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Abstract

The notion of the Drazin inverse of an even-order tensor with the Einstein product was
introduced, very recently [J. Ji and Y. Wei. Comput. Math. Appl., 75(9), (2018), pp. 3402-
3413]. In this article, we further elaborate this theory by producing a few characterizations
of the Drazin inverse and the W-weighted Drazin inverse of tensors. In addition to these, we
compute the Drazin inverse of tensors using different types of generalized inverses and full
rank decomposition of tensors. We also address the solution to the multilinear systems using
the Drazin inverse and iterative (higher order Gauss-Seidel) method of tensors. Besides this,
the convergence analysis of the iterative technique is also investigated within the framework
of the Einstein product.

Keywords: Einstein product, Tensor inversion, Drazin inverse, W-weighted Drazin
inverse, Multilinear system.
AMS Subject Classifications: 15A69; 15A09

1. Introduction

The Drazin inverse plays an important role in various applications in singular differential
[17] and difference equations [22], Markov chains [6, 22], investigation of Cesaro-Neumann
iterations [9], Cryptography [14], and iterative methods [24, 30]. Specifically, the Drazin
inverse extensively used to solve the system of linear equations, where the iterative schemes
lead from matrix splitting. However, many interesting physical systems are required to store
huge volumes of multidimensional data, and in recognition of potential modeling accuracy,
matrix representation of data analysis is not enough to represent all the information. Ten-
sors are natural multidimensional generalizations of matrices, which efficiently solve these
problems. In this context, Ji and Wei [11] introduced the Drazin inverse of an even-order

Preprint submitted to Comput. Math. Appl. May 13, 2019

http://arxiv.org/abs/1904.10783v2


tensor through the core-nilpotent decomposition to solve singular tensor equations. It will
be more applicable if we study the characterization of the Drazin inverse of tensors, and
hence this inverse of tensors will open different paths in the above areas.

On the other hand, the concept of tensor-structured numerical methods have opened
new perspectives for solving multilinear systems, recently. Many computational and theo-
retical problems require different types of generalized inverses when a tensor is singular or
arbitrary order. The authors of [5] discussed the representations and properties of the ordi-
nary tensor inverse and introduced tensor-based iterative methods to solve high-dimensional
Poisson problems in the multilinear system framework. This interpretation is extended to
the Moore-Penrose inverse of tensors in [3, 17] and discussed the solution of multilinear
systems and tensor nearness problem associated with tensor equations. Using such theory
of Einstein product, Liang et al. [19] investigated necessary and sufficient conditions for
the invertibility of tensors, and proposed the LU and the Schur decompositions of a tensor.
Further, Stanimirovic et al. [28] introduced some basic properties of the range and null
space of tensors, and the adequate definition of the tensor rank (i.e., reshaping rank). In
view of reshape rank, Behera et al. [2] discussed full rank decomposition of tensors via
Einstein product. The vast work on the generalized inverse of tensors [3, 10, 12, 28, 29]
and its applications to the solution of multilinear systems [5, 11], motivate us to study the
characterizations of the Drazin inverse, W-weighted Drazin inverse and iterative technique
in the framework of tensors.

In this paper, we further study the Drazin inverse of tensors. This study can lead to
the enhancement of the computation of the Drazin inverse of tensors along with solutions
of multilinear structure in multidimensional systems. In this regard, we discuss different
characterizations of the Drazin inverse and W-weighted Drazin inverse of tensors. In addition
to these, some new methods for computing the Drazin inverse of a tensor is proposed.
Since the reduction of spatial dimensions and the generalized inverse of tensors needs to
solve tensor-based partial differential equations, here we concentrate on the tensor iterative
method (higher order Gauss-Seidel) and its convergence analysis using the theory of Einstein
product.

1.1. Organization of the paper

The rest of the paper is organized as follows. In Section 2, we discuss some notations and
definitions, which are the necessary ingredient for proving the main results in Sections 3-5.
Several characterizations of the Drazin inverse are discussed in Section 3. Besides these, we
have computed the Drazin inverse of tensors with the help of other generalized inverses. The
notion of W-weighted Drazin inverse and a few properties of this inverse are introduced in
Section 4. Then taking advantage of the Drazin inverse of tensors, we discuss the solution
of multilinear systems in Section 5. In addition to these, the convergence analysis of the
iterative technique is also investigated within the framework of the Einstein product. In
Section 6, we conclude this paper with some remarks.
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2. Preliminaries

2.1. Some notations and definitions

For convenience, we first briefly explain some of the terminologies which will be used here
onwards. Let RJ1×J2×···×JN (CJ1×J2×···×JN ) be the set of order N and dimension J1 × J2 ×
· · ·×JN tensors over the real (complex) field R(C), where J1, J2, · · · , JN are positive integers.
An order N tensor is denoted as A = (aj1,j2,··· ,jN ). Note that throughout the paper, tensors
are represented in calligraphic letters like A, and the notation (A)j1,j2,··· ,jN = aj1,j2,··· ,jN
represents the scalars. We use some additional notations to simplify our representation,

j(N) = {j1, j2, · · · , jN | 1 ≤ jk ≤ Jk, k = 1, 2, · · · , N}, and J(N) = J1 × J2 × · · · × JN .

