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A rank-exploiting infinite Arnoldi algorithm for nonlinear
eigenvalue problems
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2Department of Mathematics, NA group, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

SUMMARY

We consider the nonlinear eigenvalue problem M(A)x = 0, where M(A) is a large parameter-dependent
matrix. In several applications, M (1) has a structure where the higher-order terms of its Taylor expansion
have a particular low-rank structure. We propose a new Arnoldi-based algorithm that can exploit this struc-
ture. More precisely, the proposed algorithm is equivalent to Arnoldi’s method applied to an operator whose
reciprocal eigenvalues are solutions to the nonlinear eigenvalue problem. The iterates in the algorithm are
functions represented in a particular structured vector-valued polynomial basis similar to the construction
in the infinite Arnoldi method [Jarlebring, Michiels, and Meerbergen, Numer. Math., 122 (2012), pp. 169—
195]. In this paper, the low-rank structure is exploited by applying an additional operator and by using a
more compact representation of the functions. This reduces the computational cost associated with orthogo-
nalization, as well as the required memory resources. The structure exploitation also provides a natural way
in carrying out implicit restarting and locking without the need to impose structure in every restart. The effi-
ciency and properties of the algorithm are illustrated with two large-scale problems. Copyright © 2016 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Suppose 2 C C is an open subset of the complex plane containing the origin and let M : Q —
C™" be a matrix with elements that are analytic in Q. We will consider the problem of finding
(A, x) € Q x C™"\{0} such that

M@Q)x = 0. (1.1)

This nonlinear eigenvalue problem occurs in many situations. For instance, they arise in the study
of stability of higher-order differential equations where they give rise to quadratic and polynomial
eigenvalue problems [1, 2]; in the study of delay-differential equations [3]; and in the study of
fluid-solid interaction where M (A) contains rational functions [4]. There are also problems involv-
ing boundary integral operators [5]. For summary works and benchmark collections on nonlinear
eigenvalue problems, we refer to [6-8].

There are many algorithms in various generality settings for solving nonlinear eigenvalue prob-
lems, for example, based on Arnoldi’s method [4], Jacobi—Davidson methods [9, 10], methods which
can be seen as flavors and extensions of Newton’s method [11-13], and contour integral formula-
tions [14, 15] as well as methods exploiting min-max properties of Hermitian nonlinear eigenvalue
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608 R. VAN BEEUMEN, E. JARLEBRING AND W. MICHIELS

problems [16]. There are also several approaches based on first approximating M(A) and subse-
quently linearizing the approximation. This gives rise to companion-type linearizations from which
the structure can be exploited [17-19]. However, our approach here is similar to [20] and based
on directly applying the Arnoldi method on an operator reformulation of the nonlinear eigenvalue
problem (1.1).

In the recent literature, there are several nonlinear eigenvalue methods that exploit low-rank
structures in different settings, for example, the approach for low-rank modifications of symmetric
eigenvalue problems in [21], the linearization approach for rational eigenvalue problems in [22],
and for nonlinear eigenvalue problems in [18, 19]. In [23], a quadratic eigenvalue problem with
low-rank damping term is turned into a problem as addressed in the paper (nonlinear eigenvalue
problem with low-rank terms corresponding to higher order terms) and subsequently solved using a
Paé approximation and linearization, exploiting the low-rank property. In this paper, we will address
such a type of low-rank structure in the framework of the infinite Arnoldi method [20]. This method
is equivalent to Arnoldi’s method applied to a linear operator, and the restarting procedure is based
on the structure of the invariant subspace presented in [24].

In this work, we will construct an algorithm that exploits a particular commonly occuring
structure, that is, the high-order coefficients in the Taylor expansion of M have low rank r (see
Assumption 2 for a precise statement). The proposed algorithm will be particularly suitable for large
n and situations where r < n. This low-rank property often appears in the discretizations of PDE
eigenvalue problems that have been constructed with non-reflecting boundary conditions. In numer-
ical examples, we will also give an example of how localized delayed feedback control can give rise
to this type of low-rank structure.

The paper is organized as follows. In Section 2, we state the main assumptions and show that
the solutions to (1.1) are reciprocal eigenvalues of an operator FB. This is similar to [20] where
an equivalence was shown for 5. The additional operator F stems from the low-rank structure and
allows for considerable perfomance improvement. In Section 3, we consider the Arnoldi method for
the operator F13, where we represent the iterates in a polynomial basis. We also show that, if we start
the iteration in a particular way and use a particular vector-valued polynomial basis, we can carry out
the Arnoldi method for F B very efficiently. In comparison to [20], the basis matrix in this algorithm
grows slower yielding a reduction of the computation time required for the orthogonalization and
the memory resources required to store the basis matrix. The slower growth also allows for a natural
way to carry out implicit restarting and locking. This is derived in Section 4. It is well-known that the
Arnoldi’s method usually converges quickly to extreme isolated eigenvalues (e.g., [25, Section 6.7]).
As a consequence of the fact that we carry out the Arnoldi method on an operator with inverted
eigenvalue set, the construction is likely to find solutions to (1.1) close to the origin quickly, similar
to shift-and-invert Arnoldi method. This as well as other efficiency properties are illustrated in the
numerical experiments in Section 5.

2. EQUIVALENT LINEAR OPERATOR EIGENVALUE PROBLEM
Similarly as in the infinite Arnoldi method [20], the basis of the algorithm will be a characterization
of the solutions to (1.1) as reciprocal eigenvalues of a linear operator. Here, we will use an operator

that also takes the low-rank structure into account.
If we let

1
B() = )—LM(O)_I(M(O) — M(R)),
we have that
AB(A)x = x, AeC, xeC™"\{0}, 2.1

unless A = 0, and define B(0) with analytic continuation.
Throughout the paper, we make the following assumptions.

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:607-628
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RANK-EXPLOITING INFINITE ARNOLDI ALGORITHM 609

Assumption 1
The Taylor series expansion of B at A = 0 converges for all A € Q.

We note that Assumption 1 is satisfied with Q = C if M is an entire function, and similarly, if
M is analytic in a neighborhood of the closed disk of radius r centered at the origin, Assumption 1
is satisfied with 2 selected as the corresponding open disk.

We also assume that M (1) and B(X) satisfy a low-rank property, in the following sense.

