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Abstract

Hermitian and unitary matrices are two representatives of the class of normal matrices

whose full eigenvalue decomposition can be stably computed in quadratic computing com-

plexity. Recently, fast and reliable eigensolvers dealing with low rank perturbations of uni-

tary and Hermitian matrices were proposed. These structured eigenvalue problems appear

naturally when computing roots, via confederate linearizations, of polynomials expressed in,

e.g., the monomial or Chebyshev basis. Often, however, it is not known beforehand whether

or not a matrix can be written as the sum of an Hermitian or unitary matrix plus a low

rank perturbation.

We propose necessary and sufficient conditions characterizing the class of Hermitian or

unitary plus low rank matrices. The number of singular values deviating from 1 determines

the rank of a perturbation to bring a matrix to unitary form. A similar condition holds for

Hermitian matrices; the eigenvalues of the skew-Hermitian part differing from 0 dictate the

rank of the perturbation. We prove that these relations are linked via the Cayley transform.

Based on these conditions we are able to identify the closest Hermitian and unitary plus

low rank matrix in Frobenius and spectral norm and a practical Lanczos iteration to detect

the low rank perturbation is presented. Numerical tests prove that this straightforward

algorithm is robust with respect to noise.

1 Introduction

Normal matrices [26,32] are computationally amongst the most pleasant matrices to work with.
The fact that their eigenvectors form a full orthogonal set is the basic ingredient for developing
many stable algorithms. Even though generic normal matrices are less common in practice the
unitary and (skew-)Hermitian matrices are prominent members. Eigenvalue solvers for Hermitian
[23, 24, 35] and unitary matrices [5, 15, 30, 31] have been examined thoroughly and well-tuned
implementations are available in, e.g., eiscor [1] and LAPACK [2].

It has been noted that several linearizations of polynomials are rank one perturbations of
unitary or Hermitian matrices [9, 42], and a similar structure (with perturbations of higher
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ranks) is found in the linearizations of matrix polynomials [11, 20, 21, 36–38]. However, the
development of eigenvalue solvers for matrices deviating only by a low rank perturbation from
the unitary or Hermitian structure was much harder and solutions were proposed only recently.
Most algorithms in this class rely on QR iterates [44] preserving the desired matrix structures,
which are Hermitian, unitary, as well as the low rank structure. Retaining both these structures is
numerically challenging, hence the various approaches and algorithms. Symmetric plus low rank
solvers are encountered, for instance, when computing roots of polynomials expressed in bases
that admit a three-terms recurrence such as the Chebyshev one. More generally, perturbations of
low-rank structures arise when studying orthogonal polynomial on the real line, whereas unitary
structures can be found in studying orthogonal polynomials on the unit circle [16, 42].

Algorithms to tackle the associated eigenvalue problems were developed by Chandrasekaran
and Gu [18], Delvaux and Van Barel [22], Del Corso and Vandebril [41]. One of the fastest and
most stable versions is by Eidelman, Gemignani, and Gohberg [25]. The unitary plus low rank
eigenvalue problems received far more attention since the companion matrix, whose eigenvalues
coincide with the roots of a polynomial in the monomial basis, fits in this class. Various algorithms
differing with respect to storage-scheme, compression, explicit or implicit QR algorithms were
proposed: Bini, Eidelman, Gemignani, and Gohberg [10]; Van Barel, Vandebril, Van Dooren, and
Frederix [40]; Chandrasekaran and Gu [19]; Boito, Eidelman, and Gemignani [13,14], Bevilacqua,
Del Corso, Gemignani [7]; and, a fast and provably stable version, is presented in the book of
Aurentz, Mach, Robol, Vandebril, and Watkins [3]. The general case of unitary plus low rank
matrices has been recently addressed in [8]. Extensions for efficiently handling corrections with
larger rank, necessary to deal with block companion matrices, have been recently presented
in [4, 12, 29].

In this article we will characterize unitary and Hermitian plus low rank matrices by examining
their singular- and eigenvalues. Theorem 3 proves that a matrix having at most k singular values
less than 1 and at most k singular values greater than 1 is of unitary plus rank k form. Similarly,
by examining the eigenvalues of the skew-Hermitian part of a matrix we show that at most k
eigenvalues greater than 0 and at most k eigenvalues less than zero is compulsory for being of
Hermitian plus rank k form. The result is stated in Theorem 12. These analyses enable us to
characterize the closest unitary or Hermitian plus rank k matrices in the spectral and Frobenius
norms by setting some well-chosen singular- or eigenvalues to 1 or 0. We will also show that
the Cayley transform bridges between the Hermitian and the unitary case. Up to our knowledge
this is the first attempt of characterizing these low-rank perturbed matrices as well as solving
the associated distance problems by considering the eigenvalues and singular-values. Finally, we
have developed a numerical method based on the Lanczos iteration that allows us to recover the
unitary/Hermitian and rank-k parts explicitly in O(n2k) flops.

The article is organized as follows. In Section 2 we revisit some preliminary results. Section 3
discusses the necessary and sufficient conditions for being of unitary plus low rank form. Con-
structive proofs furnish us the closest unitary plus low rank matrix in spectral and Frobenius
norm. Sections 5 and 6 discuss similar topics, conditions for being of Hermitian plus low rank
form and a manner of constructing the closest Hermitian plus low rank matrix. The Cayley
transform, Section 7, allows us to transform the unitary into the Hermitian problem. We de-
scribe the Lanczos-based approach to compute the representation in Section 8. and present some
numerical experiments in Section 9. We conclude in Section 10.
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2 Preliminaries

In this text we make use of the following conventions. The symbols I and 0 denote the identity
and zero matrix, and may have subscripts denoting their size whenever that is not clear from
the context. We use σ1(M) ≥ σ2(M) ≥ · · · ≥ σn(M) to denote the singular values of a matrix
M ∈ Cn×n, and λ1(H) ≥ λ2(H) ≥ · · · ≥ λn(H) stand for the eigenvalues of a Hermitian matrix
H ∈ Cn×n. We use the diag operator which stacks the objects, which could be scalars, matrices,
or vectors, in a (pseudo-)diagonal matrix.