Further, we denote Ĵ(N) = {J1, J2, · · · , JN}. Let the tensor A ∈ CI1×I1×···×IN×J1×J2×···×JN .
In connection with these notations, the tensor A = (ai1,i2,···iN ,j1,j2,··· ,jN )1≤ik≤Ik,1≤jl≤Jl, k =
1, 2, · · · , N and l = 1, 2, · · · , N , is denoted by A = (ai(N),j(N)). The Einstein product
[8] A∗NB ∈ CI(N)×J(N) of tensors A ∈ CI(N)×K(N) and B ∈ CK(N)×J(N) is defined by the
operation via ∗N

(A∗NB)i(N),j(N) =
∑

k1...kN

ai1...iNk1...kNbk1...kNj1...jN =
∑

k(N)

ai(N),k(N)bk(N),j(N).

In particular, if B ∈ CK(N), then A∗NB ∈ CI(N) and

(A∗NB)i(N) =
∑

k(N)

ai(N),k(N)bk(N).

The Einstein product is used in the study of the theory of relativity [8] and in the area of
continuum mechanics ([13]). Using such theory of Einstein product, the range space and
null space of a tensor A ∈ CI(M)×J(N) was introduced in [11, 28], as follows.

R(A) =
{
A∗NX : X ∈ R

J(N)
}

and N (A) =
{
X : A∗NX = O ∈ R

I(M)
}
,

where the tensor O denotes the zero tensor, i.e., all the entries are zero. As a consequence
of the definition of the range space and null space of a tensor, it is clear that N (A) is a
subspace of CJ(N) and R(A) is a subspace of CI(M). The relation of range space and some
properties of range and null spaces are discussed in [11, 28]. Here, we collect some known
results which will be used in this paper.

Lemma 2.1 (Lemma 2.2, [28]). Let A ∈ RI(M)×J(N), B ∈ RI(M)×K(L). Then R(B) ⊆ R(A)
if and only if there exists U ∈ RJ(N)×K(L) such that B = A∗NU .

Adopting the definition of range space and null space, Ji and Wei [11] discussed the index
of a tensor, as follows.

Definition 2.2. [11] Let A ∈ CI(N)×I(N), and k be the smallest nonnegative integer such
that, R(Ak) = R(Ak+1). Then k is called the index of A and denoted by ind(A).
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We now move to the definition of the Drazin inverse of a tensor, which was studied in
Theorem 3.3 [11] in the context of range space of a tensor, as follows.

Definition 2.3. Let A ∈ CI(N)×I(N) be a tensor with ind(A) = k. The tensor X ∈ CI(N)×I(N)

satisfying the following three tensor equations:

(1) Ak+1∗NX = Ak,

(2) X∗NA∗NX = X ,

(3) A∗NX = X∗NA,

is called the Drazin inverse of A, and is denoted by AD. Specifically, when k = 1, AD is
called the group inverse of A and denoted by A#.

At the same time, the authors of [11] discussed the existence of the Drazin inverse of a
tensor. In view of this, we have the following result for the uniqueness of the Drazin inverse
of a tensor.

Theorem 2.4. Let A ∈ CI(N)×I(N) be a tensor with ind(A) = k, then the Drazin inverse
AD is unique.

Proof. Suppose X and Y are two Drazin inverses of A. Now

X = X∗NA∗NX = X∗NA∗NX∗NA∗NX = X∗NX∗NA∗NA∗NX = X 2∗NA
2∗NX . (2.1)

Repeating k times the Eq. (2.1), we obtain

X = X k+1∗NA
k+1∗NX = X k+1∗NA

k = X k+1∗NA
k∗NY∗NA

= X k+1∗NA
k∗NY∗NA∗NY∗NA = X k+1∗NA

K+1∗NY
2∗NA

= Ak+1∗NX
k+1∗NY

2∗NA = A∗NX∗NY∗NA∗NY

= A2∗NX∗NY
2 = A2∗NX∗NY∗NY .

Now substituting Y as Y∗NA∗NY and repeating it k − 2 times, one can obtain X = Y .

In connection with range space and null space, Ji and Wei [11] discussed the characteri-
zation of the Drazin inverse of tensors, as follows.

Theorem 2.5 (Theorem 3.4, [11]). Let A ∈ CI(N)×I(N) and ind(A) = k. Then for l ≥ k,

the following holds

(a) R(AD) = R(Ak) and N (AD) = N (Ak),

(b) R(A∗NAD) = R(Ak), N (A∗NAD) = N (Ak), R(I − A∗NAD) = N (Ak) and N (I −
A∗NA

D) = R(Ak).

