard coarse grid (b) Augmented coarse grid

Figure 2. Coarse grid (associated with the reduced system)

An interesting relation between our approach and the notionof strongconnections used in AMG
is as follows. One measure for the strength of connection of two nodesi and j, or, equivalently, of
the related two nodal unknowns, or, equivalently, the related variablesui andu j, is the energy cosine
ci j of the angle between the two basis functionsφi andφ j, which is defined by

(3.1) ci j =
|ai j |√
aii a j j

,

whereAe = {ai j } is the stiffness matrix corresponding toe, cf. [8]. The connection (edge) represented
by the off-diagonal entriesai j anda ji is said to be strong if and only ifci j ≥ θ.

Another common definition of strong connections derived originally for M-matrices is the one
used in the classical algebraic multigrid framework, see, e.g., [9]. For a given threshold 0< θ ≤ 1
the variableui is said to depend strongly onu j if and only if

(3.2) −ai j ≥ θmax
i,k
{−aik}.

Note that the nonzero pattern induced by the strong connections of a stiffness matrix arising
from finite element discretization is directly related to the qualities of the element stiffness matrices
involved, i.e., in our case depending upon the diffusion tensorke.

Remark 3.1. Note that for the specific case of orthotropic problems a robust two-level splitting of the
conforming FE space of piecewise quadratic functions was presented in[18]. The numerical results
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in [10] suggest that for non-orthotropic problems with “mild” anisotropy the same hierarchical
decomposition can be used to construct uniform multilevel preconditioners. This leads to the study
of FE matrices arising from strongly anisotropic non-orthotropic problems in the present article.

Consider the nonzero pattern of an SPD matrix. In order to study the strong connections in the
Schur complement system, categorized as such based on either of the two measures (3.1) or (3.2), a
small-sized local structure matrix assembled from the element stiffness matrices of 8 triangles that
form a square of side length 2h will be considered. Two different partitionings of the set of degrees
of freedom (DOF) into fine and coarse DOF will be compared. Thefirst partitioning gives rise to the
standard coarse grid with mesh sizeH = 2h, see Fig. 2(a), whereas the second partitioning results in
theaugmented coarse grid, as depicted in Fig. 2(b). Note that in order to obtain the reduced system
over the augmented coarse grid (as shown in Fig. 2(b)) only those unknowns which belong to the
empty circles in Fig. 1 are eliminated.

The diffusion tensor (2.2) is tested for a strongly anisotropic and non-orthotropic problem, i.e.,
k11 = 1, k12 = ±0.009999, andk22 = 0.0001. Figures 3(a)–5(b) show the strong connections that
appear for a thresholdθ ∈ {0.5, 0.25, 0.1} for both measures (when using the standard coarse grid).
The two measures result in quite different (sub)sets of strong connections in this case; Further, both
measures tend to increase the stencil significantly when decreasing the threshold. However, when
using the augmented coarse grid, the classification of strong connections becomes much more stable
with respect to the choice of the threshold since now the operator is closer to anM-matrix and also
results in much sparser approximations, as can be seen from Fig. 6(a)–6(b). Immediately observed is
that contrary to the standard coarse grid all strong connections for the augmented coarse grid appear
only on horizontal lines and only between neighboring nodeseven when a very small threshold has
been utilized.

(a) Measure (3.1) (b) Measure (3.2)

Figure 3. Strong connections fork11 = 1,k12 = ±0.009999,k22 = 0.0001 andθ = 0.5
on a standard mesh.

(a) Measure (3.1) (b) Measure (3.2)

Figure 4. Strong connections fork11 = 1, k12 = ±0.009999,k22 = 0.0001 andθ =
0.25 on a standard mesh.
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(a) Measure (3.1) (b) Measure (3.2)

Figure 5. Strong connections fork11 = 1,k12 = ±0.009999,k22 = 0.0001 andθ = 0.1
on a standard mesh.

(a) Measure (3.1) (b) Measure (3.2)

Figure 6. Strong connections fork11 = 1, k12 = ±0.009999,k22 = 0.0001 andθ ∈
{0.5, 0.25, 0.1} on an augmented mesh.

3.2. A first reduction step. Furthermore, the augmented coarse grid also defines a favorable subset
of DOF in order to reduce the linear system for the following reason. Consider a permutation of rows
and columns of the matrix in (2.7), i.e.,

Ah =


Ah:11 Ah:12

Ah:21 Ah:22

 ,

such thatAh:22 corresponds to the CDOF, i.e., the DOF associated with the augmented coarse grid.
For convenience, the same symbolAh is used for the permuted as well as the original (unpermuted)
matrix. Then the FDOF, which correspond toAh:11, can be ordered lexicographically along the
diagonals of the initial mesh such that the matrixAh:11 becomes tridiagonal, [5]; Consequently, the
direct solution of any linear system withAh:11 has linear (optimal) complexity. Note that the number
of FDOF and CDOF is approximately the same in this partitioning.

Hence, if we are able to construct a two-level preconditioner Bh defined by

(3.3) B−1
h :=


I −A−1

h:11Ah:12

I




A−1

h:11

Q−1
h




I

−Ah:21A
−1
h:11 I



that is uniform, i.e.,Bh is spectrally equivalent toAh, with respect to the mesh sizeh and any of
the parameters that define the coefficient tensor (2.2), and, if in addition every application ofB−1

h
to an arbitrary vectorv requiresO(N) arithmetic operations, there is an optimal order method for
solving the linear system (2.7). As forAh, the block form ofBh is induced by the same partitioning
of DOF, which relates the CDOF to the augmented coarse grid, cf. Fig. 2(b). The matrixQh denotes
an approximation to the exact Schur complement

(3.4) Sh = Ah:22 − Ah:21A
−1
h:11Ah:12

of Ah.
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Note that the condition numberκ(B−1
h Ah) of the preconditioned system satisfies the estimate

(3.5) κ(B−1
h Ah) ≤ κ(Q−1

h Sh)

and hence every spectrally equivalent approximationQh to Sh defines a uniform preconditionerBh

to Ah via (3.3). In the next section we will present a parameter-robust sparse Schur complement
approximation that serves this purpose.