The following results are classical. We rely on them in the forthcoming proofs and for com-
pleteness we have included them.

Theorem 1 (Weyl’s inequalities, [34, Theorem 4.3.16 and Exercise 16, page 423]). For every
pair of matrices M,N ∈ Cn×n and for every i, j such that i+ j ≤ n+ 1,

σi+j−1(M ±N) ≤ σi(M) + σj(N).

If M , N are Hermitian, then the same inequality holds for their eigenvalues.

λi+j−1(M ±N) ≤ λi(M) + λj(N).

Theorem 2 (Interlacing inequalities, [34, Theorems 4.3.4] and [39]). Let M ∈ Cn×n and N ∈
Cn×(n−k) be a submatrix of M obtained by removing k columns from it. Then,

σi+k(M) ≤ σi(N) ≤ σi(M).

In the Hermitian case we get similar inequalities. Let M ∈ Cn×n be Hermitian and N ∈
C(n−k)×(n−k) be a (Hermitian) principal submatrix of M . Then,

λi+k(M) ≤ λi(N) ≤ λi(M).

Moreover, recall that M ∈ Cn×n is unitary if and only if σi(M) = 1, ∀i = 1, . . . , n.

3 Detecting unitary-plus-rank-k matrices

We call Uk the set of unitary-plus-rank-k matrices, i.e., A ∈ Uk if and only if there exists a
unitary matrix Q and two skinny matrices G,B ∈ Cn×k such that A = Q +GB∗. This implies
that Uk ⊆ Uk+1 for any k.

Theorem 3. Let A ∈ Cn×n and 0 ≤ k ≤ n. Then, A ∈ Uk if and only if A has at most k
singular values strictly greater than 1 and at most k singular values strictly smaller than 1.

Before proving this result, we point out that looking at the singular values is a good guess,
since being of unitary-plus-rank-k form is invariant under unitary equivalence transformations.

Remark 4. A = Q+GB∗ ∈ Uk if and only if U∗AV ∈ Uk for any unitary matrices U, V . Indeed,
we have that

U∗AV = U∗QV︸ ︷︷ ︸
Q̂

+U∗G︸︷︷︸
Ĝ

B∗V︸ ︷︷ ︸
B̂∗

∈ Uk.

We start proving a simple case (n = 2, k = 1) of Theorem 3, which will act as a building
block for the general proof.
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Lemma 5. For every pair of real numbers σ1 and σ2 such that σ1 ≥ 1 ≥ σ2 ≥ 0, we have

[
σ1 0
0 σ2

]
∈ U1.

Proof. We prove that the diagonal 2 × 2 matrix can be decomposed as a plane rotation plus a
rank 1 correction. In particular, we look for c, s, a, b ≥ 0 such that

[
σ1 0
0 σ2

]
=

[
c s
−s c

]
+

[
a −s
s −b

]
,

i.e., σ1 = c + a and σ2 = c − b. In addition, we impose that the first summand is unitary (i.e.,
c2 + s2 = 1), and that the second has rank 1 (i.e., s2 = ab). A simple computation shows that

c =
σ1σ2 + 1

σ1 + σ2
, a =

σ2
1 − 1

σ1 + σ2
, b =

1− σ2
2

σ1 + σ2
, and s =

√
ab

satisfy these conditions.

We are now ready to prove Theorem 3.

Proof of Theorem 3. First note that the case k = n is trivial Un = Cn×n. So we assume k < n.
The conditions on the singular values can be written as two inequalities

1 ≥ σk+1(A) and σn−k(A) ≥ 1. (1)

• We first show that if A ∈ Uk then the inequalities (1) hold. Suppose that A = Q +GB∗.
Then, by Theorem 1,

σk+1(A) ≤ σ1(Q) + σk+1(GB∗) = 1 + 0 = 1.

And, again following from Theorem 1,

1 = σn(Q) ≤ σn−k(A) + σk+1(GB∗) = σn−k(A).

• We now prove the reverse implication, i.e., if the two inequalities (1) hold then A ∈ Uk.
To simplify things, we introduce k− denoting the number of singular values smaller than
1 and k+ standing for the number of singular values larger than 1. The conditions state
that ℓ = max{k−, k+} ≤ k. We will prove that A ∈ Uℓ. Note that Uℓ ⊆ Uk. Let
h = min{k−, k+}.
We reorder the diagonal elements of Σ to group the singular values into separate diagonal
blocks of three types:

– Diagonal blocks Σ1,Σ2, . . . ,Σh of size 2× 2, containing each one singular value larger
than 1 and one smaller than 1. Since h = min{k−, k+} either all singular values
smaller than 1 or all singular values larger than 1 are incorporated in these blocks.

– Diagonal blocks Σh+1, . . . ,Σℓ of size 1 × 1 containing the remaining singular values
different from 1. Note that all these blocks will contain either singular values that are
larger than 1 or smaller than 1, depending on whether h = k− or h = k+. In case
k− = k+ = h = ℓ there will be no blocks of this type.