Assumption 2 (Low rank property)
There exist strictly positive integers p, r satisfying r < n, a matrix Q; € C"™*” with orthonormal
columns and matrices U; € C"*", i = p, such that the function B can be decomposed as

B(A) = Bpol(A) + Brem(k)y
where

® B, is a polynomial matrix of a given degree p — 1 corresponding to the first p terms in the
Taylor series of B, that is, it can be expanded as
A A2 APl
Byoi(A) = By + B11—! + 322—! + -+ Bp—lm.

® B, is the remainder of the Taylor expansion of B and can be expanded as

A) = + G + ALeEQ
B B, — B e cee c s
rem( ) )4 1 p+1 ( 1)!

where B; satisfies

In terms of the original formulation (1.1), Assumption 2 implies that in the Taylor expansion
of M

MR =) M), (2.3)
i=0

all matrices M; with i > p have rank r and span a common column space. Our interest in the
context of eigenvalue computations consists of exploiting the situation where r < n.
The construction of the proposed algorithm requires two operators:

e Operator B : C*°(R,C") — C*®(R, C"), which served as a basis of the derivation in [20], is
defined by

0@ = fpccmmen: (5(2)o) 0 <o)

6 d 2.4)
G0 = [ s+ (8(5)0) 0. ¢ DG
where
B i 0) = i lB- (i)(o)
a6)?) 0= ! 97 0)
e Operator F : C*°(R,C") — C*°(R, C") is defined by
r—1 ) 0! 0 ) i
(F)(©0) =Y _ VO +> 00"V 0)—. (2.5)
i=0 i=p
Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:607-628
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610 R. VAN BEEUMEN, E. JARLEBRING AND W. MICHIELS

Note that ¢ € C°(R,C") implies F¢ € C*®(R,C") because Q Q* can be factored out in the
second term of (2.5).
We now relate (2.1) with the operator eigenvalue problem

AMFB)p = ¢, ¢ €CPR,C", A1eC, ¢#£0. (2.6)
The eigenvalue problems (2.1) and (2.6) are equivalent in the following sense.

Theorem 2.1 (Operator equivalence)
Suppose that B satisfies Assumptions 1-2. Then, the following implications are satisfied.

(1) Let the pair (A, x), with A € Q \ {0}, be a solution of (2.1). Then (A, ¢) is a solution of (2.6),
where

1 i

=\ (A0
$(0) = Z X+ Z %QQ*X. 2.7)
i=p

i=0

(2) Let the pair (A, ¢), with A € Q \ {0}, be a solution of (2.6). Then (4, x), with x = ¢(0), is a
solution of (2.1).

Proof
The proof consists of two parts.

Statement 1. Let ¢ be given by (2.7). Because of Assumption 1, we have that B(%)q}(O) < 0
and thus ¢ € D(B). Moreover, we can express

(BP01 (dde) ¢) (O) = Bpol(k))@ (28)

d *
(Brem ( de) ¢) 0) = Bum(})0 0" x. 2.9)

From the definition of B, it follows that

r—1 Aigit! Aigitl

(B¢)(©O) = ; G T Z N QQ*x + Bpoi(A)x + Brem(1) Q0" x.

Consequently

-1

z 1pi
(FB)$)(0) = Z 0 x+Z

Alll

Q*X + Bpol(k)x + Brem(A)QQ*x'

From (2.2) and the fact that (A, x) is an eigenpair, we obtain

1
Bpol(/\))C + Brem(A)QQ*)C = Bpol(/\))C + Brem(x)x = B(l)x = Xx’
and it follows that

AMFB)p = ¢.

Statement 2. Let (A,¢) be an eigenpair of FB. Hence, ¢ € D(B). Denote the power series
expansion of ¢ by

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:607-628
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Hence, we obtain
By = (B (;_9) ¢) ) + 2 i"i%x,.,
(FB) ¢ = (B (j—e) ¢) 0) + 2 f’:l R S

1 ~i+1
i=p
Equating the coefficients corresponding to powers of 6 in (FB)¢ = %q& yields

d 1

B (ﬁ) $(0) = xxo
1

1

00%x;.

X0
— = —X
1 A
Xp 1
-1 = Xxp—l (2.10)
*Xp—1 _ l
QQ p - A‘xp
X 1
QQ*p —|I-)l = 3rpt

We conclude directly that

AL P — _

xi=1{ “x(: 1 ,....,p—1,
Ir Q Q Xo, I = p-

Because by assumption ¢ # 0, we see that xog # 0 must hold. Writing out the first equation of

(2.10) yields

o0
Xo =AY BiXi = AByo(X)xo + ABrem(A) 0 Q*xo = AB(X)xo.
i=0

We conclude that (A, x¢) is an eigenpair of (2.1). The proof is completed by noticing that xo = ¢ (0).
|

3. ARNOLDI’S METHOD ON FB

The infinite Arnoldi method [20] is equivalent to Arnoldi’s method for the operator 3 whose recip-
rocal eigenvalues are solutions to (2.1). We know from Theorem 2.1 that the reciprocal eigenvalues
of the operator F13 are also solutions to (2.1) for problems with low-rank structure. Analogous to
the infinite Arnoldi method, we will now construct an algorithm by considering Arnoldi’s method
for FB. By carrying out k steps of Arnoldi’s method for F15 with a starting function ¢, we generate
a sequence of functions ¢, . .., ¢ forming a basis of the Krylov subspace

Ky (FB, ¢) := span {gb, FBo, ..., (]-"B)k_1¢}, (3.1
:=span{¢1, ¢2, ..., Px}.

If we start the Arnoldi method with a constant function, we can show from the fact that 73 corre-
sponds to integration, that ¢1, . . . , ¢ are vector-valued polynomials. However, unlike [20], we will
see here that because of the application of F, the functions can be represented with less informa-

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:607-628
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612 R. VAN BEEUMEN, E. JARLEBRING AND W. MICHIELS

tion yielding a significant performance improvement. This will also allow the possibility to carry
out implicit restarting in a natural way, which we shall explain in Section 4. The possibility to rep-
resent the functions in a compressed way stems from the fact that some polynomial coefficients can
be represented with vectors of smaller size. This can be seen from the following lemma, where we
see that the polynomial coefficients of degree higher than p — 1 can be represented with vectors of
length r, that is, the rank of the low-rank terms.

Lemma 3.1
Suppose ¢;1(0) := z is constant. Then, there are constants xg,...,x,—1 € C" and X,,..., % €
C7 such that

((}'B)k(pl) (0) = X0+ x10 + X202 + -+ xp,_1077 + 0 (fc,,el’ ot fcpek) . (32

Proof
The result follows from the definitions of B and F, by induction on the degree. |

It is also easy to show that Arnoldi’s method applied to FB, that is, [20, Algorithm 1] with 7B
instead of 3, generates iterates ¢q, .. ., ¢ corresponding to functions of the structure (3.2). In the
implementation, we represent these iterates in a polynomial basis using p vectors of length n and
k — p vectors of length r.