4. Recursively constructed multilevel methods

Multilevel iteration methods, as the one presented in the next sections, typically evolve from re-
cursive employment of two-level methods. In this way multilevel methods can be viewed as inexact
two-level methods. Their convergence properties are closely related to those of the corresponding
exact two-level methods, which are in the focus of this section.

In this paper only SPD two-level preconditioners are considered mainly because their use in the
framework of the nonlinear AMLI is much better understood and theoretically established, [14,
27]. The use of ASCA in the construction of non-symmetric preconditioners even for symmetric
problems like the present one might however be interesting from a practical point of view.

Motivated by our study ofstrong connectionswe will use a sequence of augmented grids in the
construction of a multilevel method. However, since the original problem is formulated on a standard
(and not on an augmented) grid two types of two-level methods, or equivalently, two types of two-
level preconditioners have to be considered. The first preconditionerB(0) refers to the level of the
original finite element mesh with mesh sizeh, i.e.,

(4.1) B(0) ≈ A(0) := Ah

whereB(0) := Bh is defined by (3.3). Note that (3.3) involves the inverse of the Schur complement
approximationQ(0) := Qh, which refers to the first augmented (coarse) grid. This is the starting point
for constructing a sequence of two-level preconditionersB(k) defined by

(4.2) B(k)−1
=


I −B(k)

11

−1
A(k)

12

I




B(k)

11

−1

Q(k)−1




I

−A(k)
21B(k)

11

−1
I



which will be used to approximateA(k) for all k = 1, 2, . . . , ℓ. HereA(k) is identified with the Schur
complement approximation inB(k−1), i.e.,

(4.3) A(k) := Q(k−1) ∀k ≥ 1.

SoQ(0) denotes the Schur complement approximation used in (3.3) whereas for 1≤ k ≤ ℓ the matrix
Q(k) denotes a building block of the two-level preconditioner (4.2).

When presenting the two-level matricesA(k) andB(k)−1
(or their factors) in a two-by-two block

form it is always assumed that the rows and columns of these matrices have been reordered according
to a partitioning of the setD(k) of all DOF (or equivalently of the set of nodes of the corresponding
grid) into a setD(k)

f of FDOF (or equivalently fine nodes) and a setD(k)
c of CDOF (or equivalently

coarse nodes), i.e.,
D(k) = D(k)

f ⊕D
(k)
c .

Fig. 7 illustrates the two-level splitting of the nodes on the first augmented grid, which induces
the corresponding two-level partitioning ofA(1) andB(1) (respectively (B(1))−1). The CDOF, which
correspond to the augmented coarse grid, are indicated by black squares.

Using a two-level numbering ofD(k) that meets the demand of consecutive numbering within
the setD(k)

f of FDOF and the setD(k)
c of CDOF in order to specify the first and the second block



ROBUST MULTILEVEL METHODS FOR QUADRATIC FE ANISOTROPIC ELLIPTIC PROBLEMS 9

Figure 7. A two-level splitting of the nodes of an augmented grid

of unknowns, respectively, allows to apply the same construction recursively on the coarse grid(s)
thereby using the Schur complement approximationQ(k) to define the nextcoarse(r) problem.

4.1. Preliminaries and notation. Before we present an algorithm for constructingQ(k) for all
k = 0, 1, 2, . . . , ℓ let us comment on the notation. LetHA = (VA,EA) denote the undirected graph as-
sociated with a symmetric matrixA ∈ IRN×N whereVA := {vi : 1 ≤ i ≤ N} denotes its set of vertices
(which in the present context are equivalent to nodes) andEA := {ei j : 1 ≤ i < j ≤ N andai j , 0}
its set of edges.

Definition 4.1. Any subgraph F of HA we will refer to as a structure and let us denote withF the
set of structures whose relevant (local) structure matrices AF satisfy the assembling property

(4.4)
∑

F∈F
RT

FAFRF = A.

The restriction operatorRF (or RG below) restricts a global vector (defined onHA) to a given
structureF (or macro structureG).

Definition 4.2. A macro structure G is a union of structures F∈ F . Further, the set of macro
structures is given byG := {G = Gi : i = 1, 2, . . . , nG} and again it is assumed that any set of
associated macro structure matricesAG = {AG : G ∈ G} has the assembling property

(4.5)
∑

G∈G
RT

GAGRG = A.

For example, each structureF could be given by a single elemente ∈ T , or, a collection of ele-
ments, and the related structure matricesAF be composed from the corresponding element matrices
Ae. Also, we want to assume that structures and macro structures are nested meaning that for every
structureF ∈ F there exists a macro structureG ∈ G such thatF ⊂ G. Hence, the relations (4.4)
and (4.5) imply thatAG can be written in the form

(4.6) AG =
∑

F⊂G

σF,GRT
G7→FAFRG7→F

whereσF,G are scaling factors that provide a partition of unity (see also Fig. 9), that is,

(4.7)
∑

G⊃F

σF,G = 1 ∀F ∈ F .

Remark 4.3. A simple choice of a set of scaling factors that satisfies condition (4.7), used later
in numerical testing is to setσF,G = σF,G′ whenever F⊂ G and F ⊂ G′, and to determineσF,G

according to the formula

(4.8) σF,G =
1∑

G⊃F 1
.
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Since thenσF,G depends only on the number of macro structures that contain Fbut not on the
particular G we will also denote the weights for the structures byσF in this case.

Definition 4.4. If the intersection of two distinguishable structures (or macro structures) is empty,
i.e., Fi ∩ F j = ∅ (or Gi ∩G j = ∅) for all i , j, we will refer to the setF (or G) as a non-overlapping
covering; otherwise we will callF (or G) an overlapping covering.

4.2. Additive Schur complement approximation. Having defined the relevant notations, a de-
scription of the algorithm for computing the additive Schurcomplement approximationsQ(k), 0 ≤
k ≤ ℓ follows.

I. Approximation of Q(0):
Assume a set of structuresF (0) = {F} which provides an overlapping covering of the initial
graphH(0) = HA. Each structureF is a subgraph ofH(0), e.g., the subgraph composed of
eight quadratic conforming elementse forming a square, as illustrated by the shaded region
in Fig. 8(a). Here we suggest to overlap structures with halfof their width or height. Then
we apply the following algorithm:

(a) Nine overlapping struc-
tures used in the computa-
tion of Q(0)

(b) One macro structureGi

used in the computation of
Q(k), k ≥ 1; Gi is composed
of nine overlapping struc-
tures,Fi1, Fi2, . . . , Fi9

Figure 8. Coverings of the original (left) and augmented (coarse) grid (right).

