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Abstract. In this paper the idea of auxiliary space multigrid (ASMG) methods is introduced. The
construction is based on a two-level block factorization of local (finite element stiffness) matrices
associated with a partitioning of the domain into overlapping or non-overlapping subdomains. The
two-level method utilizes a coarse-grid operator obtained from additive Schur complement approxi-
mation (ASCA). Its analysis is carried out in the framework of auxiliary space preconditioning and
condition number estimates for both, the two-level preconditioner, as well as for the ASCA are de-
rived. The two-level method is recursively extended to define the ASMG algorithm. In particular,
so-called Krylov-cycles are considered. The theoretical results are supported by a representative
collection of numerical tests which further demonstrate the efficiency of the new algorithm for
multiscale problems.

1. Introduction

Partial differential equations (PDE) play a key role in the modeling of various processes that
occur in fields as diverse as physics, chemistry, biology, economics, engineering, and life sciences.

The numerical solution of PDE based on discretization techniques such as finite difference, finite
volume, and finite element methods typically reduces a continuous problem to a discrete problem
that finally is represented in the form of one or more systems of linear algebraic equations.

In many applications the arising linear systems are sparse and very large. Hence it is important to
construct efficient iterative solution methods that converge uniformly with respect to problem size
and parameters. The most successful approaches for achieving this goal are domain decomposition
(DD), see, e.g., [18, 23], and multigrid/multilevel methods, see, e.g., [9, 24, 25].

As has been shown in [8, 23] two-level DD methods are robust as long as the variations of the co-
efficients of the scalar elliptic equation are bounded inside coarse grid cells. Recently this robustness
has been achieved also for problems with general coefficient variations using coarse spaces based
on local generalized eigenvalue problems, see. [6, 7]. The latter approach has been generalized for
the mixed form and the stream function formulations of Stokes’ and Brinkman’s equations, see [5].
Other related techniques for constructing suitable coarse spaces for PDE modeling heterogeneous
media have been considered in [21, 22].

Regarding computational complexity, multigrid (MG) methods have asserted to be most efficient
since they have been demonstrated to be optimal with respect to the problem size, see [9, 25] and the
references therein. However, their design needs careful adaptation for problems with certain “bad”
parameters in the PDE model. From this perspective it is desirable to enhance their robustness in
the sense of covering wider problem classes, see [15].

The algebraic multilevel iteration (AMLI) framework provides useful tools to achieve this goal,
e.g. more general polynomial acceleration techniques or Krylov cycles resulting in nonlinear so-
called variable-step preconditioners, see [2, 3, 4, 16].
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In the present paper a non-variational multigrid algorithm for general symmetric positive definite
problems is introduced. The method is based on exact two-by-two block factorization of local
(stiffness) matrices that correspond to a sequence of coverings of the domain by overlapping or
non-overlapping subdomains. The coarse-grid matrix is defined via additive Schur complement
approximation (ASCA), see [12, 13, 14]. Its sparsity can be controlled by the size and overlap of
the subdomains. The coarse-grid correction step, as used in classical multigrid methods, however
is replaced by a correction that involves the application of an auxiliary space preconditioner. For
that reason the method studied in this paper is referred to as auxiliary space multigrid (ASMG)
method. The idea of integrating domain decomposition techniques into multigrid algorithms was
performed as early as in [17].

The remainder of the paper is organized as follows. In Section 2 a fictitious space preconditioner
based on ASCA is constructed and analyzed and further complemented by a smoothing process
defining an auxiliary space two-level preconditioner and a related stationary two-grid method. In
Section 3 a condition number estimate of the auxiliary space preconditioner is proven followed
by a theorem characterizing the ASCA. The recursive extension of the auxiliary space two-grid
method is defined and described algorithmically in Section 4. As known from the AMLI theory,
see [2, 3, 11, 20], the convergence of the multilevel algorithm depends on uniform two-level estimates.
In the present context the decisive quantity, analogous to the CBS constant in the hierarchical basis
methods, is given by the energy norm of a certain projection operator. Its efficient computation
by a multilevel algorithm is addressed in Section 5. Finally several numerical tests are presented,
addressing both, the performance of the ASMGmethod on a collection of challenging high-frequency
high-contrast problems as well as the computation of the spectral bounds of interest.

2. Auxiliary space two-grid method

2.1. Fictitious space preconditioner. Let {ΩGi
: i = 1, 2, . . . , nG} be a covering of the domain

Ω by non-overlapping or overlapping subdomains ΩGi
, i.e.,

(2.1) Ω =

nG⋃

i=1

ΩGi
,

where G = {Gi : i = 1, 2, . . . , nG} denotes a set of macro structures which correspond to the
adjacency graphs associated with the subdomains ΩGi

. The construction is such that the global
stiffness matrix A can be assembled from small-sized (local) symmetric positive semi-definite (stiff-
ness) matrices AGi

corresponding to the subdomains ΩGi
, see [13]. Then A can be written in the

form

(2.2) A =

nG∑

i=1

RT
Gi
AGi

RGi

where the operator RGi
restricts a global vector v ∈ V = IRN to the local space VGi

= IRnGi related
to the subdomain ΩGi

.
Consider a partitioning of the set D of degrees of freedom (DOF) divided into two subsets

(2.3) D = Df ⊕Dc,

where Df consists of fine DOF and Dc is the set of coarse DOF. Let the cardinalities of these sets
be denoted by N1 := |Df | and N2 := |Dc|.

Further, let nGi:1 and nGi:2 be the number of fine and coarse DOF respectively that are associated
with the subdomain ΩGi

. The dimension of the local space dim(VGi
) = nGi

then can be presented
as the sum

(2.4) nGi
= nGi:1 + nGi:2.
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Next the auxiliary (fictitious) space Ṽ = IRÑ of dimension Ñ = (
∑nG

i=1 nGi:1) +N2 is introduced

and a surjective mapping ΠD̃ : Ṽ → V is defined via the relations

(2.5) RT
1 =




R1:1

R2:1
...

RnG :1


 , R =

[
R1 0
0 I2

]
, ΠD̃ = (RD̃RT )−1RD̃,

where RT
1 is of size (

∑nG

i=1 nGi:1)×N1, the identity matrix I2 is of size N2×N2, and R and Π
D̃

are

of dimension N×Ñ . Here, D̃ is a block diagonal matrix of size Ñ × Ñ to be specified later.
Given the introduced splitting of the DOF into fine and coarse the matrices AGi

, i = 1, . . . , nG

and A can be written in a two by two block form

(2.6) AGi
=

[
AGi:11 AGi:12

AGi:21 AGi:22

]
i = 1, . . . , nG , A =

[
A11 A12

A21 A22

]
.

The Ñ×Ñ symmetric positive definite auxiliary matrix Ã is defined by

(2.7) Ã =




AG1:11 AG1:12R1:2

AG2:11 AG2:12R2:2

. . .
...