Theorem 2.6 (Theorem 3.2, [11]). Let A ∈ RI(N)×I(N). If ind(A) = k, then R(Al) = R(Ak)
and N (Al) = N (Ak) for any positive integer l ≥ k.
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We next present the definition of the diagonal tensor which was introduced earlier in
[5, 29].

Definition 2.7 (Diagonal tensor, Definition 3.12, [5]). A tensor D = (di(n),j(n)) ∈ RI(N)×I(N)

is called a diagonal tensor if all its entries are zero except for di(n),i(n).

The definition of an upper off-diagonal tensor and lower off-diagonal tensor are defined
under the influence of Definition 3.12, [29], as follows.

Definition 2.8 (Upper off-diagonal tensor). A tensor U = (ui(N),j(N)) ∈ RI(N)×I(N) is called
an upper off-diagonal tensor if all entries below the main diagonal are zero, i.e., ui(N),j(N) =
0 for jk < ik, where k = 1, 2, · · ·N.

Definition 2.9 (Lower off-diagonal tensor). A tensor L = (li(N),j(N)) ∈ RI(N)×I(N) is called
a lower off-diagonal tensor if all entries above the main diagonal are zero, i.e., li(N),j(N) =
0 for ik < jk, where k = 1, 2, · · ·N.

Using the notation of diagonal tensor we define diagonal dominant tensor, as follow.

Definition 2.10 (Diagonally dominant tensor). A tensor A = (ai(N),j(N)) ∈ RI(N)×I(N) is
called diagonally dominant if

|ai(N),i(N)| ≥
∑

j(N)6=i(N)
j(N)

|ai(N),j(N)|. (2.2)

We recall the definition of an eigenvalue of a tensor as below.

Definition 2.11 (Eigenvalue of a tensor, Definition 2.3, [17]). Let A ∈ CI(N)×I(N). A complex
number λ ∈ C is called an eigenvalue of A if there exist some nonzero tensor X ∈ CI(N)

such that A∗NX = λX .

The nonzero tensor X is called eigen vector of A and we define the spectral radius ρ(A)
of A, be the largest absolute value of the eigenvalues of A. As a consequence of the definition
of eigenvalue, the following lemma easily holds.

Lemma 2.12. Let A ∈ CI(N)×I(N). If λ is an eigenvalue of A, then for m ∈ N, λm is an
eigenvalue of Am.

Let A = (ai(N),j(N)) ∈ C
I(N)×I(N). Then we have lim

k→∞
Ak = lim

k→∞

[
(Ak)i(N),j(N)

]
. In view

of this fact, we next present the definition of the convergence of a tensor.

Definition 2.13 (Convergent tensor). A tensor A ∈ CI(N)×I(N) is called convergent tensor
if Ak → O as k →∞.

We now introduce the definition of convergence of a power series of tensor, which is a
generalization of the power series in matrices [21].

Definition 2.14 (Tensor series convergent). Let A ∈ CI(N)×I(N). The series
∞∑

k=0

ckA
k is

convergent if
∞∑

k=0

ck(A
k)i(N),j(N) is convergent for every i(N) and j(N).
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2.2. Reshape rank and decomposition of a tensor

The reshape operation systematically rearranges the entries of an arbitrary order-tensor into
a matrix [28]. This operation is denoted by rsh, and implemented by means of the standard
Matlab function reshape.

Definition 2.15 (Definition 3.1, [28]). The 1-1 and onto reshape map, rsh, is defined as
rsh : CI(M)×J(N) −→ CM×N with

rsh(A) = A = reshape(A,M,N), (2.3)

where A ∈ CI(M)×J(N), the matrix A ∈ CM×N, M =
∏M

i=1 Ii and N =
∏N

j=1 Jj. Further, the

inverse reshaping is the mapping defined as rsh−1 : CM×N −→ C
I(M)×J(N) with

rsh−1(A) = A = reshape(A, I1, · · · , IM , J1, · · · , JN), (2.4)

where the matrix A ∈ C
M×N and the tensor A ∈ C

I(M)×J(N).

Further, Lemma 3.2 in [28] defined the rank of a tensor A, denoted by rshrank(A), as

rshrank(A) = rank(rsh(A)). (2.5)

Adopting the reshaping operation, Behera et al. [2] defined the Moore-Penrose inverse of
an arbitrary order tensor. Whereas, the authors of [29] was introduced this Moore-Penrose
inverse for even-order tensors, which is recalled next.

Definition 2.16 (Definition 2.2, [29]). Let A ∈ CI(N)×I(N). The tensor X ∈ CI(N)×I(N)

satisfying the following four tensor equations:

A∗NX∗NA = A; X∗NA∗NX = X ; (A∗NX )
∗ = A∗NX ; (X∗NA)

∗ = X∗NA

is called the Moore-Penrose inverse of A, and is denoted by A†. In particular, if the
tensor X satisfies only first equation, then X is called {1}-inverse of A and denoted by A(1).

