
ar
X

iv
:1

70
8.

03
34

0v
2

 [
m

at
h.

N
A

]
 6

 N
ov

 2
01

7

DISTRIBUTED HIERARCHICAL SVD IN THE HIERARCHICAL
TUCKER FORMAT

LARS GRASEDYCK∗ AND CHRISTIAN LÖBBERT∗

Abstract. We consider tensors in the Hierarchical Tucker format and suppose the tensor data to be
distributed among several compute nodes. We assume the compute nodes to be in a one-to-one corre-
spondence with the nodes of the Hierarchical Tucker format such that connected nodes can communicate
with each other. An appropriate tree structure in the Hierarchical Tucker format then allows for the par-
allelization of basic arithmetic operations between tensors with a parallel runtime which grows like log(d),
where d is the tensor dimension. We introduce parallel algorithms for several tensor operations, some of
which can be applied to solve linear equations AX = B directly in the Hierarchical Tucker format using
iterative methods like conjugate gradients or multigrid. We present weak scaling studies, which provide
evidence that the runtime of our algorithms indeed grows like log(d). Furthermore, we present numerical
experiments in which we apply our algorithms to solve a parameter-dependent diffusion equation in the
Hierarchical Tucker format by means of a multigrid algorithm.

Keywords: Hierarchical Tucker, HT, Multigrid, Parallel algorithms, SVD, Tensor arithmetic

1. Introduction. High dimensional tensors may e.g. arise in the context of
parameter-dependent problems. Consider a linear equation

A(p1, p2, . . . , pd) · ~x(p1, p2, . . . , pd) = ~b(p1, p2, . . . , pd),

where the matrix A, the right-hand side ~b, and with that also the solution ~x, depend on
a (possibly high) number of parameters. Then the solution vector ~x can be regarded as
a tensor X (i.e. a multidimensional array) of dimension d + 1, where we have one tensor
dimension for each of the d parameters plus the vector dimension of ~x:

xi(p1, p2, . . . , pd) = X(p1, p2, . . . , pd, i).

In the same way, the right-hand side ~b and the matrix A can be regarded as (d + 1)-
dimensional tensors B and A, where the two vector indices i, j of the matrix A are combined
to one index (i, j):

Aij(p1, p2, . . . , pd) = A(p1, p2, . . . , pd, (i, j)). (1.1)

If low-rank representations/approximations of the tensorsA and B are available and if basic
arithmetic operations can directly be performed in the underlying low-rank format, then
an approximate solution X of the tensor equation AX = B can be obtained by applying
some iterative method directly in the low-rank format. The solution tensor X will then
contain all solutions ~x(p1, p2, . . . , pd) for any parameter combination and the solutions
for single parameter combinations can easily be extracted from X . Furthermore several
postprocessing operations like computing the mean over (all) parameter combinations or
computing expected values with respect to a probability distribution of the parameters can
directly be carried out for the solution X in the low-rank format.

In this article we present parallel algorithms for basic arithmetic operations on tensors,
where we choose the Hierarchical Tucker format as low-rank format for tensors. The Hier-
archical Tucker format is briefly introduced in Section 2. For a more detailed description
of low-rank tensor approximation techniques we refer to the literature survey [7]. For our

∗Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen,
Germany. Email: {lgr,loebbert}@igpm.rwth-aachen.de. The authors gratefully acknowledge support by
the DFG priority programme 1648 (SPPEXA) under grant GR-3179/4-2.

1

http://arxiv.org/abs/1708.03340v2

algorithms the tensors may be stored distributed over several compute nodes. As a con-
sequence the algorithms can also be used for postprocessing operations on tensors which
stem from a parallel sampling method on distinct compute nodes, as e.g. described in [8].

In Section 3 we give an overview of our parallel algorithms for the Hierarchical Tucker
format. The Hierarchical Tucker format is based on a binary tree (cf. Section 2, Fig. 2.1).
For this article we assume the data of each tree node to be stored on its own compute node.
Then our algorithms typically require communication between compute nodes which are
neighbors with respect to the binary tree. Assuming the number of dimensions d to be a
power of two, d = 2p, p ∈ N, and choosing the tree Td such that the number of tree levels is
minimized, our algorithms can run in parallel on all compute nodes of the same tree level.
In Section 3 we refer to this as level-wise parallelization. Since we have p+1 = log2(d) + 1
tree levels, we expect the parallel runtime of our algorithms to grow like log(d).

In Section 4 we present runtime tests which provide evidence that the parallel runtime
of our algorithms indeed grows like log(d) for arithmetic operations between tensors of
dimension d.

In Section 5 we apply our algorithms to solve a parameter-dependent toy problem
in the Hierarchical Tucker format by means of iterative methods. We chose a diffusion
equation with piecewise constant diffusion coefficients which are controlled by 9 parameters.
Applying a Finite Element discretization we obtain a linear system, the matrix of which
depends on the 9 parameters. Due to its affine structure with respect to the parameters,
the system matrix can directly be represented as linear operator in the Hierarchical Tucker
format, i.e. we can use iterative methods to solve the linear equation, where all arithmetic
operations are carried out between tensors in the Hierarchical Tucker format. We illustrate
this for a multigrid method containing a Richardson method as smoother. On the coarsest
grid level we use a CG method to solve the defect equation. This numerical experiment
shows less the benefit of the parallelization (which is demonstrated in Section 4) but rather
confirms that our algorithms can in principle be used together with iterative methods.

2. Distributed tensors in the Hierarchical Tucker format. We consider real-
valued tensors A ∈ R

I for some product index set I = I1 × · · · × Id, where the Iµ,
µ = 1, . . . , d, are index sets of size nµ ∈ N, e.g. Iµ = {1, . . . , nµ}. The number d ∈ N is
referred to as dimension of the tensor. A real-valued tensor is thus a mapping A : I → R

from a product index set I to the set R of real numbers.
Assuming the index sets Iµ to be all of the same size n := nµ, µ = 1, . . . , d, a tensor

A ∈ R
I consists of nd entries and may be regarded as a vector in R

nd ∼= R
I . To emphasize

the tensor structure, we prefer the notation A ∈ R
I , I = I1× · · ·×Id, instead of A ∈ R

nd

.
Even for moderate numbers n and d the exponential growth of the number nd of tensor

entries makes it impossible to store the tensor entry-by-entry, not to mention the costs for
arithmetic operations. This curse of dimensionality led to a variety of different tensor
formats which make use of low rank structures in the tensors.

In this article the Hierarchical Tucker format [7, 5, 11] is used, which is based on
a hierarchy of the tensor dimensions {1, . . . , d}, as depicted in Fig 2.1 for d = 8. The
dimension tree of Fig. 2.1 is denoted by T8, since d = 8. Of course one could think of many
different ways how to split a node {µ, . . . , ν} of the tree Td into its two sons. However we
will always assume a balanced decomposition where {µ, . . . , ν} is subdivided into the two
sons

{
µ , . . . ,

⌊
µ+ ν − 1

2

⌋}
and

{⌊
µ+ ν − 1

2

⌋
+ 1 , . . . , ν

}
. (2.1)

This balanced tree minimizes the number of tree levels: depth(Td) = ⌈log2(d)⌉, whereas a
2

{1, 2, 3, 4, 5, 6, 7, 8}

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

{5, 6, 7, 8}

{5, 6}

{5} {6}

{7, 8}

{7} {8}

Fig. 2.1: Balanced dimension tree for dimension d = 8.

subdivision of {µ, . . . , ν} into {µ} and {µ + 1, . . . , ν} would result in depth(Td) = d − 1.
Since our algorithms will allow for level-wise parallelization, the balanced tree appears to
be the best choice here.

For simplicity we assume the dimension d to be a power of two: d = 2p for some p ∈ N,
i.e. the leaves {µ}, µ = 1, . . . , d, are all on the highest tree level and we always have 2ℓ

tree nodes on level ℓ, where level 0 is the root and level p is the highest level.

2.1. The Hierarchical Tucker format. Consider a tensor A ∈ R
I for a product

index set I of dimension d, as above. Then for a subset t ⊂ {1, . . . , d} let [t] = {1, . . . , d}\ t
denote the complement of t and we define the product index sets It and I[t] by

It = ×
µ∈t
Iµ and I[t] = ×

µ∈[t]
Iµ.

Definition 2.1 (Matricization). The matricization Mt(A) ∈ R
It×I[t] of the tensor

A ∈ R
I with respect to a subset t ⊂ {1, . . . , d} is defined via

Mt(A)(it , i[t]) = A(i1,...,id) for (i1, . . . , id) ∈ I = I1 × · · · × Id,
where we used the short notation is = (iµ)µ∈s ∈ Is for subsets s ⊂ {1, . . . , d}. For a tensor
A ∈ R

I the Hierarchical Tucker format is based on matricizations of A with respect to the
subsets t ⊂ {1, . . . , d} of some underlying dimension tree Td.

For each node t ∈ Td of the tree let Ut be a matrix, the columns of which span the
same vector space as the columns of the matricizationMt(A):

range(Ut) = range(Mt(A)).

Such a matrix will be called frame from now on.
If rank(Mt(A)) = kt, one can find a frame Ut with kt columns, i.e. Ut ∈ R

It×kt . For
the root D := {1, . . . , d} of Td the matricizationMD(A) ∈ R

I×1 is just the rearrangement
of the tensor A in one long column and one can choose UD =MD(A), i.e. the frame UD

becomes as hard to handle as the tensor A itself.
In the Hierarchical Tucker format the frames Ut are only stored for the leaves t = {µ}

of the tree, for which the U{µ} are of size n{µ} × k{µ}, µ = 1, . . . , d. For a non-leaf node
t the row index set It of Ut could already be too large, which is why we do not store Ut

explicitly for non-leaf nodes.
Each non-leaf node t has two sons s1 and s2 fulfilling t = s1∪̇s2, and one can find

coefficients (Bt)i,j,ℓ, such that

(Ut)−,i =

ks1∑

j=1

ks2∑

ℓ=1

(Bt)i,j,ℓ
(
(Us1)−,j ⊗ (Us2)−,ℓ

)
, (2.2)

3

B{1,2,3,4,5,6,7,8}

B{1,2,3,4}

B{1,2}

U{1} U{2}

B{3,4}

U{3} U{4}

B{5,6,7,8}

B{5,6}

U{5} U{6}

B{7,8}

U{7} U{8}

Fig. 2.2: Hieararchical tensor of dimension d = 8 with underlying tree Td of Fig. 2.1

where (Ut)−,i ∈ R
It denotes the i-th column of Ut.