For the operator F B, there is in general no obvious scalar product to be used in the construction.
We will, similar to [20], couple the scalar product with the polynomial representation, in the sense
that we will use the Euclidean inner product corresponding to the coefficient vectors in the basis.
Consider any polynomial basis gg, g1, - . - and any two functions ¢ and v that can be expressed as

o0 o
0O =Y &i@xi.  Y(O) =) 2Oy
i=0 i=0
Then, we define the scalar product as follows:
[e.¢]
(p.¥) =Y yixi.
i=0

We will work out the algorithm for both the monomial basis and a (scaled) Chebyshev basis,
although other choices of polynomial bases are also possible. The scalar product corresponding to
the Chebysheyv basis is expected to lead to a fast convergence of our algorithms for the delay eigen-
value problem. In [20, Section 5.2-5.3]), for the standard infinite Arnoldi algorithm, this is explained
by a connection with a spectral discretization of a corresponding differential operator.

By using the coupling of basis and scalar product, we can carry out the scalar product of two
functions directly in the compressed representation, as can be seen from the following lemma.

Lemma 3.2

Consider a polynomial basis gg, g1, ... and suppose the vector-valued polynomials ¢ and y are
given by ¢(0) = x0go(0) + --- + xk gk (0) and ¥ () = yogo(0) + -+ + ymgm(0). Moreover,
suppose the functions ¢ and ¥ have the structure (3.2), that is, x; = QX;, y; = Qy; wheni = p.
Then

min(k,m)

p—1
(. v) =) yxi+ > P
i=0 i=p

Figure 1 illustrates graphically the non-zero structure of the basis representations constructed by
the standard infinite Arnoldi method [20] as well as by its low-rank version. Figure 1(a) shows that
when we apply Arnoldi’s method to B with constant starting function, the non-zero part of the basis
grows by a block row consisting of n rows. In contrast to this, Figure 1(b) shows that when we
apply Arnoldi’s method to FB with constant starting function, the basis matrix is only expanded by

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:607-628
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p blocks
Ki (FB, ¢1) ~

Ky (B, ¢1) ~

(a) Standard Infinite Arnoldi method (b) Low-rank Infinite Arnoldi method
Figure 1. Structure of the basis representations of the standard infinite Arnoldi method [20] and its low-

rank version presented in this paper. (a) Standard infinite Arnoldi method and (b) low-rank infinite Arnoldi
method.

a block row consisting of r rows, because the vector coefficients for polynomials of degree higher
than p can be represented with vectors of length r.

3.1. Taylor coefficient map

We wish to carry out Arnoldi’s method for 7B where the functions are represented in a polynomial
basis. As a first step in this construction, we need the action of 73 in the monomial basis. The
following theorem specifies 15 for functions of the structure (3.2).

Theorem 3.3 (General coefficient map for FB in the monomial basis)
Suppose that ¢ is given by

p—1 ) N—-1 )
p(0):=) 0'xi+ ) 6'0%,
i=0 i=p

where Xo,...,Xp—1,0%Xp...., OXn—1 € C[n] denote the vector coefficients in the monomial
basis. Then, the coefficients of ¥ := FBg, that is
p—1

N
Y(6) = (FBp)(®) =) 6'yi+ Yy 60%,
i=0 i=p

are given by

p—1 N-—1
Yo=Y Bixi+ y Uk, (3.3)
i=0 i=p
and
[y1 - ypo1 ] =[x0/1 - xp2/(p— 1],
Vp =0 xp-1/p, (3.4)
[Ppr1 - In]=[%p/(p+ 1) - Zv_1/N ],
Proof
This follows directly from the definitions of F and B. O
Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:607-628
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614 R. VAN BEEUMEN, E. JARLEBRING AND W. MICHIELS

In order to carry out the action in practice, some analysis is required for the specific problem in
order to find an explicit and efficient expression for (3.3). Fortunately, we can simplify somewhat, if
the problem is expressed in terms of the coefficient matrices M; of the original nonlinear eigenvalue
problem (1.1), because simple manipulations yield

p—1 N

_ 1 .
yo=—My" [ Y Miyi + =Mpxp i+ Y Vidi |, (3.5)
i=1 p i=p+1
p—1 1 N-1 1
— _ a1 . . I AN
=—-M, ;i—l-lMlel_l_;)i—l—l i +1Xi

3.2. Chebyshev coefficient map

It was illustrated and explained in [20] that for certain problems, it is natural and much more efficient
to work with the inner product corresponding to the Chebyshev basis, in particular, in terms of
asymptotic convergence rate. We will now derive the coefficient map for 5 in Chebyshev basis.
In Section 5, we illustrate that we have a considerable improvement in performance for certain
problems.

Let Ty, T1, . .. be the Chebyshev polynomials of the first kind scaled to an interval [a, b], that is

T; (0) = cos(i arccos(kf + ¢)) (3.6)

where ¢ = Zté’ and k = ﬁ. We will need an explicit representation of the integration of a

polynomial expressed in the Chebyshev basis. Let L y correspond to this map, that is, forany N € N
we have

To(0) T{(0)
: =Lv|
Tn-1(0) Ty(9)

Then, the matrix L is triangular, and an explicit expression is given in [20, Equation 21]. We will

partition L p into blocks as follows:

Li; 0 O
Ly =:| Lz Lz 0 |, 3.7)
L3y L3y L3

where L1; € RP=D@=D [, € R, and L33 € RV =PWN=P),
In the formulations of the coefficient map, we will need the coefficients transforming a Chebyshev
polynomial into its monomial coefficients. Let this matrix be given by U € R¥*¥ that is

To(e) Uuo,o 0 0 0 .- 1 1
T](@) Ui,o U1,1 0 0o --- 9 9

T5(0) | = | uz,0 u2,1 22 0 --- 2 | =2U | 92 |. (3.8)

Moreover, let v, € R[p] be defined as follows:

U0,0 0 cen 0
Uio [22 9% SN :
T ) ) . N
Vp = [”p,o Up1 - ”p,p—l] . . . . (3.9
. . . 0
Up—1,0 Up—1,1 *** Up—1,p—1

In contrast to the monomial case, the application of F modifies all first p + 1 coefficients when
it is represented in the Chebyshev basis. More precisely, the coefficients are modified as follows.