On the other hand, using reshape rank of a tensor A, Behera et al. [2] discussed full
rank decomposition of a tensor, as stated below.

Theorem 2.17. [Theorem- 2.22 [2]] Let A ∈ CI(N)×I(N). Then there exist a left invertible
tensor F ∈ CI(N)×H(R) and a right invertible tensor G ∈ CH(R)×I(N) such that

A = F ∗R G, (2.6)

where rshrank(F) = rshrank(G) = rshrank(A) = r = H(R).

In connection with the Moore-Penrose inverse of tensors, the singular value decomposi-
tion (SVD) discussed in Lemma 3.1 [29] for a complex tensor. However, the authors of [5]
proved the same result for a real tensor.

Lemma 2.18. (Lemma 3.1, [29]) A tensor A ∈ CI(N)×J(N) can be decomposed as

A = U ∗N B ∗N V
∗,

where U ∈ CI(N)×I(N) and V ∈ CJ(N)×J(N) are unitary tensors, and B ∈ CI(N)×J(N) is a
tensor such that (B)i(N),j(N) = 0, if ik 6= jk, where k = 1, 2, · · ·N.
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3. Results on Drazin inverse of tensors

The Drazin inverse of tensors plays nearly the same role as the standard inverse of an
invertible tensor. General properties of the Drazin inverse of tensors via Einstein product
can be found in [11]. In this section, we further embellish on this theory by producing a few
more characterizations of this inverse. We divided this section into two parts. In the first
part, we obtain several identities involving the Drazin inverse of tensors. The second part
contains the computation of the Drazin inverse of tensors.

3.1. Some identities

It is worth mentioning that Ji and Wei [11] studied the Drazin inverse of tensors, which
motivates us to investigate further on the theory of the Drazin inverse of tensors. We find
some interesting identities. Some of these are used in the next sections. The very first result
of this section will numerously use in other consequential identities.

Lemma 3.1. Let A ∈ CI(N)×I(N) be a tensor with ind(A) = k. Then Ap∗N(AD)p =
AD∗NA = (AD)p∗NAp for every positive integer p.

Proof.

Ap∗N(A
D)p = A∗N · · · ∗NA

︸ ︷︷ ︸
p times

∗N A
D∗N · · · ∗NA

D

︸ ︷︷ ︸
p times

= A∗N · · · ∗NA
︸ ︷︷ ︸

(p−1) times

∗N(A
D∗NA∗NA

D)∗N A
D∗N · · · ∗NA

D

︸ ︷︷ ︸

(p−2) times

= A∗N · · · ∗NA
︸ ︷︷ ︸

(p−1) times

∗N A
D∗N · · · ∗NA

D

︸ ︷︷ ︸

(p−1) times

= · · · · · ·

= A∗NA
D = AD∗NA.

Using the method as in the proof of the above Lemma 3.1, one can show the next theorem.

Theorem 3.2. Let A ∈ CI(N)×I(N) be a tensor with ind(A) = k. Then the following holds

(a) (A∗)D = (AD)∗,

(b) If l > m > 0, then (AD)l−m = Am∗N(AD)l,

(c) If m > 0 and (l −m) ≥ k, then (A)l−m = Al∗N(AD)m.

Recall that a tensor A ∈ C
I(N)×I(N) is called nilpotent if Ak = O, where O ∈ C

I(N)×I(N)

is the zero tensor. It is trivial that, the nilpotent tensors are always singular. The next
result presents the existence of the Drazin inverse of nilpotent tensors.

Corollary 3.3. Let A ∈ CI(N)×I(N) be a nilpotent tensor with index k. Then AD = O.

7



The power of the Drazin inverse and the Drazin inverse of power tensors can be switched
without changing the result. Which is discussed in the following theorem.

Theorem 3.4. Let A ∈ CI(N)×I(N) and ind(A) = k. Then for l ∈ N, the following holds

(a) (Al)D = (AD)l,

(b) (AD)# = A2∗NAD,

(c) ((AD)D)D = AD.

Proof. (a) Let the tensor X = (AD)l. It is enough to show X is the Drazin inverse of Al.

Now

(Al)k+1∗NX = (Al)k∗NA
l∗N(A

D)l = (Al)k∗NA∗NA
D (3.1)

= (Ak)l−1∗NA
k∗NA∗NA

D = (Ak)l−1∗NA
k = (Ak)l = (Al)k,

further,

X∗NA
l∗NX = (AD)l∗NA

l∗N(A
D)l = (AD)l∗NA∗NA

D (3.2)

= (AD)l−1∗NA
D∗NA∗NA

D = (AD)l−1∗NA
D = X

and

(AD)l∗NA
l = AD∗NA = A∗NA

D = Al∗N(A
D)l. (3.3)

From (3.1), (3.2) and (3.3), we conclude X is the Drazin inverse of Al. Hence (Al)D = (AD)l.
(b) Let X = A2∗NAD. By Definition 2.3, we have

AD∗NX∗NA
D = AD∗NA

2∗NA
D∗NA

D = AD∗NA∗NA
D = AD,

further,

X∗NA
D∗NX = A2∗NA

D∗NA
D∗NA

2∗NA
D = A∗NA

D∗NA∗NA
D∗NA∗NA

D∗NA

= A∗NA
D∗NA = A2∗NA

D = X ,

and

AD∗NX = AD∗NA
2∗NA

D = A∗NA
D∗NA∗NA

D = A2∗NA
D∗NA

D = X∗NA
D.