1. For allF ∈ F (0) assemble the structure matricesAF and split their DOF into two groups
in accordance with the splitting of the unknowns in the global system (2.7).

2. Due to the introduced node splitting for allF ∈ F (0) compute the matrices

(4.9) SF = AF:22 − AF:21A
−1
F:11AF:12.

3. A global approximationQ(0) to the exact Schur complementS(0) on the first augmented
(coarse) grid is assembled from the matricesSF, i.e.,

(4.10) Q(0) := SF (0) :=
∑

F∈F (0)

RT
F:2SFRF:2.

II. Approximation of Q(k), k = 1, 2, . . . , ℓ:
Let H(k) denote the graph of the approximationQ(k−1). Then consider overlapping coverings
F (k) andG(k) of H(k) by structures and macro structures, respectively. In particular, the ex-
ample in which each macro structureG ∈ G(k) consists of nine 13-node structuresF ∈ F (k)

which overlap with half of their width or height will be considered as illustrated in Fig. 8(b).
Then apply the following algorithm:
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1. For allG ∈ G(k) assemble the macro structure matrixAG according to (4.6) using the
weights (4.8) to satisfy (4.7), cf. Fig. 9.

2. To eachAG perform a permutation of the rows and columns in agreement with the global
two-level splitting of the DOF and compute the Schur complement

(4.11) SG = AG:22 − AG:21A
−1
G:11AG:12.

3. Assemble a sparse approximationQ(k) := SG(k) to the exact global Schur complement
S(k) = A(k)

22 − A(k)
21(A(k)

11)−1A(k)
12 from the local macro structure Schur complements, i.e.,

(4.12) Q(k) := SG(k) =
∑

G∈G(k)

RT
G:2SGRG:2.

1

1/4 1/2 1/4

1/2

1/41/21/4

1/2

Figure 9. Weight distribution for assembly of one interior macro structure.

5. Smoothing analysis

Consider the approximationQ = Q(0) where the nodes (and the related DOF) in the corresponding
augmented coarse grid are ordered lexicographically alonghorizontal lines. Further letD denote the
block Jacobi preconditioner ofQ = D + L + LT . That is,D andL denote the block diagonal and
the strictly lower block triangular part ofQ, respectively. Each of the blocks ofD corresponds to
a group of nodes that lie along one horizontal line in the grid. For the augmented coarse grid there
are two types of such blocks: the first type is associated withhorizontal lines passing through the
nodes in the standard coarse grid, which are illustrated as solid squares in Fig. 2(b), and the second is
associated with those nodes that are added in order to augment the coarse grid, which are illustrated
as empty squares in Fig. 2(b) (see also Fig. 6).

The smoother is analyzed for the model problem (2.1), with a diffusion tensor given by

(5.1) ke =


1 ς

ς ǫ



whereǫ ∈ (0, 1] andς ∈ (−
√
ǫ,
√
ǫ). The next lemma is essential for our analysis.

Lemma 5.1. For the model problem (2.1) with Dirichlet boundary conditions discretized on a uni-
form mesh with mesh size h there exist positive constants cL and cD such that the following estimates
hold:

(a) ‖L + LT‖ ≤ cL(ǫ + |ς|)
(b) λmin(D) ≥ cDh2
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Proof. Equation (4.10) implies that the entriesl i j of (L + LT) are assembled by the related entries of
the matricesSF defined in (4.9) for which the respective contributions fromAF:22 belong to the set
{ς/3,−ς/12, (ǫ + ς)/12, (ǫ + ς)/24}. The remaining matrices in (4.9) can be represented as

AF:21A
−1
F:11AF:12 =

= (AF:21;0+ AF:21;ǫ + AF:21;ς)(A
−1
F:11;0+ A−1

F:11;ǫ + A−1
F:11;ς + A−1

F:11;ǫς)(AF:12;0+

+AF:12;ǫ + AF:12;ς)

whereAF:21;0, A−1
F:11;0 AF:12;0 do not depend on any parameter whileAF:21;ǫ , A−1

F:11;ǫ , AF:12;ǫ , AF:21;ς ,
A−1

F:11;ς , AF:12;ς andA−1
F:11;ǫς , as the their subscripts indicate, have entries accordingly of orderǫ, ς and

ǫς only. Therefore the entries ofAF:21A
−1
F:11AF:12 that are not bounded in modulus by an expression of

the formcl(ǫ + |ς|), where the positive constantcl depends neither onǫ norς, result from the product
AF:21;0A

−1
F:11;0AF:12;0. However the last is non-zero only in positions that do not add to (L + LT)

and thus, together with the previous observation regardingthe contributing entries ofAF:22 and the
assembling properties (4.10), (4.9), it follows that|l i j | ≤ cli j (ǫ + |ς|) where the positive constantscli j
are independent ofǫ andς.

Then from Gerschgorin’s theorem it follows that the eigenvalues of the symmetric matrix (L+LT )
lie within circles with center at the origin and radii

∑

j

cli j (ǫ + |ς|) ≤ cLǫ wherecL := max
i
{
∑

j

cli j },

which proves statement (5.1).
In order to prove part (5.1) of the lemma consider the diagonal blocksDi of D. Due to the use of

the augmented coarse grid each blockDi resulting from the assembly (4.10) is tridiagonal, and for
the model problem with constant coefficients due to the imposed Dirichlet boundary conditions there
are seven distinguishable cases, i.e.,Di ∈ {T1,T2, . . . ,T7}. Without loss of generality, the matrices
T4, T5, T6 andT7 are of type 1, that is, they correspond to horizontal lines connecting nodes in the
standard coarse mesh whereasT1, T2, andT3 are of type 2 and correspond to horizontal lines passing
through nodes that augment the standard coarse grid. Then itis sufficient to show that

(5.2) λmin(Ti) ≥ cTi h
2, i ∈ {1, . . . , 7},

which implies that (5.1) holds forcD := min
1≤i≤7

cTi .

