
A SYLVESTER–ARNOLDI TYPE METHOD FOR THE GENERALIZED
EIGENVALUE PROBLEM WITH TWO-BY-TWO OPERATOR

DETERMINANTS

KARL MEERBERGEN∗ AND BOR PLESTENJAK†

Abstract. In various applications, for instance in the detection of a Hopf bifurcation or in solving separable
boundary value problems using the two-parameter eigenvalue problem, one has to solve a generalized eigenvalue
problem of the form

(B1 ⊗A2 −A1 ⊗B2)z = µ(B1 ⊗ C2 − C1 ⊗B2)z,

where matrices are 2 × 2 operator determinants. We present efficient methods that can be used to compute a
small subset of the eigenvalues. For full matrices of moderate size we propose either the standard implicitly
restarted Arnoldi or Krylov–Schur iteration with shift-and-invert transformation, performed efficiently by
solving a Sylvester equation. For large problems, it is more efficient to use subspace iteration based on low-
rank approximations of the solution of the Sylvester equation combined with a Krylov–Schur method for the
projected problems.

Key words. generalized eigenvalue problem, Sylvester equation, Bartels-Stewart algorithm, inverse iter-
ation, subspace iteration, Arnoldi method, two-parameter eigenvalue problem, Mathieu’s system, Hopf bifur-
cation, low-rank approximation.

AMS subject classifications. 65F15, 65F50.

1. Introduction. In several applications, one can find a generalized eigenvalue problem
of the form

(B1 ⊗A2 −A1 ⊗B2)z = µ(B1 ⊗ C2 − C1 ⊗B2)z, (1.1)

where matrices Ai, Bi, and Ci are ni × ni matrices for i = 1, 2. If we define 2 × 2 operator
determinants

M1 = B1 ⊗A2 −A1 ⊗B2

M0 = B1 ⊗ C2 − C1 ⊗B2,

then we have a generalized eigenvalue problem

M1z = µM0z (1.2)

with matrices of size n1n2 × n1n2. If n1 and n2 are not too large, we can use one of the
existing numerical methods for the generalized eigenvalue problem (1.2), for example, the QZ
algorithm, and compute all of the eigenvalues. The complexity of this approach is O(n3

1n
3
2)

flops.

If n1n2 is too large for the QZ and other methods that compute all eigenvalues, then we
are interested in a subspace method that computes a small number of eigenvalues close to a
given target. One of the popular choices is implicitly restarted Arnoldi, where in each step
one has to solve a linear system with matrix M1 − σM0, where σ is an appropriate shift.
Without any optimizations, this requires O(n3

1n
3
2) operations due to the size of matrices M0

∗Department of Computer Science, KU Leuven, Celestijnenlaan 200A, B-3001 Leuven, Belgium
(karl.meerbergen@cs.kuleuven.be)
†IMFM and Department of Mathematics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

(bor.plestenjak@fmf.uni-lj.si)

1

and M1, but, as we show in Section 3, this can be done much faster in O(n3
1 +n3

2) operations
using the Bartels-Stewart algorithm [2].

If matrices in (1.1) are large, even the Bartels-Stewart algorithm is too expensive. The
eigenvector z in (1.1) is usually a tensor of low-rank, which means that it can be represented
as

z = x11 ⊗ x21 + · · ·+ xk1 ⊗ xk2, (1.3)

where k is very small. For instance, k = 1 for the two-parameter eigenvalue problems from
Subsection 2.1 and k = 2 for problems in computing Hopf bifurcations from Subsection
2.2. For large matrices, we propose new methods in Section 5 and 6 that use low-rank
approximations. These are based on the fact that the iteration vectors of inverse iteration
converge to such low rank vectors and can therefore be more efficiently represented. Such low
rank solutions can be computed using Krylov methods for solving Sylvester equations [3, 7].
This leads to a further reduction of the computational cost.

When (??) arises from a two-parameter eigenvalue problem, the Jacobi-Davidson method
[5] is usually an efficient solution method, i.e., it computes several instances of pairs (λ, µ).
The method is particularly reliable when such pairs are looked after nearest a target point
(σ, τ). In our applications, however, τ is usually given, but a good value of σ is not available,
since it is unknown where λ could be. We will show that our methods will provide good
starting points for the Jacobi-Davidson method or Rayleigh quotient iteration for the two-
parameter eigenvalue problem. The downside of the presented methods is the assumption
that the solution of a Sylvester equation related to (??) can be well approximated by a low
rank matrix and that such low rank solution can efficiently be computed numerically.

The paper is organized as follows. In Section 2, we present some applications that lead to
problems of the form (1.1). We focus mainly on the two-parameter eigenvalue problem, but
we also deal with Hopf bifurcations and all generic problems of the form (1.1). In Section 3,
we apply Arnoldi’s method to (1.2) where the shift-and-invert operator is computed using the
Bartels-Stewart algorithm. In Section 4, we combine Arnoldi’s method with locking with low-
rank vectors. In Section 5, we extend the Lyapunov inverse iteration method [10] to the more
general problem (1.1), update it first with subspace iteration and then with subspace iteration
in Section 6. In Section 7, we give some numerical examples and show that the presented
methods outperform existing approaches for Mathieu’s system, presented in Section 2.

2. Motivating examples.

2.1. Eigenmodes of an elliptic membrane. We would like to compute efficiently and
accurately a couple of hundreds eigenmodes of an elliptic membrane Ω with a fixed boundary:(

∆ + ω2
)
ψ (x, y) = 0, (x, y) ∈ Ω = {(x/α)2 + (y/β)2 ≤ 1}, ψ|∂Ω = 0.

Recently, a numerical method for this task that uses the two-parameter eigenvalue problem
was proposed in [4]. If we apply separation of variables using elliptical coordinates ξ and η,

x := h cosh ξ cos η,

y := h sinh ξ sin η, 0 ≤ ξ <∞, 0 ≤ η < 2π,

then we obtain the coupled system of Mathieu’s angular and radial equations (for details, see,
e.g., [17])

G′′ (η) + (λ− 2µ cos 2η)G (η) = 0

F ′′ (ξ)− (λ− 2µ cosh 2ξ)F (ξ) = 0,
(2.1)

2

with four different (π-even, 2π-even, π-odd, 2π-odd) boundary conditions. For example,
π-even boundary conditions are G′ (0) = G′ (π/2) = 0 and F ′ (0) = F (ξ0) = 0. Here
ξ0 := arccoshαh , where h =

√
α2 − β2. The parameter µ is related to the eigenfrequency

ω by

µ =
h2ω2

4
,

while λ is a result of the separation of variables.
Mathieu’s system (2.1) is a classical example of a two-parameter eigenvalue problem.

