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REGULARIZATION MATRICES FOR DISCRETE ILL-POSED

PROBLEMS IN SEVERAL SPACE-DIMENSIONS

LAURA DYKES∗, GUANGXIN HUANG† , SILVIA NOSCHESE‡ , AND LOTHAR REICHEL§

Abstract. Many applications in science and engineering require the solution of large linear
discrete ill-posed problems that are obtained by the discretization of a Fredholm integral equation
of the first kind in several space-dimensions. The matrix that defines these problems is very ill-
conditioned and generally numerically singular, and the right-hand side, which represents measured
data, typically is contaminated by measurement error. Straightforward solution of these problems
generally is not meaningful due to severe error propagation. Tikhonov regularization seeks to alleviate
this difficulty by replacing the given linear discrete ill-posed problem by a penalized least-squares
problem, whose solution is less sensitive to the error in the right-hand side and to round-off errors
introduced during the computations. This paper discusses the construction of penalty terms that are
determined by solving a matrix-nearness problem. These penalty terms allow partial transformation
to standard form of Tikhonov regularization problems that stem from the discretization of integral
equations on a cube in several space-dimensions.

Key words. Discrete ill-posed problems; Tikhonov regularization; standard form problems;
matrix nearness problems; Krylov subspace iterative methods
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1. Introduction. We consider the solution of linear discrete ill-posed problems
that arise from the discretization of a Fredholm integral equation of the first kind on
a cube in two or more space-dimensions. Discretization of the integral operator yields
a matrix K ∈ R

M×N , which we assume to be large. A vector b ∈ R
M that represents

measured data, and therefore is error-contaminated, is available and we would like to
compute an approximate solution of the least-square problem

min
x∈RN

‖Kx− b‖. (1.1)

The matrix K has many “tiny” singular values of different orders of magnitude. This
makes K severely ill-conditioned; in fact, K may be numerically singular. Least-
squares problems (1.1) with a matrix of this kind are commonly referred to as linear
discrete ill-posed problems.

Let e ∈ R
M denote the (unknown) error in b. Thus,

b = b̂+ e, (1.2)

where b̂ ∈ R
M stands for the unknown error-free vector associated with b. We will

assume the unavailable linear system of equations

Kx = b̂ (1.3)

to be consistent.
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Let K† denote the Moore–Penrose pseudoinverse of the matrix K. We are inter-
ested in determining the solution x̂ of (1.3) of minimal Euclidean norm; it is given by

K†b̂. We note that the solution of minimal Euclidean norm of (1.1),

K†b = K†b̂+K†e = x̂+K†e,

generally is not a meaningful approximation of x̂ due to a large propagated error
K†e. This difficulty stems from the fact that ‖K†‖ is large. Throughout this paper
‖ · ‖ denotes the Euclidean vector norm or spectral matrix norm. We also will use the
Frobenius norm of a matrix, defined by ‖K‖F =

√
trace(KTK), where the superscript

T stands for transposition.
To avoid severe error propagation, one replaces the least-squares problem (1.1) by

a nearby problem, whose solution is less sensitive to the error e in b. This replacement
is known as regularization. Tikhonov regularization, which is one of the most popular
regularization methods, replaces (1.1) by a penalized least-squares problem of the
form

min
x∈RN

{
‖Kx− b‖2 + µ‖Lx‖2

}
, (1.4)

where L ∈ R
J×N is referred to as the regularization matrix and the scalar µ > 0

as the regularization parameter; see, e.g., [2, 8, 10]. We assume the matrix L to be
chosen so that

N (K) ∩N (L) = {0}, (1.5)

where N (M) denotes the null space of the matrix M . Then the minimization problem
(1.4) has a unique solution

xµ = (KTK + µLTL)−1KTb

for any µ > 0.
Common choices of L include the identity matrix and discretizations of differential

operators. The Tikhonov minimization problem (1.4) is said to be in standard form

when L = I; otherwise it is in general form. Numerous computed examples in the
literature, see, e.g., [4, 5, 9, 25], illustrate that the choice of L can be important for
the quality of the computed approximation xµ of x̂. The regularization matrix L
should be chosen so that known important features of the desired solution x̂ of (1.3)
are not damped. This can be achieved by choosing L so that N (L) contains vectors
that represent these features, because vectors in N (L) are not damped by L.

Several approaches to construct regularization matrices with desirable properties
are described in the literature; see, e.g., [1, 4, 5, 6, 12, 16, 19, 22, 23, 25, 27]. Huang
et al. [16] propose the construction of square regularization matrices with a user-
specified null space by solving a matrix nearness problem in the Frobenius norm. The
regularization matrices so obtained are designed for linear discrete ill-posed problems
in one space-dimension. This paper extends this approach to problems in higher
space-dimensions. The regularization matrices of this paper generalize those applied
by Bouhamidi and Jbilou [1] by allowing a user-specified null space.

Consider the special case of d = 2 space-dimensions and let the matrix K be
determined by discretizing an integral equation on a square n×n grid (i.e., N = n2).
The regularization matrix

L1,⊗ =

[
I ⊗ L1

L1 ⊗ I

]
, (1.6)
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where I ∈ R
n×n is the identity matrix,

L1 =
1

2




1 −1 0
1 −1

1 −1
. . .

. . .

0 1 −1



∈ R

(n−1)×n, (1.7)

and ⊗ denotes the Kronecker product, has frequently been used for this kind of
problem; see e.g., [3, 14, 19, 20, 26]. We note for future reference that N (L1) =
span{[1, 1, . . . , 1]T}.

