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SUMMARY

In this paper we present preconditioning techniques to accelerate the convergence of Krylov solvers at each
step of an Inexact Newton’s method for the computation of the leftmost eigenpairs of large and sparse
symmetric positive definite matrices arising in large scale scientific computations. We propose a two-stage
spectral preconditioning strategy: the first stage produces a very rough approximation of a number of the
leftmost eigenpairs. The second stage (Inexact Newton) uses these approximations as starting vectors and
also to construct the tuned preconditioner from an initial inverse approximation of the coefficient matrix,
as proposed in [1, Martı́nez, Numer. Lin. Alg. Appl., 2016] in the framework of the Implicitly Restarted
Lanczos method. The action of this spectral preconditioner results in clustering a number of the eigenvalues
of the preconditioned matrices close to one. We also study the combination of this approach with a BFGS-
style updating of the proposed spectral preconditioner as described in [2, Bergamaschi, Martı́nez, Opt. Meth.
Softw., 2015]. Extensive numerical testing on a set of representative large SPD matrices gives evidence of
the acceleration provided by these spectral preconditioners. Copyright c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The computation of the m� n leftmost eigenpairs of large and sparse symmetric positive definite
(SPD) n× n matrix A is a common task in many scientific applications. Typical examples are
offered by the vibrational analysis of mechanical structures [3], and the electronic structure
calculations [4]. Computation of a few eigenpairs is also crucial in the approximation of the
generalized inverse of the graph Laplacian [5, 6].

Recently in [2] an efficiently preconditioned Newton method (DACG-Newton) has been
developed which has proven to display comparable performances against the well known Jacobi-
Davidson (JD) method [7] and outperforms the Implicitly Restarted Lanczos method with optimal
tuned preconditioning [1] if a moderate number of eigenpairs is being sought.

The idea of spectral preconditioners to accelerate linear system solvers has been described in
several papers such as [8, 9, 10] and, more recently [11], where the authors start with an initial
preconditioner P0 and use an approximation of a few eigenvectors of the preconditioned matrix
to update P0 with a low-rank matrix. In all these papers it is shown that some of the smallest
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eigenvalues of the new preconditioned matrix are incremented by 1 with an obvious reduction of
the condition number.

In this paper we propose and develop a new preconditioning strategy for accelerating the second
stage of the DACG-Newton method, namely the Newton iteration in the unit sphere [12, 2] also
referred to as Newton-Grassmann method. The idea is to use the initial DACG approximation
not only as an initial eigenvector guess for the Newton phase, but also to construct a spectral
preconditioner for the efficient solution of the correction equation:

Jkuk = −rk, where

Jk = (I − uku
>
k )(A− θkI)(I − uku

>
k ), rk = −(Auk − θkuk), θk =

u>k Auk

u>k uk
(1)

to be solved at each step of this projected Newton method. As the preconditioner for equation (1) we
propose to use a tuned preconditioner P ([1]) i.e. a preconditioner satisfying PAVm = Vm, where
Vm is a rectangular matrix containing an approximation of the m leftmost eigenvectors as columns.
We include a theoretical study of the spectral properties of PJk. It is found that, in the computation
of a generic eigenpair (λj ,vj), j = 1, . . . ,m, the approximate eigenvectors ṽj+1, . . . , ṽm provided
by DACG are also eigenvectors of PJk corresponding to eigenvalues close to one, unless the relative
separation between the eigenvalue being sought and the next higher ones is very small.

This spectral preconditioner can be successfully combined with a low-rank update of
preconditioners of BFGS type studied in [13, 2] to obtain a very efficient acceleration of the Newton
method to compute a small to moderate number of the leftmost eigenpairs of large SPD matrices.

We test the preconditioned DACG-Newton eigensolver onto a number of medium to large-size
SPD matrices arising from Finite Element discretization of PDEs arising from groundwater flow
models in porous media, geomechanical processes in reservoirs, financial modeling and Laplacian
of graphs. The numerical results show the significant improvement provided by this spectral
preconditioner on all test problems.

The outline of the paper is as follows: in Section 2 we briefly recall the DACG-Newton method;
Section 3 is devoted to the definition of the spectral preconditioner designed to accelerate the
convergence of the Newton-Grassmann method and to characterize some of the eigenvalues of the
preconditioned matrices. In Section 4 we discuss some implementation issues and present the main
algorithms while in Section 5 we briefly recall the BFGS preconditioner together with its theoretical
properties. Section 6 reports extensive numerical experiments onto matrices of large size arising
from various realistic applications, also including a comparison of the proposed preconditioned
method with the Jacobi-Davidson method. Section 7 draws the conclusions.

2. THE DACG-NEWTON METHOD FOR THE LEFTMOST EIGENPAIRS

Consider a symmetric positive definite (SPD) matrix A and denote as

λ1 < λ2 < · · · < λm < . . . < λn

its eigenvalues and
v1,v2, · · · ,vm, . . . ,vn

the corresponding (normalized) eigenvectors.
Computation of the leftmost eigenpair of A can be recast as the following non linear problem

Ax− q(x)x = 0, ||x|| = 1, (2)

being q(x) = x>Ax the Rayleigh quotient. This non linear system can be solved by projecting the
Jacobian of the above nonlinear function in the space orthogonal to the current iterate uk giving
raise to the following Newton-Grassmann method
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Repeat until convergence:

Set u0 as an initial approximation of v1, k = 0

solve approximately Jksk = −rk for sk ⊥ uk (3)

set uk+1 =
uk + sk
‖uk + sk‖

, k = k + 1 (4)

where

Jk = (I − uku
>
k )(A− θkI)(I − uku

>
k ) and rk = Auk − θkuk, θk = u>k Auk.

Note that the above iteration is the basis of the well-known Jacobi-Davidson method which
combines the projected Newton’s iteration (also called the correction equation) with a Rayleigh-
Ritz step.

A crucial issue in the efficiency of the Newton approach for eigenvalue computation is represented
by the appropriate choice of the initial guess. In [2] this task is accomplished by performing a few
preliminary iterations of the DACG eigenvalue solver [14, 15], in order to start the Newton iteration
‘sufficiently’ close to the exact eigenvector. The DACG method has proven very robust, and not
particularly sensitive to the initial vector, in the computation of a few eigenpairs of large SPD
matrices. We note that the choice of DACG as the initial solver is not mandatory. Alternatively,
other gradient methods such as e.g. the LOBPCG method [16, 17] could be successfully employed.
However, we can not expect important differences in the performances as the two methods (DACG,
LOBPCG) behave similarly, as also experimentally showed in [18] for the eigensolution of very
large matrices in a parallel environment.