Similar two-parameter eigenvalue problems that consist of Lamé equations, spheroidal wave
equations, and other second order differential equations, appear when separation of variables
is applied to the Laplace equation, the Helmholtz equation, or the Schrödinger equation, see,
e.g., [18]. If we linearize the differential equations, we obtain an algebraic two-parameter
eigenvalue problem, which has the form

A1x1 = λB1x1 + µC1x1

A2x2 = λB2x2 + µC2x2,
(2.2)

where Ai, Bi, and Ci are given ni × ni complex matrices. A pair (λ, µ) is an eigenvalue if it
satisfies (2.2) for nonzero vectors x1 ∈ Cn1 and x2 ∈ Cn2 . The corresponding eigenvector is
the tensor product x1 ⊗ x2. Similarly, if

yH1 A1 = λyH1 B1 + µyH1 C1

yH2 A2 = λyH2 B2 + µyH2 C2
(2.3)

for nonzero vectors y1 ∈ Cn1 and y2 ∈ Cn2 , then y1 ⊗ y2 is the left eigenvector.
We define the matrices

∆0 = B1 ⊗ C2 − C1 ⊗B2,

∆1 = A1 ⊗ C2 − C1 ⊗A2,

∆2 = B1 ⊗A2 −A1 ⊗B2,

(2.4)

which are 2×2 operator determinants. If ∆0 is nonsingular, then matrices ∆−1
0 ∆1 and ∆−1

0 ∆2

commute and (2.2) is equivalent (for details, see, e.g., [1]) to a coupled pair of generalized
eigenvalue problems

∆1z = λ∆0z,

∆2z = µ∆0z
(2.5)

for decomposable tensors z = x1 ⊗ x2, which means that we have k = 1 in (1.3).
There exist some numerical methods for two-parameter eigenvalue problems. If n1n2 is

small, we can apply the existing numerical methods for the generalized eigenvalue problem to
solve the coupled pair (2.5). An algorithm of this kind, which is based on the QZ algorithm,
is presented in [5].

For larger values of n1n2 it is not possible to compute all eigenvalues, but there are some
iterative methods that can be used to compute a small number of solutions. Most of them
require good initial approximations in order to avoid misconvergence. One of the methods
is the tensor Rayleigh quotient iteration from [12], which is a generalization of the standard
Rayleigh quotient iteration and computes one eigenpair at a time.

When we are interested in more than just one eigenpair and we do not have any initial
approximations, we can use a Jacobi–Davidson type method [5]. A sophisticated version uses

3

harmonic Ritz values [6] and can compute a small number of eigenvalues close to a given
target.

In [4], equation (2.1) is discretized by the Chebyshev collocation. This gives an algebraic
two-parameter eigenvalue problem of the form (2.2), where matrices A1 and A2 are dense,
non-symmetric and have high condition numbers, B1 = I, B2 = −I, and matrices C1 and
C2 are diagonal. We are interested in parameter µ only and are looking for the smallest |µ|.
When n1 and n2 are small, we can apply the existing numerical methods (for instance eig in
Matlab) to the related eigenvalue problem

∆−1
0 ∆2z = µz.

It turns out that for accurate results we need matrices of moderate size, where n1 and n2

are typically of order 102. Matrices ∆0 and ∆2 are then so large that, if we are interested
only in the first several hundred eigenmodes, it is not efficient to compute all eigenvalues
using one of the direct algorithms. Instead, we apply the implicitly restarted Arnoldi (eigs
in Matlab) to matrix Γ2 = ∆−1

0 ∆2, which has full matrices in its diagonal blocks and diagonal
matrices in non-diagonal blocks, represented as a sparse matrix. The L and U factors of the
LU decomposition of matrix Γ2 − σI are full triangular matrices and for too large values of
n1n2 implicitly restarted Arnoldi runs out of memory. We present a simple trick that can
overcome this problem in the following section. The obtained method is faster and more
competitive than the Jacobi–Davidson method used in [4].

2.2. Hopf bifurcations. The main idea comes from the method in [10] for the compu-
tation of the smallest |µ| such that the large, sparse generalized eigenvalue problem

(A+ µB)x = λMx

has a pair of purely imaginary eigenvalues λ, where A,B, and M are n × n real matrices
and M is symmetric and positive definite. Possible applications include the detection of Hopf
bifurcations.

If the pencil (A+ µB)− λM has a pair of purely imaginary eigenvalues, then

(A+ µB)⊗M +M ⊗ (A+ µB)

has a double eigenvalue zero. Solutions are the eigenvalues of the n2×n2 eigenvalue problem

(A⊗M +M ⊗A)z + µ(B ⊗M +M ⊗B)z = 0 (2.6)

which has the form (1.1). It turns out (see [10] for details) that we can restrict z to the
symmetric eigenvector space, i.e., z = vec(Z), where Z = ZT , and apply inverse iteration
(this is sufficient for the application where we need only one solution). The vector z can be
represented as a sum of two decomposable tensors, i.e., the value in (1.3) is k = 2.

In each step of inverse iteration we have to solve the linear system

(A⊗M +M ⊗A)wk = (B ⊗M +M ⊗B)zk.

Without any optimization, this requires O(n6) operations. But, if we use the well-known
equality

(A⊗B)vec(X) = vec(BXAT),

4

then we can write the above as

MWkA
T +AWkM = MZkB

T +BZkM,

where wk = vec(Wk) and zk = vec(Zk). We obtain the Lyapunov equation

WkA
TM−1 +M−1AWk = ZkB

TM−1 +M−1BZk

that can be solved in O(n3) operations using for instance the Bartels-Stewart algorithm [2].
If Zk = ZTk , then Wk = W T

k . So, if we start with a symmetric Z0, then all approximations in
inverse iteration remain in the symmetric eigenvector space.

3. Sylvester equation and implicitly restarted Arnoldi. In a two-parameter eigen-
value problem, we have to solve the generalized eigenvalue problem

∆2z = µ∆0z, (3.1)

where ∆0 and ∆2 are 2×2 operator determinants defined in (2.4). For each simple eigenvalue
µ we can then compute the λ part of the eigenvalue (λ, µ) from the Rayleigh quotient

λ =
zH∆1z

zH∆0z
.

We want to find solutions of (3.1) by applying a method based on the Krylov subspace,
like implicitly restarted Arnoldi [14] or Krylov–Schur [15], to matrix Γ2 := ∆−1

0 ∆2, combined
with the shift-and-invert approach. This means that in each step of the method we have to
solve the linear system

(B1 ⊗A2 −A1 ⊗B2)w = (B1 ⊗ C2 − C1 ⊗B2)z.

Following the approach from Subsection 2.2, if we write w = vec(W) and z = vec(Z), then
we have

A2WBT
1 −B2WAT1 = C2ZB

T
1 −B2ZC

T
1 =: M. (3.2)

Let us assume that matrices A1 and A2 are nonsingular. In this case we get the Sylvester
equation

A−1
2 B2W −WBT

1 A
−T
1 = −A−1

2 MA−T1

that can be solved in O(n3
1 + n3

2) operations using, e.g., the Bartels-Stewart algorithm. If
any of the matrices A1 or A2 is singular, then we shift the parameter λ with constant σ as
λ = λ̃ + σ, where we select σ so that the new matrices Ã1 = A1 − σB1 and Ã2 = A2 − σB2

are both nonsingular. The following lemma shows that such σ always exists when operator
determinant ∆2 is nonsingular. As we are looking for the smallest eigenvalue of ∆−1

0 ∆2, it is
natural to assume that ∆2 is nonsingular, otherwise the smallest eigenvalue is clearly µ = 0.