It also may be attractive to replace the matrix (1.7) in (1.6) by

L2 =
1

4




−1 2 −1 0
−1 2 −1

. . .
. . .

. . .

0 −1 2 −1


 ∈ R

(n−2)×n (1.8)

with null space N (L2) = span{[1, 1, . . . , 1]T , [1, 2, . . . , n]T }. This yields the regular-
ization matrix

L2,⊗ =

[
I ⊗ L2

L2 ⊗ I

]
. (1.9)

Both the regularization matrices (1.6) and (1.9) are rectangular with almost twice
as many rows as columns when n is large.

Bouhamidi and Jbilou [1] proposed the use of the smaller invertible regularization
matrix

L2,⊗ = L̃2 ⊗ L̃2, (1.10)

where

L̃2 =
1

4




2 −1 0
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

0 −1 2




∈ R
n×n (1.11)

is a square nonsingular regularization matrix. Therefore the regularization matrix
(1.10) also is square and nonsingular, which makes it easy to transform the Tikhonov
minimization problem (1.4) so obtained to standard form; see below.

Following Bouhamidi and Jbilou [1], we consider square matrices K with a tensor
product structure, i.e.,

K = K(2) ⊗K(1). (1.12)

We assume for simplicity that K(1),K(2) ∈ R
n×n with N = n2. However, we note

that the regularization matrices described in this paper can be applied also when the
matrix K in (1.1) does not have a tensor product structure.



4 L. Dykes et al.

Bouhamidi and Jbilou [1] are concerned with applications to image restoration and
achieve restorations of high quality. However, for linear discrete ill-posed problems
in one space-dimension, analysis presented in [4, 12] indicates that the regularization
matrix (1.8), with a non-trivial null space, can give approximate solutions of higher
quality than the matrix (1.11), which has a trivial null space. This depends on
that the latter matrix may introduce artifacts close to the boundary; see also [5, 6,
25] for related discussions and illustrations. It is the aim of the present paper to
develop a generalization of the regularization matrix (1.9) that has a non-trivial null
space. Our approach to define such a regularization matrix generalizes the technique
proposed in [16] from one to several space-dimensions. Specifically, the regularization
matrix is defined by solving a matrix nearness problem in the Frobenius norm. The
regularization matrix so obtained allows a partial transformation of the Tikhonov
regularization problem (1.4) to standard form. When the matrixK is square, Arnoldi-
type iterative solution methods can be used. Arnoldi-type iterative solution methods
often require fewer matrix-vector product evaluations than iterative solution methods
based on Golub–Kahan bidiagonalization, because they do not require matrix-vector
product evaluations with KT ; see, e.g., [21] for illustrations. A nice recent survey of
iterative solution methods for discrete ill-posed problems is provided by Gazzola et
al. [9].

This paper is organized as follows. Section 2 describes our construction of new reg-
ularization matrices for problems in two space-dimensions. The section also discusses
iterative methods for the solution of the Tikhonov minimization problems obtained.
We consider both the situation when K is a general matrix and when K has a ten-
sor product structure. Section 3 generalizes the results of Section 2 to more than
two space-dimensions. Computed examples can be found in Section 4, and Section 5
contains concluding remarks.

We conclude this section by noting that while this paper focuses on iterative
solution methods for large-scale Tikhonov minimization problems (1.4), the regular-
ization matrices described also can be applied in direct solution methods for small to
medium-sized problems that are based on the generalized singular value decomposi-
tion (GSVD); see, e.g., [7, 10] for discussions and references.

2. Regularization matrices for problems in two space-dimensions. Many
image restoration problems as well as problems from certain other applications (1.1)
have a matrix K ∈ R

N×N that is the Kronecker product of two matrices K(1),K(2) ∈
R

n×n with N = n2, cf. (1.12). We will consider this situation in most of this section;
the case when K is a general square matrix without Kronecker product structure is
commented on at the end of the section. Extension to rectangular matrices K, K(1),
and K(2) is straightforward.

We will use regularization matrices with a Kronecker product structure,

L = L(2) ⊗ L(1) (2.1)

and will discuss the choice of square regularization matrices L(1), L(2) ∈ R
n×n. The

following result is an extension of [16, Proposition 2.1] to problems with a Kronecker
product structure. Let R(A) denote the range of the matrix A and define the Frobe-
nius inner product

〈A1, A2〉 = trace(AT
1 A2) (2.2)

between matrices A1, A2 ∈ R
m1×m2 . Throughout this section N = n2.

Proposition 2.1. Let the matrices V (1) ∈ R
n×ℓ1 and V (2) ∈ R

n×ℓ2 have or-
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thonormal columns, and let B denote the subspace of matrices of the form B =
B(2) ⊗ B(1), where the null space of B(i) ∈ R

n×n contains R(V (i)) for i = 1, 2.
Introduce for i = 1, 2 the orthogonal projectors P (i) = I − V (i)V (i)T with null space

R(V (i)). Let P = P (2) ⊗ P (1). Then the matrix Â = AP is a closest matrix to

A = A(2) ⊗A(1) with A(i) ∈ R
n×n, i = 1, 2, in B in the Frobenius norm.

Proof. The matrix Â satisfies the following conditions:
1. Â ∈ B;
2. if A ∈ B, then Â ≡ A;
3. if B ∈ B, then 〈B,A− Â〉 = 0.

In fact,

Â(V (2) ⊗ V (1)) = A(P (2)V (2) ⊗ P (1)V (1)) = 0,

which shows the first property. The second property implies that

A(2)V (2) = 0, A(1)V (1) = 0,

from which it follows that

Â = (A(2) −A(2)V (2)V (2)T )⊗ (A(1) −A(1)V (1)V (1)T ) = A(2) ⊗A(1) = A.