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:607-628
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Lemma 3.4 (The representation of the operator F in the Chebyshev basis)
Suppose ¢ is given by

p N
p(O) =) T;(0)xi+ Y T(0)0%:. (3.10)

i=0 i=p+1

with xo,...,x, € C" and Xp41,..., Xy € C" and T, T1, . .. are defined by (3.6). Then

p—1 N
(Fe)0) =Y T:(0)yi + Y _ T:(6)Q3i.

i=0 i=p

where

[Ppt1 - 9
with v, is defined by (3.9).

Proof

Because the operator F is defined in the monomial basis, we transform ¢ (3.10) to the monomial
basis, carry out the operation F, and then transform it back to the Chebyshev basis. Let X; =
[xo e Xpoi ] and X5 = [)21,“ .o AN ].Wehave

00) =[X1 xp OX3][To(®) --- Tn ()],
=[X1x, OX3]U[16 - 6N ]", (3.11)
where U is defined in (3.8). We now partition U according to

U1 0 0
U:i=|UxUx 0 |,
Us1 Usy Uss

where U;; € RPXP_ U,y € R, and Us3 € RV—P)x(N-p) By carrying out the multiplication in
(3.11), we have

9(0) = [ X1Un1 + xpUz1 + 0X3Us1 xpUz + OX3Us, QX3Us3 |[16 - 6V ]*

Recall that F corresponds to multiplying all monomial coefficients of degree equal or higher than
p by Q O*. By using that Q has orthonormal columns, we have that

1
(Fo)(0) = [ X1Un1 + xpUa1 + QX3Us1 QQ*xpUsn + QX3Usy OX3Usz || @ |,
9N
Ui 0 0 !
=[X1+ I —-00%x,v] 00*x, OX3]| Usy Uy 0 I
Us1 Usz Uss oN
where vg = U, U 1_11. Finally, noting that
U160V =[To0) - Tn®) ] .
completes the proof. O
Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:607-628
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616 R. VAN BEEUMEN, E. JARLEBRING AND W. MICHIELS

By combining the lemma characterizing the coefficient map corresponding to F, we can now
derive the coefficient map corresponding to FB.

Theorem 3.5 (General coefficient map for FB in the Chebyshev basis)
Suppose ¢ is given by

p—1 N-1
0(0) =) Ti(O)xi + Y T:(H)0%,
i=0 i=p
where Ty, T1, ... are defined by (3.6) and the columns of X € C[n][N]
X :=[X1 xp1 0X3],
denote the vector coefficients of ¢, thatis, X1 := [ xo -+ Xp—2 | and X3 := [ %, --- Xy—1 |. Then,

the expansion of ¥ := FBy, that is

p—1 N
V(6) = (FBe)(®) = Y Ti(O)yi + Y Ti(6) 051,

i=0 i=p
is given by
p—1 d N-1 d
=2 (B (@) T,-(em) 53 (B (@) Tl-(e)Qxi)
i=0 i=p =0
T1(0)
—[ X1 xp—1 OX3]Ly : + = Q0%)xp-1Vp.1, (3.12)
Ty (0)
and

[yl Yp—l] =X1L11 +xp-1L21 + QX3L3 + (I — QQ*)xp_lezﬂg,
Vp = 0*xp_1L2s + X3L3, (3.13)
[Jp+1 - In | = X3Las,

where L;; are defined by (3.7) and we denote vg = (vp1, 171{) withv, 1 € R, 9, € R[p —1].

Proof
The proof consists of two parts. Firstly, we will use the general coefficient map defined in [20,
Theorem 4] in order to obtain the coefficients of By. Next, we apply Lemma 3.4 resulting in the
coefficients of ¢ := FBy.

Let Z := [Zo Zy zp 075 ] with Z; := [Z1 e Zp—1 ] and Z3 := [Zp+1 <+ IN ] denote the
coefficients of the function By, that is

p N
Bp)(®) =Y TiO)zi + Y, Ti(6)Qzi.

i=0 i=p+1

Then, from the general coefficient map defined in [20, Theorem 4], we have

Ly 0 O
[Z12p 0Z3]=[X1 xp—1 OX3|| L2y Lo 0 |,
L3y L3y L33
which yields
Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:607-628
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Z1=X1L1x —f-xp_le] + 0X;3L3;, (3.14a)
Zp =Xp_1L2 + OX3L3s, (3.14b)
Z3 = X3L33. (3140)

An explicit expression for the vector zog € C” can be found by noting that [20, Equation 22] can be
rephrased using [20, Equation 12] and specialized for ¢. This leads to

-1 d N d A
20 = ; (B (E) Ti(e)xi) (0) + ; (B (E) Ti(e)Qxi) (0) (3.15)
T1(0)
—[ X1 xp-1 OX3]Ly :
Tn(0)

To complete the proof, we apply Lemma 3.4, which results in yo = zo + ({ — QO0™*)xp—1Vp1
and (3.12)—(3.13). O

Similar to the monomial case, we need to find an efficient, accurate, and explicit expressions for
yo in (3.12). The difficulty in deriving such an expression should not be underestimated. Unfortu-
nately, unlike the monomial case, in particular (3.5), expressing yo in terms of the coefficients of
the original nonlinear eigenvalue problem My, M1, ... does not considerably simplify the problem,
although a general approach based on manipulations similar to [20, Appendix A] is feasible but
somewhat tedious in general.

In this work, we will derive explicit expressions for an important special case. We consider delay
eigenvalue problems and specialize the result as follows. Suppose

M) = =Ml + Ag + Aje™, (3.16)

where A7 = VQ7, such that we can set p = 1. Such problems occurs in the stability analysis of
PDE with pointwise delayed feedback, as we shall further illustrate in Section 5.2. The coefficient
map (Theorem 3.5) simplifies as follows for (3.16).