If T7 denotes the matrix associated with the nodes that lie on the boundary (on the top or on the
bottom of the domain) then due to the Dirichlet boundary condition(s) we haveT7 = I(N+1)×(N+1);
Hence (5.2) holds forT7. Let MN = tridiag(−1/6, 1/3,−1/6) denotes the tridiagonal matrix of size
N corresponding to the one-dimensional scaled Laplacian with Dirichlet boundary conditions. Then
the other six matrices, whose entries depend onǫ andς, can be written as

(5.3) Ti = Ci + Ei ,

whereC1 = C2 = C3 = MN whereas

C4 = C5 = C6 =



1 0 0

0 MN−1 0

0 0 1



and consequently the minimal eigenvalue ofCi, i = 1, . . . , 6 is bounded from below byλmin(C4) >
h2π2/24 whereh = 1/N.
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Using the splitting (5.3) the remainder matricesEi, i = 1, . . . , 6 are determined to be symmetric,
positive semidefinite (SPSD) and diagonally dominant forǫ ∈ (0, 1], ς ∈

(
−
√
ǫ,
√
ǫ
)

and from
Gerschgorin’s theorem it is concluded thatEi ≥ 0 (in an SPSD sense) which when combined with
the previous result completes the proof. �

Lemma 5.2. Let c< cD/cL andǫ + |ς| ≤ (cD/cL − c)h2. Then the following inequality holds

(5.4)
(
1+
ǫ + |ς|

ch2

)
(L + LT) +

ǫ + |ς|
ch2

D ≥ 0.

Proof. Due to Lemma 5.1 we have
(
1+
ǫ + |ς|
ch2

)
(L + LT) +

ǫ + |ς|
ch2

D ≥ −
(
1+
ǫ + |ς|
ch2

)
cL(ǫ + |ς|)I + ǫ + |ς|

ch2
cDh2I =

= (ǫ + |ς|)
(cD

c
−cL(ch2 + ǫ + |ς|)

ch2

)
I

(5.5)

whereI denotes the identity matrix. The right hand side of (5.5) is an SPSD matrix if and only if

cD ≥
cL(ch2 + ǫ + |ς|)

h2

which is equivalent to

c ≤ cD

cL
− ǫ + |ς|

h2
.

Finally, whenc < cD/cL this condition is met forǫ + |ς| ≤ (cD/cL − c)h2 demonstrating that (5.4)
holds. �

With these two auxiliary results the following theorem can be proved.

Theorem 5.3. Consider the elliptic model problem with Dirichlet boundary conditions discretized
on a uniform mesh with mesh size h. Further, let Q= Q(0) = D + L + LT denote the related additive
Schur complement approximation where D is the block diagonal and L the lower block triangular
part of Q; Here each block of D corresponds to the nodes along ahorizontal line in the augmented
coarse grid. Then the iteration matrix of the block Jacobi method satisfies the bound

(5.6) ‖I − D−1Q‖2Q ≤ 1− 1
1+ c0

=: 1− c1

where c0 := (ǫ + |ς|)/(ch2) and thus c1 is in the interval(0, 1).

Proof. First, note that

‖I − D−1Q‖2Q = sup
v,0

< I − D−1Qv, v >
< v, v >

= 1− inf
v,0

< D−1Qv, v >
< v, v >

= 1− µmin

whereµmin denotes the smallest eigenvalue of the generalized eigenvalue problemQv = µDv. There-
fore, if c1 := 1/(1+ c0) := 1/(1+ ǫ/(ch2)) is a lower bound forµmin, the inequality (5.6) holds.

In order to prove this we demonstrate that

Q− c1D = (L + LT) + (1− c1)D ≥ 0

which due to the definition ofc1 is equivalent to

(5.7) Q− c1D = (L + LT) + (1− c1)D = (1+ c0)(L + LT) + c0D ≥ 0.

Let c0 := (ǫ + |ς|)/(ch2) wherec > 0 satisfies the inequalityc < cD/cL for the constantscL and
cD in Lemma 5.1. Then Lemma 5.2 shows that (5.7) holds forǫ + |ς| ≤ η whereη is defined by
η := (cD/cL − c)h2.
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On the other hand, ifǫ+|ς| > η, then writeǫ+|ς| = ǫ0+|ς0|+(ǫ+|ς|−ǫ0−|ς0|) where 0< ǫ0+|ς0| ≤ η
and (ǫ + |ς| − ǫ0 − |ς0|) > 0. Due to (5.4) it follows that

(
1+
ǫ0 + |ς0|

ch2

)
(L + LT) +

ǫ0 + |ς0|
ch2

D ≥ 0

and sinceQ ≥ 0 then
(
1+
ǫ + |ς|
ch2

)(L + LT) +
ǫ + |ς|

ch2
D =
(
1+
ǫ0 + |ς0|

ch2

)
(L + LT) +

ǫ0 + |ς0|
ch2

D +
ǫ + |ς| − ǫ0 − |ς0|

ch2
Q ≥ 0,

and thus the proof of Theorem 5.3 is complete. �

Remark 5.4. For ǫ + |ς| ≤ η = (cD/cL − c)h2 we obtain c0 = (ǫ + |ς|)/(ch2) ≤ cD/(cLc) − 1 and thus
1− c1 = 1 − 1/(1 + c0) ≤ 1 − (cLc)/cD where the involved constants neither depend on h nor onǫ

andς and thus the block Jacobi method converges uniformly forǫ ∈ (0, η], ς ∈ (−
√
ǫ,
√
ǫ).

In practice one might prefer to use a block Gauss-Seidel instead of the block Jacobi iteration
because the former method defines a convergent smoother for any symmetric positive definite matrix.
It is known ([12]) that for SPD matrices and in case of convergence of the (block) Jacobi method
the order of convergence of the block Gauss-Seidel method can not be worse. This leads to the
following corollary.

Corollary 5.5. Under the assumptions of Theorem 5.3 the iteration matrix ofthe block Gauss-Seidel
method satisfies the bound

(5.8) ‖I − (D + L)−1Q‖2Q ≤ 1− 1
1+ (ǫ + |ς|)/(c̄h2)

for some positive constant̄c ( dependent neither onǫ, ς nor h).