2.1. PCG solution of the correction equation

As a Krylov subspace solver for the correction equation we chose the Preconditioned Conjugate
gradient (PCG) method since the Jacobian Jk has been shown to be SPD in the subspace orthogonal
to uk. Regarding the implementation of PCG, we mainly refer to the work [19], where the author
shows that it is possible to solve the linear system in the subspace orthogonal to uk and hence
the projection step needed in the application of Jk can be skipped. Moreover, we adopted the exit
strategy for the linear system solution described in the above paper, which allows for stopping the
PCG iteration, in addition to the classical exit test based on a tolerance on the relative residual and
on the maximum number of iterations (usually set to 20 ÷ 30), whenever the l-th PCG iterate xl

satisfies
‖rk,l‖ = ‖Axl − q(xl)xl‖ < εq(xl) (5)

or when the decrease of ‖rk,l‖ is slower than the decrease of the residual of the linear system at
step l because in this case further iterating does not improve the accuracy of the eigenvector. Note
that this dynamic exit strategy implicitly defines an Inexact Newton method since the correction
equation is not solved “exactly” i.e. up to machine precision. We have implemented the PCG
method as described in Algorithm 5.1 of [19] with the obvious difference in the application of
the preconditioner which will be described in Section 3.

2.2. Computing several eigenpairs

When seeking an eigenvalue different from λ1, say λj , the Jacobian matrix changes as

J
(j)
k =

(
I −Q(j)

k Q
(j)
k

>
)

(A− θ(j)k I)

(
I −Q(j)

k Q
(j)
k

>
)

(6)

where Q
(j)
k = [v1 v2 . . .vj−1 uk] is the matrix whose first j − 1 columns are the previously

computed eigenvectors. In the above expression as well as in the sequel the index j will denote
the eigenvalue level while superscript k will refer to the iteration index during the Newton process.
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Every preconditioner of choice P̂k used to accelerate the correction equation J (j)
k sk = −rk must

be projected in the subspace orthogonal to span{v1,v2, . . . ,vj−1,uk}, namely

Pk =

(
I −Q(j)

k Q
(j)
k

>
)
P̂k

(
I −Q(j)

k Q
(j)
k

>
)
. (7)

3. ACCELERATION BY SPECTRAL PRECONDITIONERS

A class of spectral preconditioners is defined in [8] which is based on the knowledge of a few
leftmost eigenpairs of the preconditioned matrix P0A, being P0 and A both SPD matrices. If we
denote as Vm the rectangular matrix whose columns are the eigenvectors of the preconditioned
matrix P0A a spectral preconditioner is defined as

P = P0 + Vm(V >mAVm)−1V >m .

It can be proved that the new preconditioned matrix PA has λ1 + 1, . . . , λm + 1 as eigenvalues,
being λ1, . . . , λm the smallest eigenvalues of matrix P0A.

In the framework of the DACG-Newton method, we take advantage of the knowledge, after the
DACG initial iteration, of a number of approximated eigenvectors of A instead of those of P0A.
We propose a new preconditioning strategy for accelerating the second stage of the DACG-Newton
method, namely the Newton iteration, by using the initial DACG approximation not only as an
initial eigenvector guess for the Newton phase, but also to update a given approximate inverse of the
coefficient matrix A in the solution of the correction equation

J
(j)
k sk = − (Auk − q(uk)uk) .

Denoted as P̂0 an initial approximate inverse of A, we assume that the DACG method has
provided the m leftmost eigenpairs (to a low relative accuracy specified by parameter τ ) satisfying

Aṽj = λj ṽj + resj , ‖resj‖ ≤ τλj , j = 1, . . . ,m, (8)

where we have neglected the error in the eigenvalue computation which is O(τ2) (see [14]). Then,
for a generic eigenvalue λj (j < m) we define the following tuned preconditioner, which will be
kept constant throughout the Newton iterations, to accurately compute the j-th eigenpair:

P̂j = P̂0 −W
(
W>AVj

)−1
W>, with W = P̂0AVj − Vj (9)

where
Vj = [ṽj+1 . . . ṽm] . (10)

This tuned preconditioner is the inverse representation of the block counterpart of the preconditioner
first proposed in [20] in the framework of the inverse iteration and the inexact Rayleigh quotient
iteration. In [1] this preconditioner has been proposed to accelerate the inner linear system during
the Lanczos’ process, moreover some conditions are discussed under which the preconditioner P̂j

is well defined and also SPD. A direct computation shows that P̂j is a tuned preconditioner ([21])
i.e. satisfies:

P̂jAVj = Vj , (11)

irrespective of the error introduced by the computation of Vj . Relation (11) implies that the
preconditioned matrix P̂jA has the eigenvalue 1 with at least multiplicity m− j.

When P̂j is used to accelerate the Newton iteration, it must be projected in the space orthogonal
to the previously computed eigenvectors yielding:

Pj =

(
I −Q(j)

k Q
(j)
k

>
)
P̂j

(
I −Q(j)

k Q
(j)
k

>
)
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hence the preconditioned matrix reads:

PjJ
(j)
k =

(
I −Q(j)

k Q
(j)
k

>
)
P̂j

(
I −Q(j)

k Q
(j)
k

>
)

(A− θ(j)k I)

(
I −Q(j)

k Q
(j)
k

>
)
.

The next two Lemmas 3.1, 3.2 and Theorem 3.1 will characterize the eigenvalues of the
preconditioned matrix PjJ

(j)
k . The main theoretical results will be developed under the following:

Assumptions and notation

• Notation. The indices j, s are such that 1 ≤ j < m and j < s < m. Define the inverse of the
relative separation between consecutive eigenvalues as

ξj =
λj+1

λj+1 − λj
. (12)

In the sequel with P̂j we will denote the non-projected preconditioner, while the final
projected preconditioner is referred to as Pj .

• Assumptions:

Iteration index k is such that:

θ
(j)
k − λj < λj+1 − θ(j)k , (A.1)

which implies that

λs − θ(j)k > λs −
λj+1 + λj

2
≥ λj+1 − λj

2
. (A.2)

We also assume that every residual of the Newton process is smaller than the residual of the
DACG method and therefore satisfies:

‖r(j)k ‖ ≤ ‖resj‖ ≤ τλj . (A.3)

• From now on we will omit for simplicity super and sub-scripts in matrix Q ≡ Q(j)
k and in the

scalar θ ≡ θ(j)k .

We begin with Lemma 3.1 which characterizes some of the eigenvalues of P̂j(A− θI):

Lemma 3.1
Let matrix Vj be defined as in (10), P̂j a tuned preconditioner satisfying condition (11), then each
column of Vj i.e. ṽs, s = j + 1, . . . ,m, is an approximate eigenvector of P̂j(A− θI) corresponding

to the approximate eigenvalue 1− θ

λs
≈ 1− λj

λs
. In particular the following relation holds:

P̂j(A− θI)ṽs =

(
1− θ

λs

)
ṽs + e1, with ‖e1‖ ≤ τλj+1‖P̂j‖.