Thus (AD)# = A2∗NA
D.

(c) Consider Y = AD. Now applying the Definition of the Drazin inverse, we obtain

((AD)D)k+1∗NY = ((AD)D)k∗N(A
D)D∗NA

D = ((AD)D)k−1∗N(A
D)D∗NA

D∗N(A
D)D

= ((AD)D)k−1∗N(A
D)D = ((AD)D)k,

and Y∗N(A
D)D∗NY = AD∗N(A

D)D∗NA
D = AD∗NA

D∗NA∗NA
D∗N(A

D)D

= A∗N(A
D)3∗N(A

D)D = · · · = Ak−1∗N(A
D)k+1∗N(A

D)D

= Ak−1∗N(A
D)k = Ak−1∗N(A

D)k−1∗NA
D

= A∗NA
D∗NA

D = Y .

Further, we have (AD)D∗NAD = AD∗N(AD)D. Hence Y is the Drazin inverse of (AD)D.
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Corollary 3.5. Let A ∈ C
I(N)×I(N) be a tensor with ind(A) = k. Then the following holds

(a) (Al)# = (AD)l for l ≥ k,

(b) AD∗N(AD)# = A∗NAD.

Remark 3.6. Like the well-known property of the Moore Penrose inverse, i.e., (A†)† = A
(see Proposition 3.3, [29]), it is worth pointing out that the Drazin inverse is not following
the property, i.e., (AD)D 6= A, as shown below with an example.

Example 3.7. Consider a tensor A = (aijkl) ∈ R
2×3×2×3 with entries

aij11 =

(
0 1 1
1 1 1

)

, aij12 =

(
0 0 1
0 1 1

)

, aij13 =

(
0 0 0
0 0 1

)

,

aij21 =

(
0 1 1
0 1 1

)

, aij22 =

(
0 0 1
0 0 1

)

, aij23 =

(
0 0 0
0 0 0

)

.

Then one can easily verify (AD)D 6= A, however AD = O = (AD)D = ((AD)D)D ∈ R2×3×2×3.

At this point one may be interested to know, when does the above equality property
(Remark 3.6) hold ? The answer to this query is discussed in the next theorem.

Theorem 3.8. Let A ∈ C
I(N)×I(N). Then (AD)D = A if and only if ind(A) = 1.

Proof. Let A be of index 1. Now (AD)k+1∗NA = (AD)k−1∗NAD∗NA∗NAD = (AD)k. Since
A is of index 1 so A∗NAD∗NA = A∗NA#∗NA = A and A∗NAD = AD∗NA. Conversely,
let (AD)D = A. By definition of the Drazin inverse, A∗NAD∗NA = A. This implies
A = A2∗NA

D. So by Lemma 2.1, R(A) ⊆ R(A2). It is obvious that R(A2) ⊆ R(A). Thus
R(A2) = R(A). Hence A is of index 1.

Thus, the special case of the Drazin inverse (index k = 1) gives necessary and sufficient
conditions for the equality.

Remark 3.9. The Theorem 3.4 (a) is not true if we use two different tensor A and B, i.e.,
(A∗NB)D 6= AD∗NBD, where A, B ∈ CI(N)×I(N) and A 6= B.

Example 3.10. Consider the tensor A = (aijkl) ∈ R2×3×2×3 defined in Example (3.7) and

a tensor B = (bijkl) ∈ R2×3×2×3 with entries

bij11 =

(
0 0 0
0 0 0

)

, bij12 =

(
1 0 0
1 0 0

)

, bij13 =

(
1 1 0
1 1 0

)

,

bij21 =

(
1 0 0
0 0 0

)

, bij22 =

(
1 1 0
1 0 0

)

, bij23 =

(
1 1 1
1 1 0

)

.

Then AD = BD = O = AD∗NBD ∈ R2×3×2×3 and (A ∗N B)D = (xijkl) ∈ R2×3×2×3 with
entries

xij11 =

(
0 0 0
0 0 0

)

, xij12 =

(
1 2 0
−1 −1 0

)

, xij13 =

(
0 0 2
0 −1 −1

)

,

xij21 =

(
0 −1 0
2 0 0

)

, xij22 =

(
0 −1 −1
0 2 0

)

, xij23 =

(
0 0 −1
0 0 1

)

.