Instead of Ut ∈ R
It×kt only the coefficients (Bt)i,j,ℓ are stored, where i ∈ {1, . . . , kt},

j ∈ {1, . . . , ks1} and ℓ ∈ {1, . . . , ks2}. This results in a tensor Bt of size kt × ks1 × ks2 for
each non-leaf node, referred to as transfer tensor. Note that we have kD = 1 for the root
(UD is one single column), i.e. BD is a kt1 × kt2 -matrix, where sons(D) = {t1, t2}.

For any index (i1, . . . , id) ∈ I we have

A(i1,...,id) =MD(A)(i1,...,id) , 1 = (UD)(i1,...,id) , 1

and the corresponding tensor entry can be evaluated by recursively using the relation (2.2).
A Hierarchical Tucker tensor (for short, H-tensor) can be depicted by the underlying

tree Td, cf. Fig 2.2. Writing n := max{nµ | µ = 1, . . . , d} and k := max{kt | t ∈ Td}, we
can estimate the number of entries stored in the Hierarchical Tucker format by

#leaves · n · k +#(inner nodes) · k3 + k2 = dnk + (d− 2)k3 + k2 = O(d). (2.3)

The numbers kt, t ∈ Td, are called Hierarchical ranks of the tensor. To be precise, one can
distinguish between the actual Hierarchical representation ranks (kt)t∈Td

and the minimal
ranks, since the kt, t ∈ Td, need not necessarily to be minimal: In the case

kt > rank(Mt(A))

we can reduce the complexity of the representation until we have kt = rank(Mt(A)). This
will, of course, always be the goal, we will even truncate tensors down to lower Hierarchical
ranks, which means to find an approximating tensor of lower Hierarchical ranks.

Since we only deal with tensors in the Hierarchical Tucker format, we will sometimes
use the short name tensor ranks or just ranks.

In our runtime tests, we will, for simplicity, choose kt = k for all t ∈ Td \ {1, . . . , d},
and therefore speak of the (Hierarchical) rank.

2.2. Distributing H-tensors. In this article we assume the tensor A ∈ R
I to be

stored in the Hieararchical Tucker format, where the underlying dimension tree Td is of
balanced type according to (2.1). Furthermore, we assume the data to be distributed among
several compute nodes, where the data of each tree node is stored on its own compute node.
For tensor dimension d this leads to 2d− 1 compute nodes. The tensor in Fig. 2.2 would
be distributed among 15 compute nodes. Communication is supposed to be possible via
the edges of the tree, i.e. each node can communicate with its sons and its father.

The distribution of the tensor data over the 2d−1 compute nodes was realized by MPI.
In our implementation we store the structure of the tree Td on each MPI process, which

4

includes the MPI ranks (i.e. the IDs of the MPI processes) for all the other nodes. In fact it
would be sufficient that each MPI process knows the MPI ranks of its sons and its father.

As mentioned in Section 1, our algorithms will typically run in parallel on MPI processes
which belong to the same tree level in Td (level-wise parallelization).

Distributed H-tensors may arrise from parallel tensor sampling [8], where a given out-
put function for solutions of a parameter dependent problem is approximated in the Hier-
archical Tucker format.

If 2d − 1 MPI processes are not available, the distribution of the tree nodes to the
available MPI processes would be an interesting issue. This question will, however, not be
discussed in this article and may be part of further investigations.

3. Parallel arithmetic for H-tensors. Given a tensor that has either been assem-
bled in parallel on distributed compute nodes or has been distributed due to its extent of
storage, one would like to run tensor computations in parallel to the highest possible extent.
In this section we demonstrate how arithmetic operations in the Hierarchical Tucker format
can be parallelized level-wise with respect to the underlying tree Td, where we assume the
tree nodes to correspond to the compute nodes (cf. Section 2.2). By using a balanced
tree Td we can thus expect the parallel computing time to grow like depth(Td) = log2(d),
assuming load balancing between the nodes.

In this section we consider the inner product 〈A,B〉 ∈ R,

〈A,B〉 =
∑

(i1,...,id)∈I

A(i1,...,id) · B(i1,...,id) , (3.1)

of two H-tensors A,B ∈ R
I , the addition A + B, and the application of an operator L

to an H-tensor A, both followed by the truncation of the result, either down to prescibed
ranks (kt)t∈Td

or with respect to prescribed accuracy ε.
Perhaps the most basic operation for an H-tensor A ∈ R

I is the evaluation of single
tensor entries for given indices (i1, . . . , id) ∈ I. As we do not store the tensor entry-by-
entry, this is as well an issue. The evaluation has briefly been addressed in Section 2.1 and
can also be parallelized level-wise.

3.1. Evaluation of tensor entries in the Hierarchical Tucker format. Assume
the tensor A ∈ R

I to be stored in the Hierarchical Tucker format, based on the dimension
tree Td. For a given index (i1, . . . , id) ∈ I the tensor entry A(i1,...,id) shall be computed.

Note that each leaf frame U{µ} ∈ R
Iµ×k{µ} only depends on the index iµ ∈ Iµ, µ = 1, . . . , d.

Thus in each leaf frame we just choose the corresponding row (U{µ})iµ,− and send it to the
father node. This can be carried out in parallel for all leaves.

Consider the node t = {µ, ν} as father of the leaves {µ} and {ν} in Td. The compute
node belonging to t then receives the rows (U{µ})iµ,− and (U{ν})iν ,− from its sons and
can thus compute the row (U{µ,ν})(iµ,iν),− of its own frame by (2.2) and send it to its
father (remember that for an inner node t the frame Ut is not stored explicitly - instead
the coefficients Bt are stored):

(Ut)(iµ,iν),q =

k{µ}∑

j=1

k{ν}∑

ℓ=1

(Bt)q,j,ℓ · (U{µ})iµ,j · (U{ν})iν ,ℓ , q = 1, . . . , kt.

In general each inner node t ∈ Td with sons(t) = {s1, s2} receives the rows (Us1)is1 ,− and
(Us2)is2 ,− from its sons and then computes the row (Ut)it,− using (2.2):

(Ut)it,q =

ks1∑

j=1

ks2∑

ℓ=1

(Bt)q,j,ℓ · (Us1)is1 ,j · (Us2)is2 ,ℓ , q = 1, . . . , kt , (3.2)

5

n×k n×k n×k n×k

k×k×k k×k×k

k

k

(a) Highest level (ℓ = 2): In each leaf node
{µ}, µ = 1, 2, 3, 4 choose the row iµ and send
it to the father node.

n×k n×k n×k n×k

= =

=A(i1,i2,i3,i4)

(b) Middle level (ℓ = 1): Multiply the received
rows of the sons along the 1st and the 2nd
tensor dimension. Send the result to the fa-
ther (root level, ℓ = 0), where the tensor entry
A(i1,i2,i3,i4) is finally computed.

Fig. 3.1: Parallel evaluation of one tensor entry for a given index (i1, i2, i3, i4) ∈ I (d = 4)
in the Hierarchical Tucker format. The operations can be parallelized level-wise (nµ = n
and kt = k for µ = 1, 2, 3, 4 and t ∈ Td).

where is = (iµ)µ∈s denotes the subindex of (i1, . . . , id) corresponding to the subset s ⊂
{1, . . . , d}. After computing the row (Ut)it,q, it is sent to the father node.

Finally the entry A(i1,...,id) is obtained on the root node D = {1, . . . , d} after the rows
Uit1 ,−

and Uit2 ,−
of the root sons t1, t2 have been received:

A(i1,...,id) = (UD)((i1,...,id),1) =

kt1∑

j=1

kt2∑

ℓ=1

(BD)j,ℓUit1 ,j
Uit2 ,ℓ

(remember: the root transfer tensor BD is only 2-dimensional).
The multiplications in (3.2) need O(ktks1ks2) operations for each inner node t ∈ Td.

Depending on the maximal rank k := max{kt | t ∈ Td}, we can therefore estimate the
complexity in each node by O(k3).

Assuming the index (i1, . . . , id) to be known on each leaf node of the tree, the process
of selecting all the rows (U{µ})iµ,−, µ = 1, . . . , d, in the leaves and sending them to the
respective father nodes works independently on each leaf and can therefore be carried out
in parallel on all leaves.

Each inner node t on level ℓ of the tree requires only the results of its sons s1 and s2,
which are on level ℓ + 1. Thus no interaction to any other node on level ℓ is required, i.e.
all nodes on level ℓ work entirely independent of each other and can act in parallel.

This demonstrates that the evaluation can be parallelized level-wise with respect to
the tree Td as illustrated in Fig. 3.1.

3.2. The inner product of two H-tensors. The the inner product 〈A,C〉 of two
H-tensors A,C ∈ R

I , I = I1 × · · · × Id, is defined by (3.1), i.e. the sizes nµ = #Iµ,
µ = 1, . . . , d, have to coincide for A and C. The tensor ranks, however, can be different
for A and C, which is why we now write (kt)t∈Td

for the Hierarchical ranks of A and

6

(k̄t)t∈Td
for the Hierarchical ranks of C. Nonetheless we use the same tree Td for A and

C and even suppose them to be distributed on the same compute nodes, i.e. the data
of A, which belongs to a certain tree node of Td is stored on the same compute node as
the corresponding data of C belonging to the same tree node. The latter assumption can,
however, be left off, which would simply lead to more communication being needed.