Corollary 3.1 (Delay eigenvalue problem with single delay and p = 1)
Consider the nonlinear eigenvalue problem (1.1) where M(A) is given by (3.16) with A; = VQ*
and Q € C™*" has orthonormal columns. Let Ty, T4, ... be the Chebyshev polynomials of the first
kind (3.6) scaled to the interval (a, b) = (—t, 0). Moreover, suppose ¢ is given by
N-1
0(0) = To(0)xo + Y _ Ti(0)Q%i. (3.17)
i=1

where xg € C" and x1, x2,... € C”. Then, the expansion of ¥ := FBy, that is

N

¥(0) = (FBe)(0) = To(®)yo + )_ Ti(6)Qyi,

i=1

is given by
N-1 N
yo = (Ao + A7 ! (xo + 0 Z Xi — Ao |:Zl + QZﬁii|
i=1 i=2
N T
—A1 {Zm(—f) +0), Ti(—r)ﬁ,}) + 5 = 00")xo,
i=2
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and
[J’1 ...yN]z[Q*xo X1 '“xN—l]LN, (3]8)
with
T T
_J 3% —30x2 N =3
o {%Xo otherwise. (3.19)
Proof

Note that when p = 1, several matrices in Theorem 3.5 should be interpreted as empty matrices,
in particular Ly, L2y, L31, Z; and X7, implying that [ V1 o VN ] can be directly computed from
(3.18).

The formula for yy is simplified if we introduce the variable z; in (3.14b). Because of the parti-
tioning of L in (3.7) and the explicit formula for Ly in [20, Equation 21] with (a, ) = (-, 0),
we have in our case that Ly, = t/2and L3, = (0 =% 0 --- O)T. Hence, the definition of z; in
(3.14b) simplifies to (3.19).

We derive the formula of yy from the fact that yo = z9 + (I — Q Q*)z4, similar to the last
step in the proof of Theorem 3.5. In our setting, v, = 1 and z; = xpLyy with Loy = 2(b —
a)/4 = t/2 from (3.7). The expression for z is found by inserting the definition of M (1) and B(1)
into (3.15). O

3.3. Low-rank infinite Arnoldi method

From Section 3.1 and Section 3.2, we now know how to compute the action of F5 in monomial
basis or Chebyshev basis for functions with the structure (3.2). Lemma 3.2 suggests a natural way
to carry out the scalar product for such functions. The actions of the operator and the scalar product
are the only ingredients needed in order to carry out Arnoldi’s method in an operator setting, that is,
[20, Algorithm 1].

Algorithm 1: Low-rank infinite Arnoldi method

Input :V; =v € C”, k is number of steps
Output: Reciprocal Ritz values Ay, ..., Ax
1 SetH, =0,
for j =1,2,...,kdo
2 ‘ [Vj+1, H ;] = Algorithm 2 with input [V, H ;_,]
end
3 Return approximate solutions of (2.1) ij =1/u; where u; € o(Hyg), j =1,...,k.

As usual for the Arnoldi method, we will denote the upper block of the rectangular Hessenberg
matrix H;, € CU+Dxk by Hy e C*** andthe (i, j) element of H, isdenoted /; ;. We summarize
the algorithm in Algorithms 1 and 2, where we have separated the algorithm into two parts in
order to simplify the presentation of the restarting in the following sections. We will for reasons
of efficiency stack the coeffients into vectors and matrices such that the orthogonalization can be
carried out with simple operations on larger matrices and vectors as illustrated in Figure 1.

Remark 3.1 (Extraction of eigenvectors) _

The result of Algorithm 1 is the matrix Hy and V. The approximate eigenvalues A ; are the recip-
rocal eigenvalues of Hj. We also need to form approximations of the corresponding eigenvectors
vj. With Vi, we have a representation of an approximate eigenfunctions of 7 3. We propose here to
compute approximate eigenvectors by function ¢ at 8 = 0, because exact eigenfunctions satisfies
¢(0) = v; (according to Theorem 2.1). In the Taylor version (Section 3.1), this corresponds to using
the first n rows of Vj, whereas for the Chebyshev version (Section 3.2), we make the corresponding
evaluation by computing 7; (0).

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:607-628
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Algorithm 2: Low-rank infinite Arnoldi step

Input :V;, H;_,
Output: Vj 1, H;

A A *
1 Let[xg o xp_y &5 o0 X7 =0

2 Compute yg,...,Yp—1 € C|[n] and VprVp+1s---,Yj+1 € C[r] by either
(a) the Taylor coefficient map according to (3.4)—(3.5); or
(b) the Chebyshev coefficient map according to (3.12)—(3.13).
Letw; := [yg AR y;_l )7; )7;+1 )77+1 ]*

Expand V; with one block row with n or r rows.
Orthogonalize w; := w; — Vjh;, where hj =V wj.
Compute ; = ||w;||2 andletv;4q = w;/B;.

H. | h;
. = —=Jj-1 J j j
Let H ; [ 0 B } € C[(j + DIj1-
Expand V; into V; 1 = [Vj Vjt1 ]

A it AW

|

=]

4. IMPLICIT RESTARTING AND LOCKING

Due to the fact that Algorithm 1 is equivalent to the Arnoldi method applied to the operator F B,
the result will also satisfy an Arnoldi relation. More precisely, the function-setting Arnoldi relation
generated by Algorithm 1 can be formulated as follows. Let ®;(0) € C"*/ corresponds to the
matrix consisting of columns ¢1(0), ..., ¢;(0), that is

D (0) :=[¢1(0) -+ ¢;(0)].
Then, the output of Algorithm 1 satisfies
(FB®;)(0) = ®,11(0) H @.1)
where we can express ®; explicitly as
®;(0) = [(@o(8),....qp-1(0)) ® In (gp(0),....q;-1(0) ® Q ]V}, 42)

and ¢; (8) = 0" or q;(9) = f}(@), i =0,...,j depending on which basis is used.

We will now see that as a consequence of the fact that we have an Arnoldi relation (4.1), we
will be able to carry out implicit restarting very similar to the implicit restarting procedures for the
standard Arnoldi method. The restarting can be seen as a procedure to (essentially) compress the
Arnoldi relation resulting in a basis matrix with a smaller number of columns. Due to the fact that
the infinite Arnoldi method (Algorithm 1) has a growth also in the height of the basis matrix, we
will have a growth with each restart. However, if r is small, this growth is moderate, and the growth
in the height of the basis matrix is not restrictive. This is illustrated in Figure 2.

4.1. Krylov-Schur style implicit restarting and locking

In order to carry out implicit restarting and locking easily, we will work with a Krylov—Schur recur-
rence relation [26] in every iteration of the algorithm. This can be achieved by computing a Schur
decomposition of H

H,=2;8,Z% 4.3)

where S is an upper quasitriangular matrix and Z; Z; = I;. Using the Schur decomposition (4.3),
we can transform (4.1) into the following Krylov—Schur recurrence relation

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:607-628
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restart restart restart
pn X k
(k—p)r xk

(%k—p)rxk

(2k —p)r x k

Figure 2. Graphical illustration of implicit restarting on the Krylov subspace K (FB, ¢1) for the case p =

2. The light grey shade areas represent the non-zero structure of the growing coefficient vectors, whereas the

dark grey shade represent the non-zero structure of the coefficient vectors after an implicit restart where the
subspace is reduced from dimension k to k/2 in every cycle.