AGnG
:11 AGnG

:12RnG :2

RT
1:2AG1:21 RT

2:2AG2:21 . . . RT
nG :2

AGnG
:21

∑nG

i=1R
T
i:2AGi:22Ri:2




and since the matrices AG:i are SPSD with AGi:11 SPD, Ã is SPD and introduces an energy inner

product on the auxiliary space Ṽ .
Moreover, from (2.5) and (2.7) it follows the relation

(2.8) A = RÃRT .

Note that the addition of any fine DOF to the dimension of Ã is equal to the number of subdo-
mains to which it belongs, whereas the blocks that correspond to the coarse DOF are identical for

both the original matrix A and the auxiliary matrix Ã, i.e.,

(2.9) A22 = Ã22 =

nG∑

i=1

RT
Gi:2AGi:22RGi:2.

The matrix Ã11 has a block diagonal structure with blocks of size nGi:1×nGi:1 for i = 1, 2, . . . , nG

which allows for a cheap computation of the energy minimizing interpolation

P =

[
−Ã−1

11 Ã12

I2

]
.

The exact Schur complement of Ã then defines the Galerkin coarse grid matrix of the corre-
sponding variational two-grid method, i.e.,

Ac := P T ÃP = SÃ = Ã22 − Ã21Ã
−1
11 Ã12 = Q.

It is important to note that Ac can be determined without computing the (global) triple matrix
product. Instead, the coarse grid matrix can be assembled from its subdomain contributions, the
corresponding local Schur complements, which can be computed in parallel for all subdomains, i.e.,

Ac =

nG∑

i=1

RT
Gi:2(AGi:22 −AGi:21A

−1
Gi:11

AGi:12)RGi:2.
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The number of nonzero entries in Ac can be controlled by limiting the size nGi
of the subdomains

ΩGi
which guarantees the sparsity of the coarse grid matrix.

Remark 2.1. In [12, 1] it has been shown that under reasonable assumptions the Schur complements

SA and S
Ã
of A and Ã respectively are spectrally equivalent to a uniformly bounded condition number

κ(S−1

Ã
SA). In a more recent paper, [13], it has been demonstrated that by using a proper overlap

of the subdomains, the bound is even robust with respect to arbitrary jumps of a piecewise constant
coefficient in the scalar elliptic model problem.

In the following, let C denote the fictitious (auxiliary) space preconditioner defined via the
relation

(2.10) C−1 := Π
D̃
Ã−1ΠT

D̃
.

The idea of fictitious space preconditioning goes back to Sergei Nepomnyaschikh, see [19]. An
important tool for deriving condition number estimates in this context is the so-called fictitious
space lemma ([19]), which for the sake of self-containedness is presented below in its simplest
(algebraic) form.

Lemma 2.1. Let V be a Hilbert space equipped with inner product 〈·, ·〉, and A : V 7→ V an SPD

(w.r.t. 〈·, ·〉) linear operator. Let Ṽ be a second Hilbert space (auxiliary space) equipped with inner

product 〈·, ·〉∼ and Ã : Ṽ 7→ Ṽ a second SPD linear operator. Further let Π : Ṽ 7→ V be a surjective
mapping satisfying the following conditions:

(a): For all v ∈ V there exists ṽ ∈ Ṽ such that Πṽ = v and c̃ 〈Ãṽ, ṽ〉∼ ≤ 〈Av,v〉.
(b): 〈AΠũ,Πũ〉 ≤ c 〈Ãũ, ũ〉∼ for all ũ ∈ Ṽ .

Introduce the adjoint operator Π⋆ : V 7→ Ṽ by

〈Πũ,v〉 = 〈ũ,Π⋆v〉∼ for all ũ ∈ Ṽ ,v ∈ V.

Then

(2.11) c̃ 〈A−1u,u〉 ≤ 〈ΠÃ−1Π⋆u,u〉 ≤ c 〈A−1u,u〉 for all u ∈ V.

Proof. The right hand side inequality follows from

〈ΠÃ−1Π⋆u,u〉1/2 = ‖Ã−1/2Π⋆u‖∼ = max
w̃∈Ṽ

〈Ã−1/2Π⋆u, w̃〉∼
‖w̃‖∼

= max
ṽ∈Ṽ

〈Π⋆u, ṽ〉∼
〈Ãṽ, ṽ〉1/2∼

= max
ṽ∈Ṽ

〈A−1/2u, A1/2Πṽ〉
〈Ãṽ, ṽ〉1/2∼

≤ ‖A−1/2u‖max
ṽ∈Ṽ

‖A1/2Πṽ‖
〈Ãṽ, ṽ〉1/2∼

= ‖A−1/2u‖max
ṽ∈Ṽ

〈AΠṽ,Πṽ〉1/2

〈Ãṽ, ṽ〉1/2∼

≤
√
c〈A−1u,u〉1/2.



AUXILIARY SPACE MULTIGRID METHOD 5

At the same time

‖A−1/2u‖ = max
w∈V

〈A−1/2u,w〉
‖w‖ = max

v∈V

〈u,v〉
‖A1/2v‖

= max
Πṽ=v∈V

〈Π⋆u, ṽ〉∼
‖A1/2v‖

= max
Πṽ=v∈V

〈Ã−1/2Π⋆u, Ã1/2ṽ〉∼
‖A1/2v‖

≤ ‖Ã−1/2Π⋆u‖ max
Πṽ=v∈V

‖Ã1/2ṽ‖∼
‖A1/2v‖

≤ 1√
c̃
〈ΠÃ−1Π⋆u,u〉1/2,

which demonstrates the left hand side inequality. �

In the present context the following corollary can be proven.

Corollary 2.1. Consider the Hilbert spaces V = IRN and Ṽ = IRÑ , assuming that Ñ ≥ N , and

the inner products 〈u,v〉 := ∑N
i=1 uivi for all u,v ∈ V and 〈ũ, ṽ〉∼ :=

∑Ñ
i=1 ũiṽi for all ũ, ṽ ∈ Ṽ ,

respectively. Further, let Π = ΠD̃ be defined as in (2.5) where D̃ ∈ IRÑ×Ñ is an SPD matrix,

D̃ ∈ IRÑ×Ñ . Then the fictitious space preconditioner defined according to (2.10) with auxiliary

matrix Ã according to (2.7) satisfies

(2.12) 〈A−1u,u〉 ≤ 〈ΠÃ−1ΠTu,u〉 ≤ ‖π
D̃
‖2
Ã
〈A−1u,u〉 for all u ∈ V.

Proof. The estimate (2.12) follows from Lemma 2.1 because in the present context Assumptions (a)
and (b) hold with constants c̃ = 1 and c = ‖π

D̃
‖2
Ã
:

(a): For all v ∈ V = IRN define ṽ := RTv. Then

Πṽ = (RD̃RT )−1RD̃ṽ = (RD̃RT )−1RD̃RTv = v.