Finally, for any B ∈ B of the form B = B(2) ⊗B(1), one has that

B(2)V (2) = V (2)TB(2)T = 0, B(1)V (1) = V (1)TB(1)T = 0,

so that

〈B,A− Â〉 = trace(BTA−BT Â)

= trace(B(2)TA(2)) trace(B(1)TA(1)V (1)V (1)T )

+trace(B(2)TA(2)V (2)V (2)T ) trace(B(1)TA(1))

−trace(B(2)TA(2)V (2)V (2)T ) trace(B(1)TA(1)V (1)V (1)T ) = 0,

where the last equality follows from the cyclic property of the trace.
Example 2.1. Let L2 and L̃2 be defined by (1.8) and (1.11), respectively. Propo-

sition 2.1 shows that a closest matrix to L̃ = L̃2⊗ L̃2 in the Frobenius norm with null
space N (L2 ⊗ L2) is

L = L̃2P2 ⊗ L̃2P2,

where P2 is the orthogonal projector onto N (L2)
⊥. ✷

Example 2.2. Define the square nonsingular regularization matrix

L̃1 =
1

2




1 −1 0
1 −1

1 −1
. . .

. . .

−1

0 1




∈ R
n×n. (2.3)

A closest matrix to L̃ = L̃1 ⊗ L̃1 in the Frobenius norm with null space N (L1 ⊗ L1)
is given by

L = L̃1P1 ⊗ L̃1P1,
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where P1 is the orthogonal projector onto N (L1)
⊥; see, e.g., [16]. ✷

The following result is concerned with the situation when the order of the non-
singular matrices L̃i and projectors Pi in Examples 2.1 and 2.2 is reversed. We first
consider the situation when L̃ is a square matrix without Kronecker product structure,
since this situation is of independent interest.

Proposition 2.2. Let L̃ ∈ R
n×n and let V be a subspace of R

n. Define the

orthogonal projector PV⊥ onto V⊥. Then the closest matrix L̂ ∈ R
n×n to L̃ in the

Frobenius norm, such that R(L̂) ⊂ V⊥, is given by L̂ = PV⊥L̃.

Proof. Consider the problem of determining a closest matrix L̂T ∈ R
n×n to L̃T

in the Frobenius norm whose null space contains V . It is shown in [16, Proposition

2.3] that L̂T = L̃TPV⊥ is such a matrix. The Frobenius norm is invariant under
transposition and orthogonal projectors are symmetric. Therefore,

‖L̃TPV⊥ − L̃T ‖F = ‖PV⊥L̃− L̃‖F .

Moreover, R(PV⊥) = V⊥. It follows that a closest matrix to L̃ in the Frobenius norm

whose range is a subset of V⊥ is given by PV⊥L̃.
The following result extends Proposition 2.2 to matrices with a tensor product

structure. We formulate the result similarly as Proposition 2.1.
Corollary 2.3. Let the matrices V (1) ∈ R

n×ℓ1 and V (2) ∈ R
n×ℓ2 have orthonor-

mal columns, and let B denote the subspace of matrices of the form B = B(2) ⊗B(1),

where the range of B(i) ∈ R
n×n is orthogonal to R(V (i)) for i = 1, 2. Introduce for

i = 1, 2 the orthogonal projectors P (i) = I −V (i)V (i)T and let P = P (2) ⊗P (1). Then

the matrix Â = PA is a closest matrix to A = A(2) ⊗A(1) with A(i) ∈ R
n×n, i = 1, 2,

in B in the Frobenius norm.

Proof. The result can be shown by applying Propositions 2.1 or 2.2.
Example 2.3. Let L2 be defined by (1.8) and L̃2 by (1.11). Corollary 2.3 shows

that a closest matrix to L̃ = L̃2 ⊗ L̃2 with range in R(L2 ⊗ L2) is

L = P2L̃2 ⊗ P2L̃2,

where P2 = diag[0, 1, 1, . . . , 1, 0] ∈ R
n×n. ✷

Example 2.4. Let the matrices L1 and L̃1 be given by (1.7) and (2.3). It follows

from Corollary 2.3 that a closest matrix to L̃ = L̃1 ⊗ L̃1 with range in R(L1 ⊗ L1) is
given by

L = P1L̃1 ⊗ P1L̃1,

where P1 = diag[1, 1, . . . , 1, 0] ∈ R
n×n. ✷

Using (1.12) and (2.1), the Tikhonov regularization problem (1.4) can be ex-
pressed as

min
x∈RN

{
‖(K(2) ⊗K(1))x− b‖2 + µ‖(L(2) ⊗ L(1))x‖2

}
. (2.4)

It is convenient to introduce the operator vec, which transforms a matrix Y ∈
R

n×n to a vector of size n2 by stacking the columns of Y . Let A, B, and Y , be
matrices of commensurate sizes. Then

vec(AY B) = (BT ⊗A)vec(Y );
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see, e.g., [15] for operations on matrices with Kronecker product structure. We can
apply this identity to express (2.4) in the form

min
X∈Rn×n

{
‖K(1)XK(2)T − B‖2F + µ‖L(1)XL(2)T‖2F

}
, (2.5)

where the matrix B ∈ R
n×n satisfies b = vec(B).

