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ROBUST MULTILEVEL METHODS FOR QUADRATIC FINITE ELEMENT
ANISOTROPIC ELLIPTIC PROBLEMS

J. KRAUS, M. LYMBERY, AND S. MARGENOV

AsstracT. This paper discusses a class of multilevel preconditmbased on approximate block fac-
torization for conforming finite element methods (FEM) eoyphg quadratic trial and test functions.
The main focus is on diusion problems governed by a scalar elliptic partidfedential equation
(PDE) with a strongly anisotropic ctiicient tensor. The proposed method provides a high robust-
ness with respect to non-grid-aligned anisotropy, whidtisieved by the interaction of the following
components: (i) an additive Schur complement approximatioconstruct the coarse-grid operator;
(ii) a global block (Jacobi or Gauss-Seidel) smoother cemgnting the coarse-grid correction based
on (i); and (iii) utilization of an augmented coarse grid,igthenhances thelgciency of the interplay
between (i) and (ii); The performed analysis indicates tigl hobustness of the resulting two-level
method. Moreover, numerical tests with a nonlinear algebraultilevel iteration (AMLI) method
demonstrate that the presented two-level method can bésdpmlccessfully in the recursive con-
struction of uniform multilevel preconditioners of optih@ nearly optimal order of computational
complexity.

1. INTRODUCTION

Numerous papers have previously dealt with the constmetinal the analysis of robust multilevel
methods and algorithms for linear finite element (FE) attipyystems where hierarchical basis (HB)
approaches as proposed in [6] have been further exploiésd,esg., [19, 28]. Regarding related
quadratic FE discretizations little exists in the literatusee, e.g., [1]. Moreover, in [22] and [2]
it has been indicated that for highly anisotropic elliptioiplems hierarchical two-level splittings
which apply both piecewise linear and piecewise quadragsbfunctions do not lead to robust
multilevel preconditioners. The use of semi-coarsenirgyled to the first optimal order multilevel
algorithms for biquadratic FE systems arising from gridjiaéid discretizations of elliptic problems
with an orthotropic diusion tensor, cf. [20] and [21] for detalils.

In the general setting of an arbitrary elliptic operatorwbkuer, for quadratic FE discretizations
the standard HB techniques do not result in splittings incwhihe angle between the coarse space
and its hierarchical complement is uniformly bounded wéspect to the mesh afod the codicient
anisotropy, cf. [10]. The direct application of the two-é¢®chur complement based preconditioner,
as first suggested in [15], avoids the construction of a Iilreal basis but still does not result
in a robust multilevel algorithm as the numerical result$lib] demonstrate. The purpose of this
work is to develop a class of robust multilevel methods foadpatic finite element anisotropic
elliptic problems. An essential building block of the praddioners proposed in this paper is a
technique referred to as additive Schur complement appraton (ASCA), which can be viewed
as a generalization of the method introduced in [15], |ty eonsidered in [4, 23, 24], and evolves
the idea suggested in [16, 17]; The ASCA algorithm is basedamnputing and assembling exact
Schur complements of local (8tiess) matrices associated with a covering of the entire ofobya
overlappingsubdomains.
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Although this technique was originally developed and dbsd for elliptic problems with highly
oscillatory codicients discretized by linear and bilinear conforming fietements, it provides a ba-
sic tool for the solution of more general problems includiog-symmetric and indefinite problems
and using more general discretization techniques incudon-conforming methods and higher or-
der elements. In this article, ASCA is investigated for qaéid elements and strongly anisotropic
elliptic problems with a main emphasis on non-grid aligneigatropy.

Multilevel methods based on ASCA, similarly to elementdzhslgebraic multigrid [7, 13] and
smoothed aggregation multigrid [26, 29], rely on energyimination principles. Distinctive fea-
ture, however, is that no interpolation operator is requinnen ASCA is used to compute the
coarse-grid operator. Moreover, since the ASCA is assaimitem local contributions, which
makes a global triple-matrix product redundant, the prieskpreconditioners can be implemented
efficiently on parallel computer architectures.

Another innovative feature of the preconditioners studiethis work is that they are based on a
multilevel (approximate) block factorization algorithseg, e.g., [27]) that relates the matrix blocks
to a sequence of nested augmented grids. Augmenting theéesth(coarse) grids allows to incor-
porate an ffective complementary correction step which can be accaimgdi by block smoothing.
The latter is important in the case of nearly grid alignegatmbpy because there the AMLI proce-
dure based on ASCA does not reduce all error mottestvely.

These important characteristics of the algorithm, as mtaved demonstrated in the next sec-
tions, improve the convergence of the related subspaceatmn methods significantly providing
robustness when solving quadratic FE systems evoked byyhagisotropic elliptic problems. The
proposed new constructions are followed by new ideas fovexgence analysis.

The remainder of the paper is organized as follows. Fornmnatf an anisotropic elliptic model
problem and its discretization by quadratic finite elememéspresented in Section 2. In Section 3
the advantages of introducing an augmented coarse gridsmesded along with the required pre-
liminary reduction step. The construction of a recursive-tevel block factorization method based
on ASCA on a sequence of nested augmented coarse grids isredgubin Section 4. Section 5 con-
tains the analysis of a block Jacobi smoother for the firdllefthe recursively applicable two-level
method. This type of smoother is well suited to complemerntatanary iterative method based on
the two-level preconditioner obtained from ASCA, which rsalyzed in Section 6. The resulting
preconditioner (with a global block smoother) can servelailding block in a nonlinear algebraic
multilevel iteration (AMLI) procedure. The numerical rétsipresented in Section 7 demonstrate the
potential of this approach for quadratic finite element agpnations of anisotropic elliptic prob-
lems where the direction of dominating anisotropy does @otlto be aligned with the grid. The
paper concludes with final remarks.

2. PROBLEM FORMULATION

2.1. The elliptic model problem. Consider the second-order elliptic boundary-value proble

(2.1a8) -V (k(x)Vu(x)) = f(x) in Q,
(2.1b) u = 0 onlIp,
(2.1¢) (k(xX)Vu(x))-n = 0 onTIy.

Here Q denotes a convex polygonal domain irf,R is a given function inL,(Q), andu is the
unknown function that we seek in the space

HY(Q) = {ve Ly(Q) : va-Vvdx< oo}
Q
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subject to the boundary conditions (2.1b)—(2.1c). The bawl" = 0Q is the union of a nonempty
partI's on which the homogeneous Dirichlet condition (2.1b) is isguband a (possibly empty)
partI'y on which the solutioru has to satisfy the homogeneous Neumann condition (2.%c), i.
I' =I'p UI'y. The codlicient tensok(x) = (ki (x))i":j:l is a symmetric positive definite (SPD) matrix
on, andn denotes the outward unit vector normal to the boundiagyoQ.

The domain is assumed to be discretized by a partifipon which the functionk;;(x) are smooth
over each elememte 74,. Hence, the tensdi(x) can be well approximated by a piecewise constant
SPD matrixke, i.€e.,

ke:ll ke:12
ke:21 ke:22

wherekei;, i, ] = 1,2, are constants and dkgf > 0.
Later two variants of Problem (2.1) are considered whichespond to the following choices of
the codficientke:

(&) The(an)isotropig(non)orthotropic problenassociated with
. 1 51— 10%)10°%
51— 10710 % 107 ’

wherek; andk, are nonnegative integers afié- +1.
(b) Therotated dffusion problenassociated with

(2.2) K(X) ~ ke = ¥YXxee VeeTh,

(2.3)

£+ cos6 coshsing
(2.4) ke =
cosfsing &+ Sif o

]zsl + bbT,

wheree > 0 andb' = (cosb, sind) for a piecewise constant angle= 6.