6. Two-level analysis

In the smoothing analysis in the previous section we deriveda bound of the form

(6.1) ‖I − (M(1))−1A(1)‖2A(1) ≤ 1− 1
1+ ξ

=
ξ

1+ ξ

whereM(1) denotes the block Jacobi (or block Gauss-Seidel) preconditioner for A(1) = Q(0) and

ξ = c
ǫ + |ς|

h2
for some positive constantc. For convenience, for the remainder of this section the level

index will be skipped keeping in mind that the methods and estimates being studied are supposed to
be applied recursively (on all levelsk = 1, 2, . . . , ℓ). That is, for brevityA = A(1) andM = M(1).

This section is devoted to estimating the norm of the error propagation matrix

(6.2) ETL = I − B−1
TLA

of a specific two-level method that is obtained for the particular choiceB = BTL in the stationary
iterative method

(6.3) x(i+1) = x(i) + Br (i) = x(i) + B(b − Ax(i)), i = 0, 1, . . . .

Hereb denotes a given right hand side vector,x(i) the i-th iterate, andr (i) = b−Ax(i) the i-th residual
vector. The two-level preconditionerB = BTL is given by

(6.4) BTL =


I

A21B11
−1 I




B11

Q̃




I B11

−1A12

I

 ,



ROBUST MULTILEVEL METHODS FOR QUADRATIC FE ANISOTROPIC ELLIPTIC PROBLEMS 15

cf. (4.2), whereQ̃ is a preconditioner forS = A22 − A21A
−1
11A12, which satisfies the inequalities

(6.5) S ≤ Q̃ ≤ 1
α

S

in an SPSD sense for a positive constantα. Later in this section the relation

(6.6) αS ≤ Q ≤ S

for the additive Schur complement approximationQ discussed earlier will be verified, which shows
that it is possible to use the scaled matrix

(6.7) Q̃ :=
1
α

Q

in (6.4) and herewith satisfy (6.5). Consider the two-levelmethod (6.3)–(6.4) with exact inversion
of the pivot block, i.e., the caseB11 = A11 in which the preconditioner (6.4) is denoted bȳBTL.
Assuming that the relation (6.6) holds, and using (6.7), it is readily seen that

1
α

A− B̄TL =



(
1
α
− 1)A11 (

1
α
− 1)A12

(
1
α
− 1)A21

1
α

S − Q̃+ (
1
α
− 1)A21A

−1
11A12


≥ 0

and hence

(6.8) A ≤ B̄TL ≤
1
α

A.

For the more general caseB11 , A11 the condition numberκ(B−1
TLA) depends also on the (spectral)

approximation properties ofB11, which can for example be expressed via an equivalence relation of
the type

(6.9) βA11 ≤ B11 ≤ A11

and a second relation of the form

(6.10) A21B
−1
11A12 ≤ (1− χ)A22 + χA21A

−1
11A12.

For details see, e.g., [2, 19, 25].
A sufficient condition for the stationary iterative method (6.3) to converge is that the matricesA

andB are both SPD and satisfyB > (1/2)A (in an SPSD sense). The stronger assumption (6.8) can
be used to estimate the norm of the operator (6.2) as follows.First we note that due to (6.8) we have

B̄−1/2
TL AB̄−1/2

TL ≤ I

from which it follows that

〈B̄−1
TLAv, B̄−1

TLAv〉A − 〈v, B̄−1
TLAv〉A = 〈(B̄−1

TLA− I )v, B̄−1
TLAv〉A

= 〈(AB̄−1
TLAB̄−1

TLA− AB̄−1
TLA)v, v〉 ≤ 0.

Hence

‖(I − B̄−1
TLA)v‖2A = ‖v‖2A − 〈B̄−1

TLAv, v〉A − 〈v, B̄−1
TLAv〉A + 〈B̄−1

TLAv, B̄−1
TLAv〉A

≤ ‖v‖2A − 〈B̄−1
TLAv, v〉A

and thus

‖I − B̄−1
TLA‖2A ≤ sup

v,0

‖v‖2A − 〈B̄−1
TLAv, v〉A
‖v‖2A

= 1− inf
v,0

〈B̄−1
TLAv, v〉
〈v, v〉(6.11)

≤ 1− λmin(B̄
−1
TLA) = 1− λmin(Q̃

−1S) = 1− αλmin(Q
−1S) ≤ 1− α.
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From (6.11) it is seen that in order to estimate the norm of theerror propagation operator

ĒTL = I − B̄−1
TLA

the constantα in (6.6) needs to be bounded from below. The upper bound in (6.6) has been used in
the derivation of (6.8). Therefore consider the equivalence between the Schur complementS and its
additive approximationQ next. The upper bound in (6.6) follows from the well-known minimization
property of Schur complements, i.e.,

vT
2 Qv2 = vT

2


∑

G∈G
RT

G:2SGRG:2

 v2 =
∑

G∈G
vT

G:2SGvG:2

=
∑

G∈G
min
vG:1


vG:1

vG:2



T

AG


vG:1

vG:2

 =
∑

G∈G
min

v1


v1

v2



T

RT
GAGRG


v1

v2



≤ min
v1


v1

v2



T 
∑

G∈G
RT

GAGRG




v1

v2

 = min
v1


v1

v2



T

A


v1

v2

 = vT
2Sv2.

A lower bound forα can be derived from a local analysis, which is described as follows. A starting
point is the construction of the matrix

(6.12) C =
∑

G∈G
RT

GCGRG,

which is spectrally equivalent toA, and, in addition, allows for a compatible two-level transformation
with respect to the set of macro structure matricesAG, i.e.,

(6.13) Ĉ =


C11 Ĉ12

Ĉ21 Ĉ22

 = JT


C11 C12

C21 C22

 J

whereJ is of the form

(6.14) J =


I W

0 I

 .

The basis transformation (6.13) is said to be compatible if

Ĉ22 = Ĉ22(W) = [WT , I ]


C11 C12

C21 C22




W

I

 =
∑

G∈G
RT

G:2ĈG:22RG:2

and

ĈG:22 = ĈG:22(WG) = [WT
G, IG]


CG:11 CG:12

CG:21 CG:22




WG

IG



whereWG = W|G := RG:1WRT
G:2 is the restriction ofW to G for all G ∈ G, cf. [17]. HereRG:1

andRG:2 are obtained fromRG by deleting all its rows and columns corresponding to CDOF (for
RG:1) and FDOF (forRG:2). Note that due to the overlap of the macro structuresG, certain rows and
columns ofCG may vanish while the global matricesC andA still remain spectrally equivalent. In
the estimate that is presented here, each matrixCG is obtained from eliminating in the corresponding
matrix AG the FDOF for boundary nodes ofG and inserting one row and one column with all zeros
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for each eliminated FDOF. The 8 FDOF that are affected by this elimination step are depicted as
empty circles in Fig. 7.