– One final block equal to the identity matrix of size m = n − h − ℓ = n − k− − k+,
containing all the singular values equal to 1.
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For example,for A having singular values (3, 2, 2, 1.3, 1.2, 1, 1, 1, 0.6, 0.2), we can take Σ1 =
diag(3, 0.2), Σ2 = diag(2, 0.6), Σ3 = 2, Σ4 = 1.3, Σ5 = 1.2, and Σ6 = I3.

Clearly, this decomposition always exists, and although it is not unique, the number and
types of blocks are.

For each i = 1, 2, . . . , ℓ, the matrix Σi is unitary plus rank 1. This follows from Lemma 5 for
2×2 blocks, and is trivial for the 1×1 blocks. Hence for each i we can write Σi = Qi+gib

∗
i ,

where Qi is unitary and gi, bi are vectors. So we have

diag(Σ1,Σ2, . . . ,Σℓ, Im) = diag(Q1, Q2, . . . , Qℓ, Im) +GB∗,

with

G =

[
diag(g1, g2, . . . , gℓ)

0m×ℓ

]
, and B =

[
diag(b1, b2, . . . , bℓ)

0m×ℓ

]
.

Therefore diag(Σ1,Σ2, . . . ,Σℓ, I) ∈ Uℓ. Since this matrix can be obtained from a unitary
equivalence on A (singular value decomposition and a permutation) we have A ∈ Uℓ.

Example 6. The matrix U diag(3, 2, 1, 1, 1, 0.5)V ∗ belongs to U2 (but not to U1). The matrix
U diag(5, 0.4, 0.3, 0.2)V ∗ belongs to U3 (but not to U2). The matrix 5I4 belongs to U4 (but not
to U3).

4 Distance from unitary plus rank k

Theorem 3 provides an effective criterion to characterize matrices in Uk based on the singular
values. One of the main features of the singular value decomposition is that it automatically
provides the optimal rank k approximation of any matrix, in the sense of the 2-and the Frobenius
norm. In this section, we show that the criterion of Theorem 3 can be used to compute the best
unitary-plus-rank-k approximant for any value of k.

The problem is thus to find a matrix in Uk that minimizes the distance to a given matrix A.
This can be achieved by setting the supernumerary singular values preventing the inequalities (1)
from being satisfied to 1.

Theorem 7. Let the matrix A ∈ Cn×n have singular value decomposition UΣV ∗. Then,

arg min
X∈Uk

‖A−X‖2 = Â := U Σ̂V ∗,

where Σ̂ is the diagonal matrix with diagonal elements

σ̂i =

{
1 if k < i ≤ k+, or n− k− < i ≤ n− k,

σi otherwise

with k+ (resp. k−) the number of singular values of A strictly greater (resp. smaller) than 1.

Moreover, we have ‖A− Â‖2 = max{σk+1 − 1, 1− σn−k}.

Proof. The matrix Â = U Σ̂V ∗ clearly belongs to Uk by Theorem 3, hence ‖A − U Σ̂V ∗‖2 =

‖Σ− Σ̂‖2 = max{σk+1 − 1, 1− σn−k, 0}. It remains thus to prove that for every X ∈ Uk one has

‖A−X‖2 ≥ ‖A− Â‖2.
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By Weyl’s inequality (Theorem 1), we have that σk+1(A) ≤ σ1(A − X) + σk+1(X), and
therefore

‖A−X‖2 ≥ σk+1(A) − σk+1(X) ≥ σk+1(A)− 1.

Similarly from σn−k(X) ≤ σ1(A−X) + σn−k(A), we have

‖A−X‖2 ≥ σn−k(X)− σn−k(A) ≥ 1− σn−k(A).

We obtain
‖A−X‖2 ≥ max{σk+1 − 1, 1− σn−k, 0} = ‖A− Â‖2.

Theorem 7 provides a deterministic construction for a minimizer of ‖A − X‖2, but this
minimizer is not unique. This is demonstrated in the following example.

Example 8. Let us consider, for arbitrary unitary matrices U, V , the matrix A defined as

A = U




2
1.5

1
1

.5



V ∗.

We know, from Theorem 3 that A ∈ U2. We want to determine the distance from A to U1.
Theorem 7 yields the approximant Â defined as follows:

Â := U




2
1

1
1

.5



V ∗, ‖A− Â‖2 = 0.5.

However, the solution is not unique. For instance, the family of matrices determined as

Â(t, s) := U




2 + t
1

1
1

.5 + s



V ∗

still lead to ‖A− Â(t, s)‖2 = 0.5 for t, s ∈ [−0.5, 0.5].
The same matrix is a minimizer also in the Frobenius norm.

Theorem 9. Let the matrix A ∈ Cn×n have singular value decomposition UΣV ∗. Then,

arg min
X∈Uk

‖A−X‖F = Â := U Σ̂V ∗,

where Σ̂ is the diagonal matrix with diagonal elements

σ̂i =

{
1 if k < i ≤ k+, or n− k− < i ≤ n− k,

σi otherwise

6



where k+ (resp. k−) is the number of singular values of A which are strictly greater (resp.
smaller) than 1. Moreover we have

‖A− Â‖2F =

k+∑

i=k+1

(σi − 1)2 +

n−k∑

i=n−k−+1

(σi − 1)2. (2)

Proof. Since the Frobenius norm is unitarily invariant, we immediately have (2). To complete
the proof, we show that for an arbitrary X ∈ Uk we have ‖A−X‖F ≥ ‖A− Â‖F . Let ∆ be the
matrix such that X = A+∆ ∈ Uk. We will prove that ‖∆‖2F ≥ ‖A− Â‖2F . Consider ∆̃ = U∗∆V
and partition

U∗XV = U∗(A+∆)V =
[
Σ1 + ∆̃1 Σ2 + ∆̃2 Σ3 + ∆̃3

]
,

where Σ1 ∈ Cn×k+ contains the singular values of A which are larger than 1, Σ2 the singular
values equal to 1, and Σ3 ∈ Cn×k− the singular values smaller than 1.