Choosingk; = 0 in (2.3) corresponds to the orthotropic problem which togé values ok,
is strongly anisotropic, i.e., the cieient matrix is nearly singular. If for a fixed value kf we
increase the value d, the problem becomes more and more nonorthotropic and théaieet
approaches a (second type of) singularity.

The setting of (2.4) allows to study problems with a givendixe varying direction (angle) of
anisotropy. Non-grid-aligned anisotropy in general is mowre dificult to handle than orthotropy
(or grid-aligned anisotropy) thus far.

2.2. Finite element method using piecewise quadratic functions(2.1) has the following weak
formulation: Givenf € L(Q), findu e V = H3(Q) = {ve H}Q) : v=0onTp}, such that

(2.5) A(,v) = L(v) YveV,
where
A(u,v) = f K(X)Vu(x) - Vv(x)dx,
Q
L) = f f(X)v(x)dx.
Q

The variational problem (2.5) is discretized via the finiteneent method using conforming
quadratic elements. That is, the infinite-dimensional splcin (2.5) is replaced by the finite-
dimensional subspac¥;, := {v, € C°%(Q) : vile € P2(€) for all e € 71} whereP,(€) denotes the set
of quadratic functions on an elementandv|e is the restriction ofs, one.
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The finite element method for (2.1) reads as follows: Ripé V, such that
(2.6) An(Un, Vn) = Ln(Vh) YVh € Vi,

where
f keVUun - Vvpdx,
ee‘Th

Ln(vh) = fgf(x)vh(x)dx.

The piecewise constant symmetric positive definite madgiss defined by integral averaged values
of k(x) over the elemerg from 7, i.e.,

Ke := éfek(x)dx.

Then finding the solution of (2.6) is equivalent to solvingyatem of linear algebraic equations

(2.7) Al = fi,

whereA,, is the global stiness matrixf, denotes the global right hand side vector, apds the
vector of nodal unknowns (expansion @i@ents). The subscriftindicates that the finite element
approximation relates to a partitiony, with mesh parameten. The stithess matrixA, can be
assembled from small-sized £66) symmetric positive semidefinite (SPSD) element matrigs
ie.,

(2.8) An= ) RIAR.

ecTh

An(Un, Vi)

The operatoR; restricts a global vector € R to a local vectow, defined on the elemest the
transpose matriR! defines the natural inclusion ef in R".

Note that for any (anisotropic) SPSD d¢heient tensoiks and related element matri corre-
sponding to the reference elemen{with vertices in (00), (1,0), (0, 1)) there exists a triangle
(whose shape depends only on the entriekgpsuch thatAs is proportional toA. whereA, is the
element matrix related to the diieient tensorke = I, cf. [10]. In other words the cdicient and
mesh anisotropy are equivalent when describing local (@wise) FE analysis. In this paper prob-
lems on uniform structured meshes (in which every triargesimilar to the reference elemes)t ~
and with an arbitrary piecewise constant §méent matrixk, are considered.

3. AUGMENTED COARSE GRID

3.1. Strong connections. Access to all individual fine-grid element fftiess matrices for a given
initial mesh is assumed subsequently in this paper.

Due to (2.8) the assembled globaltess matrixd, is sparse; its nonzero pattern, or equivalently,
its adjacency matrix, can be associated with the graph, of

To begin with we split the nodes of the fine mesh into two groupsre the first group consists of
all nodes that do not belong to the coarser mesh with meslisiz@h while the second one contains
nodes common to the two meshes. By eliminating the unknolatcbrrespond to the nodes from
the first group (in Fig. 1 they are shown as empty squares ades) from the linear system (2.7) a
reduced (Schur complement) system with a much denser gepuiaatrixS;, is obtained. In terms
of matrix graphs this means that the graptSgftypically has much more edges (connections); in
the case of a standard (full) coarsening it even becomes pletargraph.
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Ficure 1. Uniform mesh consisting of conforming quadratic eleraent

The aim is to construct such a sparse approxima@eaf the Schur compleme®;, that each row
of Qy to haveO(1) nonzero entries whil®, remains spectrally equivalent &, i.e., x(Q;'Sy) =
O(1), with a bound on the relative condition number that daesiepend on any possible anisotropy
of the codficientk(x) in (2.1).

(a) Standard coarse grid (b) Augmented coarse grid

Ficure 2. Coarse grid (associated with the reduced system)

An interesting relation between our approach and the nati@trongconnections used in AMG
is as follows. One measure for the strength of connectiowofrtodes and j, or, equivalently, of
the related two nodal unknowns, or, equivalently, the eglatariables); andu;, is the energy cosine
c; of the angle between the two basis functignandg;, which is defined by

EH
e
whereA. = {a;;} is the stifness matrix correspondingépcf. [8]. The connection (edge) represented
by the di-diagonal entries;; anda; is said to be strong if and only &; > 6.
Another common definition of strong connections derivedjioally for M-matrices is the one

used in the classical algebraic multigrid framework, seg., €9]. For a given threshold @ 6§ < 1
the variabley; is said to depend strongly an if and only if

(3.2) —aj > g max-a.

(3.1) Gj =

Note that the nonzero pattern induced by the strong cororecof a stifness matrix arising
from finite element discretization is directly related te tjualities of the element fiiness matrices
involved, i.e., in our case depending upon thiéudiion tensoke.

Remark 3.1. Note that for the specific case of orthotropic problems a sblbwo-level splitting of the
conforming FE space of piecewise quadratic functions wasemted if18]. The numerical results
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in [10] suggest that for non-orthotropic problems with “mild” aoisopy the same hierarchical
decomposition can be used to construct uniform multilekedgnditioners. This leads to the study
of FE matrices arising from strongly anisotropic non-orttapic problems in the present article.

Consider the nonzero pattern of an SPD matrix. In order tdystine strong connections in the
Schur complement system, categorized as such based ondadithe two measures (3.1) or (3.2), a
small-sized local structure matrix assembled from the eldrstitness matrices of 8 triangles that
form a square of side lengtth2vill be considered. Two diierent partitionings of the set of degrees
of freedom (DOF) into fine and coarse DOF will be compared. firsepartitioning gives rise to the
standard coarse grid with mesh skie= 2h, see Fig. 2(a), whereas the second partitioning results in
theaugmented coarse grias depicted in Fig. 2(b). Note that in order to obtain theiced system
over the augmented coarse grid (as shown in Fig. 2(b)) omnlgetlunknowns which belong to the
empty circles in Fig. 1 are eliminated.