Let the regularization matrices in (2.5) be of the forms

L(1) = P (1)L̃(1), L(2) = P (2)L̃(2), (2.6)

where the matrices L̃(i) ∈ R
n×n are nonsingular and the P (i) are orthogonal projec-

tors. We easily can transform (2.5) to a form with an orthogonal projector regular-
ization matrix,

min
Y ∈Rn×s

{
‖K

(1)
1 Y K

(2)T
1 −B‖2F + µ‖P (1)Y P (2)‖2F

}
, (2.7)

where

K
(i)
1 = K(i)(L̃(i))−1, i = 1, 2.

We will solve (2.7) by an iterative method. The structure of the minimization
problem makes it convenient to apply an iterative method based on the global Arnoldi
process, which was introduced and first analyzed by Jbilou et al. [17, 18]. We refer to
matrices with many more rows than columns as “block vectors”. The block vectors
U,W ∈ R

N×n are said to be F -orthogonal if 〈U,W 〉 = 0; they are F -orthonormal if
in addition ‖U‖F = ‖W‖F = 1.

The application of k steps of the global Arnoldi method to the solution of (2.7)
yields an F -orthonormal basis {V1, V2, . . . , Vk} of block vectors Vj for the block Krylov
subspace

Kk = span{B,K
(1)
1 BK

(2)T
1 , . . . , (K

(1)
1 )k−1B(K

(2)T
1 )k−1}. (2.8)

In particular V1 = B/‖B‖F . The use of the global Arnoldi method to the solution of
(2.7) is mathematically equivalent to applying a standard Arnoldi method to (2.4).
An advantage of the global Arnoldi method is that it can be implemented by using
matrix-matrix operations, while the standard Arnoldi method applies matrix-vector
and vector-vector operations. This can lead to faster execution of the global Arnoldi
method on many modern computers. Algorithm 1 outlines the global Arnoldi method;
see [17, 18] for further discussions of this and other block methods.

We determine an approximate solution of (2.7) in the global Arnoldi subspace
(2.8). This is described by Algorithm 2 for a given µ > 0. The solution subspace (2.8)
is independent of the orthogonal projectors that determine the regularization term
in (2.7). This approach to generate a solution subspace for the solution of Tikhonov
minimization problems in general form was first discussed in [13]; see also [9] for
examples.

The discrepancy principle is a popular approach to determine the regularization
parameter µ when a bound ε for the norm of the error e in b is known, i.e., ‖e‖ ≤ ε.
It prescribes that µ > 0 be chosen so that the computed approximate solution Yµ,k

of (2.7) satisfies

‖K
(1)
2 Yµ,kK

(2)T
2 −B‖F = ηε, (2.9)
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Algorithm 1: Global Arnoldi for computing an F -orthonormal basis for (2.8)

1 compute V1 = B/‖B‖F
2 for j = 1, 2, . . . , k compute

3 V = K
(1)
1 Vj

4 V = V K
(2)T
1

5 for i = 1, 2, . . . , j
6 hi,j = 〈V, Vi〉
7 V = V − hi,jVi

8 end
9 hj+1,j = ‖V ‖F

10 if hj+1,j = 0 stop
11 Vj+1 = V/hj+1,j

12 end

13 construct the n× kn matrix V̂k = [V1, . . . , Vk] with F -orthonormal block
columns Vj . The block columns span the space (2.8)

14 construct the (k + 1)× k Hessenberg matrix H̃k = [hi,j ]i=1,2,...,k+1,j=1,2,...,k

Algorithm 2: Tikhonov regularization based on the global Arnoldi process

1 construct V̂k = [V1, V2, . . . , Vk] and H̃k using Algorithm 1
2 solve for a given µ > 0,

min
y∈Rk




∥∥∥H̃ky − ‖B‖F e1

∥∥∥
2

+ µ

∥∥∥∥∥

k∑

i=1

yiP
(1)ViP

(2)

∥∥∥∥∥

2

F



 ,

where e1 = [1, 0, . . . , 0]T ∈ R
k+1 and y = [y1, y2, . . . , yk]

T

3 compute Yµ,k =
∑k

i=1 Viyi

where η ≥ 1 is a user-chosen constant independent of ε. The nonlinear equation (2.9)
for µ can be solved by a variety of methods such as Newton’s method; see [13] for a
discussion.

Finally, we note that the regularization matrices of this section also can be applied
when the matrix K in (1.4) does not have a Kronecker product structure (1.12). Let
x = vec(X). Then the matrix expression in the penalty term of (2.7) can be written
as

P (1)L̃(1)XL̃(2)TP (2) = ((P (2)L̃(2))⊗ (P (1)L̃(1)))x = (P (2) ⊗ P (1))(L̃(2) ⊗ L̃(1))x.

The analogue of the minimization problem (2.7) therefore can be expressed as

min
x∈RN

{
‖Kx− b‖2 + µ‖(P (2) ⊗ P (1))(L̃(2) ⊗ L̃(1))x‖2

}
. (2.10)

The matrix L̃(2) ⊗ L̃(1) is invertible; we have (L̃(2) ⊗ L̃(1))−1 = (L̃(2))−1 ⊗ (L̃(1))−1.
It follows that the problem (2.10) can be transformed to

min
y∈RN

{
‖K((L̃(2))−1 ⊗ (L̃(1))−1)y − b‖2 + µ‖(P (2) ⊗ P (1))y‖2

}
. (2.11)
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The matrix P (2) ⊗ P (1) is an orthogonal projector. It is described in [22] how
Tikhonov regularization problems with a regularization term that is determined by
an orthogonal projector with a low-dimensional null space easily can be transformed
to standard form. However, dim(N (P (2) ⊗ P (1))) ≥ n, which generally is quite large
in problems of interest to us. It is therefore impractical to transform the Tikhonov
minimization problem (2.11) to standard form. We can solve (2.11), e.g., by generat-

ing a (standard) Krylov subspace determined by the matrix K((L̃(2))−1 ⊗ (L̃(1))−1)
and vector b, similarly as described in [13]. When the matrix K is square, the Arnoldi
process can be applied to generate a solution subspace; when K is rectangular, par-
tial Golub–Kahan bidiagonalization of K can be used. The latter approach requires
matrix-vector product evaluations with both K and KT ; see [13] for further details.