Hence

〈Av,v〉 = 〈RÃRTv,v〉 = 〈RÃṽ,v〉 = 〈Ãṽ, RTv〉∼ = 〈Ãṽ, ṽ〉∼
and thus Assumption (a) holds with c̃ = 1.

(b): Further, since

〈AΠ
D̃
ũ,Π

D̃
ũ〉 = 〈RÃRT (RD̃RT )−1RD̃ũ, (RD̃RT )−1RD̃ũ〉

= 〈ÃRT (RD̃RT )−1RD̃ũ, RT (RD̃RT )−1RD̃ũ〉∼
=: 〈Ãπ

D̃
ũ, π

D̃
ũ〉∼

where πD̃ := RT (RD̃RT )−1RD̃, we see that the inequality (b) is sharp for

(2.13) c := sup
ũ6=0

〈ÃπD̃ũ, πD̃ũ〉∼
〈Ãũ, ũ〉∼

= ‖πD̃‖
2
Ã
,

which completes the proof.

�

Remark 2.2. The operator π
D̃
= RT (RD̃RT )−1RD̃ is a projection, i.e.,

π2
D̃
= π

D̃
.
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Moreover, due to Kato’s Lemma,
‖πD̃‖Ã = ‖I − πD̃‖Ã

where ‖ · ‖Ã is the Ã inner product norm, that is,

‖ṽ‖
Ã
:=

√
〈Ã ṽ, ṽ〉∼

for all ṽ ∈ Ṽ .

Remark 2.3. Note that ‖π
D̃
‖
Ã

is related to the cosine γ of the angle between the two spaces

Range(πD̃) and Range(I − πD̃) in the Ã inner product, i.e.,

‖π
D̃
‖
Ã
=

1√
1− γ2

.

Hence, the relative condition number κ(C−1A) of the fictitious space preconditioner defined via

C−1 := Π
D̃
Ã−1ΠT

D̃
can be estimated by

κ(C−1A) ≤ c = ‖πD̃‖
2
Ã
=

1

1− γ2
.

The idea of fictitious space preconditioning has been further developed in the setting of auxiliary
space preconditioning by incorporating an additional smoother hence relaxing the constraints on

the choice of the auxiliary space Ṽ . For details, see [26].

2.2. Two-grid method. The proposed auxiliary space two-grid method determines a stationary
iterative procedure

(2.14) xk+1 = xk +B−1rk

where the k-th iterate and the k-th residual have been denoted by xk and rk respectively and the
two-grid preconditioner is defined by

(2.15) B−1 := M
−1

+ (I −M−TA)C−1(I −AM−1).

Assume that M is an A-convergent smoother, i.e.,

‖I −M−1A‖A < 1.

Then the symmetrized smoother M = M(M +MT −A)−1MT is also A-convergent, i.e.,

‖I −M
−1

A‖A = ‖(I −M−TA)(I −M−1A)‖A < 1.

As I − B−1A = (I −M−TA)(I − C−1A)(I −M−1A), the two-grid preconditioner B defines a
convergent stationary iterative method, i.e.,

(2.16) ‖I −B−1A‖A < 1,

if the auxiliary space correction is non-expansive in A norm, i.e.,

(2.17) ‖I − C−1A‖A ≤ 1.

From Corollary 2.1 we have

1

c
vTv ≤ 1

c
vT (Π

D̃
Ã−1ΠT

D̃
)Av ≤ vTv ∀v ∈ V

and thus (2.17) and finally (2.16) are satisfied, for example, if the matrix C in (2.15) is defined by

(2.18) C−1 = τ−1ΠD̃Ã
−1ΠT

D̃

where τ is a scaling parameter satisfying

(2.19) τ ≥ c := ‖π
D̃
‖2
Ã
.
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Another way of defining B−1 is via the product matrix

B̂ =

[
M 0

ΠT
D̃
A I

] [
(M +MT −A)−1 0

0 τÃ

] [
MT AΠ

D̃
0 I

]
.

Then

B̂−1 =

[
M−T −M−TAΠ

D̃
0 I

] [
M +MT −A 0

0 τ−1Ã−1

] [
M−1 0

−ΠT
D̃
AM−1 I

]
,

and

B−1 =
[
I Π

D̃

]
B̂−1

[
I
ΠT

D̃

]
.

Note that the preconditioner (2.15) can also be written in the form

(2.20) B−1 = M
−1

+ τ−1ΠÃ−1ΠT

where

(2.21) Π = (I −AM−T )ΠD̃ = (I −AM−T )(RD̃RT )−1RD̃.

Comparing classical two-grid methods with the proposed auxiliary space two-grid method the
main difference is that in the latter the coarse grid correction step is replaced by a subspace
correction with iteration matrix I − C−1A where C is the fictitious space preconditioner defined
in (2.18).

Remark 2.4. From the XZ-identity, [27], we have the following relation

vTBv = minv=w+Π
D̃
w̃[τw̃

T Ãw̃ + (MTw +AΠD̃w̃)T (M +MT −A)−1(MTw +AΠD̃w̃)]

= minv=w+Π
D̃
w̃[τ‖w̃‖2Ã + ‖MTw +AΠ

D̃
w̃‖2

(M+MT−A)−1 ].

3. Condition number estimates

A condition number estimate of the two-grid preconditioner B defined by (2.20) and (2.21) can
be based on the following assumptions. For the smoother assume that

(3.1) c〈v,v〉 ≤ ρA〈M−1
v,v〉 ≤ c̄〈v,v〉

and

(3.2) ‖AM−Tv‖2 ≤ η

ρA
‖v‖2A

where ρA = λmax(A) denotes the spectral radius of A and η is a non-negative constant. Further let
the operator Π defined in (2.21) satisfy

(3.3) ‖Πṽ‖2A ≤ cΠ‖ṽ‖2Ã ∀ṽ ∈ Ṽ ,

which due to ‖Π⋆Π‖ = ‖ΠΠ⋆‖ is equivalent to
(3.4) ‖Π⋆v‖2

Ã
≤ cΠ‖v‖2A ∀v ∈ V,

where

(3.5) Π⋆ = Ã−1ΠTA,

denotes the adjoint operator, i.e.,

(3.6) 〈Πũ,v〉A = 〈ũ,Π⋆v〉
Ã
∀ũ ∈ Ṽ ,v ∈ V.

Then the following theorem holds, see [26].
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Theorem 3.1. Under the assumptions (3.1)–(3.3) the two-grid preconditioner B defined in (2.20)
and (2.21) satisfies

(3.7) λmax(B
−1A) ≤ c̄+ cΠ/τ

and

(3.8) λmin(B
−1A) ≥ 1

τ + η/c
,

that is, κ(B−1A) ≤ (c̄+ cΠ/τ)(τ + η/c).