Proof
Let s ∈ [j + 1,m], then from (8) it follows that ṽs = λ−1s Aṽs − λ−1s ress. Then

P̂j(A− θI)ṽs = P̂jAṽs − θP̂j ṽs

= ṽs − θP̂j

(
λ−1s Aṽs − ressλ

−1
s

)
= ṽs −

θ

λs
ṽs +

θ

λs
P̂jress

=

(
1− θ

λs

)
ṽs + e1.

with ‖e1‖ ≤ τ
θ

λs
λs‖P̂j‖ = τθ‖P̂j‖ ≤ τλj+1‖P̂j‖.
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We have just proved that the preconditioned matrix P̂j(A− θI) has the following m− j
approximate eigenvalues

1− λj
λj+1

, 1− λj
λj+2

, . . . , 1− λj
λm

.

In the next Lemma we will state and prove some technical facts which will be useful in the proof of
Theorem 3.1 which will establish the main result of this Section.

Lemma 3.2
Recalling the definition of ξj (12), we have

‖Q>ṽs‖ ≤ 5ξjτ. (13)
‖(A− θI)Q‖ ≤ λj+1(1 + τ) (14)

‖Q>(A− θI)Q‖ < λj+1. (15)

Proof
Define Q̃ = [v1 v2 . . . vj−1] and Λ = diag(λ1, . . . , λj−1). We start by proving (13).

Q>ṽs =

[
Q̃>

u>k

]
ṽs =

[
Q̃>ṽs

u>k ṽs

]
.

Now
Q̃>ṽs = (by (8)) = λ−1s Q̃>Aṽs − Q̃>ressλ−1s = λ−1s ΛQ̃>ṽs − Q̃>ressλ−1s

from which
‖Q̃>ṽs‖ ≤

λj−1
λs
‖Q̃>ṽs‖+ ‖ress‖λ−1s ,

and hence, using the fact that the function f(t) =
t

t− λj−1
is decreasing in (λj−1,+∞),

‖Q̃>ṽs‖ ≤
λs

λs − λj−1
τ ≤ λj+1

λj+1 − λj−1
τ ≤ λj+1

λj+1 − λj
τ = ξjτ. (16)

Analogously

u>k ṽs = (by (8)) = λ−1s u>k Aṽs − u>k ressλ
−1
s = λ−1s (θu>k + r>k )ṽs − u>k ressλ

−1
s

from which

u>k ṽs =
r>k ṽs − u>k ress

λs − θ
.

Now using the fact that the function g(t) =
λj + t

t− θ
is decreasing in (θ,+∞) and applying (A.3) and

(A.2) we can write

|u>k ṽs| ≤
λj + λs
λs − θ

τ ≤ λj + λj+1

λj+1 − θ
τ ≤ 2

λj + λj+1

λj+1 − λj
τ ≤ 4

λj+1

λj+1 − λj
τ = 4ξjτ. (17)

Combining (16) and (17) we finally obtain

‖Q>ṽs‖ ≤ ‖Q̃>ṽs‖+ |u>k ṽs| ≤ 5ξjτ.

To prove (14) we start from the definition of Q and write (A− θI)Q =
[
Q̃(Λ− θI) rk

]
. Then,

‖(A− θI)Q‖ ≤ |λ1 − θ|+ ‖rk‖ < λj+1 + λjτ < λj+1(1 + τ).

Moreover

Q>(A− θI)Q =

[
Λ− θI 0

0 0

]
(18)

since uk is orthogonal to rk and therefore Q>rk = 0.
Hence ‖Q>(A− θI)Q)‖ ≤ ‖Λ− θI‖ ≤ |λ1 − θ| < λj+1 and also (15) is proved.
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Theorem 3.1
Let matrix Vj be defined as in (10), P̂j a tuned preconditioner satisfying condition (11), then each
column of Vj i.e. ṽs, s = j + 1, . . . ,m, is an approximate eigenvector of PjJ

(j)
k corresponding to

the approximate eigenvalue 1− θ

λs
≈ 1− λj

λs
. In particular the following relation holds:

PjJ
(j)
k ṽs =

(
1− θ

λs

)
ṽs + err (19)

with ‖err‖ ≤ τ C, and C ≡ C(τ, ‖P̂j‖, λj , λj+1) .

Proof

PjJ
(j)
k ṽs = (I −QQ>)P̂j(I −QQ>)(A− θI)(I −QQ>)ṽs =

= P̂j(A− θI)ṽs −QQ>P̂j(A− θI)ṽs + (I −QQ>)P̂jz, (20)

where we have set

z = −QQ>(A− θI)ṽs︸ ︷︷ ︸
z1

− (A− θI)QQ>ṽs︸ ︷︷ ︸
z2

+ QQ>(A− θI)QQ>ṽs︸ ︷︷ ︸
z3

.

Recalling Lemma 3.1 we can rewrite (20) as

PjJ
(j)
k ṽs =

(
1− θ

λs

)
ṽs + e1 − e2 + e3, (21)

with e2 = QQ>P̂j(A− θI)ṽs, e3 = (I −QQ>)P̂jz.
Now from Lemma 3.1 and Lemma 3.2 it follows that

e2 = QQ>P̂j(A− θI)ṽs = QQ>((1− θλ−1s )ṽs + e1) = Q((1− θλ−1s )Q>ṽs +Q>e1)

so that
‖e2‖ ≤ (5ξj + λj+1‖P̂j‖)τ.

We now bound ‖z1‖:

‖z1‖ = ‖QQ>(A− θI)ṽs‖ = ‖Q
[
(Λ− θI)Q̃> r>k

]
ṽs‖ =

= ‖Q(Λ− θI)Q̃>ṽs +Qr>k ṽs‖ ≤
= ‖(Λ− θI)Q̃>ṽs‖+ ‖r>k ṽs‖ ≤
≤ by (16) and (A.3) ≤ τλj+1ξj + τλj = τλj+1(ξj + 1). (22)

Then, from (14) and (13) we easily have

‖z2‖ = ‖(A− θI)QQ>ṽs‖ ≤ 5τξjλj+1(1 + τ). (23)

Finally the norm of z3 is bounded as follows by using (15) and again (13):

‖z3‖ = ‖QQ>(A− θI)QQ>ṽs‖ ≤ 5τλj+1ξj . (24)

Combining (22) – (24) we have:

‖e3‖ ≤ ‖P̂j‖‖z‖ ≤ ‖P̂j‖ (‖z1‖+ ‖z2‖+ ‖z3‖) ≤ τλj+1‖P̂j‖(ξj(11 + 5τ) + 1) . (25)

7



We can finally rewrite (21) as

PjJ
(j)
k ṽs =

(
1− θ

λs

)
ṽs + err (26)

with
‖err‖ ≤ ‖e1‖+ ‖e2‖+ ‖e3‖ ≤ τ

[
5ξj + λj+1‖P̂j‖ ((11 + 5τ)ξj + 3)

]
,

and the thesis holds by setting C =
[
5ξj + λj+1‖P̂j‖

(
(11 + 5τ)ξj + 3

)]
.

Remark 3.1
We have just proved that m− j eigenvalues of the preconditioned Newton matrix PjJ

(j)
k are close

to one if the j-th eigenvalue is well separated from the next higher ones. We also note that ‖err‖
can be controlled by suitable choice of τ (tolerance for the initial DACG iterations) as C is usually
order of units unless ξj is very large.