3. Regularization matrices for problems in higher space-dimensions.

Proposition 2.1 can be extended to higher space-dimensions. In addition to allowing
d ≥ 2 space-dimensions, we remove the requirement that all blocks be square and of
equal size.

Proposition 3.1. Let V
(i)
ℓi

∈ R
ni×ℓi have 1 ≤ ℓi < ni orthonormal columns for

i = 1, 2, . . . , d, and let B denote the subspace of matrices of the form

B = B(d) ⊗B(d−1) ⊗ · · · ⊗B(1),

where the null space of B(i) ∈ R
pi×ni contains R(V

(i)
ℓi

) for all i. Let Ik denote the

identity matrix of order k and define the orthogonal projectors

P = P (d) ⊗ P (d−1) ⊗ · · · ⊗ P (1), P (i) = Ini
− V

(i)
ℓi

V
(i)T
ℓi

, i = 1, 2, . . . , d. (3.1)

Then the matrix Â = AP is a closest matrix to A = A(d) ⊗ A(d−1) ⊗ · · · ⊗ A(1) in B
in the Frobenius norm, where A(i) ∈ R

pi×ni , i = 1, 2, . . . , d.
Proof. The proof is a straightforward modification of the proof of Proposition 2.1.

Let L̃(1), L̃(2), . . . , L̃(d) be a sequence of square nonsingular matrices, and let
L(1), L(2), . . . , L(d) be regularization matrices with desirable null spaces. It follows
from Proposition 3.1 that a closest matrix to

L̃ = L̃(d) ⊗ L̃(d−1) ⊗ · · · ⊗ L̃(1)

with null space N (L(d) ⊗ L(d−1) ⊗ · · · ⊗ L(1)) is

L = L̃(d)P (d) ⊗ L̃(d−1)P (d−1) ⊗ · · · ⊗ L̃(1)P (1),

where the orthogonal projectors P (i) are defined by (3.1) and the matrix V
(i)
ℓi

∈ R
ni×ℓi

has 1 ≤ ℓi < ni orthonormal columns that span N (L(i)) for i = 1, 2, . . . , d.
The following result generalizes Corollary 2.3 to higher space-dimensions and to

rectangular blocks of different sizes.

Proposition 3.2. Let V
(i)
ℓi

∈ R
ni×ℓi have 1 ≤ ℓi < ni orthonormal columns for

i = 1, 2, . . . , d, and let B denote the subspace of matrices of the form

B = B(d) ⊗B(d−1) ⊗ · · · ⊗B(1),

where the range of B(i) ∈ R
pi×ni is orthogonal to R(V

(i)
ℓi

) for all i. Let P be defined

by (3.1). Then the matrix Â = PA is a closest matrix to A = A(d)⊗A(d−1)⊗· · ·⊗A(1)

in B in the Frobenius norm, where A(i) ∈ R
pi×ni , i = 1, 2, . . . , d.
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Proof. The result can be shown by modifying the proof of Propositions 2.1 or 2.2.

Let L(1), L(2), . . . , L(d) be a sequence of regularization matrices with desirable
ranges, and let L̃(1), L̃(2), . . . , L̃(d) be full rank matrices. It follows from Proposition
3.2 that a closest matrix to

L̃ = L̃(d) ⊗ L̃(d−1) ⊗ · · · ⊗ L̃(1)

with range in R(L(d) ⊗ L(d−1) ⊗ · · · ⊗ L(1)) is

L = P (d)L̃(d) ⊗ P (d−1)L̃(d−1) ⊗ · · · ⊗ P (1)L̃(1),

where the orthogonal projectors P (i) are defined by (3.1) and the matrix V
(i)
ℓi

∈ R
ni×ℓi

has 1 ≤ ℓi < ni orthonormal columns that span N (L(i)) for i = 1, 2, . . . , d.
We conclude this section with an extension of (2.7) to higher space-dimensions

and assume that the problem has a nested tensor structure, i.e.,

K(i) = K(i,2) ⊗K(i,1),

where K(1,i) ∈ R
ni×ni , K(2,i) ∈ R

si×si , i = 1, 2, and that

B = B(2) ⊗B(1),

where B(i) ∈ R
ni×si for i = 1, 2. The minimization problem (1.1) with

K = K(2,2) ⊗K(2,1) ⊗K(1,2) ⊗K(1,1)

and b = vec(B) reads

min
X∈Rn×s

{
‖(K(1,2) ⊗K(1,1))X(K(2,2)T ⊗K(2,1)T )−B(2) ⊗B(1)‖2F

}
.

Let the regularization matrices have a nested tensor structure

L(i) = L(i,2) ⊗ L(i,1), i = 1, 2.