Proof. Using (2.20), (3.1), (3.4), and (3.5) it follows that

〈B−1Av,v〉A = 〈M−1
Av,v〉A + τ−1〈ΠÃ−1ΠTAv,v〉A(3.9)

= 〈M−1
Av,v〉A + τ−1〈Π⋆v,Π⋆v〉Ã

≤ c̄

ρA
〈Av, Av〉 + cΠ

τ
‖v‖2A

≤ (c̄+ cΠ/τ)‖v‖2A,
which proves (3.7).

On the other hand, using (3.6), the Cauchy-Schwarz inequality, (3.2) and (3.1), together with
the identity in (3.9), one obtains

〈v,v〉A = 〈v −ΠRTv,v〉A + 〈ΠRTv,v〉A
= 〈AM−Tv,v〉A + 〈RTv,Π⋆v〉Ã
≤ ‖AM−Tv‖‖Av‖ + ‖RTv‖

Ã
‖Π⋆v‖

Ã

≤
√
η

√
ρA
‖v‖A

√
ρA√
c
〈M−1

Av, Av〉1/2 +
√
τ

1√
τ
‖v‖A‖Π⋆v‖Ã

≤ (η/c + τ)1/2〈B−1Av,v〉1/2A ,

which proves (3.8). �

Remark 3.1. Note that when no smoothing is applied (B = C) the condition number estimate
provided in Theorem 3.1 reduces to κ(B−1A) ≤ cΠ = c = ‖π

D̃
‖2
Ã
.

Now the following theorem can be proven.

Theorem 3.2. Let D̃ be a two-by-two block-diagonal SPD matrix, i.e.,

D̃ :=

[
D̃11 0

0 D̃22

]
,

and

〈ΠD̃Ã
−1ΠT

D̃
u,u〉 ≤ c 〈A−1u,u〉

for all u ∈ V where c = ‖π
D̃
‖2
Ã
.

Then

(3.10)
1

c
S ≤ Q ≤ S.

The lower bound in (3.10) is sharp for

D̃ =

[
Ã11 0
0 I

]
.
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Proof. Since

(3.11) ΠT
D̃
= D̃RT (RD̃RT )−1 =

[
D̃11R

T
1 (R1D̃11R

T
1 )

−1 0
0 I2

]
,

with u =

(
0

w

)
it follows that

(
0

w

)T

Π
D̃
Ã−1ΠT

D̃

(
0

w

)
=

(
0̃

w

)T

Ã−1

(
0̃

w

)
= 〈Q−1w,w〉.

Moreover, uTA−1u = 〈S−1w,w〉, and thus Corollary 2.1 implies the estimate (3.10).
In the remainder of the proof let

D̃ =

[
Ã11 0
0 I

]
.

Then in view of (3.11) and the relations A11 = R1Ã11R
T
1 , A12 = R1Ã12, and A21 = Ã21R

T
1 ,

Π
D̃
Ã−1ΠT

D̃
=

[
(R1Ã11R

T
1 )

−1R1Ã11 −(R1Ã11R
T
1 )

−1R1Ã12

0 I

] [
Ã−1

11 0
0 Q−1

]

×
[

Ã11R
T
1 (R1Ã11R

T
1 )

−1 0

−Ã21R
T
1 (R1Ã11R

T
1 )

−1 I

]

=

[
A−1

11 +A−1
11 A12Q

−1A21A
−1
11 −A−1

11 A12Q
−1

−Q−1A21A
−1
11 Q−1

]

and hence

(3.12) vTΠ
D̃
Ã−1ΠT

D̃
v = vT

[
I −A−1

11 A12

0 I

] [
A−1

11 0
0 Q−1

] [
I 0

−A21A
−1
11 I

]
v

and

(3.13) vTA−1v = vT

[
I −A−1

11 A12

0 I

] [
A−1

11 0
0 S−1

] [
I 0

−A21A
−1
11 I

]
v.

Now, let c = ‖π
D̃
‖2
Ã
> 1. Then from Corollary 2.1 it follows that

(3.14) vT (cA−1 −ΠD̃Ã
−1ΠT

D̃
)v ≥ 0 ∀v ∈ V

and there exists v̄ ∈ V , v̄ 6= 0, such that (see (2.13))

v̄T (cA−1 −ΠD̃Ã
−1ΠT

D̃
)v̄ = 0.

Next, by using (3.12) and (3.13) in (3.14) it can be seen that

(3.15)

[
w1

w2

]T [
(c− 1)A−1

11 0
0 cS−1 −Q−1

] [
w1

w2

]
≥ 0 ∀w =

[
w1

w2

]
∈ V

and further there exists

w̄ =

[
w̄1

w̄2

]
6= 0

for which (3.15) holds with equality. Moreover, since A11 is SPD and (cS−1 − Q−1) is SPSD,
as (3.10) has already been proven, it follows that w̄1 = 0 and

w̄T
2 (cS

−1 −Q−1)w̄2 = 0

for a certain vector w̄2 = v̄2 − A21A
−1
11 v̄1 6= 0. This, however, finally results in λmax(Q

−1S) = c,
proving the sharpness of the lower bound in (3.10).

The right hand side inequality in (3.10) is also a consequence of the energy minimization property
of the Schur complement, see, e.g., [12, 13, 15]. �
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4. Auxiliary space multigrid method

Consider the sequence of auxiliary space stiffness matrices Ãk, k = 0, 1, . . . , ℓ − 1. In an exact
factorization form they are as follows:

(4.1) (Ã(k))−1 = (L̃(k))T D̃(k)L̃(k),

where

(4.2) L̃(k) =

[
I

−Ã(k)
21 (Ã

(k)
11 )

−1 I

]
, D̃(k) =

[
(Ã

(k)
11 )

−1

Q(k)−1

]

and the index k refers to a particular level of mesh refinement. The matrix Q(k) is associated with
the stiffness matrix on the next coarser level, i.e.

(4.3) A(k+1) := Q(k).

At any given level k ≤ ℓ, the algebraic multilevel iteration (AMLI)-cycle auxiliary space multigrid

(ASMG) preconditioner B(k) approximates A(k)−1
and is defined as follows:

(4.4) B(k) := M
(k)

+ (I −M (k)TA(k))Π(k)(L̃(k))TD
(k)

L̃(k)Π(k)T (I −A(k)M (k)),

where

(4.5) D
(k)

:=

[
(Ã

(k)
11 )

−1

B
(k+1)
ν

]

and

(4.6) B(ℓ)
ν := B(ℓ) = A(ℓ)−1

.

For k < ℓ− 1, in the linear AMLI-cycle B
(k+1)
ν is a polynomial approximation of the inverse of

the coarse-level matrix A(k+1) = Q(k), i.e.,

B
(k+1)
ν := (I − p(k)(B(k+1)−1

A(k+1)))A(k+1)−1

=: q(k)(B(k+1)−1
A(k+1)))B(k+1)−1

,

where p(k)(t) is a scaled and shifted Chebyshev polynomial of degree νk and

p(k)(0) = 1, q(k)(t) :=
1− p(k)(t)

t
≈ 1

t
,

see, e.g., [4, 16].