In order to show the equivalence ofA andC note that overlapping macro structures are constructed
from overlapping structures recursively (in the same way).Thus it is possible to use the weightsσF(p)

G

for F(p)
G ⊂ G, p = 1, 2, . . . , 9 as in Fig. 9 which are defined now for the macro structureG and its

eight neighborsG′ that share at least one structure withG. The weight forG is defined byσG := σF(5)
G

whereF(5)
G is the structure in the center ofG; Furthermore,σF(1)

G
, σF(3)

G
, σF(7)

G
, σF(9)

G
define the weights

for the neighborsG′ in the directions south-west, south-east, north-west, andnorth-east (which share
one structure withG), and finally,σF(2)

G
, σF(4)

G
, σF(6)

G
, σF(8)

G
define the weights for the neighborsG′ to

the south, west, east, and north, respectively (which share3 structures withG). Then, denoting bys
the solution of the equation

1s+ 4
1
2

s+ 4
1
4

s= 1

it follows that

sC′:=s
∑

G∈G


∑

G′:∃F∈G∩G′

σG′CG′

 = s
∑

G∈G
C′G ≤ C.

Note thatG′ = G also appears in the second sum. As a consequence, the condition

(6.15) βA ≤ sC′

impliesβA ≤ C and sinceCG ≤ AG for all G ∈ G we obtain

(6.16) βA ≤ C ≤ A.

Note that a constantβ satisfying (6.15) can be determined by solving the local eigenvalue problems

1
s
A′GvG = λGC′GvG

and then settingβ := 1/max
G
{λG:max}. HereA′G is the canonical inclusion ofAG in the domainD(C′G)

of C′G, i.e.,A′G = RT
D(C′G)→GAGRD(C′G)→G. Next, the equivalence relation (6.16) implies

(6.17) βSA ≤ SC

whereSA = S andSC denote the global Schur complements ofA andC, respectively. Finally, a com-
patible basis transformation forC has to be constructed. The problem is to define the interpolation
weights in the submatrixW in (6.14) in such a way that no FDOF in the intersection of two macro
structuresG andG′ interpolates from CDOF other than those in the same intersection. One possible
choice ofW corresponds to a local minimum energy extension with respect to AF(1)

G
,AF(3)

G
,AF(7)

G
, and

AF(9)
G

for the interior FDOF ofF(1)
G , F

(3)
G , F

(7)
G , F

(9)
G , respectively. The remaining four FDOF ofG can

be interpolated in the same way from the coarse DOF ofF(2)
G , F

(4)
G , F

(6)
G , F

(8)
G , respectively. Then it is

well-known and easy to see that for the two-level splitting related to the transformation (6.13) we
have the estimate

(6.18) SC ≤ Ĉ22.

Moreover, using the local compatibility of the transformation (6.13), a basic relation between any
generalized hierarchical coarse-grid matrix and the Schurcomplement, which involves the constant
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γ in the CBS inequality, and the fact thatCG ≤ AG and henceSCG ≤ SAG = SG, it follows that

(6.19) Ĉ22 =
∑

G

ĈG:22 ≤
∑

G

1

1− γ2
G

SCG ≤
1

1− (maxG{γG})2

∑

G

SAG =
1

1− γ2
max

Q

whereγmax = max
G
{γG} denotes the maximum of the local (macro structure) CBS constants. Finally,

by combining (6.17)–(6.19) one gets

(6.20) β(1− γ2
max)SA ≤ Q

and thus also a tool to estimate locally the constantα in (6.11), i.e.,

(6.21) α ≥ 1− (maxG{γG})2

maxG{λG:max}
=: α.

In Fig. 10 the error reduction factor of the two-level method(6.3)–(6.4) is plotted for the orthotropic
problem. The results show uniform convergence, that is, robustness with respect to the parameter
ǫ, which was varied in the range from 20 to 2−20. As it can be seen from Fig. 11 the results are
worse for the rotated diffusion problem. However, although the convergence in general deteriorates
whenε tends to 0, for a (moderate) fixed value ofε it is still uniform with respect to the angle of the
direction of strong anisotropy. As the numerical results inthe next section demonstrate the bounds
obtained from this local analysis are rather pessimistic.
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Figure 10. Orthotropic problem,ǫ = 2−t, t ∈ {0, 1, . . . , 20}: Upper bound (1− α)
in (6.11) derived from local estimate (6.21) plotted against t.
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Figure 11. Diffusion problem,ε ∈ {10−1, 10−2, 10−3}, θ ∈ {0◦, 1◦, . . . , 90◦}: Upper
bound (1− α) in (6.11) derived from local estimate (6.21) plotted against θ.
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7. Numerical tests

The numerical results presented in this section illustratethe performance of the nonlinear alge-
braic multilevel iteration (AMLI) method, which is based ona recursive application of a (block)
smootherM and a two-level preconditionerBTL as they have been analyzed in Sections 5–6, on a set
of representative test problems.

The nonlinear AMLI method was used to solve the linear system(2.7) determining the finite
element solution of (2.6). The FE approximation is based on piecewise quadratic functions on a
uniform mesh consisting of 2×N×N elements (triangles) whereN = 2ℓ+2, i.e., N = 8, 16, . . . , 256.
For convenience, Dirichlet boundary conditions have been imposed upon the entire boundaryΓ =
∂Ω, i.e.,ΓD = Γ in (2.1b), in all experiments as the numerical results for other boundary conditions
are very similar. The coarsest (augmented) grid (ℓ = 0) consists of 41 nodes, which corresponds to
a uniform mesh with 2×22×22 = 32 elements, as depicted in Fig. 2(b). The finest mesh is obtained
from ℓ = 1, 2, . . . , 6 steps of uniform mesh refinement. Forℓ = 6 the finest mesh consists of
2×256×256 quadratic elements with (512+ 1)×(512+ 1) nodes.