Then penalized least-squares problem that has to be solved is of the form

min
X∈Rn×s

{‖(K(1,2) ⊗K(1,1))X(K(2,2)T ⊗K(2,1)T )−B(2) ⊗B(1)‖2F+

µ‖(L(1,2) ⊗ L(1,1))X(L(2,2)T ⊗ L(2,1)T ‖2F }.
(3.2)

If, moreover, the solution is separable of the form X = X(2)⊗X(1), where X(i) ∈
R

ni×si for i = 1, 2, then we obtain the minimization problem

min
X(1)∈R

n1×s1

X(2)∈R
n2×s2

{‖(K(1,2)X(2)K(2,2)T )⊗ (K(1,1)X(1)K(2,1)T )−B(2) ⊗B(1)‖2F+

µ‖(L(1,2)X(2)L(2,2)T )⊗ (L(1,1)X(1)L(2,1)T )‖2F }.

(3.3)

When the regularization matrices are of the form L(i,j) = P (i,j)L̃(i,j), 1 ≤ i, j ≤ 2,
where the P (i,j) are orthogonal projectors and the L̃(i,j) are square and invertible,
the minimization problems (3.2) and (3.3) can be transformed similarly as equation
(2.5) was transformed into (2.7).
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4. Computed examples. We illustrate the performance of regularization ma-
trices of the form L = L(2) ⊗ L(1) with L(i) = P (i)L̃(i) or L(i) = L̃(i)P (i) for i = 1, 2,
and compare with the regularization matrices L(i) = L̃(i) for i = 1, 2. The noise level
is given by

ν :=
‖E‖F

‖B̂‖F
.

Here E = B − B̂ is the error matrix, where B is the available error-contaminated
matrix in (2.5) and B̂ is the associated unknown error-free matrix, i.e., b̂ = vec(B̂);
cf. (1.3). In all examples, the entries of the matrix E are normally distributed with
zero mean and are scaled to correspond to a specified noise level. We let η = 1.01 in
(2.9) in all examples. The quality of computed approximate solutions Xµ.k of (2.5) is
measured with the relative error norm

ek :=
‖Xµ,k − X̂‖F

‖X̂‖F
.

All computations were carried out in MATLAB R2017a with about 15 significant
decimal digits on a laptop computer with an Intel Core i7-6700HQ CPU @ 2.60GHz
processor and 16GB RAM.

Fig. 4.1. Example 4.1: Computed approximate solution Xµ,1 for noise level ν = 1 · 10−3 and

regularization matrix P
(1)

L̃
(1)

⊗ P
(1)

L̃
(1) using the discrepancy principle.

Example 4.1. Consider the Fredholm integral equation of the first kind in two
space-dimensions,

∫ ∫

Ω

κ(τ, σ;x, y)f(x, y)dxdy = g(τ, σ), (τ, σ) ∈ Ω, (4.1)

where Ω = [−π/2, π/2]× [−π/2, π/2]. The kernel is given by

κ1(τ, σ;x, y) = κ1(τ, x)κ1(σ, y), (τ, σ), (x, y) ∈ Ω,

where

κ(τ, σ) = (cos(σ) + sin(τ))2
(
sin(ξ)

ξ

)2

, ξ = π(sin(σ) + cos(τ)).

The right-hand side function is of the form

g(τ, σ) = h(τ)h(σ),

where h(σ) is chosen so that the solution is the sum of two Gaussian functions and a
constant. We use the MATLAB code shaw from [11] to discretize (4.1) by a Galerkin
method with 150 × 150 orthonormal box functions as test and trial functions. This
code produces the matrixK ∈ R

150×150 that approximates the analogue of the integral
operator (4.1) in one space-dimension, and a discrete approximate solution x1 in
one space-dimension. Adding the vector n1 = [1, 1, . . . , 1]T yields the vector x̂1 ∈

R
150, from which we construct the scaled discrete approximation X̂ = x̂1x̂

T
1 of the

solution of (4.1). The error-free right-hand side is computed by B̂ = KX̂KT . The
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regularization number of CPU time relative
matrix iterations k in seconds error ek

ν = 1 · 10−3

L̃(1) ⊗ L̃(1) 1 11.9 8.42 · 10−2

P (1)L̃(1) ⊗ P (1)L̃(1) 1 11.6 6.17 · 10−2

L̃(1)P (1) ⊗ L̃(1)P (1) 2 11.6 6.85 · 10−2

L̃(2) ⊗ L̃(1) 1 12.3 9.69 · 10−2

P (2)L̃(2) ⊗ P (1)L̃(1) 1 11.7 6.17 · 10−2

L̃(2)P (2) ⊗ L̃(1)P (1) 1 11.9 7.18 · 10−2

L̃(2) ⊗ L̃(2) 1 12.1 1.05 · 10−1

P (2)L̃(2) ⊗ P (2)L̃(2) 1 12.1 6.17 · 10−2

L̃(2)P (2) ⊗ L̃(2)P (2) 1 11.8 8.55 · 10−2

noise level ν = 1 · 10−4

L̃(1) ⊗ L̃(1) 8 11.7 4.98 · 10−2

P (1)L̃(1) ⊗ P (1)L̃(1) 1 11.6 4.72 · 10−2

L̃(1)P (1) ⊗ L̃(1)P (1) 8 11.5 4.80 · 10−2

L̃(2) ⊗ L̃(1) 6 12.1 5.14 · 10−2

P (2)L̃(2) ⊗ P (1)L̃(1) 1 11.7 4.72 · 10−2

L̃(2)P (2) ⊗ L̃(1)P (1) 7 11.9 4.84 · 10−2

L̃(2) ⊗ L̃(2) 5 11.8 4.96 · 10−2

P (2)L̃(2) ⊗ P (2)L̃(2) 1 11.6 4.72 · 10−2

L̃(2)P (2) ⊗ L̃(2)P (2) 6 11.7 4.81 · 10−2

Table 4.1

Example 4.1: Number of iterations, CPU time in seconds, and relative error ek in computed ap-
proximate solutions Xµ,k determined by Tikhonov regularization based on the global Arnoldi process
for two noise levels and several regularization matrices.

error matrix E ∈ R
150×150 models white Gaussian noise with noise levels ν = 1 ·

10−3 and ν = 1 · 10−4. The data matrix B in (2.5) is computed as B = B̂ + E.
The regularization matrices L used are constructed like in Examples 2.1-2.4. We
compare the performance of these regularization matrices to the performance of the
nonsingular regularization matrices L = L̃(i) ⊗ L̃(i), i = 1, 2, and L = L̃(2) ⊗ L̃(1).
The number of steps, k, of the global Arnoldi method is chosen as small as possible
so that the discrepancy principle (2.9) can be satisfied. The regularization parameter
is determined by the discrepancy principle.