Since U∗(A+∆)V ∈ Uk, we have

σk+1(U
∗(A+∆)V ) ≤ 1, σn−k(U

∗(A+∆)V ) ≥ 1.

• Assume first that k+ > k. By the interlacing inequalities (Theorem 2),

σk+1(Σ1 + ∆̃1) ≤ σk+1(U
∗(A+∆)V ) ≤ 1,

and then by Weyl’s inequalities (Theorem 1) for each k < i ≤ k+

σi = σi(Σ1) ≤ σk+1(Σ1 + ∆̃1) + σi−k(∆̃1) ≤ 1 + σi−k(∆̃1),

from which we obtain σi−k(∆̃1) ≥ σi − 1, and hence

‖∆̃1‖2F ≥
k+−k∑

i=1

σi(∆̃1)
2 ≥

k+∑

i=k+1

(σi − 1)2. (3)

Note that (3) holds trivially also when k+ ≤ k.

• Similarly, assume that k− > k (the case k− ≤ k is trivial), and we use interlacing inequal-
ities (Theorem 2) to get

σk−−k(Σ3 + ∆̃3) ≥ σn−k(U
∗(A+∆)V ) ≥ 1,

and Weyl’s inequalities (Theorem 1) for each k < i ≤ k− to show

1 ≤ σk−−k(Σ3 + ∆̃3) ≤ σk−+1−i(Σ3) + σi−k(∆̃3) = σn+1−i + σi−k(∆̃3),

from which we obtain σi−k(∆̃3) ≥ 1− σn+1−i. Hence

‖∆̃3‖2F ≥
n−k∑

j=n+1−k−

(1− σj)
2. (4)

Putting together (3) and (4), we have

‖∆‖2F ≥ ‖∆̃1‖2F + ‖∆̃3‖2F ≥
k+∑

i=k+1

(σi − 1)2 +

n−k∑

j=n+1−k−

(1 − σj)
2 = ‖A− Â‖2F ,

which is precisely what we wanted to prove.
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In this case, unlike in the 2-norm setting, this minimizer is unique when all singular values
are different.1

5 Detecting Hermitian-plus-rank-k matrices

We call Hk the set of Hermitian-plus-rank-k matrices, i.e., A ∈ Hk if and only if there exist a
Hermitian matrix H and two matrices G,B ∈ Cn×k such that A = H +GB∗.

In this and the next section we will answer similar questions: how can we tell if A ∈ Hk?
How do we find the distance from a matrix A to the closed set Hk? To answer these questions,
we first need an Hermitian equivalent of Lemma 5.

Lemma 10. For any pair of real numbers σ1 and σ2, such that σ1 ≥ 0, σ2 ≤ 0, there are two
real vectors c and b such that [

σ1

σ2

]
= bcT + cbT . (5)

Proof. Define the vectors c and b as follows:

b :=
1

2

[ √
σ1

−√−σ2

]
, c :=

[ √
σ1√−σ2

]
.

The result follows by a direct computation.

The next Theorem is the analogue of Theorem 3, where we look at eigenvalues of the skew-
Hermitian part of a matrix instead of at the singular values. We rely on the following lemma.

Lemma 11. Let B,C be any n × k full rank matrices, and let S = BC∗ + CB∗. Then, S has
at most k positive and at most k negative eigenvalues.

Proof. Up to a change of basis, we can assume C =

[
Ik
0

]
. Then, S has a trailing (n − k) ×

(n− k) zero submatrix T . Let λ1(S) ≥ · · · ≥ λn(S) be the eigenvalues of S. By the interlacing
inequalities, λk+1(S) ≤ λ1(T ) = 0, and λn−k(S) ≥ λn−k(T ) = 0.

Theorem 12. Let A ∈ Cn×n, and 0 ≤ k ≤ n. Then, A ∈ Hk if and only if the Hermitian matrix
S(A) := 1

2i (A−A∗) has at most k positive eigenvalues and at most k negative eigenvalues.

Proof. Let λ1, . . . , λn be the eigenvalues of 1
2i(A − A∗), sorted by decreasing order, i.e., λ1 ≥

λ2 ≥ · · · ≥ λn. Then the stated condition is equivalent to demanding λk+1 ≤ 0, λn−k ≥ 0.
We first show that if A ∈ Hk these inequalities hold. If A ∈ Hk, then there exists a Hermitian

matrix H and two matrices G,B ∈ Cn×k such that A = H +GB∗. Then

1

2i
(A−A∗) =

1

2i
(GB∗ −BG∗) = CB∗ +BC∗,

with C = G/(2i). The result follows from Lemma 11.
We now prove the converse, that is, each matrix satisfying the inequalities belongs to Hk.

We first prove that each Hermitian matrix S that has k+ strict positive eigenvalues and k−
strict negative eigenvalues, where ℓ = max{k−, k+} ≤ k can be written as CB∗ + BC∗ with
B,C ∈ Cn×k. Let us assume that the eigenvalues of S are λj with

λ1, . . . , λk+
> 0, λk++1, . . . , λk++k−

< 0, λk++k−+1, . . . , λn = 0.