Hence (A∗NB)D 6= AD∗NBD.
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The above remark (3.9) can be stated as reverse order law for the Drazin inverse of
tensors, which is a fundamental in the theory of generalized inverses of tensors. Recently,
there has been increasing interest in studying reverse order law of tensors based on different
generalized inverses [2, 25, 26]. In this regard, we discuss one sufficient condition of the
reverse order law for the Drazin inverse of tensors, as follows.

Theorem 3.11. Suppose A,B ∈ CI(N)×I(N) are each of index k. If A∗NB = B∗NA, then
the followings are true

(a) AD∗NB = B∗NAD and A∗NBD = BD∗NA,
(b) (A∗NB)D = BD∗NAD = AD∗NBD.

Proof. Since

AD∗NB = AD∗NA∗NA
D∗NB = (AD)2∗NB∗NA = AD∗NA

D∗NA∗NA
D∗NB∗NA

= (AD)3∗NB∗NA
2 = · · · = (AD)k+1∗NB∗NA

k = (AD)k+1∗NB∗NA
k+1∗NA

D

= (AD)k+1∗NA
k+1∗NB∗NA

D = AD∗NA∗NB∗NA
D,

and

B∗NA
D = B∗NA

D∗NA∗NA
D = A∗NB∗N(A

D)2 = · · · = Ak∗NB∗N (A
D)k+1

= Ak+1∗NA
D∗NB∗N(A

D)k+1 = AD∗NA
k+1∗NB∗N(A

D)k+1

= AD∗NB∗NA
k+1∗N(A

D)k+1 = AD∗NB∗NA∗NA
D = AD∗NA∗NB∗NA

D.

So we obtain AD∗NB = B∗NAD. Similarly, we can show A∗NBD = BD∗NA. Next we will
claim part (b). By using the first part, we get

BD∗NA
D = BD∗NA

D∗NA∗NA
D = A∗NB

D∗N(A
D)2 = · · · = Ak∗NB

D∗N(A
D)k+1

= Ak+1∗NA
D∗NB

D∗N(A
D)k+1 = AD∗NA

k+1∗NB
D∗N(A

D)k+1

= AD∗NB
D∗NA

k+1∗N(A
D)k+1 = AD∗NB

D∗NA∗NA
D,

and

AD∗NB
D = AD∗NA∗NA

D∗NB
D = (AD)2∗NB

D∗NA = · · · = (AD)k+1∗NB
D∗NA

k

= (AD)k+1∗NB
D∗NA

k+1∗NA
D = (AD)k+1∗NA

k∗NB
D∗NA∗NA

D

= AD∗NB
D∗NA∗NA

D.

Thus BD∗NAD = AD∗NBD. Now let X = BD∗NAD. Since

(A∗NB)
k+1∗NX = Ak+1∗NB

k+1∗NB
D∗NA

D = Ak+1∗NB
k∗NA

D = Bk∗NA
k+1∗NA

D

= Bk∗NA
k = (A∗NB)

k,

X∗N(A∗NB)∗NX = BD∗NA
D∗NA∗NB∗NB

D∗NA
D = BD∗NA

D∗NA∗NB∗NA
D∗NB

D

= BD∗NA
D∗NA∗NA

D∗NB∗NB
D = BD∗NA

D∗NB∗NB
D

= AD∗NB
D∗NB∗NB

D = AD∗NB
D = BD∗NA

D = X , and
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A∗NB∗NX = A∗NB∗NB
D∗NA

D = A∗NB
D∗NB∗NA

D = BD∗NA∗NA
D∗NB

= BD∗NA
D∗NA∗NB = X∗NA∗NB.

Thus X is the Drazin inverse of A∗NB. Hence (A∗NB)D = BD∗NAD = AD∗NBD.

However, the converse of the above theorem need not be true, as shown below with an
example.

Example 3.12. Consider the tensor A = (aijkl) ∈ R2×3×2×3 defined in Example (3.7) and

a tensor B = (bijkl) ∈ R2×3×2×3 with entries

bij11 =

(
0 0 0
2 0 0

)

, bij12 =

(
0 0 0
0 4 0

)

, bij13 =

(
0 0 0
0 0 1

)

,

bij21 =

(
0 3 0
0 0 0

)

, bij22 =

(
0 0 5
0 0 1

)

, bij23 =

(
0 0 0
0 0 2

)

.

Then A∗NB = (xijkl) ∈ R2×3×2×3 and B∗NA = (yijkl) ∈ R2×3×2×3, where

xij11 =

(
0 2 2
0 2 2

)

, xij12 =

(
0 0 4
0 0 4

)

, xij13 =

(
0 0 0
0 0 0

)

,

xij21 =

(
0 0 3
0 3 3

)

, xij22 =

(
0 0 0
0 0 5

)

, xij23 =

(
0 0 0
0 0 0

)

,

and

yij11 =

(
0 3 5
0 4 4

)

, yij12 =

(
0 0 5
0 0 4

)

, yij13 =

(
0 0 0
0 0 2

)

,

yij21 =

(
0 0 5
0 4 4

)

, yij22 =

(
0 0 0
0 0 3

)

, yij23 =

(
0 0 0
0 0 0

)

.