4. ALGORITHMIC ISSUES

In order to yield an efficient implementation of our spectral preconditioner, the following issues
should be taken into account:

1. Limited memory implementation. If the number of eigenpairs being sought is large, it is
convenient to limit the number of eigenvectors used for the update. To this end we fix the
maximum column dimension of matrix Vj , parameter lmax.

2. Conversely, it is also true that in assessing an eigenpair whose index is close to m, the size
of matrix Vj is necessarily small and only m− j eigenvalues of the preconditioned matrix
will be characterized by Theorem 3.1. In particular when j = m, Vj is the empty matrix and
a consequent null improvement is provided by the spectral preconditioner, since P̂j ≡ P̂0. To
make the proposed approach effective also for such eigenpairs a second variant consists in
computing an additional number of approximated eigenpairs by the DACG procedure. We
then introduce a further parameter, win, which counts these extra eigenpairs.

Taking into account these variants, in the computation of the j-th eigenpair we will use Vj =
[ṽj+1 . . . ṽjend

] with jend = min{m+ win, lmax + j} to get the final expression for our spectral
preconditioner which from now on we will denote as P (j)

0 :

Pchol = (LL>)−1

P̂
(j)
0 = Pchol −W

(
W>AVj

)−1
W>, with W = PcholAVj − Vj (27)

P
(j)
0 = (I −QQ>)P̂

(0)
j (I −QQ>)

being L = IC(LFIL, τIC , A) an incomplete triangular Cholesky factor of A, with parameters
LFIL, maximum fill-in of a row in L, and τIC the threshold for dropping small elements in
the factorization. The DACG-Newton algorithm with spectral preconditioner is then sketched in
Algorithm 1.

4.1. Repeated application of the spectral preconditioning technique

In principle every eigenvalue solver may take advantage of the spectral preconditioning technique
to update a given preconditioner. In our case the idea is to run twice the DACG method: in the
first run a very rough approximation of the leftmost m+ win eigenpairs: ṽ(0)

1 , ṽ
(0)
2 , . . . , ṽ

(0)
m+win

is provided. To this end we define a tolerance µ(> τ) and iterate until the test on the residual
‖Aṽ(0)

j − q(ṽ
(0)
j )ṽ

(0)
j ‖ ≤ µq(ṽ

(0)
j ) is satisfied. Then a second run of DACG to the final DACG
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Algorithm 1 DACG-Newton with spectral preconditioner.

1. INPUT:

1. Matrix A;

2. number of sought eigenpairs m;

3. tolerance and maximum number of its for the outer iteration: ε, ITMAX;

4. tolerance for the initial eigenvector guess τ ;

5. tolerance and maximum number of its for the inner iteration: τPCG, ITMAXPCG;

6. parameters for the IC preconditioner:, LFIL and τIC ;

7. maximum allowed size for matrix Vj : lmax.

8. number of extra eigenpairs computed by DACG for matrix Vj : win.

2. Compute an incomplete Cholesky factorization of A: Pchol with parameters LFIL and τIC .

3. V := [ ].

4. FOR j := 1 TO m+ win

(a) Choose x0 such that V >x0 = 0.

(b) Compute ṽj , an approximation to vj by the DACG procedure with initial vector x0,
preconditioner Pchol and tolerance τ .

(c) Set V := [V ṽj ]

END FOR

5. Q̃ := [ ].

6. FOR j := 1 TO m

(a) k := 0, u0 = ṽj , θ0 := u>0 Au0.

(b) Q := [Q̃ u0].

(c) Set jend = min{m+ win, lmax + j}, Vj = [ṽj+1 . . . ṽjend
]

(d) Compute P̂ (j)
0 using (27) and set P (j)

0 = (I −QQ>)P̂
(0)
j (I −QQ>);

(e) WHILE ‖Auk − θkuk‖ > εθk AND k < IMAX DO

1. Solve Jksk = −rk for sk ⊥ Q by the PCG method with preconditioner P (0)
j and

tolerance εPCG.

2. uk+1 :=
uk + sk
‖uk + sk‖

, θk+1 = u>k+1Auk+1.

3. k := k + 1

4. Q := [Q̃ uk].

(f) END WHILE

(g) Assume vj = uk and λj = θk. Set Q̃ := [Q̃ vj ]

END FOR

tolerance is carried on, using ṽ
(0)
1 , ṽ

(0)
2 , . . . , ṽ(0)

m as the starting points and also using them for
updating the Cholesky preconditioner. Clearly this DACG step will be accelerated by the non-
projected spectral preconditioner P̂ (0)

j . The output of this second run will be the sequence of vectors
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ṽ1, ṽ2, . . . , ṽm which will be in their turn the starting points of the subsequent Newton scheme,
while the set {ṽ1, ṽ2, . . . , ṽm, ṽ

(0)
m+1, . . . , ṽ

(0)
m+win} will be used for the preconditioner updating.

These steps are summarized in Algorithm 2 where we only underline the variations with respect
to Algorithm 1.

Algorithm 2 Two-stage DACG-Newton with spectral preconditioner.

1. INPUT: (in addition to that of Algorithm 1)

9. tolerance for the first DACG stage µ(≥ τ );

(STEPS 3. and 4. in Algorithm 1 are substituted with the following ones)

3.a V (0) := [ ].

3.b FOR j := 1 TO m+ win

(a) Choose x0 such that V (0)>x0 = 0.

(b) Compute ṽ
(0)
j by the DACG procedure with initial vector x0, preconditioner Pchol and

tolerance µ.

(c) Set V (0) := [V (0) ṽ
(0)
j ]

END FOR

4.a V := [ ].

4.b Define the spectral preconditioner

P̂
(j)
0 = Pchol −W

(
W>AV

(0)
j

)−1
W>, W = PcholAV

(0)
j − V (0)

j

4.c FOR j := 1 TO m

(a) Compute ṽj by the DACG procedure with initial vector ṽ(0)
j , preconditioner P (j)

0 and
tolerance τ .

(b) Set V := [V ṽj ]

END FOR

4.d V := [V ṽ
(0)
m+1 . . . ṽ

(0)
m+win].

5. BFGS LOW-RANK UPDATE OF GIVEN PRECONDITIONERS

In [2] the sequence of correction equations J (j)
k sk = −rk is preconditioned by means of a sequence

of low-rank updates of a given approximate inverse of A which takes the following form, in the
computation of the smallest eigenvalue:

P̂0 = Pchol (28)
P0 = (I − u0u

>
0 )P̂0(I − u0u

>
0 );

P̂k+1 = −sks
>
k

s>k rk
+

(
I − skr

>
k

s>k rk

)
P̂k

(
I − rks

>
k

s>k r

)
,

k = 0, . . . ,
Pk+1 = (I − uk+1u

>
k+1)P̂k+1(I − uk+1u

>
k ). (29)
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In [2] the following theorem is proved which bounds the norm of the preconditioned matrix in
terms of the quality of the initial preconditioner and the closeness of the initial guess to the true
eigenvector:

Theorem 5.1
For every constant K > 0 there exist δ0, δ > 0 such that if ‖E0‖ < δ0, and ‖e0‖ < δ then

‖Ek+1‖ ≤ ‖Ek‖+K
√
‖ek‖.

where Ek = I − J1/2
k PkJ

1/2
k and ek = uk − v1.