1In fact the constraint of all singular values differing can be relaxed: one can construct examples in which
there are several identical singular values and all (or none) of them should be changed to 1.
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Since S is normal, we can diagonalize it by an orthogonal transformation and obtain

Q∗SQ = diag(Λ1, . . . ,Λh,Λh+1, . . . ,Λℓ, 0m),

where we get, similar as in the proof of the unitary case, three types of blocks:

• The diagonal blocks Λ1,Λ2, . . . ,Λh of size 2 × 2 containing one eigenvalue larger and one
eigenvalue smaller than 0.

• The 1 × 1 matrices Λh+1, . . . ,Λℓ containing the remaining eigenvalues differing from 0.
Since either all positive or negative eigenvalues are used already in the blocks Λ1 up to Λh

we end up with scalar blocks of all the same sign.

• A final zero matrix of size m = n− k−k+ = n− h− ℓ.

Lemma 10 tells us that each of the 2×2 blocks Λj , for j = 1, . . . , h can be written as bjc
∗
j+cjb

∗
j ,

for appropriate choices of bj, gj , since the eigenvalues on the diagonal are real and have opposite
sign. Moreover, the remaining diagonal entries Λj for j = h + 1, . . . , ℓ can be written choosing

bj = λj and gj = 1/2. Therefore, we conclude that Q∗SQ is of the form C̃B̃T + B̃C̃T for some

C̃, B̃ with k− columns. Setting G := (−2i)QC̃ and B := QB̃ proves our claim. It is immediate
to verify that the matrix A−GB∗ is Hermitian, since (A− GB∗)∗ − (A− GB∗) = 0.

Theorem 12 has alternative formulations as well. We can for instance look at A − A∗ and
count the number of eigenvalues with positive and negative imaginary parts, since when A is
Hermitian, iA will be skew-Hermitian.

We will not go into the details, but it is obvious that Theorem 12 admits an equivalent
formulation to check whether a matrix is a rank k perturbation of a skew-Hermitian matrix. To
this end one considers A+A∗ and counts the number of positive and negative eigenvalues.

6 Distance from Hermitian plus rank k

In this section we will construct, given an arbitrary matrix A, the closest Hermitian-plus-rank-k
matrix in both the 2- and the Frobenius norm. The following lemma comes in handy.

Lemma 13. Let ‖·‖ be any unitarily invariant norm, and X ∈ Cn×n, and S(X) = X−X∗

2i .
Then, ‖S(X)‖ ≤ ‖X‖.
Proof. Let X = UΣV ∗ be the SVD of X . Since ‖·‖ is unitarily invariant, we have that ‖X∗‖ =
‖VΣ∗U∗‖ = ‖Σ‖ = ‖UΣV ∗‖ = ‖X‖. Then,

∥∥∥∥
X −X∗

2i

∥∥∥∥ ≤
‖X‖+ ‖X∗‖

2
= ‖X‖.

We formulate again two Theorems, one for the closest approximation in the 2-norm and
another one for the closest approximation in the Frobenius norm. The approximants that we
construct are identical, but the proofs differ significantly. Again like in the unitary case we will
change particular eigenvalues of the skew-Hermitian part to find the best approximant.

Theorem 14. Let A ∈ Cn×n and S(A) = 1
2i (A−A∗), having eigendecomposition S(A) = QDQ∗.

The eigenvalues are ordered: λ1 ≥ · · · ≥ λk+
> 0, λk++1 = · · · = λn−k−

= 0 and 0 > λn−k−+1 ≥
· · · ≥ λn, where k+ stands for the number of eigenvalues strictly greater than 0 and k− for the
eigenvalues strictly smaller than 0. Then we have that

arg min
X∈Hk

‖A−X‖2 = Â := A− i Q(D − D̂)Q∗,

9



where D̂ is a diagonal matrix with diagonal elements

d̂i =

{
0 if k < i ≤ k+ or n− k− < i ≤ n− k

λi otherwise.

Proof. Theorem 12 implies that Â = A− iQ(D − D̂)Q∗ belongs to Hk , since

S(Â) =
Â− Â∗

2i
=

A−A∗

2i
−Q(D − D̂)Q∗ = QD̂Q∗,

has at most k positive eigenvalues and at most k negative eigenvalues.
To prove that Â is the minimizer of ‖A −X‖2 we have to prove that for every X ∈ Hk we

have that ‖A−X‖2 ≥ ‖A− Â‖2 = ‖D − D̂‖2 = max{λk+1(S(A)),−λn−k(S(A))}.
Assume that X = A+∆, then S(X) = S(A) + S(∆). Using Weyl’s inequality (Theorem 1),

we have
λk+1(S(X)) = λk+1(S(A) + S(∆)) ≥ λk+1(S(A)) − λ1(S(∆)),

and therefore

‖A−X‖2 = ‖∆‖2 ≥ ‖S(∆)‖2 = λ1(S(∆)) ≥ λk+1(S(A))− λk+1(S(X)) ≥ λk+1(S(A))

since X ∈ Hk implies λk+1(S(X)) ≤ 0. Similarly from

λn−k(S(A+∆)) ≤ λ1(S(∆)) + λn−k(S(A)),

we get
‖A−X‖2 ≥ λ1(S(∆)) ≥ λn−k(S(X))− λn−k(S(A)) ≥ −λn−k(S(A)),

since X ∈ Hk implies λn−k(S(X)) ≥ 0. Combining the two inequalities and using the non-
negativeness of the norm, we have

‖A−X‖2 ≥ max{λk+1(S(A)),−λn−k(S(A))}.