In case of the nonlinear AMLI-cycle multigrid method the action of B
(k+1)
ν = B

(k+1)
ν [·] on a

vector defines a nonlinear mapping which is realized by ν iterations of a Krylov subspace (here

a generalized conjugate gradient) method, thereby utilizing the preconditioner B(k+1) from the
coarse level. The resulting nonlinear AMLI-cycle is therefore sometimes referred to as a K-cycle,
cf. [20]. The convergence analysis of the multiplicative nonlinear AMLI method has first been
presented in [11]. A description in the multigrid framework and comparative analysis can be
found in [10, 20, 25]. The numerical results presented in Section 6 were obtained on the basis of
implementing Algorithms 4.1 and 4.2.

Given a nonlinear preconditioner B̃(k)[·], the action of ν steps of the preconditioned generalized

conjugate gradient (GCG) preconditioner B
(k)
GCG,ν [·] at level k on a vector d ∈ V (k) is defined as

follows, cf. [10].
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Algorithm 4.1. Generalized conjugate gradient (GCG) preconditioner: Definition of B
(k)
GCG,ν [d]

Step 1: u(0) = 0, r(0) = d, p(0) = B̃(k)[r(0)]

α0 =
〈r(0),p(0)〉

〈p(0) , A(k)p(0)〉
, u(1) = α0p(0), r(1) = r(0) − α0A

(k)p(0)

Step 2: For i = 1, 2, . . . , ν − 1

βij =
〈B̃(k)[r(i)], A

(k)p(j)〉

〈p(j), A
(k)p(j)〉

p(i) = B̃(k)[r(i)]−
∑i−1

j=0 βijp(j)

αi =
〈r(i),p(i)〉

〈p(i), A
(k)p(i)〉

u(i+1) = u(i) + αip(i)

r(i+1) = r(i) − αiA
(k)p(i)

Step 3: B
(k)
GCG,ν [d] := u(ν)

Finally, let

B(ℓ)
ν [·] = (A(ℓ))−1

and define the action B
(k)
ν [d] of the nonlinear AMLI-cycle auxiliary space multigrid (ASMG) pre-

conditioner B
(k)
ν [·] : V (k) → V (k) at level k < ℓ on a vector d ∈ V (k) via the following algorithm.

Algorithm 4.2. Nonlinear AMLI-cycle ASMG preconditioner: Definition of B
(k)
ν [d]

Pre-smoothing: u = M (k)−1
d

Auxiliary space correction:





(
q̃1

q̃2

)
:= q̃ = ΠT

D̃(k)
(d−A(k)u)

p̃1 = (Ã
(k)
11 )

−1q̃1

p̃2 = B
(k+1)
GCG,ν [(q̃2 − Ã

(k)
21 p̃1)]

q̃1 = p̃1 − (Ã
(k)
11 )

−1Ã
(k)
12 p̃2

q̃2 = p̃2

v = u+ΠD̃(k) q̃

Post-smoothing: B
(k)
ν [d] := v +M (k)−T

(d−A(k)v)

At a given level k the nonlinear AMLI-cycle ASMG method employs the GCG method with the

particular preconditioner B̃(k+1)[·] := B
(k+1)
ν [·] at the coarse level k + 1.

Remark 4.1. For the exact two-level method the auxiliary space correction step (at level 0) updates
the approximation u according to

u← u+Π
D̃(0)(Ã

(0))−1ΠT
D̃(0)(d−A(0)u).

5. Estimation of ‖πD̃(k0)
‖2
Ã(k0)

In order to estimate ‖πD̃‖2Ã it suffices to find an upper bound Λ for the maximum eigenvalue

λmax of

πT
D̃
Ãπ

D̃
ṽ = λÃṽ.

Then Λ ≥ λmax implies ‖π
D̃
‖2
Ã
≤ Λ.

Since

Ã =
∑

G∈G

R̃T
GAGR̃G
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for a certain set of restriction matrices {R̃G} local estimates can be derived by computing the
maximum eigenvalues λG,max of the low-rank generalized eigenvalue problems

(5.1) πT
D̃
R̃T

GAGR̃GπD̃ṽ = λGÃṽ, ∀G ∈ G,
which results in

(5.2) λmax ≤ max
G∈G

λG,max ncolor =: Λ,

where ncolor is the coloring constant for the adjacency graph of subdomains; two subdomains are
adjacent if and only if they share at least one degree of freedom.

As the auxiliary matrix Ã is symmetric and positive definite the generalized eigenvalue problems
(5.1) can be equivalently written as

(5.3) Ã− 1
2πT

D̃
R̃T

GA
1
2
GA

1
2
GR̃GπD̃Ã

− 1
2 ṽ = λGṽ, ∀G ∈ G.

Finding the non-zero eigenvalues of (5.3) however is equivalent to finding the eigenvalues of the
small-sized eigenvalue problems

(5.4) A
1
2
GR̃GπD̃Ã

−1πT
D̃
R̃T

GA
1
2
GvG = λGvG, ∀G ∈ G.

The primary remaining difficulty is the efficient inversion of the auxiliary matrix Ã. A cost-
efficient upper bound can be computed based on the following multilevel procedure.

Consider equation (5.4) for a fixed level k0 ∈ {0, . . . , ℓ− 1}, i.e.,

(5.5) A
1
2

G(k0)
R̃G(k0)πD̃(k0)

(Ã(k0))−1πT
D̃(k0)

R̃T
G(k0)

A
1
2

G(k0)
vG(k0) = λG(k0)vG(k0) , ∀G(k0) ∈ G(k0),

where π
D̃(k0)

is the projection operator for level k0 and G(k0) are the related subdomains.

In order to estimate the largest eigenvalue of (5.5) the auxiliary matrix (Ã(k0))−1 can be replaced

by a ”larger” matrix (B̃(k0))−1, i.e.

ṽT Ã(k0)ṽ ≥ ṽT B̃(k0)ṽ, ∀ṽ ∈ Ṽ ,

thus considering the eigenvalue problems

(5.6) A
1
2

G(k0)
R̃G(k0)πD̃(k0)

(B̃(k0))−1πT
D̃(k0)

R̃T
G(k0)

A
1
2

G(k0)
vG(k0) = ξG(k0)vG(k0) , ∀G(k0) ∈ G(k0).

Then, given the exact factorization (4.1)–(4.3) of the auxiliary matrix Ã(k0), i.e.