Lemma 3.1. If operator determinant ∆2 is nonsingular, then there exists σ such that
both matrices A1 − σB1 and A2 − σB2 are nonsingular.

Proof. Suppose that such σ does not exist. Then at least one of the matrix pencils A1−λB1

or A2 − λB2 has to be singular. Without loss of generality we can assume that A1 − λB1 is
singular. This means that for all σ ∈ C, there is an x ∈ Cn1 so that (A1 − σB1)x = 0. As a
result, for any y ∈ Cn2 , we have that

∆2(x⊗ y) = B1x⊗A2y −A1x⊗B2y

= B1x⊗ (A2 − σB1)y − (A1 − σB1)x⊗B2y

= B1x⊗ (A2 − σB1)y

5

If we now take (σ, y) as an eigenpair of the pencil A2 − λB2, then ∆2(x⊗ y) = 0. This is in
contradiction with the nonsingularity of ∆2.

This simple trick with the Sylvester equation opens completely new perspectives in solving
the two-parameter eigenvalue problems. Although there are some numerical methods available
for these problems, see, e.g., [5] and the references therein, they are not so widespread and
simple to use for a possible user faced with a two-parameter eigenvalue problem. It is not
rare that the researchers report that a problem of type (2.2) cannot be solved because they
are not aware of any available numerical methods, see, e.g., [9].

Now, at least for problems of moderate size, where n1, n2 ≤ 500, say, this trouble should
be solved. We show in Appendix how can one adapt function eigs in Matlab to work with
the two-parameter eigenvalue problems. This approach uses full vectors of size n1n2.

Let us remark that the approach in this section can be as well applied to a general problem
with 2× 2 operator determinants of the form

(A11 ⊗A22 −A12 ⊗A21)z = µ(B11 ⊗B22 −B12 ⊗B21)z, (3.3)

(the difference from (1.1) is that matrices B1 and B2 appear in both operator determinants
in (1.1), while there are different matrices on the left and the right side in (3.3)). On the
contrary to the eigenvectors of (1.1), which are low-rank vectors, the eigenvectors of (3.3)
are in general full-rank vectors. A problem of form (3.3) appears for instance in a right
definite two-parameter eigenvalue problem, where all matrices are real symmetric and ∆0 =
B1 ⊗ C2 − C1 ⊗ B2 is symmetric and positive definite, when we are looking for the smallest
eigenvalue of ∆0 [16].

If we want to compute a large number of eigenvalues and n1n2 is large, then the Arnoldi
method might require too much memory for the storage of the iteration vectors of size n1n2.
In the following section, we show how to circumvent this problem by using low-rank vectors
for the basis of the converged invariant subspace.

4. Locking with low-rank vectors. Suppose that n1n2 is so large that the available
memory puts a limit on the size of the subspace that we can use in the Arnoldi method. If the
number of wanted eigenvalues is larger than that, we can exploit the fact that all eigenvectors
are low-rank vectors and apply locking. In the following, we present more details for the
implicitly restarted Arnoldi iteration with locking [8], but the same principles can be applied
to Krylov-Schur and other iterative methods.

Let as assume that all matrices A1, B1, C1, A2, B2, and C2 are real and that we are looking
for the eigenvalues of Γ2 = ∆−1

0 ∆2 with the smallest absolute value. Suppose that we already
computed and locked k eigenvalues using an approximate partial Schur form

Γ−1
2 Q−QS = E

where S is an upper quasi-triangular matrix and the columns of Q are orthonormal and with
‖E‖F much smaller than ‖S‖. (We therefore set that E = 0, which is called locking.) This
means that in the Arnoldi algorithm for matrix Γ−1

2 we have

Γ−1
2

[
Q W

]
=
[
Q W

] [S G
0 H

] [
E hm+1,mwm+1e

T
m

]
,

where
[
Q W

]
has k + m orthogonal columns, S is an upper quasi-triangular matrix, H

is a Hessenberg matrix. The columns of W form an orthogonal basis for the active search

6

subspace, while the columns of Q form an orthogonal basis for the locked invariant subspace.
The eigenvalues of H are Ritz values that correspond to the active search subspace.

Eigenvectors of (1.1) are low rank vectors and this also applies to columns of Q, as they
are linear combinations of a small number of eigenvectors. In particular, each column in
matrix Q can be represented as qj = vec(UDjV

H), where matrices U and V have k columns
and Dj is a k × k matrix for j = 1, . . . , k. In this way we save memory and we can still do
computations with the vectors from the locked part efficiently. When we lock new vectors and
extend Q with new columns, we extend matrices U and V and adjust the sizes of matrices
Dj .

This approach enables us to use the maximum possible active subspace, which is limited
only with the available memory. As the memory requirements for the locked part are relatively
negligible, the number of the computed eigenvalues can be much larger than the maximum
size of the active subspace.

If, however, n1n2 is so large, that we cannot keep enough vectors of size n1n2 in memory,
then this approach cannot be applied. In such case we can use methods with low-rank vectors,
which are presented in the next two sections.

5. Subspace iteration. In our application to two-parameter eigenvalue problems, the
Sylvester equation

A2WBT
1 −B2WAT1 = C2ZB

T
1 −B2ZC

T
1

is related to the system ∆2w = ∆0z or

(B1 ⊗A2 −A1 ⊗B2)w = (B1 ⊗ C2 − C1 ⊗B2)z. (5.1)

Let us assume that matrices A1, B1, C1, A2, B2, and C2 are large and real. If n1n2 is so
large that the Bartels-Stewart algorithm is unfeasible, or that we cannot hold vectors of size
n1n2 in memory for the Arnoldi method, then we can perform inverse iteration with low-rank
vectors in a similar way as in [10] and solve the system (5.1) approximately. In general, it is
difficult to extract complex conjugate pairs of real matrices using (inexact) inverse iteration.
For computing complex eigenvalues, and in order to speed up the convergence of inverse
iteration, in particular when the absolute values of the two smallest eigenvalues do not differ
much, we rather use a subspace iteration version. To make the presentation clearer, we will
first write down a version of subspace iteration which still uses full vectors of size n1n2.

So that we can compute many eigenvalues, we apply Hotelling’s deflation as follows.
Suppose that we have already computed eigenvalues µ1, . . . , µm of (3.1) with the corresponding
left and right eigenvectors x(i) = xi1 ⊗ xi2 and y(i) = yi1 ⊗ yi2 for i = 1, . . . ,m. In order to
compute the next eigenvalues, we apply the subspace iteration to matrix

S := Γ−1
2 −

m∑
i=1

1

µi
· x

(i)y(i)H∆0

y(i)H∆0x(i)
=

(
I −

m∑
i=1

x(i)y(i)H

y(i)H∆0x(i)

)
Γ−1

2 . (5.2)

In the above formula we use the fact that, if y is a left eigenvector of (3.1) for eigenvalue
µ, then ∆H

2 y is a left eigenvector of matrix Γ−1
2 = ∆−1

2 ∆0 for eigenvalue µ−1. If we assume
that all eigenvalues µ1, . . . , µm are algebraically simple, then it is easy to see that Sx(i) = 0
for i = 1, . . . ,m and Sz = Γ−1

2 z if z is an eigenvector of (3.1) for the eigenvalue µ 6= µi for
i = 1, . . . ,m.