(FBW;)(0) = ¥, 11(0) ;. (44)
where
Wip1(0):=[P;()Z; ¢j+1]. 4.5)
and
S
S = / .
- |:h;+lzj :|
Let S; be an ordered Schur decomposition of Hy,
i S11 S12 S13
szz;(Hij:[Zl Zz Z3] Hj[Zl ZZ Z3]= 522 523 s (4-6)
S33

where S1; € C[{][£], S22 € C[(m—£0)][(m —£)], and S33 € C[(k —m)][(k —m)] are upper quasitri-
angular matrices. The ordering is as follows: the eigenvalues of S11, S22, and S35 are, respectively,
the very accurate Ritz values, the wanted but not yet converged Ritz values, and the unwanted Ritz
values. Hence

S11 S12 S13
_ S22 823
S;= Sus | 4.7)

by b3 b3

where b} = h;‘.HZ,-, fori =1,2,3.
Note that by using the ordered Schur decomposition of H; (4.6)

S11 Siz
(FB) [ W1(0) W2(0) | = [ W1(0) W2 (0) ¥ 1(0)]| O Sxo |,
by b3
where
() = [1(0) - e (0) ],
W2 (0) = [Vies1(0) - Ym(0) ],
Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:607-628
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is also a Krylov—Schur decomposition. Thus, the purging problem can be solved by moving the
unwanted Ritz values into the southeast corner of the matrix S and truncating the decomposition.
Next, the Arnoldi process is restarted.

The use of the ordered Schur decomposition has also the advantage that deflation and lock-
ing of the converged Ritz pairs corresponds to setting b] = 0 in (4.7), yielding the following
recurrence relation

S11 S12
(FB)[W1(0) W2(0) | = [ W1(0) W2(8) ¥j+1(A)]| O 5];22 + O(||b1 ).
0 b3

Note that by is a measure for the (unstructured) backward error of the corresponding eigenvalues
of S11. Hence, ||b1]| will be zero if the eigenvalues of S;; are exact. For more information, we
refer to [27].

4.2. Implicit restarting and locking of Algorithm 1

The operations outlined in the previous section can now be combined with Algorithms 1 and 2.
In (4.5), we multiply ®;(6) by Z; from the left. Note that, because of the relation (4.2), this cor-
responds to multiplying the basis matrix V; from the left by Z ;. We provide the algorithm details
in Algorithm 3.

Algorithm 3: Implicit Restarted Infinite Arnoldi (IRTA) method

Input :xo € R[n],k,meN ~
Output: Reciprocal Ritz values Aq, ..., Ax

1 Let Vi = xo/|xoll2 and H, = [].
for j =1,2,...do

2 Compute V;+1 and H ; by Algorithm 2 based on V; and H ;_;.
3 Compute the ordered Schur factorization of H; according to (4.6).
4 Let[bf b; b;]Zth_i_l[Z] Z, Z3]
5 Let[U1 U, U3]2= Vi Vo V3]Zj.
if j = k and mod(j — k,k — m) = 0 then
6 Let Vj+1 Z_[ U, U, Vj+1 ]
S11 Si2
7 Letﬂj = 0 S
0 b
else -
8 Let Vj+1 = [Ul U, U; Vj+1 ]
[ S11 S12 S13
0 S22 S23
9 Let ﬂj = 0 0 Sas
L 0 b) b3
end
end
Remark 4.1

Algorithms 1 and3 start from a given rank revealing decomposition (use of matrices Q and
U;). If the determination of these factors involves a low-rank approximation, then the algorithms
compute eigenvalues of a perturbed problem obtained by replacing the original matrices by the
corresponding low-rank approximations. The effect of such an approximation can be assessed a
posteriori by checking the residual of the computed eigenvalue approximation or by computing the

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:607-628
DOI: 10.1002/nla



622 R. VAN BEEUMEN, E. JARLEBRING AND W. MICHIELS

eigenvalue condition number 1/(z*M’(1)x), with z and x the normalized left and eigenvectors
corresponding to eigenvalue A. See, e.g., [28, 29] for nonlinear eigenvalue perturbation problems
and pseudospectra.

5. NUMERICAL EXPERIMENTS

Before presenting the results of the numerical experiments, we first introduce the following notation
in order to simplify referencing to the different variants of the algorithms.

e TB: Taylor variant for operator B, that, Taylor variant of [20, Algorithm 2],

e TFB: Taylor variant for operator F B, that is, Taylor variant of Algorithm 2,

e CJ5: Chebyshev variant for operator B, that is, Chebyshev variant of [20, Algorithm 2],
e CFB: Chebyshev variant for operator F B, that is, Chebyshev variant of Algorithm 2.

We will also add an R to denote the implicitly restarted variant, for example, TFBR and
CFBR denote respectively the implicitly restarted Taylor and Chebyshev variants with low-rank
exploitation of Algorithm 3.

Note that the dynamic variant of NLEIGS [19] corresponds to the variant 7' B in the special case
where the shifts in the Rational Krylov method are all chosen zero (Hermite interpolation) and the
poles of the approximation of M at infinity (polynomial approximation). See [20] for the connection
between the Taylor variant of the infinite Arnoldi algorithm and dynamic polynomial approximation.

5.1. A random example

We illustrate the generality and efficiency of the algorithm by applying it to a problem with randomly
generated matrices. Suppose

M(A) = Ag + AA; + AxA* 4+ A3sin(}), (5.1

where Ay, A, € R™" are random sparse matrices with normal-distributed elements, A; = —1,
and A3 = UQT with U, Q € R™? randomly generated matrices and Q7 Q = I. For illustrative
reasons, we set n = 1000. In order to make the results reproducible, we have made the matrices
available online*.