We remark that, comparable to the unitary case, the minimizer in the 2-norm is not unique.
We have constructed a solution Â such that ‖A−Â‖2 = ‖D−D̂‖2 = max{λk+1(S(A)),−λn−k(S(A))}.
It is, however, easy to find a concrete example and a matrix Ã different from Â such that
‖A− Â‖2 = ‖D − D̂‖2 = ‖D − D̃‖2 = ‖A− Ã‖2.

Theorem 15. Let A ∈ Cn×n and S(A) = 1
2i (A−A∗), having eigendecomposition S(A) = QDQ∗.

The eigenvalues are ordered: λ1 ≥ · · · ≥ λk+
> 0, λk++1 = · · · = λn−k−

= 0 and 0 > λn−k−+1 ≥
· · · ≥ λn, where k+ stands for the number of eigenvalues strictly greater than 0 and k− for the
eigenvalues strictly smaller than 0. Then we have that

arg min
X∈Hk

‖A−X‖F = Â := A− i Q(D − D̂)Q∗,

where D̂ is a diagonal matrix with diagonal elements

d̂i =

{
0 if k < i ≤ k+ or n− k− < i ≤ n− k

λi otherwise.
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Proof. We know that Â ∈ Hk. To prove that this is the minimizer, we have to show that for any
X ∈ Hk we have that ‖A−X‖F ≥ ‖A− Â‖F .

Consider ∆ ∈ Cn×n such that X = A+∆ ∈ Hk. We know from Theorem 12 that this implies
that λk+1(S(A+∆)) ≤ 0 and that λn−k(S(A+∆)) ≥ 0.

Consider ∆̃ = Q∗S(∆)Q and partition it as follows

Q∗S(A+∆)Q =



D1 + ∆̃11 ∆̃12 ∆̃13

∆̃21 D2 + ∆̃22 ∆̃23

∆̃31 ∆̃32 D3 + ∆̃33


 ,

where D = diag(D1, D2, D3) is the diagonal of the eigendecomposition S(A) = QDQ∗. In
particular D1 ∈ Rk+×k+ contains the eigenvalues of S(A) which are strictly greater than 0, and
D3 ∈ Rk−×k− contains the eigenvalues of S(A) strictly smaller than 0.

• Assume that k+ > k. The matrix Q∗S(A + ∆)Q is Hermitian, hence by the interlacing
inequalities we get

λk+1(D1 + ∆̃11) ≤ λk+1(S(A+∆)) ≤ 0;

and then by Weyl’s inequalities for each k < i ≤ k+

λi = λi(D1) ≤ λk+1(D1 + ∆̃11) + λi−k(∆̃11) ≤ λi−k(∆̃11),

from which we obtain λi−k(∆̃11) ≥ λi, and hence

‖∆̃11‖2F =

k+∑

i=1

λi(∆̃11)
2 ≥

k+∑

i=k+1

λ2
i . (6)

Note that (6) holds trivially also when k+ ≤ k.

• Similarly, assume that k− > k, and use again the interlacing inequalities to get

λk−−k(D3 + ∆̃33) ≥ λn−k(S(A+∆)) ≥ 0.

Using Weyl’s inequalities for each k < i ≤ k− we can show that

0 ≤ λk−−k(D3 + ∆̃33) ≤ λk−+1−i(D3) + λi−k(∆̃33) = λn+1−i + λi−k(∆̃33),

from which we obtain λi−k(∆̃33) ≥ −λn+1−i ≥ 0, and hence

‖∆̃33‖2F ≥
k−∑

i=k+1

λi−k(∆̃33)
2 ≥

k−∑

i=k+1

(−λn+1−i)
2 =

n−k∑

j=n+1−k−

λ2
j . (7)

We note that this equation holds trivially when k− ≤ k.

Combining the inequalities (6) and (7), and by Lemma 13 stating that ‖∆‖2F ≥ ‖S(∆)‖2F , we get

‖A−X‖2F = ‖∆‖2F ≥ ‖∆̃11‖2F + ‖∆̃33‖2F ≥
k+∑

i=k+1

λ2
i +

n−k∑

j=n+1−k−

λ2
j ,

which is precisely ‖D − D̂‖F = ‖A− Â‖F . This concludes the proof.
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7 The Cayley transform

Unitary and Hermitian structures are both special cases of normal matrices. Even more inter-
estingly, it is known that they can be mapped one into the other through the use of the Cayley
transform, defined as follows:

C(z) := z − i

z + i
, z ∈ C \ {−i}.

The Cayley transform is a particular case of a Möbius transform, which permutes projective lines
of the Riemann sphere. In particular, we have that C(R) = S1. The inverse transform can be
readily expressed as

C−1(z) = i · 1 + z

1− z
, z ∈ C \ {−1}.

The fact that C(z) maps Hermitian matrices into unitary ones has been known for a long time
[27, 43]. More recently, the observation that one can switch between low-rank perturbations of
these structures has been exploited for develop fast algorithms for unitary-plus-low-rank and
Hermitian-plus-low-rank matrices [6, 28].

Lemma 16. Let A be an n× n matrix. Then we have the following.

• If A does not have the eigenvalue −i and A is a rank k perturbation of a Hermitian matrix,
then C(A) will be a rank k perturbation of a unitary matrix. Moreover, C(A) does not
possess the eigenvalue 1.