We are aware that Hotelling’s deflation is not considered to be a very accurate approach to
compute many eigenvalues (see, e.g, [13]). However, in this specific application its advantages

7

overcome its weaknesses. The most important property is that Hotelling’s deflation does not
change the remaining left and right eigenvectors. The eigenvectors are still decomposable and
we will show later how this can be exploited by iterating low-rank vectors.

The initial version of subspace iteration is presented in Algorithm 1. This algorithm,
which still uses full vectors and solves the Sylvester equation exactly, is just an intermediate
solution approach that we give for clarity. The final versions do not use any explicit matrices
or vectors of size O(n1n2).

Algorithm 1 Subspace iteration with Hotelling’s deflation for the generalized eigenvalue
problem (3.1) related to the two-parameter eigenvalue problem (2.2) with real matrices.

1: Let x(i) = xi1⊗xi2 and y(i) = yi1⊗yi2 for i = 1, . . . ,m be known left and right eigenvectors
for the algebraically simple eigenvalues µ1, . . . , µm

2: Choose nonzero linearly independent vectors z1, . . . , zp.
3: for k = 0, 1, . . . do
4: for j = 1, . . . , p do
5: Solve ∆2wj = ∆0zj .

6: w̃j = wj −
m∑
i=1

y(i)Twj

y(i)T∆0x(i)
x(i) (Hotelling’s deflation)

7: end for
8: Compute R = ZTk W̃ , where W̃ =

[
w̃1 · · · w̃p

]
.

9: Compute eigenpairs (σi, qi), i = 1, . . . , p, of matrix R.
10: for j = 1, . . . , p do
11: if (σj , Zkqj) is an eigenpair of Γ−1

2 then extract the eigenpair
12: end for
13: Let Zk+1 be the Q-factor of the QR factorization of W̃ .
14: end for

As all matrices A1, B1, C1, A2, B2, and C2 are real, we can do everything in real arithmetic
because complex eigenvalues and eigenvectors appear in conjugate pairs. Once we have a
conjugate eigenpair, we can deflate in real arithmetic. We first show how this can be done
for the standard eigenvalue problem.

Lemma 5.1. Let µ be a complex eigenvalue of a real matrix A with the corresponding
right eigenvector x = x1 + ix2 and left eigenvector y = y1 + iy2. Then matrix

B = A− µxy
H

yHx
− µxy

H

yHx
,

which corresponds to Hotelling’s deflation, is real and can be written as

B =

(
I − 2

[
x1 x2

] [α β
−β α

] [
y1 y2

]T)
A,

where

α+ iβ =
1

yHx
.

We can now apply the same method and do Hotelling’s deflation in Algorithm 1 for a
conjugate pair of complex eigenvalues in real arithmetic. The details are in the following
corollary.

8

Corollary 5.2. Let µ be a complex eigenvalue for the generalized eigenvalue problem
(3.1) related to the two-parameter eigenvalue problem (2.2) with the corresponding right eigen-
vector x = x1⊗ x2 and left eigenvector y = y1⊗ y2, where xj = xj1 + ixj2 and yj = yj1 + iyj2
for j = 1, 2. Then

2Re

(
xyH∆2

yH∆2x

)
=
[
a1 a2

] [α β
−β α

] [
b1 b2

]T
,

where

a1 = x11 ⊗ x21 − x12 ⊗ x22,

a2 = x11 ⊗ x22 + x12 ⊗ x21,

b1 = B1y11 ⊗A2y21 −B1y12 ⊗A2y22 −A1y11 ⊗B2y21 +A1y12 ⊗B2y22,

b2 = B1y11 ⊗A2y22 +B1y12 ⊗A2y21 −A1y11 ⊗B2y22 −A1y12 ⊗B2y21,

and

α+ iβ =
1

yH∆2x
.

The goal of Algorithm 1 is to develop the approximate partial Schur form

Γ−1
2 Z = ZR,

where R ∈ Rp×p is quasi upper triangular and Z ∈ Rn1n2×p has orthonormal columns. The
subspace iteration method on Γ−1

2 = ∆−1
2 ∆0 is implemented by solving linear systems with

∆2 and right-hand sides z1, . . . , zp, where zj is the jth column of Z. Let us explain the details
of Algorithm 1.

• In Line 8, we compute matrix R = ZTk SZk, where S from (5.2) is Γ−1
2 updated by

Hotelling’s deflation. The elements of matrix R are computed as the inner products of

vectors z
(k)
i and w̃j for i, j = 1, . . . , p. Recall that the columns of Zk are approximate

Schur vectors, so, matrix R should converge to a quasi upper triangular matrix as k
goes to infinity.
• Hotelling’s deflation enables us to use low-dimensional subspaces and still compute

many eigenvalues. An alternative would be to lock the computed eigenvectors and
keep them in the subspace, but, then the size of the subspace would have to grow.
For each new eigenpair in Line 11 we compute the left eigenvector by inverse iteration
directly on (2.2) and add it to the set of known eigenpairs that is used for Hotelling’s
deflation.

If we have very large and sparse matrices then Algorithm 1 in its current form is unfeasible.
A solution is to use low-rank vectors in a similar way as in [10]. If all eigenvalues are simple,
the eigenvectors can be represented as rank-one tensors and the associated Schur vectors
can be represented in low-rank form. We observed that the iterates of Algorithm 1 lead to
zj with low-rank tensor structures. We therefore represent the jth column of matrix Zk as

z
(k)
j = vec(UkD

(k)
j V T

k), where Uk ∈ Rn2×`, Vk ∈ Rn1×`, and D
(k)
j is an `× ` matrix. Note that

Uk and Vk are the same for all j = 1, . . . , p. So, instead of using Zk, we can store and use the

`2 × p matrix Dk =
[
d

(k)
1 · · · d

(k)
p

]
, where d

(k)
j = vec(D

(k)
j) for j = 1, . . . , p.

In each step of subspace iteration, we have to solve the equation ∆2wj = ∆0z
(k)
j for

j = 1, . . . , p. This can be written as a Sylvester equation as already explained before. (See

9

the text around Eq. (3.2).) In order to avoid the expensive computations with full rank
vectors, we compute a low-rank approximation to the solution of the Sylvester equation. We
used a block Arnoldi version of Hu and Reichel from [7], but a rational Krylov method could
also be used [3]. The bottomline is that the solution of the Sylvester equation is approximated
by a matrix of low rank.

The Arnoldi type method for the Sylvester equation

AX −XB = C

from [7] works as follows. If X0 is the initial approximation, we compute the initial residual
R0 = C − AX0 + X0B and take vectors f and g that minimize ‖R0 − gfT ‖. Then we
build orthogonal bases for Krylov subspaces Kk(A, f) and Kk(BT , g) by the standard Arnoldi
process. Let columns of Uk and Vk span Kk(A, f) and Kk(BT , g), respectively, and let HA =
UHk AUk and HB = V H

k BTVk be the Hessenberg matrices obtained in the Arnoldi process.
The approximate solution of rank k is then Xk = UkDkV

H
k , which satisfies the Galerkin

condition

UHk (C −AXk −XkB)Vk = 0. (5.3)

This leads to a small scale projected Sylvester equation

HADk −DkHB = UHk CVk

for matrix Dk.