(5.7) (Ã(k0))−1 = (L̃(k0))T

[
(Ã

(k0)
11 )−1

A(k0+1)−1

]
(L̃(k0)),

the left hand side inequality in (2.12) implies that the following estimate holds on all levels

(5.8) vT (A(k))−1v ≤ vTΠD̃(k)(Ã
(k))−1ΠT

D̃(k)v, ∀v ∈ V, k = 0, . . . , ℓ.

Therefore the matrix

(B̃(k0))−1 := (L̃(k0))T

[
(Ã

(k0)
11 )−1

ΠD̃(k0+1)(Ã(k0+1))−1ΠT
D̃(k0+1)

]
(L̃(k0))

= (L̃(k0))T
[
I

Π
D̃(k0+1)

][
(Ã

(k0)
11 )−1

(Ã(k0+1))−1

][
I

ΠT
D̃(k0+1)

]
(L̃(k0))(5.9)

can be used in (5.6). Note that the matrix in the middle of the right hand side of (5.9) is of greater
dimension than the auxiliary matrix at level k0.

Moreover, if (5.8) is further applied recursively in (5.9) for k = k0 + 1, . . . , ℓ − 1, the following
multilevel estimate is obtained.
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Let

Y (k)T =

[
I

Π
D̃(k)

]
, Z(k) =

[
I

L̃(k)

]
, k = k0+1, k0+2, . . . , ℓ−1, Y (ℓ) = I, Z(k0) = L̃(k0),

and

X(k0) =




(Ã
(k0)
11 )−1

(Ã
(k0+1)
11 )−1

. . .

(Ãℓ)−1



.

Then the matrix to be used in (5.6) can be also defined as

(5.10) (B̃(k0))−1 :=

ℓ−1∏

k=k0

Z(k)TY (k+1)TX(k0)Y (k+1)Z(k).

Remark 5.1. Note that the computation of (B̃(k0))−1 requires the inversion of block-diagonal ma-
trices with a small, uniformly bounded, semi-bandwidth and a small-sized coarse grid matrix only.
Hence solving the eigenvalue problems (5.6) is computationally much cheaper than solving the prob-
lems (5.5).

A numerical example comparing the estimates (5.2),

(5.11) ξmax ≤ max
G(0)∈G(0)

ξG(0),max ncolor =: Ξ,

and ‖π
D̃(0)‖2Ã(0)

is presented in the following section.

6. Numerical tests

The presented numerical tests refer to the second-order elliptic boundary-value problem

−∇ · (k(x)∇u(x)) = f(x) in Ω,(6.1a)

u = 0 on Γ(6.1b)

where the polygonal domain Ω is defined in IR2, f is a function in L2(Ω) and

k(x) = α(x)I.

Note that the imposed Dirichlet boundary conditions upon the entire boundary are not a restric-
tion as for other boundary conditions the numerical results are quite similar.

The considered covering of the domain, (2.1), consists of subdomains composed of 8×8 elements
(Examples 6.1- 6.2), see Fig. 6.1, or 4 × 4 elements (Example 6.3) that overlap with half of their
width or height.

In order to discretize (6.1) continuous piecewise bilinear functions have been used resulting in
the linear system of algebraic equations

(6.2) Au = f .

The considered mesh is uniform and consists of N×N elements (squares) where N = 2ℓ+2, i.e.,
N = 8, . . . , 512.

The right hand side vector of (6.2) has been chosen to be the vector of all zeros and the outer
generalized conjugate gradient (GCG) iteration has been initialized with a random vector.

Subject to numerical testing are four representative cases of problems characterized by a highly
varying diffusion coefficient α, namely:

[a] A random diffusion coefficient αe = 10prand , prand ∈ {0, 1, 2, . . . , q}, i.e. αmax/αmin = 10q

where αe is constant on the given element e;
[b] Alternating layers of high (αmax) and low (1) permeability;
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[c] Islands of high permeability αmax = 10q against a background as in [a], see Fig 6.2;
[d] Islands of high permeability αmax = 10q against a background as in [b], see Fig 6.3.

Note that the test cases [b] and [d] in the present setting of full coarsening result in highly anisotropic
coarse grid problems and thus add an additional difficulty for robust preconditioning to the one
introduced by the high-frequency high-contrast coefficient.

Figure 6.1. Two subdomains composed of 8 × 8 elements each overlapping with
half of their width.

(a) Fine mesh 64× 64 nodes (b) Fine mesh 256× 256 nodes

Figure 6.2. Islands of high permeability αmax = 10q against a background as in [a]

(a) Fine mesh 64× 64 nodes (b) Fine mesh 256× 256 nodes

Figure 6.3. Islands of high permeability αmax = 10q against background as in [b]
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Two variants of the surjective mapping ΠD̃ as defined in (2.5) are tested numerically:

[I] D̃ = diag(Ã). Note that this choice of D̃ leads to a cheap computation of Π
D̃

as the

matrix RD̃RT to be inverted becomes diagonal;

[II] D̃ = blockdiag(Ã), where the blocks are chosen in accordance to the groups of fine DOF

associated with different macro structures; in rows corresponding to coarse DOF D̃ =

diag(Ã). The efficient computation of (RD̃RT )−1 then requires a uniform preconditioner.

A possible choice is the one-level additive Schwarz preconditioner RD̃−1RT .

Example 6.1 (Auxiliary space two-grid method). The first set of numerical tests, presented in
Tables 6.1–6.2, shows the performance of the auxiliary space two-grid method as described and
analyzed in Sections 2–3 for the test cases [c] and [d] and Π

D̃
as in [I]. The size of the coarse and

the fine grid respectively have been denoted by h and H where H = 2h and h takes values from the
set {1/16, 1/32, 1/64, 1/128, 1/256}. In order to fully confirm the robustness of the auxiliary space
preconditioner no additional smoothing has been performed.

2-Level Method: H = 2h (case [c][I])

❅
❅
❅q
h

1/16 1/32 1/64 1/128 1/256

0 9 9 9 9 9
1 10 10 10 10 10
2 10 10 10 10 10
3 10 11 11 11 11
4 10 11 11 11 11
5 10 11 11 11 11
6 10 11 11 11 11

Table 6.1. Number of iterations for residual reduction by 106

2-Level Method: H = 2h (case [d][I])

❅
❅
❅q
h

1/16 1/32 1/64 1/128 1/256

0 9 9 9 9 9
1 9 10 9 9 9
2 9 10 10 9 9
3 10 10 10 9 9
4 10 10 10 9 9
5 9 10 10 9 9
6 10 10 10 9 9

Table 6.2. Number of iterations for residual reduction by 106

Example 6.2 (Nonlinear AMLI-cycle ASMG method). The second set of numerical tests illus-
trates the performance of the nonlinear algebraic multilevel iteration (AMLI)-cycle auxiliary space
multigrid (ASMG) method based on the recursive application of an auxiliary space preconditioner
and a point Gauss-Seidel smoother for different test cases and mapping operators. The coarsest
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level is ℓ = 1 which corresponds to a uniform mesh with 21+2 × 21+2 = 64 elements and 81 coarse
grid nodes.