Table 4.1 displays results obtained for the different regularization matrices and
noise levels. The table shows the regularization matrices P (i)L̃(i) ⊗ P (i)L̃(i), i = 1, 2,
as well as P (2)L̃(2) ⊗ P (1)L̃(1) to yield the smallest relative errors. Moreover, the
computation with these regularization matrices requires the least CPU time. Figure
4.1 shows the computed approximate solution for the noise level ν = 1 · 10−3 when
the regularization matrix P (1)L̃(1) ⊗ P (1)L̃(1) is used. The computed approximation
cannot be visually distinguished from the desired exact solution X̂. We therefore do
not show the latter. ✷

Example 4.2. We consider the restoration of the test image satellite, which is
represented by an array of 150× 150 pixels. The available image, represented by the
matrix B ∈ R

150×150, is corrupted by Gaussian blur and additive zero-mean white
Gaussian noise; it is shown in Figure 4.2(a). Figure 4.2(b) displays the desired blur-
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regularization number of CPU time relative
matrix iterations k in seconds error ek

noise level ν = 1 · 10−2

L̃(1) ⊗ L̃(1) 11 18.9 7.90 · 10−2

P (1)L̃(1) ⊗ P (1)L̃(1) 1 19.6 6.36 · 10−2

L̃(1)P (1) ⊗ L̃(1)P (1) 11 19.3 7.90 · 10−2

L̃(2) ⊗ L̃(1) 10 19.5 8.39 · 10−2

P (2)L̃(2) ⊗ P (1)L̃(1) 1 18.9 7.81 · 10−2

L̃(2)P (2) ⊗ L̃(1)P (1) 10 19.7 8.39 · 10−2

L̃(2) ⊗ L̃(2) 9 19.7 8.64 · 10−2

P (2)L̃(2) ⊗ P (2)L̃(2) 1 19.8 7.81 · 10−2

L̃(2)P (2) ⊗ L̃(2)P (2) 9 19.0 8.64 · 10−2

noise level ν = 1 · 10−3

L̃(1) ⊗ L̃(1) 17 22.0 1.58 · 10−2

P (1)L̃(1) ⊗ P (1)L̃(1) 1 22.0 9.95 · 10−3

L̃(1)P (1) ⊗ L̃(1)P (1) 17 22.1 1.58 · 10−2

L̃(2) ⊗ L̃(1) 17 23.5 1.53 · 10−2

P (2)L̃(2) ⊗ P (1)L̃(1) 1 22.0 9.79 · 10−3

L̃(2)P (2) ⊗ L̃(1)P (1) 17 22.4 1.53 · 10−2

L̃(2) ⊗ L̃(2) 16 22.5 2.04 · 10−2

P (2)L̃(2) ⊗ P (2)L̃(2) 1 21.5 9.79 · 10−3

L̃(2)P (2) ⊗ L̃(2)P (2) 16 21.9 2.04 · 10−2

noise level ν = 1 · 10−4

L̃(1) ⊗ L̃(1) 21 44.2 2.38 · 10−3

P (1)L̃(1) ⊗ P (1)L̃(1) 1 44.1 1.91 · 10−3

L̃(1)P (1) ⊗ L̃(1)P (1) 21 44.1 2.38 · 10−3

L̃(2) ⊗ L̃(1) 21 45.2 2.35 · 10−3

P (2)L̃(2) ⊗ P (1)L̃(1) 1 44.9 1.91 · 10−3

L̃(2)P (2) ⊗ L̃(1)P (1) 21 46.8 2.35 · 10−3

L̃(2) ⊗ L̃(2) 21 45.4 2.33 · 10−3

P (2)L̃(2) ⊗ P (2)L̃(2) 1 44.7 1.91 · 10−3

L̃(2)P (2) ⊗ L̃(2)P (2) 21 44.9 2.33 · 10−3

Table 4.2

Example 4.2: Number of iterations, CPU time in seconds, and relative error ek in computed ap-
proximate solutions Xµ,k determined by Tikhonov regularization based on the global Arnoldi process
for two noise levels and several regularization matrices.

and noise-free image. It is represented by the matrix X̂ ∈ R
150×150, and is assumed

not to be known. The blurring matrices K(i) ∈ R
150×150, i = 1, 2, are Toeplitz

matrices. We let K(1) = K(2) = K, where K is analogous to the matrix generated
by the MATLAB function blur from [11] using the parameter values band = 5 and
sigma = 1.5. We show results for the noise levels ν = 1 · 10−j, j = 2, 3, 4. The data
matrix B in (2.5) is determined similarly as in Example 4.1 and the regularization
matrices used are the same as in Example 4.1.