The diffusion tensor (2.2) is tested for a strongly anisotropic amwtaorthotropic problem, i.e.,
ki1 = 1, ki = £0.009999, andk,, = 0.0001. Figures 3(a)-5(b) show the strong connections that
appear for a threshol@ € {0.5, 0.25,0.1} for both measures (when using the standard coarse grid).
The two measures result in quitef@rent (sub)sets of strong connections in this case; Futibér
measures tend to increase the stencil significantly wheredsing the threshold. However, when
using the augmented coarse grid, the classification of gitonnections becomes much more stable
with respect to the choice of the threshold since now theaipers closer to atM-matrix and also
results in much sparser approximations, as can be seen fgp®(&)—6(b). Immediately observed is
that contrary to the standard coarse grid all strong cororesfor the augmented coarse grid appear
only on horizontal lines and only between neighboring naaes when a very small threshold has
been utilized.

[ >l - =i w----- >l -
[ »>lle - [ »>lle -
B --- - >lie---- >l B - - - - e - - - - - ]
(a) Measure (3.1) (b) Measure (3.2)

Ficure 3. Strong connections fag; = 1, k;p = £0.009999k,, = 0.0001 and) = 0.5
on a standard mesh.

eIl e - m B - >l ->u
mezIllme T we . »a
el AR
(a) Measure (3.1) (b) Measure (3.2)

Ficure 4. Strong connections fd; = 1, ki, = £0.009999,k,, = 0.0001 andh =
0.25 on a standard mesh.
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N NS
i(-____*_!_-:___:)i e E L. o
(a) Measure (3.1) (b) Measure (3.2)

Ficure 5. Strong connections fag; = 1, k;p = £0.009999k,, = 0.0001 andh = 0.1
on a standard mesh.

- - - - - -
o -0 o -0

. - - . - -
o -0 o -0

. - -u . - -u

(a) Measure (3.1) (b) Measure (3.2)

Ficure 6. Strong connections fdq; = 1, ki = £0.009999 k,, = 0.0001 and) €
{0.5,0.25,0.1} on an augmented mesh.

3.2. Afirst reduction step. Furthermore, the augmented coarse grid also defines a HHe@abset
of DOF in order to reduce the linear system for the followiegson. Consider a permutation of rows
and columns of the matrix in (2.7), i.e.,

Ah:ll Ah:12

Ah:21 Ah:22

such thatAy,.,; corresponds to the CDOF, i.e., the DOF associated with thmented coarse grid.
For convenience, the same symBglis used for the permuted as well as the original (unpermuted)
matrix. Then the FDOF, which correspond Ag11, can be ordered lexicographically along the
diagonals of the initial mesh such that the matki, becomes tridiagonal, [5]; Consequently, the
direct solution of any linear system with,1; has linear (optimal) complexity. Note that the number
of FDOF and CDOF is approximately the same in this partitigni

Hence, if we are able to construct a two-level preconditiddyedefined by

_ [ | -AlAe || A ] |
oLi=

| Qi || ~AnzArn |
that is uniform, i.e.,B;, is spectrally equivalent tdy,, with respect to the mesh sireand any of
the parameters that define the fiméent tensor (2.2), and, if in addition every applicationBf
to an arbitrary vectov requiresO(N) arithmetic operations, there is an optimal order methad fo
solving the linear system (2.7). As fé, the block form ofB,, is induced by the same patrtitioning

of DOF, which relates the CDOF to the augmented coarse driéjg. 2(b). The matrixQ;, denotes
an approximation to the exact Schur complement

(3-4) Sh = An2z — Ah:ZlAf:;%_lAh:lz
of Ay.

b

(3.3)
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Note that the condition numbe(B; *Ay) of the preconditioned system satisfies the estimate

(3.5) k(B "An) < k(Q7"Sh)

and hence every spectrally equivalent approxima@gro S;, defines a uniform precondition&;,
to A, via (3.3). In the next section we will present a parametensd sparse Schur complement
approximation that serves this purpose.

4. RECURSIVELY CONSTRUCTED MULTILEVEL METHODS

Multilevel iteration methods, as the one presented in the sections, typically evolve from re-
cursive employment of two-level methods. In this way meitdl methods can be viewed as inexact
two-level methods. Their convergence properties are flostated to those of the corresponding
exact two-level methods, which are in the focus of this secti

In this paper only SPD two-level preconditioners are cosr@d mainly because their use in the
framework of the nonlinear AMLI is much better understood dheoretically established, [14,
27]. The use of ASCA in the construction of non-symmetriccpreditioners even for symmetric
problems like the present one might however be interestorg & practical point of view.

Motivated by our study ostrong connections/e will use a sequence of augmented grids in the
construction of a multilevel method. However, since thgiol problem is formulated on a standard
(and not on an augmented) grid two types of two-level methodequivalently, two types of two-
level preconditioners have to be considered. The first preiioner B refers to the level of the
original finite element mesh with mesh sizg.e.,

whereB? := B, is defined by (3.3). Note that (3.3) involves the inverse ef §thur complement
approximatiorQ© := Q,, which refers to the first augmented (coarse) grid. Thiséstarting point

for constructing a sequence of two-level preconditiomB¥fsdefined by
CREING (-1

| _Bn A12 Bll

I

I
QW™ } -ARBY
which will be used to approximai&® for allk = 1,2, ..., ¢. HereA¥ is identified with the Schur
complement approximation iB*, i.e.,
(4.3) AW = QKD vk > 1.
So0Q© denotes the Schur complement approximation used in (3.8)emis for 1< k < ¢ the matrix

QW denotes a building block of the two-level preconditione}4

When presenting the two-level matrica® andB® ™ (or their factors) in a two-by-two block
form itis always assumed that the rows and columns of thesgomshave been reordered according
to a partitioning of the seb™® of all DOF (or equivalently of the set of nodes of the corresting
grid) into a seﬂ)gk) of FDOF (or equivalently fine nodes) and a g% of CDOF (or equivalently
coarse nodes), i.e.,

(4.2) B =

DY = DY @ Y.
Fig. 7 illustrates the two-level splitting of the nodes o first augmented grid, which induces
the corresponding two-level partitioning 8f and BY (respectively BY)). The CDOF, which
correspond to the augmented coarse grid, are indicatedaol buares.
Using a two-level numbering ab® that meets the demand of consecutive numbering within
the setD® of FDOF and the seD® of CDOF in order to specify the first and the second block
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\\
\\

Ficure 7. A two-level splitting of the nodes of an augmented grid

\\

of unknowns, respectively, allows to apply the same constrm recursively on the coarse grid(s)
thereby using the Schur complement approxima€¥hto define the nextoarse(r) problem

4.1. Preliminaries and notation. Before we present an algorithm for constructi@y’ for all
k=0,1,2,...,¢letus comment on the notation. Ldj = (Va, EA) denote the undirected graph as-
sociated with a symmetric matrik e RN whereV, := {v; : 1 <i < N} denotes its set of vertices
(which in the present context are equivalent to nodes)Bnd= {e; : 1 <i < j < Nanda; # 0}

its set of edges.

Definition 4.1. Any subgraph F of Id we will refer to as a structure and let us denote withthe
set of structures whose relevant (local) structure magriée satisfy the assembling property

(4.4) Z REAER: = A
FeF
The restriction operatdR: (or Rs below) restricts a global vector (defined étp) to a given
structureF (or macro structuré).