As before, we denote the transfer tensors of A by Bt for all non-leaf nodes t ∈ Td and
write U{µ}, µ = 1, . . . , d, for the leaf frames, or more general Ut for the frame of node
t ∈ Td (these are only stored for the leaves, cf. Section 2.1). For the tensor C we use the
notation Ft for the transfer tensors and Vt for the frames.

In order to compute the inner product 〈A,C〉 in the Hierarchical format we first define
recursively the matrices Φt ∈ R

kt×k̄t for each tree node t ∈ Td, which will coincide with
the inner product matrices (Ut)

⊤Vt, t ∈ Td. The inner product will finally be obtained by
〈A,C〉 = (UD)⊤VD = ΦD, where D = {1, . . . , d} is the root of Td.

Definition 3.1. Let A,C ∈ R
I be H-tensors, based on the same tree Td with ranks

(kt)t∈Td
and (k̄t)t∈Td

, i.e. for t ∈ Td we have Ut ∈ R
It×kt and Vt ∈ R

It×k̄t (cf. Section 2.1)
fulfilling

range(Ut) = range(Mt(A)) and range(Vt) = range(Mt(C)),

as well as transfer tensors Bt and Ft for all non-leaf nodes t ∈ Td fulfilling (2.2), which
reads

(Vt)−,i =

k̄s1∑

j=1

k̄s2∑

ℓ=1

(Ft)i,j,ℓ
(
(Vs1)−,j ⊗ (Vs2)−,ℓ

)
(3.3)

for the tensor C, where sons(t) = {s1, s2}.
The matrices Φt are then defined as Φ{µ} = (U{µ})

⊤V{µ} for the leaves, µ = 1, . . . , d,
and recursively by

(Φt)jt,j̄t =

ks1∑

js1=1

k̄s1∑

j̄s1=1

ks2∑

js2=1

k̄s2∑

j̄s2=1

(Bt)jt,js1 ,js2 (Φs1)js1 ,j̄s1 (Φs2)js2 ,j̄s2 (Ft)j̄t,j̄s1 ,j̄s2 . (3.4)

for all non-leaf nodes t ∈ Td.
Lemma 3.2. For each node t ∈ Td we have

Φt = (Ut)
⊤Vt. (3.5)

Proof. On the highest level of the tree (3.5) holds by definition: Φ{µ} = (U{µ})
⊤V{µ},

µ = 1, . . . , d. Assume (3.5) being true for level ℓ of the tree. Then for any node t ∈ Td

of the next lower level ℓ − 1 we may use that (3.5) holds true for the sons s1 and s2 of t,
which are on level ℓ. Then (3.4) yields

(Φt)jt,j̄t

=
∑

js1 ,j̄s1
js2 ,j̄s2

(Bt)jt,js1 ,js2

(∑

is1

(Us1)is1 ,js1Vis1 ,j̄s1

)(∑

is2

(Us2)is2 ,js2 (Vs2)is2 ,j̄s2

)
(Ft)j̄t,j̄s1 ,j̄s2

=
∑

is1 ,is2

∑

js1 ,js2

(Bt)jt,js1 ,js2 (Us1)is1 ,js1 (Us2)is2 ,js2

∑

j̄s1 ,j̄s2

(Ft)j̄t,j̄s1 ,j̄s2 (Vs1)is1 ,j̄s1 (Vs2)is2 ,j̄s2

=
(2.2)
(3.3)

∑

is1 ,is2

(Ut)it,jt(Vt)it,j̄t =
∑

it

(Ut)it,jt(Vt)it,j̄t = (Ut)
⊤Vt,

7

n×k n×k n×k n×k

k×k×k k×k×k

k

k

A ∈ R
I

n×k n×k n×k n×k

k×k×k k×k×k

k

k C ∈ R
I

Φ{1} Φ{2} Φ{3} Φ{4}

(a) Highest level (ℓ = 2): On each leaf
node {µ}, µ = 1, 2, 3, 4, the matrix Φ{µ} =
(U{µ})

⊤V{µ} is computed and sent to the fa-
ther node(s).

k

k

k

k

k

k

k

k

k×k×k k×k×k

k

k

k×k×k k×k×k

k

k

Φ4Φ3Φ2Φ1

Φ{1,2} Φ{3,4}

Φ{1,2,3,4} = 〈A,C〉

(b) Middle level (ℓ = 1): The matrices Φ{1,2}

and Φ{3,4} are computed and sent to the root
node(s) (ℓ = 0), where the inner product
〈A,C〉 = Φ{1,2,3,4} is finally computed.

Fig. 3.2: Parallel computation of the inner product 〈A,C〉 for two H-tensors A,C ∈ R
I

(d = 4). The operations can be parallelized level-wise.

where we used the notation is = (iµ)µ∈s for subsets s ⊂ {1, . . . , d} again. From this (3.5)
follows for all levels ℓ of Td by induction.

Using Definition 3.1 and Lemma 3.2, we can compute the inner product 〈A,C〉 for
two H-tensors A,C ∈ R

I by recursively computing the matrices Φt for each node t ∈ Td.
The inner product is then obtained on the root node D = {1, . . . , d} as 〈A,C〉 = ΦD.
The matrices Φt, t ∈ Td, are of size R

kt×k̄t and can be computed in O(k{µ}k̄{µ}#Iµ) for
each leaf node {µ}, in O(ktks1ks2 k̄s1 + ktks2 k̄s1 k̄s2 + ktk̄tk̄s1 k̄s2) for each inner node t with
sons(t) = {s1, s2} and in O(kt1kt2 k̄t1 + kt2 k̄t1 k̄t2 + k̄t1 k̄t2) for the root D = {1, . . . , d},
where sons(D) = {t1, t2}. With k := max{kt, k̄t | t ∈ Td} this yields a complexity of
O(k4), where the ordering of the multiplications in (3.4) might be relevant (in the case of
inhomogenous ranks kt, t ∈ Td).

For each leaf node, the definition Φ{µ} = (Ut)
⊤Vt, µ = 1, . . . , d, requires only data

stored on the respective leaf {µ}; for each non-leaf node t ∈ Td the definition (3.4) of Φt

requires data stored on t as well as the matrices Φs1 , Φs2 of the sons. The computation
can therefore be parallelized level-wise, as illustrated in Fig. 3.2.

8

3.3. The truncation of H-tensors based on the Hierarchical SVD [5]. The
truncation of an H-tensor down to lower Hierarchical ranks is essential for the addition
A + C of two H-tensors and for the application of some operator L to A, where the
operator L ∈ R

J×I is as well stored in the Hierarchical Tucker format. Both operations
increase the Hierarchical ranks, as it is well known for the addition of matrices and the
matrix rank from linear algebra.

In this section we briefly summarize the truncation techniques from [5] to truncate an
H-tensor A ∈ R

I down to lower Hierarchical ranks (kt)t∈Td
, either for prescribed ranks or

for prescribed accuracy ε. Moreover, we describe how these techniques can be parallelized
level-wise with respect to the underlying tree Td for the case of distributed tensors.

In general the truncation of a tensor A ∈ R
I (not necessarily anH-tensor) to prescribed

ranks (kt)t∈Td
for some tensor tree Td can be achieved like this (cf. [5]):

1. For all leaves {µ}, µ = 1, . . . , d, compute an SVD M{µ}(A) = UΣV ⊤ of the
matricization M{µ}(A) and store the left singular vectors corresponding to the
k{µ} largest singular values as frame U{µ}:

U{µ} = U |Iµ×{1,...,k{µ}} (singular values in descending order).

2. For all inner nodes t ∈ Td with sons(t) = {s1, s2} compute Ut = U |It×{1,...,kt},

where Mt(A) = UΣV ⊤ as in (1.). Instead of storing the frame Ut we store the
transfer tensor Bt ∈ R

kt×ks1×ks2 , which can be computed by

(Bt)i,j,ℓ = 〈(Ut)−,i , (Us1)−,j ⊗ (Us2)−,ℓ〉,

where Us1 and Us2 are the respective singular vectors for the sons of t.
3. For the root D = {1, . . . , d} with sons(D) = {t1, t2} compute the transfer tensor

BD by

(BD)j,ℓ = 〈MD(A) , (Ut1)−,j ⊗ (Ut2)−,ℓ〉.

In the case of large tensors, which are already given in the Hierarchical Tucker format,
computing the full matricizationsMt(A) can easliy get impractical. Even the computation
of Ut for a non-leaf node t ∈ Td could be no more feasible.

We make use of results from [5], which allow for the truncation of an H-tensor A ∈ R
I

down to smaller Hierarchical ranks, without explicitly computingMt(A) or Ut for non-leaf
nodes t ∈ Td. For now we assume the columns of the frames Ut ∈ R

It×kt to be orthonormal
for all non-root nodes t ∈ Td (if this is not the case, the tensor can be orthogonalized,
cf. Section 3.4). For all non-root nodes t ∈ Td one can find a matrix Vt ∈ R

I[t]×kt ,
[t] = {1, . . . , d} \ t, such that the matricizationMt(A) can be written as

Mt(A) = Ut(Vt)
⊤, (3.6)

since range(Ut) = range(Mt(A)). From [5] we know how to compute the matrices

B̂t := (Vt)
⊤Vt ∈ R

kt×kt for all t ∈ Td \ {D} in O(dk4), k := max{kt | t ∈ Td}, for the
case that the columns of Ut, t ∈ Td \ {D}, are orthonormal. If V ⊤

t = QtΣtW
⊤
t is a singular

value decomposition of V ⊤
t , then B̂tQt = QtΣ

2
t , i.e. we get the left singular vectors and

singular values of V ⊤
t as the eigenvectors and the square roots of the eigenvalues of B̂t.

Using (3.6) and the fact that the columns of Ut are orthonormal, we get UtQt ∈ R
It×kt as

left singular vectors of Mt(A) with the same singular values. We can therefore truncate
from rank kt down to rank rt < kt with respect to t ∈ Td \ {D} by multiplying Ut only
with the first rt columns of Qt, i.e.