Table 4.2 displays the number of iterations, CPU time, and the relative errors ek
in the computed approximate solutionsXµ,k determined by the global Arnoldi process
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Fig. 4.2. Example 4.2: (a) Available blur- and noise-contaminated satellite image repre-
sented by the matrix B, (b) desired image, (c) restored image for the noise level ν = 1 · 10−3 and

regularization matrix P
(1)

L̃
(1)

⊗ P
(1)

L̃
(1), and (d) restored image for the same noise level and

regularization matrix P (2)L̃(2) ⊗ P (2)L̃(2).

with data matrices contaminated by noise of levels ν = 1 ·10−j, j = 2, 3, 4, for several
regularization matrices. The iterations are terminated as soon as the discrepancy
principle can be satisfied and the regularization parameter then is chosen so that (2.9)
holds. Table 4.2 shows the global Arnoldi process with the regularization matrices
P (i)L̃(i) ⊗ P (i)L̃(i), i = 1, 2, and P (2)L̃(2) ⊗P (1)L̃(1) to yield the best approximations
of X̂ and to require the least CPU time. Figures 4.2(c) and 4.2(d) show the computed
approximate solutions determined by the global Arnoldi process with ν = 1 ·10−3 and
the regularization matrices P (1)L̃(1) ⊗ P (1)L̃(1) and P (2)L̃(2) ⊗ P (2)L̃(2), respectively.
The quality of the computed restorations is visually indistinguishable. ✷

Example 4.3. This example is similar to the previous one; only the image
to be restored differs. Here we consider the restoration of the test image QRcode,
which is represented by an array of 150× 150 pixels corrupted by Gaussian blur, and
additive zero-mean white Gaussian noise. Figure 4.3(a) shows the corrupted image
that we would like to restore. It is represented by the matrix B ∈ R

150×150. The
desired blur- and noise-free image is depicted in Figure 4.3(b). The blurring matrices
K(i) ∈ R

150×150, i = 1, 2, are Toeplitz matrices. They are generated like in Example
4.2. The regularization matrices L are the same as in Example 4.2.
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regularization number of CPU time relative
matrix iterations k in seconds error ek

noise level ν = 1 · 10−3

L̃(1) ⊗ L̃(1) 14 22.7 1.22 · 10−2

P (1)L̃(1) ⊗ P (1)L̃(1) 1 19.8 7.47 · 10−3

L̃(1)P (1) ⊗ L̃(1)P (1) 14 20.4 1.22 · 10−2

L̃(2) ⊗ L̃(1) 14 21.2 1.15 · 10−2

P (2)L̃(2) ⊗ P (1)L̃(1) 1 21.2 7.60 · 10−3

L̃(2)P (2) ⊗ L̃(1)P (1) 14 20.5 1.15 · 10−2

L̃(2) ⊗ L̃(2) 13 20.9 1.35 · 10−2

P (2)L̃(2) ⊗ P (2)L̃(2) 1 21.1 7.60 · 10−3

L̃(2)P (2) ⊗ L̃(2)P (2) 13 20.9 1.35 · 10−2

noise level ν = 1 · 10−4

L̃(1) ⊗ L̃(1) 20 19.0 2.20 · 10−3

P (1)L̃(1) ⊗ P (1)L̃(1) 1 18.7 2.05 · 10−3

L̃(1)P (1) ⊗ L̃(1)P (1) 20 18.7 2.20 · 10−3

L̃(2) ⊗ L̃(1) 20 19.1 2.19 · 10−3

P (2)L̃(2) ⊗ P (1)L̃(1) 1 19.0 2.04 · 10−3

L̃(2)P (2) ⊗ L̃(1)P (1) 20 18.7 2.19 · 10−3

L̃(2) ⊗ L̃(2) 20 19.0 2.18 · 10−3

P (2)L̃(2) ⊗ P (2)L̃(2) 1 18.6 2.04 · 10−3

L̃(2)P (2) ⊗ L̃(2)P (2) 20 18.5 2.18 · 10−3

Table 4.3

Example 4.3: Number of iterations, CPU time in seconds, and relative error ek in computed ap-
proximate solutions Xµ,k determined by Tikhonov regularization based on the global Arnoldi process
for two noise levels and several regularization matrices.

Table 4.3 is analogous to Table 4.2. The iterations are terminated as soon as
the discrepancy principle (2.9) can be satisfied. The table shows the regularization

matrices P (i)L̃(i) ⊗ P (i)L̃(i), i = 1, 2, and P (2)L̃(2) ⊗ P (1)L̃(1) to yield the most ac-
curate approximations of X̂. Figures 4.3(c) and 4.3(d) show the restorations de-

termined for ν = 1 · 10−3 with the regularization matrices P (1)L̃(1) ⊗ P (1)L̃(1) and
P (2)L̃(2)⊗P (2)L̃(2), respectively. One cannot visually distinguish the quality of these
restorations. ✷

5. Concluding remarks. This paper presents a novel method to determine
regularization matrices for discrete ill-posed problems in several space-dimensions by
solving a matrix nearness problem. Numerical examples illustrate the effectiveness of
the regularization matrices determined in this manner. While all examples use the
discrepancy principle to determine a suitable value of the regularization parameter,
other parameter choice rules also can be applied; see, e.g., [1, 24] for discussions and
references.
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Fig. 4.3. Example 4.3: (a) Available blur- and noise-contaminated QR code image represented
by the matrix B, (b) desired image, (c) restored image for the noise level ν = 1 ·10−3 and regulariza-

tion matrix P
(1)

L̃
(1)

⊗P
(1)

L̃
(1), and (d) restored image for the same noise level and regularization

matrix P (2)L̃(2) ⊗ P (2)L̃(2).
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