This BFGS preconditioner suffers from two main drawbacks, namely increasing costs of memory
for storing s and r, and the increasing cost of preconditioner application with the iteration index
k. To overcome these difficulties we define kmax the maximum number of rank two corrections
allowed. When the nonlinear iteration counter k is larger than kmax, the vectors si, ri, i = k − kmax

are substituted with the last computed sk, rk. Vectors {si, ri} are stored in an array with n rows
and 2× kmax columns. The implementation of the BFGS update is well suited to parallelization
provided that the initial preconditioner is available as an approximate inverse of A and an efficient
matrix-vector product routine is employed. The bottleneck is represented by the high number of
scalar products which may worsen the parallel efficiency when a very large number of processor is
employed. Preliminary numerical results are encouraging as documented in [22].

5.1. Combination of the BFGS low-rank update and the spectral approaches

The BFGS approach just recalled and the spectral techniques described in the previous sections can
be combined giving raise to a spectral-BFGS preconditioner for the Inexact Newton method, which
is defined as follows for a given eigenpair j:

P̂
(j)
0 = Pchol −W

(
W>AVj

)−1
W>, with W = PcholAVj − Vj (30)

P̂
(j)
k+1 = −sks

>
k

s>k rk
+

(
I − skr

>
k

s>k rk

)
P̂

(j)
k

(
I − rks

>
k

s>k rk

)
k = 0, . . . , (31)

P
(j)
k+1 = (I −Q(j)

k+1Q
(j)
k+1

>
)P̂

(j)
k+1(I −Q(j)

k+1Q
(j)
k+1

>
).

6. NUMERICAL RESULTS

In this Section we provide numerical results where the preconditioned DACG-Newton algorithm is
tried for different values of the spectral and BFGS update parameters.

We tested the proposed algorithm in the computation of the 20 smallest eigenpairs of a number of
small to large matrices arising from various realistic applications. The CPU times (in seconds) refer
to running a Fortran 90 code on a 2 x Intel Xeon CPU E5645 at 2.40GHz (six core) and with 4GB
RAM for each core.
In all the test cases, unless differently specified, we computed m = 20 eigenpairs with a tolerance
for the relative eigenresidual equal to ε = 10−8, namely we stop whenever the following exit test is
satisfied:

‖Au− q(u)u‖
q(u)

≤ ε.

The parameters for the inner PCG solver were set to: τPCG = 10−2, ITMAXPCG = 20.
The list of the selected problems together with their size n, and nonzero number nz is reported in
Table I, where (M)FE stands for (Mixed) Finite Elements.
Some of the matrices are publicly available in the University of Florida (UF) Sparse Matrix
Collection at https://www.cise.ufl.edu/research/sparse/matrices.
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Table I. Main characteristics of the matrices used in the tests.

Matrix where it comes from UF collection n nz σ
TRINO 3D-FE discretization of flow

in porous media
NO 4560 64030 0.44

MONTE-CARLO 2D-MFE stochastic PDE NO 77120 384320 2.30
FINAN512 financial problem YES 74752 596992 3.88
MAT268515 3D-FE discretization of flow

in porous media
NO 268515 3 926823 2.67

EMILIA-923 3D-FE elasticity problem YES 923136 41 005206 1.86
WWW-327 Graph Laplacian of the Web

network
NO 325729 2 505945 1.17

We also computed the fill-in σ of the initial preconditioner defined as

σ =
nonzeros of L

nonzeros of lower triangular part of A
.

6.1. Eigenvalue distribution

We will first experimentally analyze the eigenvalue distribution of one of the spectral preconditioned
matrices in eigensolving test case TRINO. We have considered the evaluation of the sixth (j = 6)
eigenpair and the third (k = 3) Newton iteration. We used the following parameters:m = 50, lmax =
20,win = 10 and for the initial preconditioner τIC = 10−1, LFIL = 10 giving raise to a fill-in ratio
σ = 0.44. We set τ = 10−1 and τ = 10−3 for the initial DACG iteration.

Table II. Check of the bounds provided by Theorem 3.1 for matrix TRINO. On the left the case with τ = 0.1,
on the right τ = 10−3.

s γs ‖err‖ ‖err‖/γs

7 0.0330 0.11×10−1 0.35×100

8 0.0542 0.11×10−1 0.20×100

9 0.2434 0.95×10−2 0.39×10−1

10 0.2816 0.12×10−1 0.42×10−1

11 0.3229 0.12×10−1 0.38×10−1

12 0.3517 0.78×10−2 0.22×10−1

13 0.3742 0.10×10−1 0.28×10−1

14 0.3954 0.11×10−1 0.27×10−1

15 0.4122 0.10×10−1 0.25×10−1

16 0.4394 0.76×10−2 0.17×10−1

17 0.4610 0.60×10−2 0.13×10−1

18 0.4680 0.65×10−2 0.14×10−1

19 0.4789 0.75×10−2 0.16×10−1

20 0.5278 0.56×10−2 0.11×10−1

21 0.5494 0.11×10−1 0.19×10−1

22 0.5775 0.68×10−2 0.12×10−1

23 0.5843 0.49×10−2 0.84×10−2

24 0.5887 0.47×10−2 0.81×10−2

25 0.6037 0.58×10−2 0.96×10−2

26 0.6116 0.63×10−2 0.10×10−1

s γs ‖err‖ ‖err‖/γs

7 0.0331 0.14×10−4 0.42×10−3

8 0.0561 0.21×10−4 0.38×10−3

9 0.2424 0.30×10−4 0.12×10−3

10 0.2808 0.33×10−4 0.12×10−3

11 0.3233 0.31×10−4 0.97×10−4

12 0.3508 0.34×10−4 0.96×10−4

13 0.3743 0.36×10−4 0.96×10−4

14 0.3946 0.35×10−4 0.88×10−4

15 0.4132 0.29×10−4 0.70×10−4

16 0.4396 0.28×10−4 0.63×10−4

17 0.4602 0.20×10−4 0.44×10−4

18 0.4677 0.25×10−4 0.54×10−4

19 0.4793 0.31×10−4 0.65×10−4

20 0.5272 0.32×10−4 0.62×10−4

21 0.5498 0.28×10−4 0.51×10−4

22 0.5774 0.31×10−4 0.54×10−4

23 0.5829 0.11×10−4 0.19×10−4

24 0.5886 0.28×10−4 0.47×10−4

25 0.6035 0.23×10−4 0.38×10−4

26 0.6124 0.31×10−4 0.51×10−4
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In Table II we check the bound provided by Theorem 3.1 regarding eigenvalues of the

preconditioned matrix. We report the predicted eigenvalues γs =

(
1−

θ
(j)
k

λs

)
, together with the

norm of the computed residual ‖err‖ = ‖PjJ
(j)
k ṽs − γsṽs‖ and also the relative residual

‖err‖
γs

.