A comparison between three different implementations of the nonlinear AMLI W-cycle method
which differ by the choice of the global smoother is presented, namely,variant (a): no smooth-
ing, variant (b): point Gauss-Seidel (G-S) smoothing, and,variant (c): block Gauss-Seidel (G-S)
smoothing. The W-cycle performs 2 inner generalized conjugate gradient (GCG) iterations on every
coarse level except the coarsest one on which the problem is solved exactly (by using a complete
factorization). Since we are interested in a performance evaluation of the linear solver only, we have
chosen the vector of all zeros as the right hand side of (2.7) and initialized the outer preconditioned
GCG iteration (the nonlinear W-cycle AMLI) with a random vector.

In the first set of experiments the elliptic model problem as posed in (2.3) is considered wherek1

andk2 take values from the set{0, 2, 4, 6} and{0, 1, 2, 4, 6} respectively andδ = ±1. Table 1–Table 4
demonstrate that the convergence rate deteriorates with increasing non-orthotropic anisotropy and
increasing problem size without using a global smoother. This is reflected by the growing number
of outer GCG iterations that are required to reduce the residual by the prescribed factor of 108. The
introduction of one point Gauss-Seidel smoothing step improves significantly the convergence rate
of the proposed algorithm while the implementation of a global block Gauss-Seidel (G-S) smoother
leads to (almost) uniform convergence of the iterative method which finally results in an optimal
(or nearly optimal) order solution process. For completeness of the presentation some numerical
results for the global block Jacobi smoother are presented in Table 5. For the considered strongly
(an)isotropic/(non)orthotropic problem (2.3), the nonlinear AMLI solvers with global block Gauss-
Seidel and block Jacobi smoothers exhibit very similar convergence rates.

In the second set of experiments the rotated-diffusion problem (2.4) is considered. In Tables 6 and
7 the angleθe = θ is constant over the entire domain whereas Table 8 summarizes the results that
are obtained when varyingθ smoothly from the left to the right border of the domainΩ = (0, 1)2

according to the function

(7.1) θ = −π(1− |2x− 1|)
12

for x ∈ (0, 1).

The symbolν, initially defined in the last table, denotes the number of block Gauss-Seidel smooth-
ing steps per one GCG iteration on each coarse grid (except onthe coarsest one); That is,ν = 0
corresponds to the case in which no global smoothing is applied.

The obtained results confirm once more the importance of introducing a (global) block smoother
in the AMLI algorithm. In this way it is possible to constructa robust multilevel method with
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Nonlinear AMLI W-cycle:k1 = 0

No Global Smoothing Point G-S SmoothingBlock G-S Smoothing

@
@
@k2

ℓ
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
2 10 10 10 10 10 10 10 10 10 10 10 10 10 9 9
4 8 8 9 9 9 8 8 9 9 9 7 7 8 8 8
6 7 7 7 7 7 7 7 7 7 7 6 6 6 6 7

Table 1. Number of iterations for residual reduction by 108

Nonlinear AMLI W-cycle:k1 = 2

δ = 1 No Global Smoothing Point G-S Smoothing Block G-S Smoothing

@
@
@k2

ℓ
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
2 11 13 16 17 17 10 11 12 12 13 10 10 10 11 11
4 12 22 27 31 ∗ 11 16 19 21 119 8 8 9 9 8
6 12 23 28 34 ∗ 11 18 21 27 206 6 6 6 6 7

δ = −1 No Global Smoothing Point G-S Smoothing Block G-S Smoothing

@
@
@k2

ℓ
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

0 10 11 12 12 12 10 11 12 12 12 10 11 12 12 12
1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
2 11 14 17 18 18 11 12 12 13 14 10 10 10 11 11
4 12 22 27 31 32 11 16 19 22 22 8 8 9 9 9
6 12 23 28 32 ∗ 11 17 21 25 233 6 6 6 6 7

Table 2. Number of iterations for residual reduction by 108

optimal (linear) complexity of each (outer) iteration. Therobustness is reflected in the (nearly)
uniform convergence, i.e., in the (almost) constant numberof (outer) iterations.

In order to give an estimate of the computational complexityof the method, the number of work
units of one outer nonlinear AMLI W-cycle iteration has beenmeasured and found to be nearly
constant. Here a work unit is understood as the work (time) ofone finest-level matrix-vector product.
The work is approximately 26 and 28 units when using one pointGauss-Seidel and one block Gauss-
Seidel smoothing step, respectively. Finally, in Table 9 the grid complexityσΩ and the operator
complexityσA are reported for different levels of mesh refinement.
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Nonlinear AMLI W-cycle:k1 = 4

δ = 1 No Global Smoothing Point G-S Smoothing Block G-S Smoothing

@
@
@k2

ℓ
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

0 12 13 13 13 14 12 12 12 12 12 12 12 12 12 13
1 11 11 11 11 12 11 11 11 11 11 11 11 11 11 11
2 11 19 38 52 59 11 12 13 14 15 10 10 11 11 12
4 13 ∗ ∗ ∗ ∗ 11 29 48 59 119 8 8 9 9 8
6 13 198 ∗ ∗ ∗ 12 29 56 126 267 6 6 6 6 7

δ = −1 No Global Smoothing Point G-S Smoothing Block G-S Smoothing

@
@
@k2

ℓ
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

0 5 5 8 10 11 4 5 8 9 10 4 5 8 9 10
1 11 12 12 12 12 11 11 11 11 11 11 11 11 11 11
2 12 20 38 55 60 11 13 14 14 16 10 11 11 12 13
4 13 527 ∗ ∗ ∗ 12 27 48 59 60 8 8 9 9 9
6 13 197 ∗ ∗ ∗ 12 29 60 129 241 6 6 6 6 7

Table 3. Number of iterations for residual reduction by 108

Figure 12. Direction of dominating anisotropy inΩ = (0, 1)2 for θ defined by 7.1.

8. Conclusions

New strategies are considered for constructing and analyzing optimal order two- and multilevel
preconditioners for linear systems arising from the FE discretization of selfadjoint second order
elliptic problems using quadratic elements. The focus is onthe robustness for strongly anisotropic
problems.