For this example, it is natural to select p = 4, and the expansion (2.3) is explicitly given by

M, = Ao M = -UQT
M, =A,+UQT My =41 A,
M, =0 M=V,  i=5

where
Va1 = (DU, k=2,
Vor =0, k= 3.
The goal in this experiment is to compute the 10 eigenvalues closest to the origin. For measuring

the convergence of an approximate eigenpair (A, x), we used the following relative residual norm:

IMA)x]l2/1x 2
[4ollx + [A] + A2l [A1* + [[ 4311 sin(A)]

EA, x) =

In the implementation, we precompute the LU-factorization of M in order to use in the formula
for yg, given by (3.5), and the terms involving M; and M3 are computed as follows: M1y, =
Ayy1 +V(OTy1) and M3ys = —V(QT y;), respectively.

http://www.math.kth.se/~eliasj/src/lowranknep/example1_matrices_final.mat.
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DOI: 10.1002/nla


http://www.math.kth.se/~eliasj/src/lowranknep/example1_matrices_final.mat

RANK-EXPLOITING INFINITE ARNOLDI ALGORITHM 623

0.8 T 10 ‘
* Ritz values
o converged Ritz values ® & ®
0.4+ s 5 - ® |
—~ ® _
= o ~ ®
) 0 & ® B F 0r ® ® -
B #e B .
—04 |- . 5| ® .
® ® ®
—0.8 - | ~10 I L |
-1 —0.5 0 0.5 —10 -5 0 5 10
Re(1/)) Re(})
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Figure 3. (a) Ritz values and (b) approximate eigenvalues, that is, reciprocal Ritz values, of the random
example computed with variant TF5. An eigenvalue is classified as converged if E(A, x) < 10710,
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E(\ x)
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iteration wall time (s)
(a) Iteration vs relative residual (b) Wall time vs relative residual

Figure 4. Comparison of TS5 and TFB for (5.1). The variants generate very similar results per iteration, but
the computation time grows much faster for T than for TFB. (a) Iteration versus relative residual and (b)
wall time versus relative residual.
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Figure 5. Comparison of TFB and TFBR for (5.1). The convergence is only slightly slowed down by the
restart (in terms of result per iteration), whereas the computation is further reduced. The vertical dashed lines
indicate the restarts. (a) Iteration versus relative residual and (b) wall time versus relative residual.

We first solved the nonlinear eigenvalue problem (5.1) by the variants T and TFB. The eigen-
values and results of this experiment are shown in Figures 3 and 4, respectively. We observe in
Figure 4(a) that the application of the operator F has very little impact on the approximations

Numer. Linear Algebra Appl. 2016; 23:607-628
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generated by each iteration of the two variants. On the other hand, using a compressed representa-
tion for TFB as illustrated in Figure 1(b) gives a significant performance improvement in the sense
that each iteration can be carried out in less computation time. As shown in Figure 4(b), this results
in a much lower total computation time for TFB compared with TB.

Next, we solved (5.1) by the implicitly restarted variant TFBR. The results are illustrated in
Figure 5. We observe in Figure 5(a) that the convergence speed as a function of iteration is slightly
worsened by the restarting. But as expected from restarting, we notice in Figure 5(b) that the con-
vergence speed as a function of computation time is further improved, such that we obtain for
computing 10 eigenvalues a speed up factor of 6 from TS to TFBR. In Figure 6, we illustrate the
growth of the computation time of the restarted variants as a function of iteration. As a compari-
son, the computation time grows slower when exploiting the structure. Note that without low-rank
exploitation, we need O(j2k) scalar products between vectors of size n up to iteration j > k,
with k the maximum dimension of the subspace and j the total number of iterations. On the other
hand, by exploiting the low-rank structure, we only need O(jpk) scalar products between vectors
of size n and O(j2k) between vectors of size r. We observe in Figure 6 that the computation time
grows quadratic with the iteration for TB R. However, for TF B R, the computation cost grows essen-
tially linearly after the first restart, because the quadratic term in j is negligible due to the fact that
jr < pn.

In what follows, we present a comparison of the variants TB, TFB, and TFBR to the static
variant of the fully rational Krylov method (NLEIGS) [19]. We have selected the parameters of the
NLEIGS software package in order to improve fairness of comparison. In particular, we chose all
shifts in the rational Krylov process equal to zero such that we also have a polynomial (not rational)
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Figure 6. The computation time of TBR and TFBR for (5.1) as a function of iteration for n = 1000, 2000,
3000, 4000, 5000. The total computation time for TFBR is considerably lower than for TBR for larger n.
The vertical dashed lines indicate the restarts.

Table I. Comparison of TFB, TFBR, and the static variant of NLEIGS for
(5.1) with n = 1000.

Method #Conv. A  #Iter. Wall time
TB 10 61 5.97s
TFB 10 56 1.21s
TFBR 10 58 0.92s
NLEIGS - disk (center = 0; radius = 1) 0 20 0.76 s
NLEIGS - disk (center = 0; radius = 5) 4 34 1.25s
NLEIGS - disk (center = 0; radius = 10) 14 91 4.51s
Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:607-628
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Arnoldi process. The interpolation nodes for (5.1) are automatically placed on the boundary in a
Leja—Bagby fashion.

In contrast to the variants of Algorithm 1, which require a target point, the NLEIGS software
package requires a target set as input in which the algorithm computes the eigenvalues. However,
how to choose this target set is less clear but crucial as illustrated in Table I. If the target set is too
small, we find no eigenvalues. On the other hand, if the target set is chosen too large, we will do an
unnecessary extra amount of computation work because NLEIGS tries to compute all eigenvalues
inside the target accurately.

5.2. A delay eigenvalue problem

We model a one-dimensional clamped beam and delayed feedback control localized at the endpoint
with a partial delay differential equation. See [30, 31] for PDEs with delays. More precisely, we
consider the one-dimensional DDE

Ur(X, 1) = Uxx(x,2) + 8(x —0.5)u(0.5,t — 1),

with boundary conditions u(0,¢) = ux(1,7) = 0 and §(x) a Dirac impulse such that the problem
corresponds to delayed pointwise feedback at x = 0.5. The finite difference discretization with n
intervals results in the following delay eigenvalue problem:

M) = Al + Ag + Are™ ™, (5.2)

where Ag € C™" is a tridiagonal matrix and A; a rank 1 matrix. The goal in this experiment is
to compute the rightmost eigenvalues of (5.2). For measuring the convergence of an approximate
eigenpair (4, x), we used the following relative residual norm:

M A)x]l2/1x ]2
Al + 4oy + A1 ll1]e=]

E(A,x) =

In every iteration of Algorithm 2, y is computed with the formulas of Corollary 3.1.