Ut ← Ut · (Qt |{1,...,kt}×{1,...,rt}). (3.7)

9

From the following Lemma 3.3 (cf. [5]) we will see how the transfer tensors have to be
transformed in order to achieve (3.7) for each node t ∈ Td \ {D}. Since we will use Lemma
3.3 again in Section 3.4, we formulate it for arbitrary invertible matrices Y, Z:

Lemma 3.3 (Transfer tensor transformation). Let A ∈ R
I be an H-tensor with under-

lying tree Td and let Ut and Bt be defined as in Section 2.1, i.e.

(Ut)−,i =

ks1∑

j=1

ks2∑

ℓ=1

(Bt)i,j,ℓ(Us1)−,j ⊗ (Us2)−,ℓ

for all columns of Ut, where t ∈ Td is a non-leaf node with sons(t) = {s1, s2}.
Then for matrices X ∈ R

kt×kt , Y ∈ R
ks1×ks1 , Z ∈ R

ks2×ks2 , where Y, Z are invertible,
the transformations Ut ← UtX, Us1 ← Us1Y and Us2 ← Us2Z yield the transformed
transfer tensor

Bt,new = (X⊤, Y −1, Z−1)◦Bt, i.e. (Bt,new)i,j,k =
∑

ℓ,m,n

Xℓ,i(Y
−1)j,m(Z−1)k,n(B

t)ℓ,m,n ,

such that

(UtX)−,i =

ks1∑

j=1

ks2∑

ℓ=1

(Bt,new)i,j,ℓ(Us1Y)−,j ⊗ (Us2Z)−,ℓ.

Let us first suppose, we transform Ut ← UtQt in each non-root node t ∈ Td, where Qt

is the full orthogonal matrix of eigenvectors for t ∈ Td from above, i.e. Q−1
t = Q⊤

t . Then
the transfer tensors would transform like

Bt,new = (Q⊤
t , Q

⊤
s1
, Q⊤

s2
) ◦Bt, (3.8)

according to Lemma 3.3, where sons(t) = {s1, s2}. Truncating the tensor down to ranks
(rt)t∈Td

means leaving only the first rt columns of Qt in each non-root node t ∈ Td and
removing the remaining ones (assuming the eigenvalues/singular values to be in descending
order). This can directly be carried out in (3.8) by first truncating the matrices Qt, Qs1 ,
Qs2 and multiplying afterwards:

Bt,new =
(
(Qt |{1,...,kt}×{1,...,rt})

⊤, (Qs1 |{1,...,ks1}×{1,...,rs1}
)⊤, (Qs2 |{1,...,ks2}×{1,...,rs2}

)⊤
)
◦Bt.

(3.9)

For the two sons t1 and t2 of the root D = {1, . . . , d}, the matrices B̂t = (Vt)
⊤Vt ∈

R
kt×kt are just

B̂t1 = BD(BD)⊤ and B̂t2 = (BD)⊤BD. (3.10)

For the sons s1 and s2 of a non-root node t, the computation of B̂s1 and B̂s2 involves the

matrix B̂t as well as the transfer tensor Bt (cf. [5]):

(B̂s1)p,q =

kt∑

i2=1

ks2∑

ℓ=1

kt∑

i1=1

(Bt)i1,p,ℓ(B̂t)i1,i2(Bt)i2,q,ℓ for p, q = 1, . . . , ks1 and (3.11)

(B̂s2)p,q =

kt∑

i2=1

ks1∑

j=1

kt∑

i1=1

(Bt)i1,j,p(B̂t)i1,i2(Bt)i2,j,q for p, q = 1, . . . , ks2 . (3.12)

10

Notice that the equations from (3.10) can be written as (3.11) and (3.12) if we set B̂D =
1 ∈ R

1×1.
The computation of the matrices B̂t can thus be parallelized level-wise with respect to

the tree Td, where the computations start at the root node, which computes both matrices
from (3.10) and sends them to its sons t1 and t2. Subsequently any non-root node t ∈ Td

receives the matrix B̂t from its father and, if t is not a leaf, computes the matrices B̂s1 and

B̂s2 for its sons s1 and s2 according to (3.11) and (3.12).

Once the matrices B̂t are computed for all non-root nodes t ∈ Td, the truncation can be
started on the highest level of Td. Again, all nodes of one level work entirely independent
of each other:

1. For all leaves {µ}, µ = 1, . . . , d: Compute the eigenvectors Q{µ} of B̂{µ} together
with the corresponding eigenvalues. Overwrite the frames U{µ} with the truncated

singular vectors: U{µ} ← U{µ}

(
Q{µ} |{1,...,k{µ}}×{1,...,r{µ}}

)
. Send the truncated

eigenvector matrix Q{µ} |{1,...,k{µ}}×{1,...,r{µ}} to the father.
2. For all inner nodes t ∈ Td with sons(t) = {s1, s2} receive the truncated matri-

ces Qs1 |{1,...,ks1}×{1,...,rs1}
and Qs2 |{1,...,ks2}×{1,...,rs2}

from the sons s1 and s2,
compute Qt, truncate it to Qt |{1,...,kt}×{1,...,rt}, send the truncated matrix to the
father, and update the transfer tensor Bt according to (3.9).

3. For the rootD = {1, . . . , d}: Receive the truncated matricesQt1 |{1,...,kt1}×{1,...,rt1}

and Qt2 |{1,...,kt2}×{1,...,rt2}
from the sons t1, t2 of D and transform BD like

BD ← Q⊤
t1
BDQt2 .

This shows that the truncation of H-tensors down to smaller ranks can be parallelized
level-wise.

Note that we assumed the columns of Ut to be orthonormal for all non-root nodes
t ∈ Td in order to get the matrices B̂t for each non-root node t by (3.10), (3.11) and (3.12)
(cf. [5]). Furthermore we can only take UtQt as left singular vectors of Mt(A) if the
columns of Ut are orthonormal. If this is not fulfilled, the tensor must be orthogonalized
first, cf. Section 3.4.

Further notice that after a truncation the columns of Ut, t ∈ Td \ {D}, will probably
no longer be orthonormal (one can easily construct counterexamples where Bt,new from
(3.9) does not fulfill the respective condition, i.e. the columns of M2,3(Bt,new) are not
orthonormal). This, however, does not affect the truncation algorithm which first computes

the matrices B̂t and the corresponding eigenvectors Qt for all non-root nodes t ∈ Td and
afterwards starts truncating. Imagine the truncation to be processed from the root to
the leaves, then each non-root node t ∈ Td is first truncated, before its orthogonality gets
destroyed by the transformations induced by its sons. Since the order of the multiplications
in (3.9) does not play a role, we may also start the truncations at the leaf nodes.

3.4. The orthogonalization of H-tensors. For the truncation of an H-tensor
A ∈ R

I down to smaller Hierarchical ranks, as described in Section 3.3, the frames
Ut ∈ R

It×kt are required to have orthonormal columns for all non-root nodes t of the
underlying dimension tree Td. An H-tensor A ∈ R

I fulfilling this property, is called or-
thogonal :

Definition 3.4 (Orthogonal frames, orthogonal H-tensor). Let A ∈ R
I be an H-

tensor with underlying dimension tree Td.
A frame Ut is called orthogonal, if its columns are orthonormal.
The H-tensor A is called orthogonal, if each non-root frame Ut, t ∈ Td \ {{1, . . . , d}}

is orthogonal.

11

For the leaves {µ}, µ = 1, . . . , d, the frames U{µ} are stored explicitly, i.e. we can
directly compute a reduced QR-decomposition U{µ} = Q{µ}R{µ}, keep the orthogonal
factor Q{µ} and adjust the transfer tensor of the father according to Lemma 3.3. For
t = {µ, ν} we do

U{µ} ← Q{µ}

(
= U{µ}R

−1
{µ}

)
and U{ν} ← Q{ν}

(
= U{ν}R

−1
{ν}

)

and update

Bt ← (I, R{µ}, R{ν}) ◦Bt,

where I ∈ R
kt×kt is the unit matrix.

Now consider an inner node t ∈ Td, where the frames Us1 and Us2 of the sons s1, s2
have already been orthogonalized. Then Ut being orthogonal is equivalent to

ks1∑

j=1

ks2∑

ℓ=1

(Bt)i,j,ℓ(Bt)i′,j,ℓ = δi,i′ with the Kronecker delta δi,i′ ,

i.e. the orthogonality of the matrix M{2,3}(Bt) (cf. Definition 2.1). For the inner nodes
t ∈ Td we can thus compute a reduced QR-decomposition of the matrixM{2,3}(Bt), i.e.

(Bt)i,j,ℓ =

k∑

q=1

(Qt)(j,ℓ),q(Rt)q,i , where k = min{kt , ks1 · ks2}, (3.13)

and then update the transfer tensor Bf of the father according to Lemma 3.3.
Altogether we have the following algorithm for the orthogonalization of an H-tensor

A ∈ R
I :
1. For all leaves {µ}, µ = 1, . . . , d: Compute a reduced QR-decomposition U{µ} =

Q{µ}R{µ} and overwrite U{µ} ← Q{µ}. Send the right factor R{µ} to the father.
2. For all inner nodes t ∈ Td with sons(t) = {s1, s2} receive the factors Rs1 and

Rs2 from the sons and update the transfer tensor: Bt ← (I, Rs1 , Rs2) ◦ Bt.
Then compute a reduced QR-decomposition of M{2,3}(Bt) like (3.13) and store
(Bt)q,j,ℓ ← (Qt)(j,ℓ),q, with the indices named as in (3.13). The factor Rt is sent
to the father.

3. For the root D = {1, . . . , d}: Receive the factors Rt1 , Rt2 of the sons t1, t2 and
update the transfer tensor BD ← Rt1BDR⊤

t2
.