Definition 4.2. A macro structure G is a union of structures & #. Further, the set of macro

structures is given by = (G =G; : i = 1,2,...,ng} and again it is assumed that any set of
associated macro structure matricék; = {As : G € G} has the assembling property
(4.5) > RLAGRs = A

Geg

For example, each structuFecould be given by a single elemest 7, or, a collection of ele-
ments, and the related structure matridese composed from the corresponding element matrices
Ac. Also, we want to assume that structures and macro strigctieenested meaning that for every
structureF € F there exists a macro structu@e G such thatr ¢ G. Hence, the relations (4.4)
and (4.5) imply thal®s can be written in the form

(4.6) Ag = Z orcRELFAFRGLF
FcG
whereo g are scaling factors that provide a partition of unity (se&lig. 9), that is,
(4.7) Y ore=1 YFefF.
GoF

Remark 4.3. A simple choice of a set of scaling factors that satisfies itimmd(4.7), used later
in numerical testing is to setrcs = ore Whenever Fc G and F c G', and to determinergg
according to the formula

1

4.8 = .
(48) 7re 26oF 1
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Since thernorgs depends only on the number of macro structures that contabut-not on the
particular G we will also denote the weights for the strueibyo¢ in this case.

Definition 4.4. If the intersection of two distinguishable structures (axaro structures) is empty,
e, ENFj=0(orGnGj=0)foralli # j, we will refer to the sef (or G) as a non-overlapping
covering; otherwise we will calF (or G) an overlapping covering.

4.2. Additive Schur complement approximation. Having defined the relevant notations, a de-
scription of the algorithm for computing the additive Scleomplement approximatior@®, 0 <
k < ¢ follows.

I. Approximation of &:
Assume a set of structurgs® = {F} which provides an overlapping covering of the initial
graphH©® = H,. Each structurd is a subgraph oH©, e.g., the subgraph composed of
eight quadratic conforming elemerg$orming a square, as illustrated by the shaded region
in Fig. 8(a). Here we suggest to overlap structures with dfaiheir width or height. Then
we apply the following algorithm:

............

(a) Nine overlapping struc- (b) One macro structurg;

tures used in the computa- used in the computation of
tion of Q© Q®, k > 1; G; is composed

of nine overlapping struc-
tures,Fi,, Fi,, ..., Fi,

Ficure 8. Coverings of the original (left) and augmented (coars)) @ight).

1. For allF € #© assemble the structure matriggsand split their DOF into two groups
in accordance with the splitting of the unknowns in the glayatem (2.7).
2. Due to the introduced node splitting for &lle #© compute the matrices

(4.9) Sk = Ar2o— AF:21AE;111AF:12-

3. A global approximatio)© to the exact Schur compleme®’ on the first augmented
(coarse) grid is assembled from the matri€esi.e.,

(4.10) Q?:=Sr0:= ) RL,SeReo.
Feg©)

Il. Approximationof & k=1,2,...,¢:
Let H® denote the graph of the approximati@f~>. Then consider overlapping coverings
F® andg® of HY by structures and macro structures, respectively. Inqaai, the ex-
ample in which each macro structuBee G® consists of nine 13-node structufess F®
which overlap with half of their width or height will be conlgred as illustrated in Fig. 8(b).
Then apply the following algorithm:
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1. For allG € g% assemble the macro structure mathix according to (4.6) using the
weights (4.8) to satisfy (4.7), cf. Fig. 9.

2. To eachAg perform a permutation of the rows and columns in agreemehtthe global
two-level splitting of the DOF and compute the Schur com@etn

(4-11) SG = AG:22 - AG:ZlAE;;lllAG:lz
3. Assemble a sparse approximatiQff := Sy to the exact global Schur complement

s® = A1 — ALY (AY)AY from the local macro structure Schur complements, i.e.,

(4.12) Q(k) = Sgy = Z RE;ZSGRG:Z-
Geg®
1/ 1/ 1/
12 N MENT
1/ 11 1/

Ficure 9. Weight distribution for assembly of one interior macnausture.

5. SMOOTHING ANALYSIS

Consider the approximatioc@ = Q© where the nodes (and the related DOF) in the corresponding
augmented coarse grid are ordered lexicographically dionigontal lines. Further |dd denote the
block Jacobi preconditioner @ = D + L + L. That is,D andL denote the block diagonal and
the strictly lower block triangular part @, respectively. Each of the blocks Bf corresponds to
a group of nodes that lie along one horizontal line in the.gfidr the augmented coarse grid there
are two types of such blocks: the first type is associated otiizontal lines passing through the
nodes in the standard coarse grid, which are illustratedlabssjuares in Fig. 2(b), and the second is
associated with those nodes that are added in order to atgimescoarse grid, which are illustrated
as empty squares in Fig. 2(b) (see also Fig. 6).

The smoother is analyzed for the model problem (2.1), withfaision tensor given by

(5.1) kﬁ[lgl

S €
wheree € (0, 1] andg € (- Ve, Ve). The next lemma is essential for our analysis.

Lemma 5.1. For the model problem (2.1) with Dirichlet boundary condits discretized on a uni-
form mesh with mesh size h there exist positive constamaisetg, such that the following estimates
hold:

(@ IIL+LTI<c(e+]s))

(b)  Amin(D) > cph?
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Proof. Equation (4.10) implies that the entrigsof (L + L") are assembled by the related entries of
the matricesSg defined in (4.9) for which the respective contributions fréay, belong to the set
{¢/3,—¢/12 (e + ¢)/12 (e + )/24}. The remaining matrices in (4.9) can be represented as

-1
AF:21A|:;11AF:12 =
-1 -1 -1 -1
= (Ar210 + Ar2te T Ar210) (Ariro + Arte + Arise T Arire) (Ari2ot

+Ar126 + AF:lZ;g)

whereAe10, Arli1.0 Ar12:0 do not depend on any parameter whileor,, Aclir,, Arize, Ar2ig,
Afh1e Arize andAgh, ., as the their subscripts indicate, have entries accorgifgirdere, ¢ and
es only. Therefore the entries @fp;glA;}llAF;lz that are not bounded in modulus by an expression of
the formc (e + |g|), where the positive constagtdepends neither annor ¢, result from the product
Ar21.0AF11.0AF120. HOwever the last is non-zero only in positions that do nat &m (L + L")
and thus, together with the previous observation regartiegontributing entries ofg.,, and the
assembling properties (4.10), (4.9), it follows thgt < ¢ (e + |s]) where the positive constantg
are independent afandg.

Then from Gerschgorin’s theorem it follows that the eigémea of the symmetric matrix.(+L")
lie within circles with center at the origin and ra@ Cy; (e + [sl) < cLe wherec, = miax{Z Ci 1,

J J
which proves statement (5.1).