We can easily see that A∗NB 6= B∗NA but (A ∗N B)D = AD ∗N BD = O ∈ R2×3×2×3.

The next result presents a characterization of the Drazin inverse of product of two tensors.

Theorem 3.13. Let A,B ∈ CI(N)×I(N). Then (A∗NB)D = A∗N [(B∗NA)2]D∗NB.

Proof. Let X = A∗N [(B∗NA)2]D∗NB and k = max{ind(A∗NB), ind(B∗NA)}.
Now, we have

(A∗NB)
k+2∗NX = (A∗NB)

k+1∗NA∗NB∗NA∗N [(B∗NA)
2]D∗NB

= (A∗NB)
k+1∗NA∗N(B∗NA)∗N(B∗NA)

D∗N(B∗NA)
D∗NB

= (A∗NB)
k+1∗NA∗N(B∗NA)

D∗NB = A∗N(B∗NA)
k+1∗N (B∗NA)

D∗NB

= A∗N(B∗NA)
k∗NB = (A∗NB)

k+1,
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and

X∗N(A∗NB)∗NX = A∗N [(B∗NA)
2]D∗NB∗NA∗NB∗NA∗N [(B∗NA)

2]D∗NB

= A∗N [(B∗NA)
2]D∗N(B∗NA)

2∗N [(B∗NA)
2]D∗NB

= A∗N [(B∗NA)
2]D∗NB = X ,

Further,

X∗NA∗NB = A∗N [(B∗NA)
D]2∗NB∗NA∗NB

= A∗N(B∗NA)
D∗N(B∗NA) ∗N (B∗NA)

D∗NB

= A∗N(B∗NA)∗N(B∗NA)
D∗N(B∗NA)

D∗NB

= (A∗NB)∗NA∗N [(B∗NA)
2]D∗NB = A∗NB∗NX .

Therefore, (A∗NB)D = A∗N [(B∗NA)2]D∗NB.

Remark 3.14. In general, the Drazin inverse of addition (resp. subtraction) of two different
tensor is not equal to individuals, i.e., (A±B)D 6= AD±BD, as shown below with an example.

Example 3.15. Consider the tensor A = (aijkl) ∈ R2×3×2×3 defined in Example (3.7) and

the tensor B = (aijkl) ∈ R2×3×2×3 defined in Example (3.10).

Then AD = BD = O = AD + BD 6= (A + B)D, where AD + BD = (xijkl) ∈ R2×3×2×3 with
entries

xij11 =

(
0 2 2
0 2 2

)

, xij12 =

(
0 0 4
0 0 4

)

, xij13 =

(
0 0 0
0 0 0

)

,

xij21 =

(
0 0 3
0 3 3

)

, xij22 =

(
0 0 0
0 0 5

)

, xij23 =

(
0 0 0
0 0 0

)

.

Similarly, one can show AD − BD 6= (A− B)D.

At this stage one may be excited to know when does the Drazin inverse of addition (resp.
subtraction) of two different tensor will be equal to the individuals. The following theorem
answer to this question.

Theorem 3.16. Let A,B ∈ CI(N)×I(N) be of index k. If A∗NB = B∗NA = O, then

(a) (A+ B)D = AD + BD,

(b) (A− B)D = AD − BD.

Proof. Since A∗NB = B∗NA = O, we have (A+ B)k+1 = Ak+1 + Bk+1 and

Ak+1∗NB
D = Ak∗NA∗NB

D∗NB∗NB
D = Ak∗NA∗NB∗NB

D∗NB
D = O. (3.4)

Similarly, we can show Bk+1∗NAD = O. Now using these relations and the Theorem 3.11,
we obtain

(A+ B)k+1∗N(A
D + BD) = Ak + Bk = (A+ B)k, (3.5)
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(AD + BD)∗N(A+ B)∗N (A
D + BD) = AD + BD, (3.6)

and

(A+ B)∗N (A
D + BD) = (AD + BD)∗N(A+ B). (3.7)

From (3.5), (3.6) and (3.7), we conclude AD + BD is the Drazin inverse of A + B. Hence
proved part (a). Using the similar lines, we can show (A− B)D = AD − BD.

In case of the group inverse, we can relax one sufficient condition of Theorem 3.16 and
computes the group inverse of the tensor A+ B as per the following theorem.

Theorem 3.17. Suppose A,B ∈ CI(N)×I(N) are of index one. If A∗NB = O, then

(A+ B)# = (I − B∗NB
#)∗NA

# + B#∗N(I −A∗NA
#).

Proof. Let X = (I −B∗NB#)∗NA# +B#∗N (I −A∗NA#). By using A∗NB = O, we obtain

A∗NX∗NA = A∗NA
#∗NA−A∗NB∗NB

#∗NA
#∗NA+A∗NB

#∗NA−A∗NB
#∗NA∗NA

#∗NA

= A+A∗NB
#∗NA−A∗NB

#∗NA = A,

and

A∗NX∗NB = A∗NA
#∗NB −A∗NB∗NB

#∗NA
#∗NB +A∗NB

#∗NB −A∗NB
#∗NA∗NA

#∗NB

= A#∗NA∗NB +A∗NB∗NB
# = O.