During the algorithm each non-leaf node t ∈ Td requires the right factors Rs1 and Rs2 of
its sons, but works independently of all other nodes on its level. Therefore the orthogo-
nalization of an H-tensor can be parallelized level-wise with respect to the underlying tree
Td.

Depending on the maximal rank k := max{kt | t ∈ Td}, the complexity on each
node can be estimated by O(k4), since the complexity of the QR decomposition of
M{2,3}(Bt) can be estimated by O(k2t ks1ks2) and the complexity of the multiplication
Bt ← (I, Rs1 , Rs2) ◦ Bt can be estimated by O(ktk2s1ks2 + ktks1k

2
s2
). However, in our

runtime tests the complexity seems to behave more like O(k3), which might be due to
optimizations in the LAPACK routines which we are using.

3.5. The addition of two H-tensors. For the sum A+C of two H-tensors A,C ∈
R

I , based on the same dimension tree Td,

(A+ C)(i1,...,id) = A(i1,...,id) + C(i1,...,id) for (i1, . . . , id) ∈ I ,

12

we assume A and C to be distributed among the same compute nodes, i.e. the data
of A, which belongs to a certain node of the underlying tree Td, is stored on the same
compute node as the corresponding data of C. Due to this assumption we do not need
any communication for the assembling of the tensor A + C in the Hierarchical format.
Otherwise the respective nodes would have to communicate. The assembling of A+ C by
itself (without subsequent truncation) does not even require any arithmetic operations, as
the following Lemma 3.5 illustrates, a proof of which can e.g. be found in [11].

Lemma 3.5 (The sum of two H-tensors). Let A ∈ R
I and C ∈ R

I be two H-tensors,
based on the same dimension tree Td. For A we use the previous notation Bt for the
transfer tensors and Ut for the frames. The respective objects of C are denoted by Ft and
Vt. Furthermore we write (kt)t∈Td

for the Hierarchical ranks of A and (k̄t)t∈Td
for those

of C. For a non-leaf node t we write sons(t) = {s1, s2}.
Then the sum A + C can again be represented in the Hierarchical Tucker format

with transfer tensors Ht ∈ R
(kt+k̄t)×(ks1+k̄s1)×(ks2+k̄s2) for all inner nodes t ∈ Td,

HD ∈ R
(kt1+k̄t1)×(kt2+k̄t2) for the root D = {1, . . . , d}, where sons(D) = {t1, t2}, and

leaf frames W{µ} ∈ R
I{µ}×(k{µ}+k̄{µ}), µ = 1, . . . , d, defined as follows:

(W{µ})−,j =

{
(U{µ})−,j , 1 ≤ j ≤ k{µ}

(V{µ})−,(j−k{µ}) , k{µ} + 1 ≤ j ≤ k{µ} + k̄{µ}
for µ = 1, . . . , d, (3.14)

(Ht)i,j,ℓ =

(Bt)i,j,ℓ ,

1 ≤ i ≤ kt ,
1 ≤ j ≤ ks1 ,
1 ≤ ℓ ≤ ks2

(Ft)i−kt,j−ks1 ,ℓ−ks2
,

kt + 1 ≤ i ≤ kt + k̄t ,
ks1 + 1 ≤ j ≤ ks1 + k̄s1 ,
ks2 + 1 ≤ ℓ ≤ ks2 + k̄s2

0 , otherwise

t ∈ Td inner node,

(HD)j,ℓ =

(BD)j,ℓ , 1 ≤ j ≤ kt1 and 1 ≤ ℓ ≤ kt2
(FD)j−kt1 ,ℓ−kt2

, kt1 + 1 ≤ j ≤ kt1 + k̄t1 and kt2 + 1 ≤ ℓ ≤ kt2 + k̄t2
0 , otherwise.

According to Lemma 3.5 the sum A+C is built by just putting both H-tensors A and
C together (cf. Fig. 3.3). This process can be run in parallel on each node of the tree and
does not need any communication, under the above assumption. In the end, since we do
not have to compute anything for the addition, we can of course let the tensors A and C
be stored, as they are, and just modify the evaluation routine to evaluate A+C for a given
index (i1, . . . , id) instead of A or C.

However, if a large number of additions is needed (eg. for some iterative method), we
would like to truncate the sum back to lower ranks (cf. Section 3.3), to save storage. This
can be done either with respect to prescribed ranks (kt)t∈Td

or for prescribed accuracy ε
of the truncated tensor.

3.6. The application of an operator to an H-tensor. Let I = I1 × · · · × Id and
J = J1 × · · · × Jd be two product index sets of dimension d ∈ N and consider a tensor
A ∈ R

I as well as a matrix L ∈ R
J×I . The matrix L can as well be seen as a tensor of

dimension d by ordering the dimensions like

L ∈ R
(J1×I1)×···×(Jd×Id) , i.e. L(j1,i1),...,(jd,id) instead of L(j1,...,jd),(i1,...,id) , (3.15)

and regarding each of the indices (jµ, iµ), µ = 1, . . . , d, as one index. We assume both
tensors L and A to be represented in the Hierarchical Tucker format and call them H-

13

n×k n×k n×k n×k

k×k×k k×k×k

k

k

A ∈ R
I

n×k n×k n×k n×k

k×k×k k×k×k

k

k

C ∈ R
I

+

n×2k n×2k n×2k n×2k

2k×2k×2k 2k×2k×2k

2k

2k

=

Fig. 3.3: The sum of two H-tensors A,C ∈ R
I is assembled by merging A and C together,

cf. Lemma 3.5. The white spaces in the transfer tensors represent zero blocks. The sum
can be assembled in parallel on each node of the tree.

operator and H-tensor. Then the tensor C := LA ∈ R
J , i.e.

C(j1,...,jd) =
∑

(i1,...,id)

L(j1,i1),...,(jd,id)A(i1,...,id) , (3.16)

can be computed directly in the Hierarchical Tucker format. The following Lemma 3.6
describes the representation of the H-tensor C := LA. A proof can be found in [11].

Lemma 3.6 (The application of an H-operator to an H-tensor). Let I = I1× · · · × Id
and J = J1 × · · · × Jd be two product index sets of dimension d and let A ∈ R

I be an
H-tensor and L ∈ R

J×I an H-operator. Regarding L as well as tensor of dimension d, cf.
(3.15), we suppose A and L to be both represented in the Hierarchical Tucker format with
the same underlying tree Td. For A we use the previous notation Bt for the transfer tensors
and Ut for the frames. The respective objects of L are denoted by Ht and Wt. Furthermore
we write (kt)t∈Td

for the Hierarchical ranks of of A and (k̄t)t∈Td
for those of L. For a

non-leaf node t we write sons(t) = {s1, s2}.
Then the tensor C := LA ∈ R

J can again be represented in the Hierarchical Tucker
format with transfer tensors Ft ∈ R

ktk̄t×ks1 k̄s1×ks2 k̄s2 for all non-leaf nodes t ∈ Td (kD =

k̄D = 1 for the root D), and leaf frames V{µ} ∈ R
Jµ×k{µ}k̄{µ} , µ = 1, . . . , d, defined as

14

follows:

Ft = Ht ⊗Bt , i.e. (Ft)(p,i),(q,j),(r,ℓ) = (Ht)p,q,r(Bt)i,j,ℓ

(i = 1, . . . , kt, j = 1, . . . , ks1 , ℓ = 1, . . . , ks2 ,

p = 1, . . . , k̄t, q = 1, . . . , k̄s1 , r = 1, . . . , k̄s2) and

(V{µ})jµ,(r,ℓ) =
∑

iµ∈Iµ

(W{µ})(jµ,iµ),r · (U{µ})iµ,ℓ (3.17)

(ℓ = 1, . . . , k{µ}, r = 1, . . . , k̄{µ}).

From Lemma 3.6 it follows that the product LA of an H-operator L and an H-tensor
A can be computed in parallel on each node t ∈ Td without any communication needed,
assuming all data of A and L belonging to one tree node t ∈ Td to be stored on the same
compute node.

Since the Hierarchical ranks of C := LA are the products ktk̄t of the respective ranks
kt and k̄t of A and L, one would most likely want to truncate the tensor C down to given
ranks (rt)t∈Td

or with respect to some prescribed accuracy ε.
Computing the product Ft = Ht ⊗ Bt (cf. Lemma 3.6) needs O(ktk̄tks1 k̄s1ks2 k̄s2)

operations, i.e. the complexity can be estimated by O(k6), k := max{kt, k̄t | t ∈ Td}, if the
ranks of the H-tensor A and the H-operator L are comparable in size.

4. Runtime tests. In this section we present some runtime tests. On the one hand we
analyze the parallel runtime of our algorithms for varying tensor dimension d. Here we leave
the size n of each tensor dimension as well as the rank k (kt = k for all t ∈ Td \ {1, . . . , d})
unchanged. In this case we expect the parallel runtime to grow like O(log(d)) for the
evaluation of tensor entries, the inner product of two H-tensors, the orthogonalization and
the truncation down to lower rank of an H-tensor.

For the application of an H-operator to an H-tensor we would even expet the runtime
to be independent of d, since the algorithms can run in parallel on each node (cf. Section 3).

Since the addition of two H-tensors (without subsequent truncation) does not involve
any floating point operation at all (cf. Section 3.5), we do not cover it here. The addition
of two H-tensors together with the truncation behaves like the truncation itself.

Furthermore we analyze the dependence of the parallel runtime on the tensor rank
k. For that we leave d and n unchanged while we vary the rank k. Here we expect
an O(k4) dependence for the inner product (cf. Section 3.2), for the truncation of an
orthogonalized H-tensor (cf. Section 3.3), as well as for the orthogonalization of an H-
tensor (cf. Section 3.4). For the evaluation of tensor entries we expect an O(k3) complexity
(cf. Section 3.1). For the application of an H-operator we expect O(k6), where also the
ranks of the H-operator are chosen to equal k on each node except for the root node (cf.
Sections 3.6).