In order to prove part (5.1) of the lemma consider the diagbloeks D; of D. Due to the use of
the augmented coarse grid each bl@;kesulting from the assembly (4.10) is tridiagonal, and for
the model problem with constant d&ieients due to the imposed Dirichlet boundary conditionsghe
are seven distinguishable cases, . {T1, T,, ..., T7}. Without loss of generality, the matrices
T4, Ts, Tg andT; are of type 1, that is, they correspond to horizontal linemeating nodes in the
standard coarse mesh wheréasT,, andT; are of type 2 and correspond to horizontal lines passing
through nodes that augment the standard coarse grid. Ttsesuficient to show that

(5.2) Amin(T;) = cr, 12, ie{l,...,7),
which implies that (5.1) holds fap = 1rn_ir;cTi.
<I<
If T; denotes the matrix associated with the nodes that lie ondbedary (on the top or on the
bottom of the domain) then due to the Dirichlet boundary dma{s) we haveT; = lni1yxn+1);
Hence (5.2) holds fof;. Let My = tridiag(-1/6, 1/3, —1/6) denotes the tridiagonal matrix of size

N corresponding to the one-dimensional scaled LaplaciamRiiichlet boundary conditions. Then
the other six matrices, whose entries depend andg, can be written as

(53) Ti = Ci + Ei,

whereC; = C, = C3; = My whereas

1 0 O
Ci=C5=Ce=|0 My1 O
O 0 1

and consequently the minimal eigenvalueGpfi = 1,...,6 is bounded from below by,in(Cs) >
h®z?/24 whereh = 1/N.
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Using the splitting (5.3) the remainder matridgsi = 1,...,6 are determined to be symmetric,
positive semidefinite (SPSD) and diagonally dominantdog (0,1], ¢ € (— Ve, \/E) and from
Gerschgorin’s theorem it is concluded ttgt> 0 (in an SPSD sense) which when combined with
the previous result completes the proof. |

Lemma 5.2. Let c< cp/c. ande + || < (cp/cL — ©)h?. Then the following inequality holds

€+ [¢] Ty, €+lsl
(5.4) (1+ e )(L L)+~ D20

Proof. Due to Lemma 5.1 we have

€ + sl T\ €t €+ sl e+lsl o
(1+ = )(L L)+ -z D2 ~(1+ = Jo(e + g1 + 7 Coh’l =

(e +]¢ D(CD CL(ChZC"‘hZE + |S‘|))

wherel denotes the identity matrix. The right hand side of (5.5nN$S&SD matrix if and only if
. cL(ch? + e+ [g))

(5.5)

D <= h2
which is equivalent to
o< o _ et
CL h2
Finally, whenc < cp/c, this condition is met foe + |¢| < (cp/c. — €)h? demonstrating that (5.4)
holds. O

With these two auxiliary results the following theorem cangooved.

Theorem 5.3. Consider the elliptic model problem with Dirichlet boungtatonditions discretized
on a uniform mesh with mesh size h. Further, let @Q© = D + L + LT denote the related additive
Schur complement approximation where D is the block diagand L the lower block triangular
part of Q; Here each block of D corresponds to the nodes alohgr&ontal line in the augmented
coarse grid. Then the iteration matrix of the block Jacobtimoed satisfies the bound

1
ju— -1 —_— =
(5.6) Il Q||Q <1 " =1-¢
where ¢ := (e + |¢])/(ch?) and thus ¢ s in the interval(0, 1).

Proof. First, note that

<1 -D1Qv,v > . <DQv,v>
(L D_lQH(zg = sup Q =1-inf L =1 - Umin
v#0 <V,V > v#0 <V,V >

whereumin, denotes the smallest eigenvalue of the generalized eilygrweoblemQv = uDv. There-
fore, ifc, := 1/(1 + &) := 1/(1 + €/(ch?)) is a lower bound fofumin, the inequality (5.6) holds.
In order to prove this we demonstrate that

Q-cD=(L+L")+(1-c)D>0
which due to the definition af; is equivalent to
(5.7) Q-cD=(L+L")+(1-c)D=1+co)(L+L")+coD>0.

Let ¢ := (e + |¢])/(ch?) wherec > 0 satisfies the inequality < cp/c_ for the constants, and
Cp in Lemma 5.1. Then Lemma 5.2 shows that (5.7) holdsefer|g| < n wheren is defined by

1 := (Cp/cL — Q).
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Onthe other hand, #+|g| > n, then writee+|g| = €9+|s0|+ (e+|s]—€0—|s0]) Where 0< e+|sol < 77
and € + |s| — € — Isol) > 0. Due to (5.4) it follows that

€ + |50l T\ . € *lsol
(1+ _r )L+ L)+ —z-D=20

and since > 0 then

€+ |§| Ty €+lsl € + |S‘0| Ty , €+ 5ol € + || — € — [<ol
= >
(1 WL+L")+ I D= (1+ )(L +L')+ ch? D+ = Q=>0,
and thus the proof of Theorem 5.3 is complete. O

Remark 5.4. For € + |¢| < 17 = (cp/cL — ©)h? we obtain ¢ = (e + |¢])/(ch?) < cp/(cLc) — 1 and thus
1-c=1-1/(1+cy) <1-(c.c)/cp where the involved constants neither depend on h nar on
andg and thus the block Jacobi method converges uniformly (0, 7], ¢ € (- Ve, Ve).

In practice one might prefer to use a block Gauss-Seidetadksof the block Jacobi iteration
because the former method defines a convergent smootherfeymmetric positive definite matrix.
It is known ([12]) that for SPD matrices and in case of coneerg of the (block) Jacobi method
the order of convergence of the block Gauss-Seidel methochotibe worse. This leads to the
following corollary.

Corollary 5.5. Under the assumptions of Theorem 5.3 the iteration matrik@block Gauss-Seidel
method satisfies the bound
1

(5.8) =0+ L) Qlig < 1~ oy

for some positive constant( dependent neither an ¢ nor h).

6. TWO-LEVEL ANALYSIS

In the smoothing analysis in the previous section we dera/bdund of the form

1 &
(1)y-1 A(L)}j2 ot
(6.1) - (M)A law < 1 l+§ 1+§
where M® denotes the block Jacobi (or block Gauss-Seidel) predoneit for A® = Q@ and

&= c > *Isl for some positive constant For convenience, for the remainder of this section thd leve

index will be skipped keeping in mind that the methods anoireges being studied are supposed to
be applied recursively (on all levels= 1,2, ..., £). That s, for brevityA = AY andM = M®,

This section is devoted to estimating the norm of the erropagation matrix
(6.2) Er. =1 -BjA

of a specific two-level method that is obtained for the patic choiceB = By, in the stationary
iterative method

(63) X(i+1) = X(i) + Br(i) = Xq) + B(b - AX(i)), i = 0,1,....

Hereb denotes a given right hand side vectgs,thei-th iterate, and ) = b — Axg thei-th residual
vector. The two-level precondition&= B, is given by

| Bi1
AyByt | Q

| By A
|

(6.4) Br =
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cf. (4.2), whereQ is a preconditioner fo = Ay, — A21AHA12, which satisfies the inequalities
~ 1

(6.5) S<Q< ES
in an SPSD sense for a positive constantater in this section the relation
(6.6) aS<Q<S
for the additive Schur complement approximat@uliscussed earlier will be verified, which shows
that it is possible to use the scaled matrix

~ 1
(6.7) Q:=-Q

a

in (6.4) and herewith satisfy (6.5). Consider the two-laweithod (6.3)—(6.4) with exact inversion
of the pivot block, i.e., the casB;; = A1 in which the preconditioner (6.4) is denoted By, .
Assuming that the relation (6.6) holds, and using (6.7% readily seen that

1 1
1 B (— - DA (= - DA
GA-Bu=| 9 1.1 20
(= -1DAx =S-Q+(=-1AnAAL
a a a
and hence
— 1
(6.8) A<Bq < EA'

For the more general ca®; # Ay; the condition numbex(B;iA) depends also on the (spectral)
approximation properties d@,,, which can for example be expressed via an equivalenceoelait
the type

(6.9) BA11 < Bi1 < Aig
and a second relation of the form
(6.10) Ao1B 1AL < (1 - x)Ax + YA AT Ar.