• If A does not have the eigenvalue 1 and is a rank k perturbation of a unitary matrix, then
C−1(A) will be a rank k perturbation of an Hermitian matrix, and C−1(A) does not possess
eigenvalue −i.

Proof. We show that the Cayley transform (and its inverse) preserve the rank of the perturbation.
Note that both C(z) and C−1(z) are degree (1, 1) rational functions. For a rational function
r(z) of degree (at most) (d, d) we know that, for any matrix A and rank k perturbation E,
r(A + E) − r(A) has rank at most dk. It remains to prove that perturbation stays exactly of
rank k, and not less. Let A be Hermitian plus rank (exactly) k, and by contradiction, assume
we can write C(A) = Q + E, with Q unitary and rank(E) = k′ < k. Then, we would have that
C−1(Q+ E) = A is a Hermitian plus rank k′′ matrix where k′′ ≤ k′, leading to a contradiction.

To prove that C(A) does not have 1 in the spectrum, it suffices to note that C(z) is a bijection
of the Riemann sphere, and maps the point at ∞ to 1. Since the eigenvalues of C(A) are C(λ),
with λ the eigenvalues of A, we see the eigenvalue 1 must be excluded. The same argument
applies for the second case.

Creating this bridge between low-rank perturbations of unitary and Hermitian matrices en-
ables to use the criterion that we have developed for detecting matrices in Hk to matrices in
Uk, and the opposite direction as well. In fact, in the next lemma, we show that we can ob-
tain alternative proofs for the characterizations of Uk and Hk by simply applying the Cayley
transform.

Lemma 17. The Cayley transformation implies that Theorem 3 and Theorem 12 are equivalent.

Proof. We start by proving that Theorem 12 implies Theorem 3. Let A be an arbitrary matrix,
and assume that 1 is not an eigenvalue. We know by Lemma 16 that A is in Uk if and only if
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C−1(A) ∈ Hk. Now, C−1(A) will be a rank k perturbation of a Hermitian matrix if and only if
the Hermitian matrix 1

2i(C−1(A) − C−1(A)∗) has at most k positve eigenvalues and k negative
ones. We can write

1

2i

(
C−1(A)− C−1(A)∗

)
=

1

2
·
[
(A+ I)−1(A− I) + (A∗ + I)−1(A∗ − I)

]
,

Let us do a congruence by left-multiplying by (A + I) and right multiplying by (A∗ + I). This
does not change the sign characteristic and yields

1

2i
· (A+ I)

[
C−1(A)− C−1(A)∗

]
(A∗ + I) =

1

2
[(A− I)(A∗ + I) + (A+ I)(A∗ − I)]

= AA∗ − I.

The matrix above has eigenvalues λi := σ2
i (A) − 1, where σi(A) are the singular values of A.

Therefore, the positive eigenvalues of 1
2i

(
C−1(A)− C−1(A)∗

)
correspond to singular values of A

larger than 1, whereas the negative eigenvalues link to the singular values smaller than 1. In
particular, A is unitary plus rank k, if and only if the characterization given in Theorem 3 is
satisfied.

Let us now consider the case where A has 1 as an eigenvalue. Then, we can multiply it by
a unimodular scalar ξ to get A′ = ξ · A, where A′ does not have 1 as an eigenvalue. Clearly
A′ ∈ Uk ⇐⇒ A ∈ Uk, and σi(A

′) = σi(A). Applying the previous steps to A′ yields the
characterization for A as well, completing the proof.

The other implication (that is, Theorem 3 implies Theorem 12) can be obtained following
the same steps backwards.

Remark 18. We emphasize that, although in principle the Cayley transform enables to study
unitary matrices looking at Hermitian ones (and the other way around), it cannot be used to
answer questions about the closest unitary or Hermitian matrix. In fact, this transformation
does not preserve the distances.

8 Reconstruction of the matrices

Suppose we are given a matrix A, and we want to write it as a Hermitian-plus-low rank matrix.2

We present a strategy to recover the Hermitian and low-rank parts within O(n2k) flops. We note
that, if A = H + GB∗, with H = H∗, the Hermitian matrix S(A) = 1

2i(A − A∗) has low-rank.
Therefore, we can run a few steps of Lanczos to recover an approximation S(A) = 1

2i (A−A∗) ≈
WTW ∗.

According to Theorem 12, we can use the eigenvalue decomposition of S(A) to recover the best
Hermitian-plus-low rank approximation, and the low-rank correction is described by Lemma 10.
Therefore, we construct this correction explicitly working with the matrix T , which we decompose
as T ≈ B̂Ĉ∗ + ĈB̂∗, neglecting the eigenvalues smaller than a prescribed truncation threshold.
This implies that we can write 1

2i (A − A∗) ≈ BC∗ + CB∗, where C := WĈ,B := WB̂. Then,
we construct the final decomposition by setting H = A − 2iCB∗. The procedure is sketched in
the pseudocode of Algorithm 1.

Note that in the unlikely case the process terminates early WTW ∗ is not equal to S, but
only to its restriction on the maximal Krylov subspace. When failure is detected, we can restart
the iterations with a randomly chosen v.

2In this section we will focus on Hermitian-plus-low-rank matrices; the idea in this section is also applicable
to unitary-plus-low rank matrices.
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Algorithm 1 Lanczos-based scheme to recover the Hermitian-plus-low-rank decomposition. A
truncation threshold ε is given.