4.1. Parallel runtime for varying tensor dimension d. We choose random H-
tensors where each tensor dimension is of size n = 10 000 and all ranks are of size k = 100,
i.e. we choose the transfer tensors and the leaf frames as random tensors/matrices. The
choice of n = 10 000 and k = 100 has initially been made to have the same amount of
data on each compute node (except for the root node): n · k = k3, cf. (2.3). However, as
long as we choose the rank k large enough, we observe the same behavior of the parallel
runtime. The experiments demonstrate that the parallel runtime of our algorithms scales
as expected for the evaluation of tensor entries, the inner product of two H-tensors and
for the truncation down to lower rank of an H-tensor including the orthogonalization. (see
Fig 4.1).

15

0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016
0.018
0.02

1 10 100 1000

p
a
ra
ll
el

ru
n
ti
m
e
[s
]

tensor dimension d

(a) Evaluation of one tensor entry.

20

40

60

80

100

120

140

1 10 100 1000

p
a
ra
ll
el

ru
n
ti
m
e
[s
]

tensor dimension d

(b) Computation of the inner product.

1
1.5
2

2.5
3

3.5
4

4.5
5

5.5

1 10 100 1000

p
a
ra
ll
el

ru
n
ti
m
e
[s
]

tensor dimension d

(c) Orthogonalization.

20

40

60

80

100

120

140

1 10 100 1000

p
a
ra
ll
el

ru
n
ti
m
e
[s
]

tensor dimension d

(d) Truncation of the orthogonalized H-tensor.

Fig. 4.1: Parallel runtimes for random H-tensors. All tensor dimensions are of the same
size n = 10 000 and the tensor rank on each node (except the root node) is k = 100. The
parallel runtime of the algorithms for the above operations scales like log(d).

From Fig. 4.2 we see that the parallel runtime for the application of an H-operator to
an H-tensor is indeed rather independent of the tensor dimension d.

4.2. Parallel runtime for varying tensor rank k. For varying tensor rank k most
of our algorithms reach the predicted complexity estimates (see Fig. 4.3). Only the orthog-
onalization of an H-tensor behaves more like O(k3) rather than the expected O(k4). This
might be due to optimizations in the LAPACK routines which we are using.

The ranks for the H-operator are always chosen equal to those of the H-tensor, which
the operator is applied to.

5. Application to iterative methods. Consider an H-operator A ∈ R
I×I together

with a suitable H-tensor B ∈ R
I as right-hand side, where I = I1 × · · · × Id is a product

index set of dimension d ∈ N. Then we can use the parallel algorithms for H-tensor
arithmetic (cf. Section 3) to solve AX = B, X ∈ R

I , directly in the Hierarchical Tucker
format.

In this section we apply a multigrid method to a diffusion equation (”cookie problem”,

16

0

0.5

1

1.5

2

0 20 40 60 80 100 120 140

p
a
ra
ll
el

ru
n
ti
m
e
[s
]

tensor dimension d

Fig. 4.2: The parallel runtime for the application of an H-operator to an H-tensor seems
to be independent of the tensor dimension d (n = 400, k = 20).

see Section 5.1), which depends on 9 parameters. A Finite Element discretizations leads
to a parameter-dependent linear system which in our case can directly be transferred to a
linear equation in the Hierarchical Tucker format. All arithmetic operations are therefore
carried out between tensors in the Hierarchical Tucker format. As a smoother for the
multigrid method we choose a Richardson method since it can easily be transferred to the
Hierarchical Tucker format. On the coarsest grid level we use a CG algorithm to solve
the defect equation. Each parameter will correspond to one tensor dimension. Together
with the spacial component of the problem we will thus end up with tensors of dimension
d = 10.

5.1. The cookie problem. Inspired by [12] we take the cookie problem

{
−∇(σ(x)∇u) = 1 in Ω

u = 0 on ∂Ω
(5.1)

as a test problem, where our ”cookies” are squares (instead of circles):
In the domain Ω = [0, 7]× [0, 7] we define 9 rectangles (”cookies”)

Dµ = {x ∈ Ω : ‖x− cµ‖∞ < 0.5} , µ = 1, . . . , 9,

with midpoints

c1 = (1.5, 1.5) , c2 = (3.5, 1.5) , c3 = (5.5, 1.5) ,

c4 = (1.5, 3.5) , c5 = (3.5, 3.5) , c6 = (5.5, 3.5) ,

c7 = (1.5, 5.5) , c8 = (3.5, 5.5) , c9 = (5.5, 5.5).

The diffusion coefficient σ(x), x ∈ Ω, is defined as

σ(x) =

{
1 + αµ if x ∈ Dµ , µ = 1, . . . , 9,

1 if x /∈ ⋃9
µ=1Dµ,

(5.2)

i.e. depending on 9 parameters aµ, µ = 1, . . . , 9 (cf. Fig. 5.1). A Finite Element discretiza-
tion of (5.1) with (5.2) leads to a parameter-dependent linear system

A(α1, α2, . . . , α9) · x(α1, α2, . . . , α9) = b, (5.3)

17

0.001

0.01

0.1

1

10

100

1000

10 100

p
a
ra
ll
el

ru
n
ti
m
e
[s
]

tensor rank (k)

O(k4)

(a) Dot product for n = 10 000.

0.0001

0.001

0.01

0.1

10 100

p
a
ra
ll
el

ru
n
ti
m
e
[s
]

tensor rank (k)

O(k3)

(b) Evaluation for n = 10 000.

0.01

0.1

1

10

10 100

p
a
ra
ll
el

ru
n
ti
m
e
[s
]

tensor rank (k)

O(k3)

(c) Orthogonalization for n = 10 000.

0.001

0.01

0.1

1

10

100

1000

10 100

p
a
ra
ll
el

ru
n
ti
m
e
[s
]

tensor rank (k)

O(k4)

(d) Truncation for n = 10 000.

0.0001

0.001

0.01

0.1

1

10

1 10 100

p
a
ra
ll
el

ru
n
ti
m
e
[s
]

tensor rank (k)

O(k6)

(e) Operator for n = 400.

Fig. 4.3: Parallel runtimes for tensor dimension d = 64, fixed sizes n of the tensor dimen-
sions and varying ranks k.

18

Fig. 5.1: Domain Ω = [0, 7] × [0, 7] of the cookie problem. The cookies Dµ, µ = 1, . . . , 9,
are squares of side length 1. Outside the cookies (grey area) the diffusion coefficient equals
one: σ(x) ≡ 1. On each cookie the diffusion coefficient is constant and controlled by a
parameter: σ(x) ≡ 1 + αµ, if x ∈ Dµ, µ = 1, . . . , 9.
Grid and image generated with ProMesh, www.promesh3d.com.

where the right-hand side b is the same for each parameter combination (α1, α2, . . . , α9).
Due to the affine structure of the operator in (5.1) with (5.2), the matrix in (5.3) can

directly be represented as an H-operator: Let A0 ∈ R
n×n be the stiffness matrix of a

Finite Element discretization of (5.1) with σ ≡ 1 and let Aµ ∈ R
n×n, µ = 1, . . . , 9, be the

stiffness matrices which would result from a Finite Element discretization of (5.1) on the
same Finite Element space but with σ ≡ 1Dµ

instead of σ ≡ 1, where 1Dµ
: Ω→ {0, 1} is

the indicator function of Dµ. Since the diffusion coefficient (5.2) can be decomposed as

σ ≡ 1 +
9∑

µ=1

αµ1Dµ
,

the matrix A(α1, α2, . . . , α9) can be decomposed as

A(α1, α2, . . . , α9, i) = A0(i) + α1A1(i) + α2A2(i) + · · ·+ α9A9(i), i = 1, . . . , n2, (5.4)

where we combined the two matrix indices to one index i (Rn×n ∼= R
n2

). Assuming
discretizations

aµ,iµ , iµ = 1, . . . , nµ, µ = 1, . . . , d,

for the parameters, we can represent (5.4) in the Hierarchical Tucker format, where we take
the underlying tree T10 as the balanced tree described in Secion 2. We choose the first 9
leaf frames U{µ} ∈ R

nµ×10, µ = 1, . . . , 9, which correspond to the 9 parameter directions,
as

(U{µ})iµ,j =

{
1 if j 6= µ+ 1

αµ,iµ if j = µ+ 1
, iµ = 1, . . . nµ , j = 1, . . . , 10 , µ = 1, . . . , 9. (5.5)

The last leaf frame U{10} ∈ R
n2×10 just consists of the matrices A0, . . . , A9 (written as

columns):

(U10)i10,j = Aj−1(i10) , i10 = 1, . . . , n2 , j = 1, . . . , 10.

19

The transfer tensors are diagonal tensors with ones on the diagonal.
One easily verifies that the above construction yields a representation of the parameter

dependent matrix A as H-operator. This representation is, however, not minimal: Each of
the leaf frames in (5.5) contains nine times the column (1, . . . , 1)⊤. By only keeping this
column once per leaf frame (and adjusting the transfer tensors accordingly), we can always
achieve Hierarchical ranks of 2 for these leaf frames.

We thus get an equation AX = B in the Hierarchical Tucker format, where the H-
operator has Hierarchical ranks kt = rank(Mt(A)), t ∈ Td, of at most d = 10 and the
right-hand side B is of rank 1, since it only depends on the spacial variable and not on
the parameters. The solution tensor X then contains the solutions of (5.3) for all possi-
ble parameter combinations (α1, α2, . . . , α9) and allows for further arithmetic operations
in the Hierarchical Tensor format, as e.g. computing averages over spacial domains or
over parameters, or computing the expected value or the variance with respect to a prob-
ability distribution of the parameters, where the probability distribution has to be repre-
sented/approximated in the Hierarchical Tucker format (which is very easy for the case of
independent parameters).