For details see, e.g., [2, 19, 25].

A sufficient condition for the stationary iterative method (6 3xbnverge is that the matricés
andB are both SPD and satisB > (1/2)A (in an SPSD sense). The stronger assumption (6.8) can
be used to estimate the norm of the operator (6.2) as follbwst we note that due to (6.8) we have

~—1/2 An—1/2
B, /?AB; /> < |
from which it follows that
(B7LAV, BitAV)A — (v, BILAV)A

(B A= 1)V, BrlAV)s
((AB7LAB;IA— AB A, V) < 0.

Hence
I(1 = B AVIZ = VIR = (Br AV, V)a — (V, Bt AV)a + (BrL AV, Bl Av)a
< IVIZ - (BrtAV,V)a
and thus B B
6.11) Il - BRAZ < IVl <B}§AV’ VA _ 9 inf BriAv,v)
V20 IVIZ VA0 (V,V)
< 1= Anin(BiEA) = 1= Anin(@7!S) = 1 - adnin(Q!S) < 1-a.
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From (6.11) it is seen that in order to estimate the norm o&tha propagation operator

Er =1 -B7lA
the constan& in (6.6) needs to be bounded from below. The upper bound &) (s been used in
the derivation of (6.8). Therefore consider the equivaddmetween the Schur compleménand its

additive approximatio® next. The upper bound in (6.6) follows from the well-knowmimization
property of Schur complements, i.e.,

T T T T
vV, QVZ =V, (Z RG;ZSGRGZZ] Vo = Z VG;ZSGVGZZ
GeG Geg
T T
.| Ve VG .l V1 Vi
= min As = min REA(;F\’G
Geg °* | Va2 VG:2 Gg | Vv \Z
T T
| Va1 Vi .l V1 Vi
< min (Z REAGRG) = min A = V3 SVs.
Y GeG \Z Vi Vo \Z

A lower bound fora can be derived from a local analysis, which is described lksife. A starting
point is the construction of the matrix

(6.12) C =) RICoRs,
GeGg

which is spectrally equivalent #, and, in addition, allows for a compatible two-level traorsfiation
with respect to the set of macro structure matrigks i.e.,

_ | cy C Chu C
(6.13) C= A11 A12 _ T 11 La2
C21 C22 C21 C22
whereld is of the form
I W
(6.14) J=
0 1

The basis transformation (6.13) is said to be compatible if

. Cu Cu |l W _
Caz = Co(W) = [W', 1] [ oo ] | ] = Z R2Co22Re:2

Cx Cyx GeG
and
_ _ Cei11 Coiz || We
Co22 = Ca2(We) = [WE, I6]
c21 Ce22 le

whereWg = W|g = RG;1WR£:2 is the restriction oW to G for all G € G, cf. [17]. HereRs1
andRg., are obtained froniRs by deleting all its rows and columns corresponding to CDQ¥f (f
Rs:1) and FDOF (forRs:2). Note that due to the overlap of the macro struct@esertain rows and
columns ofCg may vanish while the global matric€&andA still remain spectrally equivalent. In
the estimate that is presented here, each m@yiis obtained from eliminating in the corresponding
matrix A the FDOF for boundary nodes Gfand inserting one row and one column with all zeros
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for each eliminated FDOF. The 8 FDOF that affeeted by this elimination step are depicted as
empty circles in Fig. 7.

In order to show the equivalenceAfindC note that overlapping macro structures are constructed
from overlapping structures recursively (in the same waius it is possible to use the weighrtgem

for Fg’) cG,p=12,...,9asin Fig. 9 which are defined now for the macro struc@i@nd its
eight neighbor&’ that share at least one structure wthThe weight foiG is defined byrg = TS

whereF$) is the structure in the center 6 Furthermoreg ), or@, oo, oo define the weights
G G G G

for the neighbor§’ in the directions south-west, south-east, north-westpantih-east (which share
one structure witls), and finally, OE@, TE®, TE®, TE®) define the weights for the neighbdss to

the south, west, east, and north, respectlvely (WhICh shatrictures witl). Then, denoting by
the solution of the equation

1 1
1s+4-s+4-s=1
+ > + 2
it follows that

sC:=s 0cCs|=s) Ci;<C.
S| % eece]-sy,

GeG \G':IFeGNG’ Geg

Note thatG’ = G also appears in the second sum. As a consequence, the conditi

(6.15) BA < sC

impliesBA < C and sinceCg < Ag for all G € G we obtain

(6.16) BA<C <A

Note that a constamt satisfying (6.15) can be determined by solving the locaéeuglue problems

1
EAE;VG = /IGCE;VG

and then setting := 1/ mGax{/IG;maX}. HereA; is the canonical inclusion &g in the domainD(Cg)
of Cg, i.e.,Ag = R;(C,G)ﬁGAGRD(C/G)ﬁg. Next, the equivalence relation (6.16) implies

(6.17) BSa < Sc

whereS, = S andS¢ denote the global Schur complement&atndC, respectively. Finally, acom-
patible basis transformation f@ has to be constructed. The problem is to define the inteiipalat
weights in the submatri¥V in (6.14) in such a way that no FDOF in the intersection of twacm
structuress andG’ interpolates from CDOF other than those in the same inteose®©ne possible
choice ofW corresponds to a local minimum energy extension with réspe&.«, Ace, Am, and

Aco for the interior FDOF of &, FS), FY, ), respectively. The remaining four FDOF Gfcan

be interpolated in the same way from the coarse DOFBfF{, F®), F®), respectively. Thenitis
well-known and easy to see that for the two-level splittiaated to the transformation (6.13) we
have the estimate

(6.18) Sc < Cao.

Moreover, using the local compatibility of the transforinat(6.13), a basic relation between any
generalized hierarchical coarse-grid matrix and the Schmplement, which involves the constant
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y in the CBS inequality, and the fact thég < As and hencé&c, < Sa, = Sg, it follows that

1 1
6.19 Ca = Cgo < . < Sy = ——
( ) 22 Z G:22 Z 1_ ’)/G 1— (ma)%{yG})z ; A 1— yzmaXQ

whereymax = mGax{yG} denotes the maximum of the local (macro structure) CBS eoitst Finally,
by combining (6.17)—(6.19) one gets

(6.20) B(1-¥aadSa < Q
and thus also a tool to estimate locally the constaint (6.11), i.e.,

S 1 - (maxs{ys))®
2 =. Q.

maXG{/lG:max} o
In Fig. 10 the error reduction factor of the two-level metl§6B)—(6.4) is plotted for the orthotropic
problem. The results show uniform convergence, that is sttess with respect to the parameter
€, which was varied in the range fron! B 272°. As it can be seen from Fig. 11 the results are
worse for the rotated ffusion problem. However, although the convergence in gédetariorates
whene tends to 0, for a (moderate) fixed valuesdt is still uniform with respect to the angle of the
direction of strong anisotropy. As the numerical resultthim next section demonstrate the bounds
obtained from this local analysis are rather pessimistic.