In our application we have to solve the Sylvester equation

A−1
2 B2W −WBT

1 A
−T
1 = −A−1

2 C2ZB
T
1 A
−T
1 +A−1

2 B2ZC
T
1 A
−T
1 , (5.4)

which is related to the system ∆2w = ∆0z. If z is an eigenvector of (1.1), i.e., ∆2z = µ∆0z,
then z = x1 ⊗ x2 is a decomposable tensor. It follows that Z = x2x

T
1 and the right-hand side

of (5.4) has rank at most 2. In such case, the solution W has rank one and, if we start with
X0 = 0, then the algorithm should return W = µ−1Z after one step. To ensure this we use
the block Arnoldi version of [7]. In general, Z is not an eigenvector but an approximation
which, in general, has full rank but can usually be well approximated by a matrix of small
rank, say, r. In this case, the right-hand side of the Sylvester equation has rank at most 2r.

The proposed method is presented in Algorithm 2. From the structure of the eigenvectors,

the ∆-matrices from (2.4) and the low-rank vectors z
(k)
j , it follows that it is possible to

implement the algorithm without involving any vectors of size O(n1n2). Here, we give some
additional explanations and show that all steps in the algorithm can be performed with
matrices of size ni × ni and vectors of length ni for i = 1, 2.

• The formation and solution of the p Sylvester equations in Lines 4–6, and Lines 8–9,
that correspond to Line 5 in Algorithm 1, goes as follows. The right-hand side of the
system in Line 5 in Algorithm 1 is computed in matrix form. This matrix is assembled

from F and G, computed in Line 4, and Mj in Line 8. Because all vectors z
(k)
1 , . . . , z

(k)
p

lie in span(Vk ⊗Uk), we use the same two Krylov subspaces, spanned by the columns
of Uexp and Vexp, for solving the p Sylvester equations. As approximate solutions we
take vectors from span(Vexp ⊗ Uexp) that satisfy the Galerkin condition (5.3).

10

Algorithm 2 Subspace iteration with Hotelling’s deflation and low-rank vectors for the
generalized eigenvalue problem (3.1) related to the two-parameter eigenvalue problem (2.2)
with real matrices. In the algorithm ` denotes the rank of the vectors that we use, p ≤ ` is
the size of the subspace for subspace iteration, and r is the number of block Arnoldi steps
used to solve the Sylvester equations approximately.

1: Let x(i) = xi1⊗xi2 and y(i) = yi1⊗yi2 for i = 1, . . . ,m be known left and right eigenvectors
for the algebraically simple eigenvalues µ1, . . . , µm

2: Choose a matrix Z0 ∈ Rn1n2×p with orthogonal low-rank columns z
(0)
1 , . . . , z

(0)
p ∈

span(V0 ⊗ U0) with U0 ∈ Rn2×` and V0 ∈ Rn1×`.
3: for k = 0, 1, . . . do
4: F =

[
A−1

2 C2Uk A−1
2 B2Uk

]
and G =

[
A−1

1 B1Vk A−1
1 C1Vk

]
5: Compute orthonormal bases Vexp ∈ Rn1×r` and Uexp ∈ Rn2×r` for Kr(A−1

1 B1, G) and
Kr(A−1

2 B2, F), respectively, using the block Arnoldi algorithm.
6: HA = UTexpA

−1
2 B−1

2 Uexp and HB = V T
expA

−1
1 B−1

1 Vexp

7: for j = 1, . . . , p do

8: Mj = C2SjB
T
1 −B2SjC

T
1 , where z

(k)
j = vec(Sj)

9: Solve the Sylvester equation HAYj − YjHB = −UTexpA
−1
2 MjA

−T
1 Vexp.

10: wj = vec(UexpYjV
T

exp)

11: w̃j = wj −
m∑
i=1

y(i)Twj

y(i)T∆0x(i)
x(i) (Hotelling’s deflation)

12: end for
13: Compute R = ZTk W̃ , where W̃ =

[
w̃1 · · · w̃p

]
, exploiting the low-rank structures of

Zk and W̃ .
14: Compute eigenpairs (σi, qi), i = 1, . . . , p, of matrix R.
15: for j = 1, . . . , p do
16: if (σj , Zkqj) is an eigenpair of Γ−1

2 then extract the eigenpair
17: end for
18: Orthogonalize vectors w̃1, . . . , w̃p.
19: Compute matrices Uk+1 ∈ Rn2×` and Vk+1 ∈ Rn1×` with orthogonal columns such

that span(Uk+1) ⊂ span(Uexp), span(Vk+1) ⊂ span(Vexp) and w̃1, . . . , w̃p can be well
approximated in span(Vk+1 ⊗ Uk+1).

20: z
(k+1)
i = (Vk+1 ⊗ Uk+1)(Vk+1 ⊗ Uk+1)T w̃i for i = 1, . . . , p

21: Orthogonalize vectors z
(k+1)
1 , . . . , z

(k+1)
p .

22: end for

• In Line 11, we express the vector w̃j after Hotelling’s deflation as

w̃j = vec

Ũexp


Yj

αj1
. . .

αjm

 Ṽ T
exp

 , (5.5)

11

where Ũexp =
[
Uexp x12 · · · xm2

]
, Ṽexp =

[
Vexp x11 · · · xm1

]
, and

αji = − y(i)Twj

y(i)T∆2x(i)
(5.6)

for i = 1, . . . ,m. Note that (5.5) has 2 × 2 blocks on the main diagonal when the
deflated eigenpairs are complex conjugate pairs and instead of eigenvectors we then
use the real and imaginary parts of the complex conjugate pair to extend matrices
Ũexp and Ṽexp. We compute the denominator in (5.6) efficiently as

y(i)T∆0x
(i) = (yTi1B1xi1)(yTi2C2xi2)− (yTi1C1xi1)(yTi2B2xi2),

and the numerator as

y(i)Twj = yTi2UexpYjV
T

expyi1 − yTi2UexpYjDV
T

expyi1.

In the subsequent lines we continue to use the notation w̃j = vec(UexpYjV
T

exp), where

we take Uexp = Ũexp, Vexp = Ũexp, and expand Yj as in (5.5).

• In Line 13, the inner product of z
(k)
i and wj for i, j = 1, . . . , p can be formed efficiently

as

z
(k)
i

T
wj = vec(D

(k)
i)Tvec(UTk UexpYjV

T
expVk).