5.2. The CG method in parallel H-tensor arithmetic. We use a CG algorithm
(Algorithm 1) to solve the equation AX = B of the cookie problem (cf. Section 5.1) on
the coarsest grid, which is shown in Fig. 5.1. We let each parameter aµ, µ = 1, . . . , 9, vary
between 0.5 and 1.5, using 10 equidistant grid points in [0.5, 1.5]. The full tensor X on the
coarsest grid would therefore consist of

#(inner grid points) · 109 = 36 · 109 entries,

whereas in the Hierarchical Tucker format, the number of entries can be bounded by

(#inner grid points + 9 · 10) · kmax +#(inner tree nodes) · k3max + k2max

=(36 + 9 · 10) · kmax + 8 · k3max + k2max = 126 · kmax + 8 · k3max + k2max entries,

where kmax is an upper bound for the Hierarchical ranks. For kmax = 50 these would be
about 106 entries.

In the CG algorithm (Algorithm 1) we use our parallel algorithms for arithmetic op-
erations between H-tensors (cf. Section 3). After each addition of two H-tensors and after
each application of the H-operator A to an H-tensor we truncate the result down to lower
rank, where we prescribe some accuracy ε such that the truncation error is smaller than ε.

The following Lemma 5.1 considers the simplified case, where after each CG step in
Algorithm 1 (j = 0, 1, 2, . . .) the iterate Xj is truncated, i.e. truncations in between are
neglected. For this simplified case we can reach any accuracy δ > 0 of the approximate
solution (i.e. ‖X − Xj‖ < δ for some j) if we choose the upper bound ε > 0 for the
truncation error small enough. Similar results have already been published in [13] for the
general case of convergent iterative processes in Banach spaces.

Lemma 5.1 (Convergence of the CG algorithm including truncation). Consider the
linear equation AX = B with symmetric and positive-definite A. Let C denote the operation
of performing one exact CG step according to the linear system AX = B, i.e. when Xj

is the result of j exact CG steps, Xj+1 = CXj would be the next iterate in the exact CG
method. Furthermore let Tε be the truncation down to lower ranks with error smaller than
ε.

For arbitrary δ > 0 and arbitrary starting tensor X0 we can achieve

‖X − (TεC)jX0‖A < δ

20

Data: operator A, right-hand side B in the Hierarchical Tucker format
Result: Approximate solution X in the Hierarchical Tucker format
X0 = B;
R0 = B −AX0;
R0 = T (R0);
D0 = R0;
j = 0;

while
√
〈Rj , Rj〉 > EPS and j < MAX CG STEPS do

Z = ADj ;
Z = T (Z);
αj = 〈Rj , Rj〉/〈Dj , Z〉;
Xj+1 = Xj + αjDj;
Xj+1 = T (Xj+1);
Rj+1 = Rj − αjZ;
Rj+1 = T (Rj+1);
βj = 〈Rj+1, Rj+1〉/〈Rj , Rj〉;
Dj+1 = βjDj +Rj+1;
Dj+1 = T (Dj+1);
j = j + 1;

end
X = Xj ;

Algorithm 1: CG algorithm to solve AX = B in the Hierarchical Tucker format in-
cluding truncation. The truncation T can be carried out either down to fixed rank k
(T = Tk) or with prescribed accuracy ε (T = Tε). The stopping criterion depends on a
lower bound EPS for the norm of the residual and on an upper bound MAX CG STEPS
for the number of CG steps.

for some j ∈ N, if we choose

ε < δ/C

with C :=
√
‖A‖(cond(A)+1), where ‖A‖ = λmax is the spectral norm (largest eigenvalue)

of A, cond(A) = λmax/λmin is the condition number (ratio between largest and smallest
eigenvalue) of A and ‖ · ‖A is the A-norm, defined as ‖X‖A :=

√
〈X,AX〉.

Proof. For the exact CG algorithm one can show (cf. [14])

‖X − CjX0‖A ≤ γ‖X − Cj−1X0‖A (5.6)

with γ = (cond(A) − 1)/(cond(A) + 1).
We now split the error of one perturbed CG step into the error of one exact CG step

and one truncation error:

‖X − (TεC)X0‖A ≤ ‖X − CX0‖A + ‖CX0 − TεCX0‖A.

The first error can be estimated by (5.6). The second error is first transformed to the stan-
dard norm ‖ · ‖ (Euclidian norm/Frobenius norm), which we use to measure the truncation
error, since it can then be bounded by ε:

‖X − (TεC)X0‖A ≤ γ‖X −X0‖A +
√
λmax‖CX0 − TεCX0‖

≤ γ‖X −X0‖A + ε
√
λmax.

21

Similarly (by induction) we can get a bound for the error of j perturbed CG steps:

‖X − (TεC)jX0‖A ≤ γ‖X − (TεC)j−1X0‖A + ε
√
λmax

≤ γ(γ‖X − (TεC)j−2X0‖A + ε
√
λmax) + ε

√
λmax

= γ2‖X − (TεC)j−2X0‖A + ε
√
λmax(γ + 1)

≤ · · · ≤ γj‖X −X0‖A + ε
√
λmax

(
j−1∑

ℓ=0

γℓ

)
.

The sum can be bounded by (1− γ)−1, thus we have

‖X − (TεC)jX0‖A ≤ γj‖X −X0‖A + ε
√
λmax(1− γ)−1.

Since γj → 0 for j → ∞, we can find j ∈ N such that γj‖X − X0‖A < δ/2. To achieve
‖X − (TεC)jX0‖A < δ we thus have to choose ε in such a way that

ε
√
λmax(1 − γ)−1 <

δ

2
⇔ ε <

δ

C
with C =

√
λmax(cond(A) + 1),

which completes the proof.
Remark 5.2.
1. Lemma 5.1 only states the convergence of the perturbed CG algorithm, i.e. that in

principal we can reach arbitrary accuracy (absolute error of the computed solution)
if the absolute truncation error is bounded by a sufficiently small ε. Lemma 5.1
does not reveal the convergence rate of such an algorithm. The estimate

‖X − CjX0‖A ≤
(
cond(A)− 1

cond(A) + 1

)j

‖X −X0‖A, (5.7)

which we used in the proof, is quite pessimistic. This bound can already be achieved
for the method of steepest descent, where the residual Rj+1 of one step is typically
only orthogonal to the search direction Dj of the last step (cf. Algorithm 1 for
notation). In the CG method, however, this residual is orthogonal to the search
directions of all previous steps, which yields the (actually much better) estimate

‖X − CjX0‖A ≤ 2

(√
cond(A)− 1√
cond(A) + 1

)j

‖X −X0‖A. (5.8)

In the proof of Lemma 5.1 we used (5.7) instead of (5.8), since we were interested
in the decay of the error for one single CG step (i.e. j = 1), where (5.8) can not
be used for.
Moreover, in practice, the Euclidian norm of the error instead of the A-norm will
be of interest, which would give us an additional factor 1/

√
λmin =

√
‖A−1‖ for

the constant C.
Much more precise analysis of perturbed CG methods can be found in [14] or [9],
where the perturbed CG algorithm is reinterpreted as an exact CG algorithm for a
perturbed operator.

2. Lemma 5.1 assumes only one truncation of the iterate Xj in each CG step. In
practice we truncate after each addition of two H-tensors as well as after each
application of A to an H-tensor (cf. Algorithm 1). This includes also truncations

22

of the residuals Rj and the search directions Dj, which themselves are afterwards
involved in a quotient of scalar products. A precise analysis would therefore have
to deal with the respective propagation of the errors inside the algorithm, cf. [9],
[14].

3. For our example (H-operator A for the coarsest grid of the cookie problem with
10 equidistant points in [0.5, 1.5] per parameter) we can estimate λmax ≈ 11 and
λmin ≈ 0.4, which would yield C ≈ 95 in Lemma 5.1, and C ≈ 150 if we measure
the error in the Euclidian norm instead of the A-norm.

In our numerical experiments we used ε = 10−4 as upper bound for the absolute error
of each truncation. Since the Hierarchical ranks can temporarily get rather large during
the CG algorithm (cf. [1]), we prescribed additional bounds for the maximal rank, by
which we implicitly choose a larger ε. In Fig. 5.2 we plotted the relative residual norm
‖AXj − B‖/‖B‖ within 25 CG steps with different bounds for the maximal rank. One
observes the principle of Lemma 5.1: the higher the rank bound (i.e. the smaller we choose
ε), the smaller the relative resiudal norm, which can be reached in the CG algorithm.

The plotted residual norms are not the norms of the ”residuals” Rj computed in
the perturbed CG algorithm, since these can deviate from the exact residual AXj − B
(cf. [9]). We therefore computed the residual norm after each CG step, i.e. computed√
〈AXj −B,AXj −B〉 in H-tensor arithmetic.

When applying our CG algorithms with fixed rank bounds on finer grids, we need more
iterations until we achieve the maximal atainable accuracy with respect to the rank bound,
as one would expect it due to the growing condition number of the operator A. In order
to overcome this, one could use preconditioning. We instead apply a multigrid algorithm
with respect to the spacial component of the problem (semi-coarsening) to solve AX = B
on finer grids, which is described in Section 5.3.

Multigrid methods in the Hierarchical Tucker format have already been studied in [1],
where the number of iterations needed to solve the Poisson equation up to some relative
residual turned out to be independent of the tensor dimension d (i.e. the number of
parameters). This would make them usable for problems depending on a huge number of
parameters.

5.3. A multigrid method in parallel H-tensor arithmetic. Multigrid methods
have already been applied for low-rank matrices and H-matrices in [6] and [4] in order
to solve large scale Sylvester and Riccati equations. In [1] multigrid methods have been
applied in H-tensor arithmetic to solve equations on high dimensional domains.

In order to compute a solution of higher resolution, we refine the coarse grid of Fig. 5.1
three times. With every refinement step we add the midpoints of all edges as new grid
points. By this we get the grid hierarchy of Fig. 5.3, where the finest grid consist of 3025
inner grid points.