(6.21)

1.0C

0.95

0.9C

0.8

0.8C

0 5 10 15 20

Ficure 10. Orthotropic probleme = 27, t € {0,1,...,20}: Upper bound (+ «)
in (6.11) derived from local estimate (6.21) plotted aggins

LOG . e,

095 oo™ e,
T

0.8

0.8C

0 20 40 60 80

Ficure 11. Diffusion problemg € {1071,102,1073}, 6 € {0°,1°,...,90°}: Upper
bound (1- «) in (6.11) derived from local estimate (6.21) plotted agéén
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7. NUMERICAL TESTS

The numerical results presented in this section illustifadeperformance of the nonlinear alge-
braic multilevel iteration (AMLI) method, which is based anrecursive application of a (block)
smootheM and a two-level precondition&_ as they have been analyzed in Sections 5-6, on a set
of representative test problems.

The nonlinear AMLI method was used to solve the linear syst2m) determining the finite
element solution of (2.6). The FE approximation is based iengwise quadratic functions on a
uniform mesh consisting oNxN elements (triangles) wheié = 22 i.e.,N = 8,16,.. ., 256.
For convenience, Dirichlet boundary conditions have begpmosed upon the entire bounddry=
0Q, i.e.,I'p =T in (2.1b), in all experiments as the numerical results fbeoboundary conditions
are very similar. The coarsest (augmented) gfi¢ 0) consists of 41 nodes, which corresponds to
a uniform mesh with 22?x22 = 32 elements, as depicted in Fig. 2(b). The finest mesh isrwtai
from ¢ = 1,2,...,6 steps of uniform mesh refinement. Ror= 6 the finest mesh consists of
2x256x256 quadratic elements with (5%21)x(512+ 1) nodes.

A comparison between threefidirent implementations of the nonlinear AMLI W-cycle method
which differ by the choice of the global smoother is presented, namatjgant (a): no smooth-
ing, variant (b): point Gauss-Seidel (G-S) smoothing, aradiant (c): block Gauss-Seidel (G-S)
smoothing. The W-cycle performs 2 inner generalized caateigradient (GCG) iterations on every
coarse level except the coarsest one on which the probleoivsdsexactly (by using a complete
factorization). Since we are interested in a performaneéuation of the linear solver only, we have
chosen the vector of all zeros as the right hand side of (2d)rtialized the outer preconditioned
GCG iteration (the nonlinear W-cycle AMLI) with a random e

In the first set of experiments the elliptic model problem asqal in (2.3) is considered whekge
andk; take values from the s, 2, 4, 6} and{0, 1, 2, 4, 6} respectively and = +1. Table 1-Table 4
demonstrate that the convergence rate deteriorates vatbasing non-orthotropic anisotropy and
increasing problem size without using a global smoothers Ereflected by the growing number
of outer GCG iterations that are required to reduce the wesioly the prescribed factor of 10The
introduction of one point Gauss-Seidel smoothing step avgs significantly the convergence rate
of the proposed algorithm while the implementation of a gldidlock Gauss-Seidel (G-S) smoother
leads to (almost) uniform convergence of the iterative metwhich finally results in an optimal
(or nearly optimal) order solution process. For complessra the presentation some numerical
results for the global block Jacobi smoother are presemtd@ble 5. For the considered strongly
(an)isotropig(non)orthotropic problem (2.3), the nonlinear AMLI solsevith global block Gauss-
Seidel and block Jacobi smoothers exhibit very similar eogence rates.

In the second set of experiments the rotatetiidion problem (2.4) is considered. In Tables 6 and
7 the angled, = 6 is constant over the entire domain whereas Table 8 summsatieeresults that
are obtained when varyingismoothly from the left to the right border of the doma&in= (0, 1)
according to the function

Ca(l - [2x- 1))

(7.1) 0 = s

for xe (0, 1).

The symbob, initially defined in the last table, denotes the number otklGauss-Seidel smooth-
ing steps per one GCG iteration on each coarse grid (excetffteonoarsest one); That ig,= 0
corresponds to the case in which no global smoothing is egpli

The obtained results confirm once more the importance ajdoiring a (global) block smoother
in the AMLI algorithm. In this way it is possible to construatrobust multilevel method with
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Nonlinear AMLI W-cycle:k; = 0

No Global Smoothing Point G-S Smoothing Block G-S Smoothing
sz 2 3 45 6|2 3 4 5 6|2 3 45 6
o(vr 7v 7 7v 7\7 7 17 7 7|7 7 77 7
119 9 9 9 9/9 9 9 9 9/9 9 9 9 9
2 |10 10 10 10 10{10 10 10 10 1010 10 10 9 9
4/8 8 9 9 9,8 8 9 9 9|7 7 8 8 8
6 \7 7 7 7 7|7 7 7T 7T 7|6 6 6 6 7

TasLe 1. Number of iterations for residual reduction by?10

Nonlinear AMLI W-cycle:k; = 2
6 =1 | No Global Smoothing Point G-S Smoothing Block G-S Smoothing

2 3 4 5 6]/2 3 4 5 62 3 4 5 6

0 12 12 12 12 12|12 12 12 12 12|12 12 12 12 12
1 11 11 11 11 17)11 11 11 11 117j11 11 11 11 11
2 11 13 16 17 17/10 11 12 12 1310 10 10 11 11
4 12 22 27 31 + |11 16 19 21 1198 8 9 9 8
6 12 23 28 34 =+ |11 18 21 27 2066 6 6 6 7

6 = =1 | No Global Smoothing Point G-S Smoothing Block G-S Smoothing

2 3 4 5 6|2 3 4 5 6|2 3 4 5 6

0 10 11 12 12 12|10 11 12 12 1210 11 12 12 12
1 11 11 11 11 1111 11 11 11 11}11 11 11 11 11
2 11 14 17 18 18|11 12 12 13 14/10 10 10 11 11
4 12 22 27 31 32|11 16 19 22 2218 8 9 9 9
6 12 23 28 32 =« |11 17 21 25 2336 6 6 6 7

TasLe 2. Number of iterations for residual reduction by?10

optimal (linear) complexity of each (outer) iteration. Trabustness is reflected in the (nearly)
uniform convergence, i.e., in the (almost) constant nurobéouter) iterations.

In order to give an estimate of the computational complesitthe method, the number of work
units of one outer nonlinear AMLI W-cycle iteration has beaeasured and found to be nearly
constant. Here a work unit is understood as the work (timeeffinest-level matrix-vector product.
The work is approximately 26 and 28 units when using one gatss-Seidel and one block Gauss-
Seidel smoothing step, respectively. Finally, in Table & ¢giid complexityoo and the operator
complexityop are reported for dierent levels of mesh refinement.
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Nonlinear AMLI W-cycle:k; = 4

6 =1 | No Global Smoothing Point G-S Smoothing| Block G-S Smoothing
sz 2 3 4 5 6|2 3 4 5 6|2 3 4 5 6
0 12 13 13 13 1412 12 12 12 12/12 12 12 12 13
1 11 11 11 11 1211 11 11 11 11}11 11 11 11 11
2 11 19 38 52 5911 12 13 14 1510 10 11 11 12
4 13 « % = = [11 29 48 59 1198 8 9 9 8
6 13 198 x =« =« |12 29 56 126 2616 6 6 6 7

6 = =1 | No Global Smoothing Point G-S Smoothing| Block G-S Smoothing

k2€234562345623456
0O |5 5 8 10114 5 8 9 10/4 5 8 9 10
1 |11 12 12 12 1211 11 11 11 11/11 11 11 11 11
2 |12 20 38 55 6011 13 14 14 16/10 11 11 12 13
4 |13 527 s+ « |12 27 48 59 608 8 9 9 9
6 |13 197 « x |12 29 60 129 2416 6 6 6 7

TasLe 3. Number of iterations for residual reduction by?10

Ficure 12. Direction of dominating anisotropy i = (0, 1) for 6 defined by 7.1.