• In Line 19, a new subspace span(Vk+1 ⊗ Uk+1) for low-rank approximations for the
next step has to be determined. The following procedure is used. First, we consider
vector w̃1 = vec(UexpY1V

T
exp). Let r1 be the rank of matrix Y1 and let Y1 = QΣP

be its singular value decomposition. We take Uk+1 = UexpQ(:, 1 : r1) and Vk+1 =
VexpP (:, 1 : r1) for the first part of matrices Uk+1 and Vk+1. If r1 = `, then we have
the subspace for the next step, otherwise we continue with vector w2. We consider
the part of w2 that is not included in the new current subspace span(Vk+1 ⊗ Uk+1),
i.e., we take w2 − (Vk+1 ⊗ Uk+1)(Vk+1 ⊗ Uk+1)Tw2 and select new vectors using the
corresponding singular value decomposition as before. By continuing this process, we
eventually obtain ` vectors for Uk+1 and Vk+1.
• As k increases, vectors w1, . . . , wp should converge to Schur vectors and matrix R in

Line 13 should converge to a partial Schur matrix. In this situation (if we assume
that all eigenvalues have different absolute values), vector wj should have rank j as it
is a linear combination of j decomposable eigenvectors for j = 1, . . . , p and the above
procedure would select one vector for Uk+1 and Vk+1 from each vector w1, . . . , wp.
• We noticed that the algorithm converges very slowly, but is pretty reliable in finding

the desired eigenvalues. Therefore, when, in Line 16, an eigenpair of (2.2) is found
with a relatively small residual norm, several steps of the tensor Rayleigh quotient
iteration from [12] are performed to improve the quality of the solution even further,
which is then finally accepted if the residual after the iterative improvement is small
enough.

Let us remark that the approach in Algorithm 2 cannot be applied to a general problem
with 2× 2 operator determinants of the form (3.3). Since eigenvectors of (3.3) are in general
full-rank vectors, the low-rank approximation approach does not work.

12

6. Subspace iteration with projection. If we observe Algorithm 2 closely, then we
see that behind the iteration of matrices Zk with orthogonal columns, there is an iteration on
subspaces span(Vk ⊗ Uk) that contain the low-rank vectors from Zk. So, in one way we are
iterating on subspaces, but, we only consider p vectors from the subspace of size `2. Together
with the observation that the subspace span(Vexp ⊗ Uexp), which we obtain from the block
Arnoldi solver for the Sylvester equation in Algorithm 2, contains many good approximations
for the eigenvectors, this leads us to the following algorithm, presented in Algorithm 3.

Algorithm 3 Subspace iteration with Arnoldi expansion and restart based on selected Ritz
vectors for the generalized eigenvalue problem (3.1) related to the two-parameter eigenvalue
problem (2.2). In the algorithm m denotes the number of wanted eigenvalues, ` ≥ m is the
size of the subspaces, q ≥ ` is the number of Ritz vectors that we compute, and r is the
number of block Arnoldi steps used to solve the Sylvester equations approximately.

1: Start with matrices U0 ∈ Cn2×`, V0 ∈ Cn1×` with orthogonal columns.
2: for k = 0, 1, . . . do
3: F =

[
A−1

2 C2Uk A−1
2 B2Uk

]
and G =

[
A−1

1 B1Vk A−1
1 C1Vk

]
4: Compute Vexp and Uexp with orthogonal basis for Kr(A−1

1 B1, G) and Kr(A−1
2 B2, F),

respectively, with a block Arnoldi algorithm.
5: Compute Ritz values (σj , τj) and vectors Vexpcj ⊗Uexpdj , j = 1, . . . , q, of the projected

problem

V H
expA1Vexpc = σV H

expB1Vexp + τV H
expC1Vexp

UHexpA2Uexpd = σUHexpB2Uexp + τUHexpC2Uexp

with smallest |τ |.
6: For each Ritz pair compute the corresponding residuals and test convergence, i.e., if

‖(A1 − σkB1 − τkC1)Vexpck‖ < ε and ‖(A2 − σkB2 − τkC2)Uexpdk‖ < ε.
7: if m Ritz pairs have converged then
8: Extract the corresponding eigenpairs.
9: else

10: Select ` Ritz vectors Vexpcj ⊗ Uexpdj for j = 1, . . . , `.
11: Compute Vk+1 ∈ Cn1×` and Uk+1 ∈ Cn2×` with orthonormal columns such that

span(Vk+1) = span(Vexpc1, . . . , Vexpc`) and span(Uk+1) = span(Uexpd1, . . . , Vexpd`).
12: end if
13: end for

Similarly to Algorithm 2, we iterate on subspaces span(Vk ⊗ Uk), but the next subspace
span(Vk+1 ⊗ Uk+1) is chosen from Ritz vectors obtained from the projection of the two-
parameter eigenvalue problem on span(Vexp ⊗ Uexp). For solving this small two-parameter
eigenvalue problem, the algorithm from Section 3 can be used, since we do not have to
compute all solutions of the projected problem.

In Line 10 we have to select ` Ritz pairs for the next subspace. It seems natural to select
the ` pairs with the smallest values of |τ |, but this can be dangerous because of the possible
spurious values. Namely, if we take ` eigenvectors x11 ⊗ x12, . . . , x`1 ⊗ x`2 and form the sub-
spaces V = span(x11, . . . , x`1) and U = span(x12, . . . , x`2), then the projected two-parameter
eigenvalue problem has `2 Ritz values, but, in general, only ` among them correspond to
the eigenvalues of the selected ` eigenvectors. So, in particular if we are computing interior

13

eigenvalues, there can be up to `2 − ` spurious Ritz values with small values of |τ |. We
therefore compute and consider q ≥ ` Ritz vectors with smallest |τ | and then beside the `
smallest also take all Ritz vectors with a sufficiently small residual norm. This results in
slightly larger subspaces, but improves the convergence. As a rule of thumb, our suggestion is
to use subspaces of size ` = 2m and consider q = 2` = 4m Ritz values if we want to compute
m eigenvalues. If eigenvalues are close to the exterior, then we can save time and use smaller
values of q and `.

If the desired eigenvalues are interior, then harmonic Ritz values could be used in Line 5.
According to [6], if we take (0, 0) as a target, then the projected two-parameter eigenvalue
problem in Line 5 is to be replaced by

V H
expA

H
1 A1Vexpc = σV H

expA
H
1 B1Vexp + τV H

expA
H
1 C1Vexp

UHexpA
H
2 A2Uexpd = σUHexpA

H
2 B2Uexp + τUHexpA

H
2 C2Uexp.

As we are not working with individual vectors as in Algorithm 2, Hotelling’s deflation
can no longer be applied. Therefore, the subspace has to be large enough for all eigenvalues
that we would like to compute. In most practical cases this is not an obstacle, but, in some
particular examples, where we want to compute many eigenvalues, Algorithm 2 can be more
efficient than Algorithm 3. Finally, note that Rayleigh Quotient refinement is not required in
this algorithm, as convergence is fast.

7. Numerical results. The following numerical examples were obtained on 64-bit Win-
dows version of Matlab R2012b running on Intel 8700 processor and 8 GB of RAM.

Example 7.1. In the first example we compute several hundred eigenvalues with the
smallest |µ| of Mathieu’s system (2.1) that corresponds to the problem of computing the
eigenfrequencies of an elliptical membrane with a fixed boundary. The differential equations
are discretized by the Chebyshev collocation, for more details, see [4]. The Matlab imple-
mentation EigElip from [4], where eigs is applied to a sparse representation of matrices ∆0

and ∆2, is compared to the new implementation, where we use the Bartels-Stewart algorithm
as proposed in Section 3 and in Appendix (with the only difference that we use the real
Schur form because all matrices are real). For a comparison, we include the times required
by another available Matlab implementation runelip [19] for eigenfrequencies of an elliptical
membrane, which uses expansions into Bessel functions to solve Mathieu’s system (for details,
see [20]). One can see in Table 7.1 that the speedup obtained by using the Sylvester equation
relation is significant. The problems in this example are still small enough so that there is no
need to use the low-rank methods from Sections 5 and 6.