One multigrid step (Algorithm 3) starts on the finest grid and then recursively proceeds
to the next coarser grid to solve the system AE = D, where D is the restriction of the
residual B −AX to the next coarser grid. The solution E is then prolongated back to the
finer grid and added to the current iterate to get the next iterate. For the multigrid method
to work well we need to be able to compute good approximations of the error on the next
coarser grid. These can be obtained by several steps of a Richardson method (Algorithm 2),
which serves as a smoother for the error. On the coarsest level we use the CG algorithm
(cf. Section 5.2) to solve the system. An introduction to multigrid algorithms together
with convergence analysis can e.g. be found in [10].

For linear methods (as the Richardson method and the multigrid method), one can
obtain similar results to Lemma 5.1: the best attainable accuracy of the solution depends

23

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0 5 10 15 20 25

max rank 20

re
la
ti
v
e
re
si
d
u
a
l

cg step

(a) Maximal rank k = 20.

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0 5 10 15 20 25

max. rank 30

re
la
ti
v
e
re
si
d
u
a
l

cg step

(b) Maximal rank k = 30.

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0 5 10 15 20 25

max. rank 40

re
la
ti
v
e
re
si
d
u
a
l

cg step

(c) Maximal rank k = 40.

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0 5 10 15 20 25

max. rank 50

re
la
ti
v
e
re
si
d
u
a
l

cg step

(d) Maximal rank k = 50.

Fig. 5.2: CG algorithm using H-arithmetic for the cookie problem on the coarsest grid,
which is depicted in Fig. 5.1. For each of the nine parameters we use 10 equidistant grid
points in [12 ,

3
2]. After each addition of H-tensors and after each application of the H-

operator A to an H-tensor we truncate the resulting tensor down to lower ranks with an
absolute error less than 10−4. In addition we prescribe a maximal rank k, since the involved
computations have complexity up to O(k4).

on the accuracy of the truncations (see also [13]).
We performed 10 multigrid steps for the equation AX = B on the finest grid (3025

inner grid points, cf. Fig. 5.3) with different upper bounds for the Hierarchical ranks. In
Fig. 5.4 we show the relative residual norms for upper rank bounds of 30 and 50. One
observes the linear convergence of the multigrid method down to some lower threshold of
the relative residual norm. This threshold decreases with increasing rank bounds, which is
shown in Fig. 5.5.

6. Conclusions. In this article we presented parallel algorithms which we developed
for basic arithmetic operations between distributed tensors in the Hierarchical Tucker for-
mat. Throughout the article we assumed the tensor data to be distributed according to the
underlying tree of the Hierarchical Tucker format: The data for each tree node is stored
on its own compute node. Since our algorithms typically need communication between

24

Fig. 5.3: Grid hierarchy for the multigrid method with 36 inner grid points on the coarsest
grid and 3025 inner grid points on the finest grid.
Grid and image generated with ProMesh, www.promesh3d.com.

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0 1 2 3 4 5 6 7 8 9

max. rank 30

re
la
ti
v
e
re
si
d
u
a
l

multigrid step

(a) Maximal rank k = 30.

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

0 1 2 3 4 5 6 7 8 9

max. rank 50

re
la
ti
v
e
re
si
d
u
a
l

multigrid step

(b) Maximal rank k = 50.

Fig. 5.4: Multigrid method using H-arithmetic for the cookie problem on the grid hierarchy
from Fig. 5.3, once with maximal rank k = 30 and once with maximal rank k = 50. On
the coarsest grid we apply the CG solver from Section 5.2.

different tree levels, we minimized the number of tree levels by choosing a balanced tree.
For a tensor of dimension d the number of tree levels grows like log(d), i.e. a level-wise
parallelization of our algorithms yields a parallel runtime, which grows like log(d). We
validated the expected log(d)-growth of the parallel runtime by several runtime tests in
Section 4. The log(d)-growth of the parallel runtime makes our algorithms applicable for
high-dimensional problems which will be part of future work.

Despite the log(d)-growth of the parallel runtime, we still have a complexity of at least

25

1e-05

1e-04

1e-03

1e-02

20 30 40 50 60 70

re
la
ti
v
e
re
si
d
u
a
l

maximal rank

Fig. 5.5: Dependence of the relative residual norm on the upper rank bound in the multigrid
method. For each rank bound 20, 30, . . . , 70 we plotted the best accuracy we obtained after
10 multigrid steps.

O(k3) for each compute node (cf. Section 4), where k ∈ N is the Hierarchical rank for the
respective node. We would therefore expect a further reduction of the runtime by using
shared memory parallelization on each node (e.g. OpenMP).

In this article we used a parallelized version of the Hierarchical SVD from [5] to truncate
tensors in the Hierarchical Tucker format. Since this algorithm involves the computation
of B⊤B and BB⊤ for matrices B, it may lead to a loss of accuracy. It will be interesting
in future research to transfer the techniques from [3, 15] to the Hierarchical SVD.

One interesting application is parameter-dependent problems, which we illustrated by
a model problem in Section 5. We applied a multigrid method including our parallel
algorithms for H-arithmetic to a diffusion equation which depends on 9 parameters. Our
experiments indicate that the relative residual norm in the iterative method is bounded
from below by some barrier which depends on the accuracy of the H-tensor truncations
during the method.

For larger problems preconditioners should be applied, when using the CG method
(cf. [12]), which we left out here. Moreover it could be advantageous to apply multilevel
sampling techniques, which were introduced in [2].

Our parallel algorithms can as well be used for the postprocessing of (distributed) ten-
sors in the Hierarchical Tucker format, which might have been assembled by some other
method (e.g. a sampling method). This could be of interest in the field of uncertainty quan-
tification and could be used for parameter fitting, i.e. adapting model parameters based
on some quantity of interest of the solution, which is either known or can be estimated.

REFERENCES

[1] Jonas Ballani and Lars Grasedyck, A projection method to solve linear systems in tensor format,
Numer. Linear Algebra Appl., 20 (2013), pp. 27–43.

[2] Jonas Ballani, Daniel Kressner, and Michael D. Peters, Multilevel tensor approximation of

PDEs with random data, Stochastics and Partial Differential Equations: Analysis and Compu-
tations, 5 (2017), pp. 400–427.

[3] Simon Etter, Parallel ALS Algorithm for Solving Linear Systems in the Hierarchical Tucker Rep-

resentation, SIAM Journal on Scientific Computing, 38 (2016), pp. A2585–A2609.
[4] Lars Grasedyck, Nonlinear multigrid for the solution of large scale Riccati equations in low-rank

and H-matrix format, Numerical linear algebra with applications, 15 (2008), pp. 779–807.

26

[5] Lars Grasedyck, Hierarchical Singular Value Decomposition of Tensors, SIAM J. Matrix Anal.
Appl., 31 (2010), pp. 2029–2054.

[6] Lars Grasedyck and Wolfgang Hackbusch, A multigrid method to solve large scale Sylvester

equations, SIAM journal on matrix analysis and applications, 29 (2007), pp. 870–894.
[7] Lars Grasedyck, Daniel Kressner, and Christine Tobler, A literature survey of low-rank tensor

approximation techniques, GAMM-Mitteilungen, 36 (2013), pp. 53–78.
[8] Lars Grasedyck, Ronald Kriemann, Christian Löbbert, Arne Nägel, Gabriel Wittum, and

Konstantinos Xylouris, Parallel tensor sampling in the Hierarchical Tucker format, Comput-
ing and Visualization in Science, 17 (2015), pp. 67–78.

[9] A. Greenbaum, Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences, Linear
Algebra and its Applications, 113 (1989), pp. 7 – 63.

[10] Wolfgang Hackbusch, Multi-Grid Methods and Applications, vol. 4 of Springer series in computa-
tional mathematics, Springer, Heidelberg, 1985.

[11] , Tensor spaces and numerical tensor calculus, vol. 42 of Springer series in computational
mathematics, Springer, Heidelberg, 2012.

[12] Daniel Kressner and Christine Tobler, Low-rank tensor Krylov subspace methods for

parametrized linear systems, SIAM Journal on Matrix Analysis and Applications, 32 (2011),
pp. 1288–1316.

[13] Hermann G. Matthies and Elmar Zander, Solving stochastic systems with low-rank tensor com-

pression, Linear Algebra and its Applications, 436 (2012), pp. 3819 – 3838.
[14] G. Meurant, The Lanczos and conjugate gradient algorithms, Society for Industrial and Applied

Mathematics, 2006.
[15] E. M. Stoudenmire and Steven R. White, Real-space parallel density matrix renormalization

group, Phys. Rev. B, 87 (2013), p. 155137.

27

Data: iterate Xj

Result: new iterate Xj+1

Z = AXj ;
Z = T (Z);
Z = Z −B;
Z = T (Z);
Xj+1 = Xj − ωZ;
Xj+1 = T (Xj+1);

Algorithm 2: Xj+1 = richardson step(A, Xj, B) performs one step of the
Richardson method for AX = B in H-tensor arithmetic, including truncation. We use
this method as a smoother for the multigrid method (Algorithm 3). The truncation T
can be carried out either down to fixed rank k (T = Tk) or with prescribed accuracy ε
(T = Tε). The optimal choice for ω is ωopt = 2/(λmin + λmax), where λmin and λmax are
the minimal and the maximal eigenvalues of the operator A.

Data: iterate Xj

Result: new iterate Xj+1

if on coarsest grid then
Solve AXj+1 = B with CG (Algorithm 1);

else
5× presmoothing: Xj = richardson step(A, Xj, B) (Algorithm 2);
R = B −AXj ;
R = T (R);
D = restriction(R);
E = D;
E = multigrid step(A, E, D);
P = prolongation(E);
Xj+1 = Xj + P ;
Xj+1 = T (Xj+1);
5× postsmoothing: Xj+1 = richardson step(A, Xj+1, B) (Algorithm 2);

end
Algorithm 3: One multigrid step, Xj+1 = multigrid step(A, Xj, B), to solve
AX = B in the Hierarchical Tucker format, including truncation. The truncation T
can be carried out either down to fixed rank k (T = Tk) or with prescribed accuracy ε
(T = Tε).

28