8. CONCLUSIONS

New strategies are considered for constructing and amagjy@ptimal order two- and multilevel
preconditioners for linear systems arising from the FE reigzation of selfadjoint second order
elliptic problems using quadratic elements. The focus isherobustness for strongly anisotropic
problems.

In the case of linear elements robust multilevel precoodérs are obtained utilizing hierarchi-
cal decompositions where the related constant in the dtrengd Cauchy-Bunyakowski-Schwarz
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Nonlinear AMLI W-cycle:k; = 6

6 =1 | No Global Smoothing| Point G-S Smoothing Block G-S Smoothing
kzg 2 3 4 5 6|2 3 4 5 6|2 3 4 5 6
0 12 13 13 13 1412 12 12 12 13|12 12 12 12 13
1 11 11 11 12 12/11 11 11 11 11/11 11 11 11 11
2 11 19 42 101 417111 12 13 14 16|10 10 11 11 12
4 13 % % x * |11 27 56 91 126 8 8 9 9 8
6 13 = % = * |12 30 59 117 2326 6 6 6 7
6 = —1| No Global Smoothing| Point G-S Smoothing| Block G-S Smoothing
sz 2 3 4 5 6|2 3 4 5 6|2 3 4 5 6
0 3 3 3 4 512 3 3 3 412 3 3 3 4
1 11 12 12 12 13/11 11 11 11 11/11 11 11 11 11
2 12 20 42 99 33611 13 14 15 18/10 11 11 12 13
4 13 % % % * |12 28 56 96 1488 8 9 9 9
6 13 % % x * |12 30 59 121 2096 6 6 6 7

TasLe 4. Number of iterations for residual reduction by?10

Nonlinear AMLI W-cycle:k; = 6

o0=-1 Block J Smoothing

¢ 1 2 3 4 5 6
ko

0 3 3 3 3 4 5
1 11 11 11 11 12 13
2 10 10 12 12 15 18
4 8 8 8 9 10 10
6 6 6 6 6 6 7

TasLe 5. Number of iterations for residual reduction by?10

(CBS) inequality is uniformly bounded with respect to botegh and coécient anisotropy. The
growth of the condition number due to anisotropy is absottiethe pivot block, which arises on
each finer level in the recursive refinement procedure, sparding to the added degrees of free-
dom on that level. Unfortunately, this approach is not aggtlle when higher order elements are

used.
The new results are in the spirit of nonlinear AMLI methodd ahusing additive Schur comple-

ment approximations (ASCA) instead of standard hieraadtbasis (HB) decompositions. There is
a particular emphasis on two representative non-grichatigcases of (an)isotropfonon)orthotropic
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Nonlinear AMLI W-cycle:e = 10°°
No Global Smoothing| Point G-S Smoothing Block G-S Smoothing

2 3 4 5 6|2 3 4 5 62 3 4 5 6

0 ‘T 7 7 17 7|7 17 7 7T 7|6 6 6 6 7
r/180 |13 42 119 = =« |11 19 27 54 818 9 9 10 10
/36 |11 21 49 86 22611 13 14 15 1910 10 11 11 12
/18 |11 13 18 25 35/11 11 11 12 1210 10 10 11 11
/6 12 12 13 17 24|12 12 12 12 1312 12 12 12 13
/4 12 13 13 13 14|12 12 12 12 1312 12 12 12 13

TasLe 6. Number of iterations for residual reduction by?10

Nonlinear AMLI W-cycle convergence for rotatedidision problems = /36

No Global Smoothing| Point G-S Smoothing Block G-S Smoothing
2 3 4 5 6|2 3 4 5 6|2 3 4 5 6

10° 8 8 8 8 (v ¢ ¢ 7 T1T\|\7 7 17T 1T 7
1072 10 10 10 10 1010 10 10 10 1010 10 10 10 10
1073 10 11 11 12 1110 10 10 10 10,10 10 10 10 10
104 11 15 19 20 22/11 12 13 13 1310 10 11 11 11
107 11 20 34 42 4511 13 14 14 1510 10 11 11 12
10°° 11 21 49 86 22611 13 14 15 1910 10 11 11 12
108 11 21 55 246 = |11 13 14 16 2510 10 11 11 12

TasLe 7. Number of iterations for residual reduction by?10

and rotated dfusion problems. Several new constructive ideas are impitede They include a
combination of properly introduced augmented coarse goxksrlapping domain decomposition for
ASCA and global block (Jacobi or Gauss-Seidel) smoothinge augmented coarse grids have
a key role and are based on the important conclusions fronarthg/sis of connectivity strength
(see Fig. 3-6).

The condition number analysis based on the CBS constantessdulapted (generalized), which
resulted in locally computable estimates. The presentedenigal tests demonstrate that some of
the theoretical estimates are potentially pessimistian&wgery promising testing for settings be-
yond the assumptions in the analysis authenticating thpgsex approach have been conducted.
In this context, it is noteworthy that the block Gauss-Skesteoother corresponding to a fixed di-
rection (aligned with the grid) remains verffective in the case of varying direction of dominating
anisotropy as long as the direction does ndiedivery much from the alignment of the smoother,
see Fig. 11-12.
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Nonlinear AMLI W-cycle: 6 = —x(1 — |2x — 1])/12
Point G-S Smoothing Block G-S Smoothing

1 2 3 4 5 6|1 2 3 4 5 6

0 |11 11 15 28 63 17911 11 15 28 63 179
1 11 11 12 14 19 3410 11 11 12 15 22
2 |11 11 11 13 17 2910 11 11 11 13 17
3 |11 11 11 12 16 2610 11 10 11 12 16
5 (10 11 11 12 15 2310 10 10 11 11 14
10 {10 11 11 11 18 1910 10 10 10 11 12
2010 10 10 11 12 1710 10 10 10 10 11

TasLe 8. Number of iterations for residual reduction by?10

Complexity of nonlinear AMLI W-cycle
{ 1 2 3 4 5 6 7

oo (164 167 167 1.67 1.67 1.67 1.67
op| 221 248 2.64 2.73 2.77 2.80 281

TasLE 9. Grid complexityoq and operator complexity a

Further, the proposed algorithm for constructing mulelgaeconditioners has the potential to be
generalized also to strongly anisotropic 3D elliptic pevhk and unstructured grids. However, it is
important to mention that while the suggested ASCA techaitpn be applied directly in these cases,
the complementary smoothing iteration has to be adaptgoepsowith respect to the anisotropy.
For instance, in the simplified case where the dominatingadrapy is in planar directions this
would require a plane smoother instead of a line smoother.
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