1: procedure hk find(A, ε)
2: S ← 1

2i(A−A∗)
3: W,T ← Lanczos(S, ε) ⊲ Approximate S = WTW ∗ +O(ε)
4: B̂, Ĉ ← ComputeFactors(T, ε) ⊲ T = B̂Ĉ∗ + ĈB̂∗ +O(ε), using Lemma 10
5: B,C ←WB̂,WĈ
6: G← 2iC
7: H ← A−GB∗

8: return 1
2 (H +H∗), B,G.

9: end procedure

Remark 19. A reconstruction procedure can be obtained from any method to approximate the
range of S in O(n2k) flops; for instance, rank-revealing QR factorization [17], or randomized
sampling [33]. Indeed, once one obtains an orthogonal basis W for ImS, one can compute
W ∗SW = T and continue as above.

9 Numerical experiments

9.1 Accuracy of the reconstruction procedure

We have coded Algorithm 1 in Matlab, and ran some random tests to validate the procedure.
The algorithm appears to be quite robust and succeeds, even in the case of noise, in retrieving a
good decomposition.

In each test, we generated a random n × n Hermitian plus rank-k matrix with the Matlab
commands

rng(’default’);

H = randn(n, n) + 1i * randn(n, n);

H = H + H’;

[U,~] = qr(randn(n, k) + 1i * randn(n, k));

[V,~] = qr(randn(n, k) + 1i * randn(n, k));

A = H + U *diag(sv)* V’;

Here sv are logarithmically distributed singular values between 1 and a parameter σ.
We ran experiments with varying values of n, k, and σ; these results are in Figures 1, 2,

and 3, respectively. We show in these tables the magnitude of the subdiagonal entries βi of the
tridiagonal matrix T produced in the Lanczos process. The graphs show that there is a sharp
drop in their magnitude after 2k steps, which is what is expected since rank(S) = 2k, generically.
Also, the magnitude of the intermediate values of βi reflects the decay in the singular values in
the rank correction.

The legend also reports the relative residual in the reconstruction, computed as

res =

∥∥ 1
2 (H +H∗) +GB∗ −A

∥∥
2

‖A‖2
,

which is always below machine precision.
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Figure 1: For σ = 1.0e−4 and k = 12, magnitude of the subdiagonal entries of T of size n.
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Figure 2: For n = 1024, σ = 1.0e−4, magnitude of the subdiagonal entries of T for various k.
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Figure 3: For n = 1024 and k = 12, magnitude of the subdiagonal entries of T for different
values of the smallest singular value.

9.2 Structure loss in computing the Schur form

One example of a natural question that can be answered using the tools developed in this
paper is the following. Given a companion matrix C, in its Schur form C = QTQ∗ the upper
triangular factor T is unitary-plus-rank-1, in exact arithmetic (since C is so). As described
in the introduction, several numerical methods in the literature try to exploit this structure,
using special representations to enforce exactly the unitary plus rank 1 structure. If instead an
approximation T̃ is computed using the standard QR algorithm (Matlab’s schur(C)), can we
measure the loss of structure in T̃ , i.e., the distance between T̃ and the closest matrix which is
unitary-plus-rank-1?

We have run some experiments in which this distance is computed using the formula in
Theorem 7, in two different cases:

• The companion matrix of a polynomial whose roots are random numbers generated from
a normal distribution with mean 0 and variance 1, i.e., Matlab’s compan(poly(randn(n,
1)));

• The companion matrix of Wilkinson’s polynomial, i.e., the polynomial with roots 1, 2, . . . , n.

The singular values of T̃ have been computed using extended precision arithmetic, to help getting
a more accurate result.

We display in Figure 4 the (relative) distance from structure

‖T̃ −X‖2
‖T̃‖2

, X = arg min
X∈Uk

‖T̃ −X‖2

for several different matrix sizes n. This distance is always within a moderate multiple of the
machine precision, which is to be expected because the Schur form is computed with a backward
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Figure 4: Relative distance from structure

stable algorithm. It appears that the loss of structure is less pronounced for the Wilkinson
polynomial; note, though, that ‖T ‖ = ‖C‖ is much larger (for n = 60, ‖C‖ ≈ 2 × 1083 for the
Wilkinson polynomial vs. ‖C‖ ≈ 3× 107 for the random polynomial).

Another interesting quantity is

‖T̃ −X‖2
‖T̃ − T ‖2

, X = arg min
X∈Uk

‖T̃ −X‖2,

i.e., the relative amount (measured as a fraction in [0, 1]) of the total error on T̃ that can be
attributed to the loss of structure. We can approximate its denominator using the backward error
‖T̃ − T ‖2 ≈ ‖Q̃T̃ Q̃∗ − A‖2. If this ratio is close to 0, then it means that the error introduced
by the computation in the Schur form is almost tangent to the space Uk, while if it is close to 1
the error is almost perpendicular to Uk. We display this quantity in Figure 5. It is again smaller
for the Wilkinson polynomial, and in both cases it seems to decrease slowly as the dimension n
increases.

10 Conclusions

We have provided explicit conditions under which a matrix is unitary (resp. Hermitian) plus low
rank, and have given a construction for the closest unitary (resp. Hermitian) plus rank k to a
given matrix A, in both the spectral and the Frobenius norm.

We have presented an algorithm based on the Lanczos iteration to construct explicitly, given
a matrix A ∈ Hk (where k is not known a priori), a representation of the form A = H + GB∗,
where H is Hermitian and GB∗ is a rank-k correction. A variant for unitary-plus-low-rank
matrices can be obtained in a similar fashion.
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Figure 5: Percentage of error due to structure loss

An example of an application that is enabled by the theory developed in this paper is pre-
sented, i.e., assessing the loss of structure in the (unstructured) QR iteration.
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