On the left we report the results with DACG tolerance τ = 0.1 on the right with τ = 10−3. From the
table we see that the relative error, even with τ = 0.1, is always smaller than 0.1, except for γ7, γ8,
thus confirming the findings of Theorem 3.1. Moreover the residuals follow the dependence on τ as
those in the table on the right are roughly two orders of magnitude smaller than the corresponding
residuals on the left.

In view of the small size of this matrix, we also computed all the “exact” eigenvalues of
both PcholJ

(6)
3 and P

(6)
0 J

(6)
3 . In Figure 1 we report the distribution of the computed smallest

eigenvalues of these preconditioned matrices. We explicitly computed the condition number of
both preconditioned matrices finding κ(PcholJ

(6)
3 ) = 2.6× 103 and κ(P

(6)
0 J

(6)
3 ) = 3.6× 102 with

an important reduction of the condition number provided by the spectral preconditioner.

0 10 20 30
# eigenvalue

1e-03

1e-02

1e-01

1e+00

E
ig

en
v
al

u
e

Smallest eigenvalues of P_chol J_6

Smallest eigenvalues of P_6 J_6 (tau = 1e-3)

Smallest eigenvalues of P_6 J_6 (tau = 0.1)

Estimated eigenvalues by Theorem 3.3

Eigenvalue distribution of the preconditioned matrix

Figure 1. “Exact” smallest eigenvalues of the preconditioned Jacobian at step 3 of Newton iteration to
compute eigenpair #6 of matrix TRINO. The smallest eigenvalues of PcholJ

(6)
3 and P

(6)
0 J

(6)
3 with two

different values of τ are displayed together with the estimates provided by Theorem 3.1.

Careful interpretation of the Figure reveals that:

1. The smallest eigenvalues of P (6)
0 J

(6)
3 (circles) are much larger than those of PcholJ

(6)
3 (stars).

2. The two smallest eigenpairs of the preconditioned P (6)
0 J

(6)
3 are consistent with Theorem 3.1,

being close to γ7 and γ8, respectively, as shown by the coincidence of squares and circles. The
third smallest eigenvalue of P (6)

0 J
(6)
3 is equal to eigenvalue #20 of PcholJ

(6)
3 , which accounts

for a bottom-up shift of the eigenvalues of the preconditioned matrices.

3. The eigenvalue distribution of the spectral-preconditioned matrix P (6)
0 J

(6)
3 is not significantly

affected by the value of τ (compare symbols: × and ◦ in Figure 1).

We conclude this analysis reporting in Table III the absolute and relative residual norm for two
more test cases: MAT268515 and EMILIA-923 again in preconditioning J (6)

3 . In this case we used
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Table III. Check of the bounds provided by Theorem 3.1 for matrices MAT268515 (left) and EMILIA-923
(right).

s γs ‖err‖ ‖err‖/γs

7 0.1681 6.20×10−4 3.71×10−3

8 0.2361 1.47×10−3 6.32×10−3

9 0.4769 7.80×10−4 1.61×10−3

10 0.4805 1.63×10−2 3.41×10−2

11 0.5292 3.18×10−2 6.01×10−2

12 0.6492 4.39×10−2 6.76×10−2

13 0.5448 1.83×10−2 3.36×10−2

14 0.6020 5.98×10−3 9.89×10−3

15 0.6020 4.92×10−3 7.23×10−3

16 0.6824 1.22×10−2 1.78×10−2

s γs ‖err‖ ‖err‖/γs

7 0.0681 6.88×10−4 1.01×10−2

8 0.0839 4.42×10−4 5.22×10−3

9 0.1003 7.60×10−4 7.60×10−3

10 0.3322 4.77×10−3 1.44×10−2

11 0.3701 1.86×10−3 5.02×10−2

12 0.3750 2.76×10−3 7.39×10−3

13 0.3913 1.87×10−2 4.79×10−2

14 0.4281 6.09×10−3 1.42×10−2

15 0.4851 5.69×10−3 1.12×10−2

16 0.4880 2.11×10−3 4.33×10−3

lmax = 10, win = 5 and τ = 0.02 for both tests. Again we found that almost all eigenvalues are
clustered around one, and in any case ‖err‖ is smaller than, or very close to, the tolerance τ .

6.2. Results with matrices arising from discretization of PDEs

In Tables from IV to VI we report the results in terms of outer iterations (OUT) matrix-vector
products (MVP) and total CPU time of the DACG-Newton method with the proposed spectral
preconditioner. These three test cases rely on matrices all arising from various discretization of
PDEs modelling fluid flow or geomechanical processes in porous media. For these matrices we
carried out an extensive number of runs for a wide range of the parameters lmax, the maximum
column number of Vj , win, the additional number of eigenvectors computed by the first DACG
stage and kmax the maximum number of BFGS corrections. Whenever kmax is set equal to zero
only the spectral preconditioner is used, as described in Algorithms 1 and 2; if the second DACG
tolerance is not specified it means that DACG is run only once as in Algorithm 1.

Considering the results of Tables IV and V, we notice that for a fixed kmax value the spectral
preconditioner proposed in this paper is very efficient to reduce both the outer-inner iterations in
the Newton phase and the overall matrix-vector products and CPU time. Moreover, the two-stage
DACG run (see Algorithm 2) provides a further improvement by reducing the cost of the initial
assessment of the Newton starting point. In computing the 20 leftmost eigenpairs win = 5 seems the
best value, which results in a trade-off between the extra DACG cost and the improved acceleration
of the spectral preconditioner. The BFGS acceleration is more effective when not combined with
the spectral technique while, for these test cases, it does not provide significant improvement when
it is used together with the spectral update.

The results reported in Table VI enhance even more the effects of the spectral preconditioner
which produces an improvement in terms of total MVP from 25% (using kmax = 5) to more than
50% (if kmax = 0 is selected). For this test case the combined BFGS-spectral preconditioners
produces the best result in terms of CPU time and number of MVP.

The last two rows of Table VI give experimental evidence that the spectral preconditioner can be
efficiently applied to a selected eigenvalue solver (in our case DACG) which is run twice: the first
stage is aimed at constructing matrix Vj containing the approximate eigenvectors; the second stage,
accelerated by the spectral preconditioner, is run up to the final tolerance.
In order to have a graphical evidence of the improvement provided by the spectral preconditioner,
for matrix EMILIA-923, in Figure 2 we plot the convergence profiles of the Newton phase in
computing eigenpairs j = 5 (circles), j = 10 (squares) and j = 15 (stars) and four combination
of the parameters (red symbols = spectral + BFGS, blue symbols = spectral only, magenta symbols
= BFGS only, and black symbols = fixed preconditioner); in Figure 3 for the same eigenpair levels
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Table IV. Timings and iterations with the preconditioned DACG-Newton method for the computation of
m = 20 eigenpairs of matrix MONTE-CARLO.