In the case of linear elements robust multilevel preconditioners are obtained utilizing hierarchi-
cal decompositions where the related constant in the strengthened Cauchy-Bunyakowski-Schwarz
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Nonlinear AMLI W-cycle:k1 = 6

δ = 1 No Global Smoothing Point G-S Smoothing Block G-S Smoothing

@
@
@k2

ℓ
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

0 12 13 13 13 14 12 12 12 12 13 12 12 12 12 13
1 11 11 11 12 12 11 11 11 11 11 11 11 11 11 11
2 11 19 42 101 417 11 12 13 14 16 10 10 11 11 12
4 13 ∗ ∗ ∗ ∗ 11 27 56 91 126 8 8 9 9 8
6 13 ∗ ∗ ∗ ∗ 12 30 59 117 232 6 6 6 6 7

δ = −1 No Global Smoothing Point G-S Smoothing Block G-S Smoothing

@
@
@k2

ℓ
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

0 3 3 3 4 5 2 3 3 3 4 2 3 3 3 4
1 11 12 12 12 13 11 11 11 11 11 11 11 11 11 11
2 12 20 42 99 336 11 13 14 15 18 10 11 11 12 13
4 13 ∗ ∗ ∗ ∗ 12 28 56 96 148 8 8 9 9 9
6 13 ∗ ∗ ∗ ∗ 12 30 59 121 209 6 6 6 6 7

Table 4. Number of iterations for residual reduction by 108

Nonlinear AMLI W-cycle:k1 = 6

δ = −1 Block J Smoothing

@
@
@k2

ℓ
1 2 3 4 5 6

0 3 3 3 3 4 5
1 11 11 11 11 12 13
2 10 10 12 12 15 18
4 8 8 8 9 10 10
6 6 6 6 6 6 7

Table 5. Number of iterations for residual reduction by 108

(CBS) inequality is uniformly bounded with respect to both mesh and coefficient anisotropy. The
growth of the condition number due to anisotropy is absorbedby the pivot block, which arises on
each finer level in the recursive refinement procedure, corresponding to the added degrees of free-
dom on that level. Unfortunately, this approach is not applicable when higher order elements are
used.

The new results are in the spirit of nonlinear AMLI methods and of using additive Schur comple-
ment approximations (ASCA) instead of standard hierarchical basis (HB) decompositions. There is
a particular emphasis on two representative non-grid-aligned cases of (an)isotropic/(non)orthotropic
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Nonlinear AMLI W-cycle:ε = 10−6

No Global Smoothing Point G-S SmoothingBlock G-S Smoothing
HHHHHHθ

ℓ
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

0 7 7 7 7 7 7 7 7 7 7 6 6 6 6 7
π/180 13 42 119 ∗ ∗ 11 19 27 54 81 8 9 9 10 10
π/36 11 21 49 86 226 11 13 14 15 19 10 10 11 11 12
π/18 11 13 18 25 35 11 11 11 12 12 10 10 10 11 11
π/6 12 12 13 17 24 12 12 12 12 13 12 12 12 12 13
π/4 12 13 13 13 14 12 12 12 12 13 12 12 12 12 13

Table 6. Number of iterations for residual reduction by 108

Nonlinear AMLI W-cycle convergence for rotated diffusion problem:θ = π/36

No Global Smoothing Point G-S SmoothingBlock G-S Smoothing
HHHHHHε

ℓ
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

100 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7
10−2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10−3 10 11 11 12 11 10 10 10 10 10 10 10 10 10 10
10−4 11 15 19 20 22 11 12 13 13 13 10 10 11 11 11
10−5 11 20 34 42 45 11 13 14 14 15 10 10 11 11 12
10−6 11 21 49 86 226 11 13 14 15 19 10 10 11 11 12
10−8 11 21 55 246 ∗ 11 13 14 16 25 10 10 11 11 12

Table 7. Number of iterations for residual reduction by 108

and rotated diffusion problems. Several new constructive ideas are implemented. They include a
combination of properly introduced augmented coarse grids, overlapping domain decomposition for
ASCA and global block (Jacobi or Gauss-Seidel) smoothing. The augmented coarse grids have
a key role and are based on the important conclusions from theanalysis of connectivity strength
(see Fig. 3–6).

The condition number analysis based on the CBS constant has been adapted (generalized), which
resulted in locally computable estimates. The presented numerical tests demonstrate that some of
the theoretical estimates are potentially pessimistic. Some very promising testing for settings be-
yond the assumptions in the analysis authenticating the proposed approach have been conducted.
In this context, it is noteworthy that the block Gauss-Seidel smoother corresponding to a fixed di-
rection (aligned with the grid) remains very effective in the case of varying direction of dominating
anisotropy as long as the direction does not differ very much from the alignment of the smoother,
see Fig. 11–12.
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Nonlinear AMLI W-cycle:θ = −π(1− |2x− 1|)/12

Point G-S Smoothing Block G-S Smoothing

@
@
@ν

ℓ
1 2 3 4 5 6 1 2 3 4 5 6

0 11 11 15 28 63 17911 11 15 28 63 179
1 11 11 12 14 19 34 10 11 11 12 15 22
2 11 11 11 13 17 29 10 11 11 11 13 17
3 11 11 11 12 16 26 10 11 10 11 12 16
5 10 11 11 12 15 23 10 10 10 11 11 14
10 10 11 11 11 13 19 10 10 10 10 11 12
20 10 10 10 11 12 17 10 10 10 10 10 11

Table 8. Number of iterations for residual reduction by 108

Complexity of nonlinear AMLI W-cycle

ℓ 1 2 3 4 5 6 7

σΩ 1.64 1.67 1.67 1.67 1.67 1.67 1.67
σA 2.21 2.48 2.64 2.73 2.77 2.80 2.81

Table 9. Grid complexityσΩ and operator complexityσA

Further, the proposed algorithm for constructing multilevel preconditioners has the potential to be
generalized also to strongly anisotropic 3D elliptic problems and unstructured grids. However, it is
important to mention that while the suggested ASCA technique can be applied directly in these cases,
the complementary smoothing iteration has to be adapted properly with respect to the anisotropy.
For instance, in the simplified case where the dominating anisotropy is in planar directions this
would require a plane smoother instead of a line smoother.
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