The finest mesh is obtained by performing ℓ − 1 = 1, . . . , 6 steps of uniform mesh refinement.
For ℓ = 7 the finest mesh is composed of 512×512 bilinear elements with (512+1)×(512+1) nodes.
The ℓ-level V-cycle, W-cycle and 3-fold V-cycle methods are tested with different choices of the
parameter m indicating the number of pre- and post- point Gauss-Seidel smoothing steps per one
GCG iteration on each grid (except on the coarsest one where an exact solve is performed). That
is m = 0 corresponds to the case in which no smoothing is applied.

Tables (6.3)–(6.8) demonstrate the performance of the algorithm with the mapping operator [I]
for the test cases [a] and [c]. As it can be seen for a moderately oscillatory coefficient (q ≤ 3)
no additional smoothing is required in order to achieve a uniformly convergent multigrid method.
Further, the application of a point Gauss-Seidel smoother significantly improves the performance
of the algorithm. This finally leads to an optimal order solution process for the nonlinear 3-fold
AMLI V-cycle independently of the magnitude q of the maximum contrast.

Nonlinear AMLI V-cycle (case [a][I])
m = 1 m = 2 m = 3

❅
❅
❅q
ℓ

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 4 5 6 6 7 8 4 4 5 5 6 7 3 4 4 5 6 6
1 5 5 6 6 7 8 4 4 5 5 6 7 4 4 4 5 6 6
2 5 6 6 7 7 8 4 5 5 5 6 7 4 4 5 5 6 6
3 5 6 7 8 8 8 4 5 5 6 6 6 4 4 5 5 6 6
4 5 7 8 8 9 9 4 5 6 6 7 7 4 5 5 6 6 6
5 5 7 9 10 10 13 4 5 7 8 7 10 4 5 6 7 6 8
6 6 7 9 14 14 18 5 6 7 10 10 13 4 5 7 8 8 10

Table 6.3. Number of iterations for residual reduction by 106

Nonlinear AMLI W-cycle (case [a][I])
m = 0 m = 1 m = 2

❅
❅
❅q
ℓ

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 9 10 10 10 10 10 4 5 5 5 5 5 4 4 4 4 4 4
1 10 10 10 11 11 11 5 5 5 5 5 5 4 4 4 4 4 4
2 10 11 11 11 11 11 5 5 6 6 6 6 4 4 4 5 5 5
3 10 11 11 12 12 12 5 6 6 6 6 6 4 5 5 5 5 5
4 10 11 12 13 15 17 5 6 6 6 7 7 4 5 5 5 5 5
5 10 11 13 19 21 22 5 6 7 8 7 8 4 5 5 6 5 6
6 10 11 14 21 32 40 6 6 7 10 12 11 5 5 6 7 7 8

Table 6.4. Number of iterations for residual reduction by 106

Table 6.9 presents a comparison between variant [I] and variant [II] of the ℓ-level W-cycle with
2 pre- and post- smoothing steps for the test case [b].

The obtained numerical results clearly demonstrate how crucial the choice of D̃ in (2.5) and
respectively of the surjective mapping Π

D̃
is. As it can be observed, for variant [I] the high-

contrast deteriorates the performance of the method. In some cases the multilevel algorithm does
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Nonlinear AMLI 3-fold V-cycle (case [a][I])
m = 0 m = 1 m = 2

❅
❅
❅q
ℓ

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 9 10 10 10 10 10 4 5 5 5 5 5 4 4 4 4 4 4
1 10 10 10 10 10 10 5 5 5 5 5 5 4 4 4 4 4 4
2 10 10 11 11 11 11 5 5 6 6 6 6 4 4 5 5 5 5
3 10 11 11 11 11 11 5 6 6 6 6 6 4 5 5 5 5 5
4 10 11 11 12 12 13 5 6 6 6 7 7 4 5 5 5 5 5
5 10 11 12 15 17 16 5 6 7 7 7 7 4 5 5 5 5 5
6 10 11 12 15 27 28 6 6 7 7 8 8 5 5 5 6 6 6

Table 6.5. Number of iterations for residual reduction by 106

Nonlinear AMLI V-cycle (case [c][I])
m = 1 m = 2 m = 3

❅
❅
❅q
ℓ

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 4 5 6 6 7 8 4 4 5 5 6 7 3 4 4 5 6 6
1 5 5 6 6 7 8 4 4 5 5 6 7 4 4 4 5 6 7
2 5 5 6 7 7 8 4 5 5 5 6 7 4 4 4 5 6 6
3 5 6 6 7 7 8 4 5 6 6 6 7 4 4 5 5 6 6
4 5 6 7 8 8 9 4 5 5 6 7 7 4 4 5 5 6 6
5 5 6 7 9 10 12 4 5 7 7 7 10 4 4 6 6 6 8
6 6 7 8 12 12 17 5 5 7 8 9 12 4 4 6 7 7 10

Table 6.6. Number of iterations for residual reduction by 106

Nonlinear AMLI W-cycle (case [c][I])
m = 0 m = 1 m = 2

❅
❅
❅q
ℓ

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 9 10 10 10 10 10 4 5 5 5 5 5 4 4 4 4 4 4
1 10 10 10 10 11 11 5 5 5 5 5 5 4 4 4 4 4 4
2 10 11 11 11 11 11 5 5 5 6 6 6 4 4 4 4 5 5
3 10 11 11 11 12 12 5 6 6 6 6 6 4 5 5 5 5 5
4 10 11 11 12 15 15 5 6 6 6 6 6 4 5 5 5 5 5
5 10 11 13 19 21 22 5 6 6 6 7 8 4 5 5 5 5 6
6 10 12 14 24 33 46 6 6 6 8 10 10 5 5 5 5 6 8

Table 6.7. Number of iterations for residual reduction by 106

not reach the prescribed accuracy within 250 iterations (denoted by * in Table 6.9). At the same
time the proposed ASMG algorithm with variant [II] shows a completely robust behavior.

In Tables 6.10–6.11 the ℓ-level V-cycle and W-cycle methods are tested for the case [d] with a
mapping operator variant [II] with different choices of the parameter m .