DACG Newton Total
Iterations CPU

win lmax kmax µ τ Its. CPU OUT Inner MVP CPU
0 0 0 0.02 1104 9.89 159 2837 24.41 4100 36.38
5 10 0 0.02 1326 12.23 68 698 8.79 2092 21.10
5 20 0 0.02 1326 12.47 58 620 7.85 2004 20.41
5 10 0 0.2 0.02 992 9.55 67 719 8.26 1778 17.90
5 20 0 0.2 0.02 991 9.53 62 642 7.88 1695 17.49
0 0 1 0.02 1104 9.87 124 2043 20.12 3271 30.08
5 10 1 0.02 1326 12.19 68 670 8.08 2064 20.35
5 20 1 0.02 1326 12.58 62 600 8.21 1988 20.87
5 10 1 0.2 0.02 992 9.56 65 689 8.32 1746 17.97
5 20 1 0.2 0.02 991 9.60 52 618 7.69 1661 17.34
0 0 5 0.02 1104 9.86 99 1600 16.33 2803 26.27
5 10 5 0.02 1326 12.20 67 670 8.16 2063 20.44
5 20 5 0.02 1326 12.48 61 598 8.15 1985 20.70
5 10 5 0.2 0.02 992 9.52 68 692 8.38 1752 17.98
5 20 5 0.2 0.02 991 9.52 55 615 7.78 1661 17.38

Table V. Timings and iterations with the DACG-Newton method for the computation of m = 20 eigenpairs
of matrix MAT268515.

DACG Newton Total
Iterations CPU

win lmax kmax µ τ Its. OUT Inner MVP CPU
0 0 0 0.02 782 45.57 105 1349 86.89 2236 133.87
5 10 0 0.02 962 57.94 61 587 45.14 1610 104.49
5 20 0 0.02 962 57.21 60 542 43.80 1564 102.45
5 10 0 0.2 0.02 776 50.03 63 652 49.37 1491 100.80
0 0 5 0.02 782 45.36 86 1022 71.08 1890 117.85
5 10 5 0.02 962 57.20 55 557 44.35 1574 102.96
5 20 5 0.02 962 57.54 55 516 42.76 1533 101.73
5 10 5 0.2 0.02 776 51.62 60 604 42.01 1440 95.07

the convergence profiles of the DACG solver with (red symbols) or without (blue symbols) spectral
acceleration.

6.3. A matrix with clustered small eigenvalues

We now report the results in eigensolving matrix FINAN512. For this test case the 20 smallest
eigenvalues are much clustered, thus suggesting that the spectral preconditioner could not accelerate
the iterative eigensolvers. We show in Table VII the 20 smallest eigenvalue together with the

reciprocal of the indicator ξj . It is worth observing that ξ−1j = 1− λj
λj+1

coincides with the smallest

eigenvalue of the preconditioned matrix as predicted by Theorem 3.1. For every index j these values
are closer to zero than to one, thus suggesting a high condition number of the preconditioned matrix.
The results reported in Table VIII confirms this observation. The spectral preconditioning technique
does not provide a significant improvement of the iterative solver performance, irrespective on

15



Table VI. Timings and iterations with the DACG-Newton method for the computation of m = 20 eigenpairs
of matrix EMILIA-923.

DACG Newton Total
Iterations CPU

win lmax kmax µ τ Its. CPU OUT Inner MVP CPU
0 0 0 0.02 1404 413.85 226 4011 1306.22 5641 1738.43
5 10 0 0.02 1716 507.94 86 876 319.25 2678 845.65
5 20 0 0.02 1716 510.43 77 817 309.26 2610 838.24
0 0 1 0.02 1404 409.50 140 2341 764.60 3885 1192.38
5 10 1 0.02 1716 508.20 79 819 306.69 2614 833.33
5 20 1 0.02 1716 510.68 70 765 295.03 2551 823.98
0 0 5 0.02 1404 410.16 104 1705 568.14 3213 996.60
5 10 5 0.02 1716 510.20 76 800 306.15 2592 834.67
5 20 5 0.02 1716 508.23 66 745 283.51 2527 809.97
5 10 5 0.1 0.02 1381 420.23 71 838 309.50 2290 747.93
5 20 5 0.1 0.02 1379 422.51 64 750 288.20 2193 729.05
0 0 0 10−8 3990 1256.63 – – – 3990 1274.75
5 20 0 0.1 10−8 2250 764.22 – – – 2250 782.80

Figure 2. Convergence profile of the Newton phase for problem EMILIA-923.
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the lmax and win values. Here the BFGS update strategy is the winner one since it produces an
improvement from 160.8 CPU seconds (kmax = 0) to 27.07 seconds (kmax = 5) with no spectral
update.

6.4. A graph Laplacian matrix with zero smallest eigenvalue

Matrix WWW-327 is the Laplacian of the Web network within nd.edu domain [23]. This network
is directed but arc direction has been ignored in order to obtain a symmetric Laplacian. The
corresponding Laplacian matrix is characterized by a zero smallest eigenvalue corresponding the
eigenvector with all components equal to one. We notice that, due to the erratic sparsity of the graph
Laplacian matrix, the computation of an efficient IC decomposition was rather costly as it took
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Figure 3. Convergence profile of the DACG method for problem EMILIA-923.
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Table VII. Eigenvalues λj and relative separation ξ−1j , for matrix FINAN512.

j λj ξ−1j j λj ξ−1j

1 0.94746 2.9×10−3 11 1.05180 5.7×10−3

2 0.95024 6.2×10−2 12 1.05779 1.2×10−2

3 1.01279 6.0×10−3 13 1.07086 3.5×10−3

4 1.01895 9.8×10−3 14 1.07460 1.8×10−3

5 1.02902 2.7×10−3 15 1.07652 1.6×10−3

6 1.03176 1.1×10−3 16 1.07829 1.5×10−5

7 1.03288 6.3×10−3 17 1.07831 6.9×10−4

8 1.03943 3.3×10−3 18 1.07905 1.9×10−3

9 1.04282 2.0×10−4 19 1.08108 1.2×10−3

10 1.04303 8.3×10−3 20 1.08235 5.7×10−3

Table VIII. Timings and iterations with the DACG-Newton method for the computation of m = 20
eigenpairs of matrix FINAN512.

DACG Newton Total
Iterations CPU

win lmax kmax µ τ Its. CPU OUT Inner MVP CPU
0 0 0 10−3 1301 12.64 704 13780 147.99 15785 160.80
5 10 0 10−3 1629 16.07 467 9075 98.72 11171 114.97
0 0 1 10−3 1301 12.53 122 2127 22.99 3550 35.70
5 10 1 10−3 1629 16.21 81 1291 15.66 3001 32.05
0 0 5 10−3 1301 12.51 80 1300 14.39 2681 27.07
5 10 5 10−3 1629 16.21 60 971 11.97 2660 28.36
5 10 5 0.2 10−3 1196 12.84 65 1011 12.49 2272 25.51

10 15 5 0.2 10−3 1220 13.77 64 1002 13.02 2286 26.97
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a large percentage of the total CPU time (about 205 seconds). Only for this test case we set the
maximum number of PCG inner iterations to 30.