Example 7.2. In the second example we take a two-parameter eigenvalue problem with
matrices of size n1 = n2 = 500 that correspond to a discretization of equation (2.1) for the
ellipse with α = 2 and β = 1 by the Chebyshev collocation. This is the same problem as in
Example 7.1, only matrices are now larger so that the methods that use low-rank vectors can
show their potential.

For a comparison, while eigs combined with the Bartels-Stewart algorithm was very
successful in Example 7.1, it now needs 59.7s to compute the 10 eigenvalues with smallest |µ|.
We can do better with the low-rank methods and in Table 7.2 we compare results obtained
by implementations of Algorithms 2 and 3. As we are computing exterior eigenvalues, we
set p = 10 and l = 11 for Algorithm 2 and q = l = m + 1, where m is the number of
wanted eigenvalues, for Algorithm 3. These values are hand picked from several numerical
experiments. In Algorithm 2, we do two steps of block Arnoldi, while in Algorithm 3, we need

14

EigElip runelip

α β m (n1, n2) new time time error time error

2 1 100 (54,25) 0.8 2.5 3e-11 14.8 3e-11
2 1 300 (80,36) 7.7 23.2 3e-11 37.7 6e-11
2 1 500 (93,45) 27.5 78.4 3e-11 70.0 3e-01

4 1 100 (68,24) 1.0 3.5 3e-11 12.5 2e-11
4 1 200 (86,26) 3.2 10.2 5e-11 22.1 3e-11
4 1 250 (94,28) 5.7 16.1 3e-11 29.0 3e-06
4 1 300 (100,30) 8.2 24.8 5e-11 36.6 3e-03

8 1 100 (84,18) 1.0 3.1 2e-11 11.1 2e-11
8 1 125 (94,20) 1.7 5.3 2e-11 17.2 3e-05
8 1 150 (100,20) 2.0 6.9 1e-11 19.4 1e-02

Table 7.1
Computational times and errors for computing m lowest eigenfrequencies of an ellipse with major radius

α and minor radius β using EigElip (old and new implementation) and runelip. Column (n1, n2) contains
the sizes of the matrices used in EigElip.

eigenvalues Algorithm 2 Algorithm 3

m time steps time steps r

10 2.6 20 0.8 5 2
20 4.7 34 1.8 5 2
30 7.5 55 3.6 5 2
40 10.5 76 7.7 6 2
50 13.3 92 9.6 5 2
60 17.9 128 13.2 5 2

70 21.9 156 33.8 5 3
80 27.0 191 50.3 5 3
90 30.4 209 59.3 5 3
100 34.4 231 50.4 4 3

110 40.3 265 180.0 4 4
120 46.6 301 214.0 4 4

Table 7.2
Computational times for computing m lowest eigenfrequencies of an ellipse with α = 2 and β = 1 using

Chebyshev collocation discretization with n1 = n2 = 500 and Algorithms 2 and 3.

to use more Arnoldi steps (column r in the table) if we want to compute more eigenvalues.
More steps of block Arnoldi increase the subspace size and the computational time. For both
methods we use an absolute stopping criterion ε = 10−6 for the norm of the residual.

As expected, Algorithm 2 gives better results if we want to compute many eigenvalues,
while Algorithm 3 is better for a small number of eigenvalues. Let us also remark that all
results for Algorithm 2 were obtained in one run, where in the end 200 eigenvalues were
computed in 684 steps and 162.1s. For Algorithm 3 the subspace size was adjusted and
the algorithm rerun for each number of wanted eigenvalues. This explains why Algorithm 3
computed 100 eigenvalues faster than 90 eigenvalues. As can be seen in the table, it required
4 steps for 100 eigenvalues and 5 steps for 90 eigenvalues where a smaller subspace is used.

15

Example 7.3. Lamé’s system is another example of two-parameter eigenvalue problems
that appear when separation of variable is applied to separable boundary-value problems. In
this numerical example, based on [11], we consider the trigonometric form of Lamé’s system

(1− k2 cos2 ϕ)L′′ (ϕ) + k2(sinϕ)(cosϕ)L′ (ϕ) + (k2ρ(ρ+ 1) sin2 ϕ+ δ]L (ϕ) = 0

(1− k′2 cos2 θ)N ′′ (θ) + k′2(sin θ)(cos θ)N ′ (θ) + (k′2ρ(ρ+ 1) sin2 θ − δ]N (θ) = 0,
(7.1)

where ϕ, θ ∈ [0, π], k, k′ ∈ (0, 1), k2 +k′2 = 1, and δ is a separation constant. Solution N(θ) is
either odd or even, so it suffices to consider θ ∈ [0, π/2]. The boundary conditions, related to
the problem of computing the strength of a charge singularity of a flat plate for corner angle
0 < χ < π in [11], are L(0) = L′(π) = 0 and N ′(0) = N ′(π/2) = 0. The goal is to compute
the smallest ρ > 0 for k = sin((π − χ)/2).

We set λ = δ, µ = ρ(ρ + 1), and discretize the equations (7.1) using the standard finite
differences. As finite differences do not converge as fast as the Chebyshev collocation in
Example 7.2, much larger matrices have to be used for accurate results. In the discretized
problem

A1x1 = λB1x1 + µC1x1

A2x2 = λB2x2 + µC2x2
(7.2)

matrices A1 and A2 are tridiagonal, matrices C1 and C2 are diagonal, and −B1 and B2

are identity matrices. All matrices can thus be efficiently represented and their size does
not present a problem for the methods that use low-rank vectors. Due to the boundary
conditions, matrices A2, C1, and C2 are singular and the corresponding ∆-matrices ∆0 and
∆1 are singular as well. But, the most important thing is that ∆2 is nonsingular.

We apply Lemma 3.1 and shift the parameter λ to make both A1 and A2 nonsingular.
We take λ = λ̃− 10 and then numerically solve the shifted system

(A1 + 10B1)x1 = λ̃B1x1 + µC1x1

(A2 + 10B2)x2 = λ̃B2x2 + µC2x2.
(7.3)

We discretize (7.1) with matrices of size 40000 × 40000, which are clearly too large for
methods from Section 3 that use full vectors. This does however not present a problem for
Algorithms 2 and 3. We get the smallest three eigenvalues

µ1 = 0.3845467
µ2 = 3.4614507
µ3 = 6.1994403

in 1.4s by Algorithm 3 and in 20.2s with Algorithm 2. The settings were p = 5 and l = 10
for Algorithm 2 and l = 4 and q = 8 for Algorithm 3. In both algorithms we apply two steps
of block Arnoldi and use ε = 10−6 for the absolute stopping criteria. The smallest eigenvalue
µ1 gives ρ1 = 0.2965844, which agrees perfectly with the results in Table 1 in [11].