The delay eigenvalue problem (5.2) with n = 10.001 and T = 1 is solved by variants CB and
CFB, where the Chebyshev polynomials are scaled and shifted from the interval [—1, 1] to the
interval [—7, 0]. Figure 7 shows the Ritz values and the 15 converged eigenvalues. In this figure,
we see that the iteration of Algorithm 1 converges first to the (wanted) extreme eigenvalues of the
inverted spectrum (which are well isolated). Note that even though there is no guarantee that all
rightmost eigenvalues are found, an indication is that the converged part of the spectrum starts to
capture the asymptotic eigenvalue chains typical for delay problems [32], containing eigenvalues
with a very high imaginary part.

The advantage of using the operator F together with the compact representation is reported in
Figure 8. If we only consider the relative error as a function of the iteration, we observe in Figure 8(a)
that the eigenvalues converge faster for CF B than for C5. But the major advantage of the compact
representation can be seen in Figure 8(b), where we compare the relative error generated by C5
and CFB as a function of wall time. In this figure, we see that the total computation time for CF3
is several orders of magnitude less than for CB. As illustrated in Figure 1(a), the subspace vectors
grow in every iteration of variant CB with a block of size n = 10.001. On the other hand, in variant
CFB, they grow after the first iteration only with blocks of size r = 1. Therefore, CB handles in
this experiment with vectors of size O(10°), whether CF 3 only deals with vectors of size O(10%).

We finally present a comparison of the variants CB8 and CFB to the static variant of NLEIGS,
where we again chose all shifts in the rational Krylov process equal to zero and use polynomial
interpolation. In Table II, we notice that the choice of the target set has again a large impact on
the number of eigenvalues as well as on the total computation time. Furthermore, the choice of the
target set in this example is more crucial than in Section 5.1 because we aim in this example to
compute the rightmost eigenvalues. Also, notice that in the case of an optimal choice of the target
set (last row in Table II), the static variant of NLEIGS is significantly slower than CF B because the
Chebyshev scalar product used in CFB corresponds to a rational approximation of (5.2) in A with
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implicitly optimal pole selection, whereas NLEIGS only uses a polynomial approximation because

(5.2) has no singularities.
It should be noted that a balanced comparison to NLEIGS is difficult, given

that both methods

are fundamentally different. The static variant of NLEIGS belongs to the class of ‘discretize-first’
methods, where a rational approximation of M (1) and corresponding linearization are constructed
first and whose eigenvalues are subsequently computed with a method of choice. This is different
from the infinite Arnoldi method, which is equivalent to the application of a method for the lin-
ear eigenvalue problem in an operator setting. As a consequence, their preferred use is different.
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0.1} 20 |- o
®
< = ®
= 0® = 0p ® &
E — ®
®
—0.1 |- —20 |- ® |
®
®
—0.2 \ ! ! _40 ! | | ®
-2 —-1.5 -1 —0.5 —40 —-30 —20 —10 0
Re(1/)) Re(X)
(a) Ritz values (b) Eigenvalues

Figure 7. (a) Ritz values and (b) approximate eigenvalues, that is, reciprocal Ritz values, of the delay
problem computed with variant CFB. An eigenvalue is classified as converged if E(A, x) < 10710,
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Figure 8. Comparison of CB and CF5 for (5.2) with n = 10.001. The variant CFB converges in less
iterations than variant CB. Furthermore, the computation time differs several orders of magnitude.

Table II. Comparison of CF B and the static variant of NLEIGS for (5.2) with n = 10.001.

Method #Conv. A #Iter. Wall time
CB 15 98 403.64 s
CFB 15 34 2.565s
NLEIGS - disk (center = 0; radius = 1) 1 20 1.19s
NLEIGS - disk (center = 0; radius = 5) 1 20 1.995s
NLEIGS - disk (center = 0; radius=10) 4 20 3.75s
NLEIGS - rectangle (center = 10; width = 20; height = 200) 0 20 1.63s
NLEIGS - rectangle (center = 0; width = 2; height = 20) 1 21 1.44s
NLEIGS - rectangle (center = 0; width = 4; height = 40) 5 46 3.565s
NLEIGS - rectangle (center = 0; width = §; height = 80) 13 97 11.58s
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First, as we have seen in the previous examples, the infinite Arnoldi method is particularly suitable
for the fast computation of eigenvalues close to a target. On the other hand, the static variant of
NLEIGS is a very robust method for computing all eigenvalues in a predefined compact target set.
The latter requires, however, that the target set is given a priori or that there is an obvious way how
to choose it. Second, NLEIGS allows explicit rational approximation, where the user can specify the
poles. This is a very powerful property, provided there is an obvious way how to select the poles (and
explains why we have chosen them at infinity in the aforementioned examples). This is, for instance,
the case when computing eigenvalues close to branch points or branch cuts, where NLEIGS is the
method of preference [19]. The infinite Arndoldi method is not based on direct approximation of
M (A), and consequently, no poles or interpolation nodes but an inner product needs to be chosen.
The Chebyshev inner product is particularly suitable for the delay problem, which can be related to
a rational approximation of exponentials. The corresponding ‘good poles’ are not prescribed by the
user but induced by the spectral discretization of the operator on a Chebyshev grid [33].

6. CONCLUSIONS AND OUTLOOK

We have presented a new procedure to compute solutions to a type of nonlinear eigenvalue problem
with a particular low-rank structure. We have constructed the algorithm such that it is equivalent to
the Arnoldi method on a (infinite dimensional) linear operator, and the behavior in the numerical
examples is very similar to the Arnoldi method, including the restarting features. Although the con-
struction is general, some specific adaptations, such as efficient formulas for yg in (3.5) and (3.12),
are necessary in order to implement the algorithm for a specific problem. The numerical exam-
ples have illustrated that for large-scale problems, the low-rank exploitation can result in significant
lower computation times because of the much lower orthogonalization and memory costs.

As demonstrated by the examples, an important choice of the algorithm is the scalar product, as it
affects the quality of the projections. Besides the delay problem, where significant improvements of
the Chebyshev version with respect to the Taylor version can be attributed to the connection with a
spectral discretization, there is currently no obvious choice, and further research is present. It should,
however, be noted that even for the standard eigenvalue problem, the choice of scalar product in
Krylov methods, which includes an optimal scaling of the matrix, is not yet fully understood.

Several possible continuations of this result appear feasible. There are several variants of the
Arnoldi method that might be extendible, for example, a block Krylov—Schur [34] or advanced
filtering techniques [35]. The understanding of the algorithm can also certainly be improved by
further adapting results known for the standard Arnoldi method (for matrixes) (e.g., [36, 37]).
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