Table IX. Timings and iterations with the DACG-Newton method for the computation of m = 20 eigenpairs
of matrix WWW-327. Symbol ‡ stands for: no convergence of the Newton step within 200 outer iterations.

DACG Newton Total
Iterations CPU

win lmax kmax µ τ Its. CPU OUT Inner MVP CPU
0 0 0 0.01 20593 749.37 ‡ ‡ ‡ ‡ ‡
5 15 0 0.1 0.01 13347 536.51 1180 34838 1937.66 49365 2692.25
0 0 5 0.01 20593 749.37 1392 41436 1987.58 63421 2949.82
5 15 5 0.1 0.01 13347 543.57 352 10290 568.02 23989 1318.65
0 0 15 0.01 20593 749.37 812 24111 1431.54 45516 2388.39
3 10 15 0.1 0.01 13306 535.68 353 10349 625.74 24008 1368.16
5 15 15 0.1 0.01 13347 543.57 305 8904 542.96 22556 1295.08
8 20 20 0.1 0.01 14298 584.27 280 8200 494.11 22278 1283.70

With a fixed initial Cholesky preconditioner we report no convergence of the Newton phase within
200 outer iterations. If either the BFGS update alone is used (see the third and the fifth row in
the Table) or the spectral preconditioner without BFGS correction (2nd row), convergence of the
Newton step reveals very slow. The other runs reported in Table IX show the great improvement in
the Newton phase, which is speeded-up by a factor three in terms of CPU time and MVP, when the
spectral preconditioner is used in combination with the BFGS low-rank update.

This behavior is clearly evident in Figure 4 where the convergence profile is provided of the
DACG-Newton method with four preconditioner strategies to assess eigenpair j = 7.

Figure 4. Convergence profile of the DACG-Newton method for eigenpair # 7 and problem WWW-327.
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6.5. Suggestions on the choice of the parameters

When employing both the two-stage spectral and the BFGS acceleration there are a number of
parameters to be assessed. However, the two parameters of the spectral preconditioner are relatively
easy to determine: our experiments suggest that, denoting as before with m the number of sought
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eigenpairs, choosing lmax ∈
[m

2
,m
]

and win ∈ [5, 10] will lead to optimal performances. Also
kmax = 5 seems to be an effective choice in most cases as the Newton process is expected to
converge within a small number of iterations (and this is also dependent on the initial DACG
approximation). Finally the choice of the two DACG tolerances, though clearly problem dependent,
can be successfully set as µ ≈ 10−1 and τ ≈ 10−2.

6.6. Comparison with Jacobi-Davidson

We include in this section a comparison of the algorithm presented and analyzed in the previous
sections with the well-known Jacobi-Davidson (JD) method. For the details of this method we
refer to the original paper [7], as well as to successive works [24, 25, 19] which analyze both
theoretically and experimentally a number of variants of this method. In this paper, we followed the
implementation suggested in the previously cited work [19], i.e. we made use of the PCG method
as the inner solver, with the same initial preconditioner as that used in the DACG-Newton method.
Also the exit tests used in the two methods are identical for both the outer iteration and the inner
PCG solver.

Table X. Comparison between the spectral preconditioned DACG-Newton and Jacobi-Davidson. †: In
solving problem WWW-327 JD was not able to compute the eigenpairs with the requested tolerance (10−8).

problem DACG-Newton Jacobi-Davidson
win lmax kmax µ τ MVP OUT CPU MVP OUT CPU

MONTE-CARLO 5 20 5 0.2 0.02 1561 55 17.24 2156 130 23.79
MAT268515 5 10 5 0.2 0.02 1440 60 95.07 1624 114 99.86
EMILIA-923 5 20 5 0.1 0.02 2193 64 729.05 2346 140 885.08
FINAN512 5 10 5 0.1 10−3 2272 65 25.51 1948 131 31.41
WWW-327 (ε = 10−8) 8 20 20 0.1 0.01 22278 280 1283.70 † † †
WWW-327 (ε = 10−4) 8 20 20 0.2 0.05 15068 179 902.82 10593 424 622.55

In the JD implementation two parameters are crucial for its efficiency namelymmin andmmax, the
smallest and the largest dimension of the subspace where the Rayleigh-Ritz projection takes place.
After some attempts, we found that mmin = 15 and mmax = 25 were on the average the optimal
values of such parameters. In all the examples and both solvers we set the maximum number of inner
PCG iterations to 20 with the only exception of problem WWW-327 where we set ITMAXPCG = 30.

The results of the comparison are summarized in Table X where we also specify the parameters
of the spectral (two-stage) DACG-Newton algorithm. Regarding the first four problems, it is found
that the proposed method is superior to the JD method in terms of CPU time and also (on three
problems out of four) in terms of number of MVP. For the problem WWW-327 JD was not able
to compute the eigenpairs up to the prescribed accuracy. To perform a proper comparison, we then
run both the DACG-Newton and the JD solvers with a lower accuracy (ε = 10−4). In this case, JD
performs better than the proposed DACG-Newton method.

We conclude this section by observing that also the Jacobi-Davidson method itself could in
principle take advantage of the two-stage spectral preconditioner. The JD solver could be used
either as the second stage in combination with the DACG method, or on its own. In the latter case,
after a first JD stage providing a set of eigenvectors to a low accuracy, the second JD run will use
information from the subspace generated by the first-run Rayleigh-Ritz procedure, to improve the
initial guess, and the approximate eigenvectors just obtained to form the spectral preconditioner.

7. CONCLUSIONS

We have proposed a class of spectral preconditioners for the two-stage iterative eigensolver DACG-
Newton which is shown to cluster the eigenvalues of the preconditioned matrix in the Newton
phase with a consequent acceleration of the iterative procedure. We have theoretically proved that
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a number of the eigenvalues of the preconditioned matrix are related to the relative separation
between the eigenvalue being sought and the next higher ones. Numerical experiments onto large
size problems arising from various applications show that in any case the spectral preconditioner is
effective in accelerating the Newton phase and particularly so when it is combined with a low-rank
update of BFGS type. This spectral updating technique is also employed in accelerating the DACG
method itself by running it twice: in the first run the eigenpairs are approximated with very low
accuracy, the second run is accelerated by the spectral preconditioner. We stress that this technique
can be applied to the eigensolver of choice which can be employed in its first run to assess both
a good starting point and a rough approximation of the leftmost eigenvectors which constitute
the basis for the spectral preconditioner to accelerate the second run of the same eigensolver. In
particular, as a future work, we plan to apply the spectral preconditioner for the acceleration of the
Jacobi-Davidson method.
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