8. Conclusions. We presented new numerical methods for two-parameter eigenvalue
problems. The first method uses the implicitly restarted Arnoldi or Krylov–Schur method
and is very efficient for problems of moderate size. The same approach can be applied to
any generalized eigenvalue problem of the form (3.3), where matrices are 2 × 2 operator
determinants.

16

The other two methods use low-rank vectors and solve the related Sylvester equation only
approximately. The method with subspace iteration and Hotelling’s deflation is recommended
when we want to compute many eigenvalues, while the method that iterates on a subspace
based on Ritz vectors is more efficient for a small number of eigenvalues. We do not explore
how to use the Arnoldi method with low-rank approximations and this is left for the future
research.

Acknowledgements. This research was supported in part by ARRS and FWO in the
bilateral project BI-BE/11-12-F-011 between Slovenia and Flanders. The work by K. Meer-
bergen is supported by the Belgian Network DYSCO (Dynamical Systems, Control, and
Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the
Belgian State Science Policy Office, and the KU Leuven Research Council grants PFV/10/002,
OT/10/038 and OT/14/074. The research was performed in part while the second author
was visiting the CASA group at the TU Eindhoven. The author wishes to thank the NWO
for the visitor grant and the CASA group for the hospitality.

REFERENCES

[1] F. V. Atkinson, Multiparameter eigenvalue problems, Academic Press, New York, 1972.
[2] R. H. Bartels and G. W. Stewart, Algorithm 432: Solution of matrix equation AX + XB = C,

Comm. ACM, 15 (1972), pp. 820–826.
[3] B. Beckermann, An error analysis for rational Galerkin projection applied to the Sylvester equation,

SIAM J. Numer. Anal., 49 (2011), pp. 2430–2450.
[4] C. I. Gheorghiu, M. E. Hochstenbach, B. Plestenjak, and J. Rommes, Spectral collocation

solutions to multiparameter Mathieu’s system, Appl. Math. Comp., 218 (2012), pp. 11990–12000.
[5] M. E. Hochstenbach, T. Košir, and B. Plestenjak, A Jacobi–Davidson type method for the non-

singular two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 477–497.
[6] M. E. Hochstenbach and B. Plestenjak, Harmonic Rayleigh-Ritz for the multiparameter eigenvalue

problem, Electron. Trans. Numer. Anal., 29 (2008), pp. 81–96.
[7] D. Y. Hu and L. Reichel, Krylov-subspace methods for the Sylvester equation, Linear Algebra Appl.,

172 (1992), pp. 283–313.
[8] R. B. Lehoucq and D. C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi iteration,

SIAM J. Matrix Anal. Appl., 17 (1996), pp. 789–821.
[9] B. C. Lesieutre, A. V. Mamishev, Y. Du, E. Keskiner, M. Zahn, and G. C. Verghese, Forward

and inverse parameter estimation algorithms of interdigital dielectrometry sensors, IEEE T. Dielect.
El. In., 8 (2001), pp. 577–588.

[10] K. Meerbergen and A. Spence, Shift-and-invert iteration for purely imaginary eigenvalues with ap-
plication to the detection of Hopf bifurcations in large scale problems, SIAM J. Matrix Anal. Appl.,
31 (2010), pp. 1463–1482.

[11] J. A. Morrison and J. A. Lewis, Charge singularity at the corner of a flat plate, SIAM J. Appl. Math.,
31 (1976), pp. 233–250.

[12] B. Plestenjak, A continuation method for a right definite two-parameter eigenvalue problem, SIAM J.
Matrix Anal. Appl., 21 (2000), pp. 1163–1184.

[13] Y. Saad, Numerical Methods for Large Eigenvalue Problems. Revised Edition, SIAM, Philadelphia,
2011.

[14] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix
Anal. Appl., 13 (1992), pp. 357–385.

[15] G. W. Stewart, A Krylov-Schur algorithm for large eigenproblems, SIAM J. Matrix Anal. Appl., 23
(2001), pp. 601–614.

[16] H. Volkmer, On the minimal eigenvalue of a positive definite operator determinant, Proc. Roy. Soc.
Edinburgh Sect. A, 103 (1986), pp. 201–208.

[17] H. Volkmer, Multiparameter Problems and Expansion Theorems, Lecture Notes in Math. 1356,
Springer-Verlag, New York, 1988.

17

[18] M. Willatzen and L. C. Lew Yan Voon, Separable Boundary-Value Problems in Physics, Willey-
VCH, Weinheim, 2011.

[19] H. B. Wilson, Vibration modes of an elliptic membrane. Available from http://www.mathworks.com/

matlabcentral/fileexchange. MATLAB File Exchange, The MathWorks, Natick, 2004.
[20] H. B. Wilson and R. W. Scharstein, Computing elliptic membrane high frequencies by Mathieu and

Galerkin methods, J. Eng. Math., 57 (2007), pp. 41–55.

Appendix A. Matlab implementation. We give some details on the implementation
of the Sylvester equation approach from Section 3 in Matlab. Suppose that we would like to
compute k eigenvalues (λ, µ) of a two-parameter eigenvalue problem (2.2) with the smallest
|µ|. We can first compute matrices ∆2 and ∆0 in (2.4) as
Delta2 = kron(A1,B2) - kron(B1,A2)

Delta0 = kron(B1,C2) - kron(C1,B2)

and then apply eigs as
mu = eigs(Delta2,Delta0,k,’SM’)

We work with matrices of dimension n1n2×n1n2 and the complexity of the above approach
is O(n3

1n
3
2). If we apply the Sylvester equation relation, then we reduce the complexity to

O(n3
1+n3

2). We just have to force eigs to use a Sylvester equation solver to multiply by matrix
∆−1

0 ∆2. This is implemented in the following function MEPeigs that returns k eigenvalues
with the smallest |µ| of a generalized eigenvalue problem ∆2z = µ∆0z (we assume that
matrices A1 and A2 are nonsingular).
function mu = MEPeigs(A1,B1,C1,A2,B2,C2,k)

n1 = size(A1,1); n2 = size(A2,1);

[U1,R1] = schur(A2\B2,’complex’);

[U2,R2] = schur(-transpose(B1)/transpose(A1),’complex’);

opts.isreal = false;

mu = eigs(@multGamma,n1*n2,k,’SM’,opts);

function y = multGamma(x)

W = reshape(x,n2,n1);

F = C2*W*transpose(B1) - B2*W*transpose(C1);

y = reshape(SylvBSUT(U1,R1,U2,R2,-A2\F/transpose(A1)),n1*n2,1);

end

end

In the above, SylvBSUT is an auxiliary function, such as, for instance, function lyap from
Control Toolbox, that solves the Sylvester equation AX + XB = C, where A = QR and
B = SU , Q and U are unitary matrices, and R and S are upper triangular matrices. An
alternative Matlab implementation is as follows.
function X = SylvBSUT(Q,R,U,S,C)

m = size(R,1); n = size(S,1);

X = zeros(m,n);

F = Q’*C*U;

X(:,1) = (R + S(1,1)*eye(m))\F(:,1);

for k = 2:n

X(:,k) = (R + S(k,k)*eye(m))\(F(:,k) - X(:,1:k-1)*S(1:k-1,k));

end

X = Q*X*U’;

end

18