The numerical results in (6.11) show the robustness of the W-cycle.
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Nonlinear AMLI 3-fold V-cycle (case [c][I])
m = 0 m = 1 m = 2

❅
❅
❅q
ℓ

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 9 10 10 10 10 10 4 5 5 5 5 5 4 4 4 4 4 4
1 10 10 10 10 10 10 5 5 5 5 5 5 4 4 4 4 4 4
2 10 10 10 11 11 11 5 5 5 6 6 6 4 4 4 4 5 5
3 10 11 11 11 11 11 5 6 6 6 6 6 4 5 5 5 5 5
4 10 11 11 11 11 12 5 6 6 6 6 6 4 5 5 5 5 5
5 10 11 12 14 17 17 5 6 6 6 7 7 4 5 5 5 5 6
6 10 11 12 17 24 36 6 6 6 7 8 8 5 5 5 5 5 6

Table 6.8. Number of iterations for residual reduction by 106

Nonlinear AMLI V-cycle, m = 2 (case [b])
[I] [II]

❅
❅
❅q
ℓ

2 3 4 5 6 7 2 3 4 5 6 7

0 4 4 4 4 4 4 4 4 4 4 4 4
1 4 4 4 4 4 4 4 4 4 4 4 4
2 4 4 4 4 4 4 4 4 4 4 4 4
3 4 5 6 7 7 7 4 4 4 5 5 5
4 4 9 14 19 21 20 4 4 4 4 4 5
5 4 20 54 109 * * 4 4 4 4 4 4
6 4 25 51 114 * * 4 4 4 4 4 4

Table 6.9. Number of iterations for residual reduction by 106

Nonlinear AMLI V-cycle (case [d][II])
m = 1 m = 2 m = 3

❅
❅
❅q
ℓ

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 4 5 5 6 8 8 4 4 5 5 5 7 3 4 4 5 6 6
1 5 5 6 7 8 8 4 4 5 5 7 7 3 4 4 5 6 7
2 5 5 7 8 10 10 4 4 6 7 8 10 3 4 5 6 7 9
3 5 6 8 10 11 12 4 5 7 8 10 11 3 4 6 8 9 10
4 5 6 8 10 12 14 4 5 7 9 11 11 3 4 7 9 10 11
5 5 6 8 10 12 15 4 5 7 9 11 13 3 4 7 9 11 13
6 5 6 8 10 12 15 4 5 7 9 11 13 3 4 7 9 11 13

Table 6.10. Number of iterations for residual reduction by 106

Example 6.3 (Recursive estimate of ‖πD̃(k0)
‖2
Ã(k0)

). Finally an example demonstrating the accuracy

of the proposed multilevel technique for estimating ‖πD̃(k0)
‖2
Ã(k0)

is provided for test case [a] with

q = 4, fixed level k0 = 0 and mapping operator ΠD̃ as defined according to [I] and [II].∗ The fine

∗Mathematica c© has been used in the presented computations.
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Nonlinear AMLI W-cycle (case [d][II])
m = 0 m = 1 m = 2

❅
❅
❅q
ℓ

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0 9 9 9 9 9 9 5 5 5 5 5 5 4 4 4 4 4 4
1 9 10 10 10 10 10 5 5 5 5 5 5 4 4 4 4 4 4
2 9 10 10 10 10 10 5 5 5 5 5 5 4 4 4 4 4 4
3 9 10 10 10 10 10 5 5 5 5 6 6 4 4 4 4 5 5
4 9 10 10 10 11 11 5 5 5 5 6 6 4 4 4 5 5 5
5 9 10 10 10 11 11 5 5 5 6 6 6 4 4 4 5 5 5
6 9 10 10 10 11 11 5 5 5 6 6 6 4 4 4 5 5 5

Table 6.11. Number of iterations for residual reduction by 106

mesh in this example consists of 16 × 16 elements and 49 overlapping subdomains. One recursive
step in (5.10) has been performed.

On Fig. 6.4 and Fig. 6.5 the sparsity patterns of the original and of the auxiliary matrices at
different levels are shown.

1 100 200 289

1

100

200

289

1 100 200 289

1

100

200

289

(a) Original matrix

1 200 400 600 865

1

200

400

600

865

1 200 400 600 865

1

200

400

600

865

(b) Auxiliary matrix

Figure 6.4. Sparsity pattern of the fine grid matrices

The coloring constant in this example is ncolor = 9. In order to obtain a tight upper bound for the
maximum eigenvalue in (5.5) and (5.6) one can assume that the subdomains touching the boundary
further overlap with degenerated subdomains of smaller size. Note that in this case ncolor does not
change. Further, it is sufficient to solve (5.5) and (5.6) only for the non-degenerated subdomains,
i.e., the number of local eigenvalue problems does not increase.

On Fig. 6.6 the maximum eigenvalues of (5.5) and (5.6) are depicted for the two variants [I] and
[II] of projection operators for which it is found that

max
G∈G

λ
[I]
G,max = 0.515764, max

G∈G
ξ
[I]
G,max = 0.590758,

max
G∈G

λ
[II]
G,max = 0.450956, max

G∈G
ξ
[II]
G,max = 0.464827.
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The computed norms of the projections are

‖π[I]

D̃(k0)
‖2
Ã(k0)

= 2.1893390511486, ‖π[II]

D̃(k0)
‖2
Ã(k0)

= 1.9827749765716.

Evaluating the respective estimates gives

Λ[I] = 4.64184, Λ[II] = 4.058604,

Ξ[I] = 5.316822, Ξ[II] = 4.183443,

where Ξ[I] and Ξ[II] correspond to (5.6) whereas Λ[I] and Λ[II] are for (5.5), see also (5.2).

7. Conclusions

A new multigrid method employing an auxiliary space and an additive Schur complement approx-
imation (ASCA) has been introduced. The presented condition number estimate for the two-grid
preconditioner implies robust convergence of the related two-grid method. Also established has
been the spectral equivalence between the ASCA and the exact Schur complement. The upper
bound in this relation is sharp. The lower bound is given in terms of the energy norm of the elliptic

1 20 40 60 81

1

20

40

60

81

1 20 40 60 81

1

20

40

60

81

(a) Original matrix

1 50 100 169

1

50

100

169

1 50 100 169

1

50

100

169

(b) Auxiliary matrix

Figure 6.5. Sparsity pattern of the coarser grid matrices
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0.45
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0.55
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(a) Variant [I].

10 20 30 40 50

0.30

0.35

0.40

0.45

0.50

0.55

0.60

(b) Variant [II].

Figure 6.6. Distribution of the maximum eigenvalues of (5.6) (thick line) and
of (5.5) (dashed line).
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projection associated with an SPD block diagonal matrix D̃. Further, for a particular choice of D̃
also the lower bound has shown to be sharp. Its efficient computation has been addressed and a
particular multilevel algorithm has been proposed for this purpose.

A main contribution of this work is the definition and formulation of an algebraic multilevel itera-
tion (AMLI)-cycle auxiliary space multigrid (ASMG) method which differs from classical multigrid
methods in replacing coarse grid correction by auxiliary space correction. A representative collec-
tion of numerical tests has been presented. The obtained numerical results not only demonstrate
the efficiency of the proposed algorithm but also reveal possibilities for further development, e.g.,
incorporating different smoothers and transfer mappings or shifting the focus to different problem
classes.

Although not in the scope of this study, it should be mentioned that the proposed auxiliary space
multigrid method is suitable for implementation on parallel computer architectures.
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