Similarly, we can show B∗NX∗NB = B and B∗NX∗NA = O. Also we have

X∗NA∗NX = (A#∗NA− B∗NB
#∗NA

#∗NA+ B#∗NA− B
#∗NA∗NA

#∗NA)∗N

(A# − B∗NB
#∗NA

# + B# − B#∗NA∗NA
#)

= (A#∗NA− B∗NB
#∗NA

#∗NA)∗N(A
# − B∗NB

#∗NA
# + B# − B#∗NA∗NA

#)

= A# − B∗NB
#∗NA

#,

and X∗NB∗NX = B# − B#∗NA∗NA#. Now using the above results, we get

(A+ B)∗NX∗N(A+ B) = A∗NX∗NA+A∗NX∗NB + B∗NX∗NA+ B∗NX∗NB = A+ B,

and

X∗N(A+ B)∗NX = X∗NA∗NX + X∗NB∗NX = A# − B∗NB
#∗NA

# + B# − B#∗NA∗NA
# = X ,

further,

(A+ B)∗NX = (A∗NA
# −A∗NB∗NB

#∗NA
# +A∗NB

# −A∗NB
#∗NA∗NA

#)

+(B∗NA
# − B∗NB∗NB

#∗NA
# + B∗NB

# − B∗NB
#∗NA∗NA

#)

= A∗NA
# + B∗NB

# − B∗NB
#∗NA∗NA

#

= (A#∗NA− B∗NB
#∗NA

#∗NA+ B#∗NA− B
#∗NA∗NA

#∗NA)

+(A#∗NB − B∗NB
#∗NA

#∗NB + B#∗NB − B
#∗NA∗NA

#∗NB)

= X∗NA+ X∗NB = X∗N(A+ B).

Therefore, (A+ B)# = (I − B∗NB#)∗NA# + B#∗N(I −A∗NA#).
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3.2. Computation of the Drazin inverse of tensors

Now we present the main objective of this paper, which yields the construction of the Drazin
inverse of a tensor using other generalized inverses and decomposition of tensors. One can
find the matrix version of these results in [1, 4].

Theorem 3.18. Let A ∈ CI(N)×I(N) be a tensor with ind(A) = k. Then

AD = Ak∗N(A
2k+1)†∗NA

k

Proof. By using the definition of the Drazin inverse, we obtain

Ak = Ak+1∗NA
D = Ak+2∗N(A

D)2 = · · · = A2k∗N(A
D)k = A2k+1∗N(A

D)k+1.

Let X = Ak∗N(A
2k+1)†∗NA

k. Now

Ak+1∗NX = Ak+1∗NA
k∗N(A

2k+1)†∗NA
k = A2k+1∗N(A

2k+1)†∗NA
2k+1∗N(A

D)k+1

= A2k+1∗N(A
D)k+1 = Ak+1∗NA

k∗N(A
D)k∗NA

D = Ak+1∗NA∗NA
D∗NA

D

= Ak+1∗NA
D∗NA∗NA

D = Ak+1∗NA
D = Ak,

X∗NA∗NX = Ak∗N(A
2k+1)†∗NA

k∗NA∗NA
k∗N(A

2k+1)†∗NA
k

= Ak∗N(A
2k+1)†∗NA

2k+1∗N(A
2k+1)†∗NA

2k+1∗N(A
D)k+1

= Ak∗N(A
2k+1)†∗NA

2k+1∗N(A
D)k+1 = Ak∗N(A

2k+1)†∗NA
k = X ,

and

A∗NX = A∗NA
k∗N(A

2k+1)†∗NA
k = A∗NA

2k∗N(A
D)k∗N(A

2k+1)†∗NA
2k+1∗N (A

D)k+1

= (AD)k∗NA
2k+1∗N(A

2k+1)†∗NA
2k+1∗N(A

D)k+1 = (AD)k∗NA
2k+1∗N(A

D)k+1

= (AD)k+1∗NA
2k+1∗N(A

D)k = (AD)k+1∗NA
2k+1∗N(A

2k+1)†∗NA
2k+1∗N(A

D)k

= A2k+1∗N(A
D)k+1∗N(A

2k+1)†∗NA∗NA
2k∗N(A

D)k

= Ak∗N(A
2k+1)†∗NA

k+1 = X∗NA.

Therefore, by Definition 2.3, we obtain AD = X = Ak∗N(A
2k+1)†∗NA

k.

Further, the Drazin inverse of a tensor is constructed within the framework of Moore-
Penrose inverse, as follows.

Theorem 3.19. Let A ∈ C
I(N)×I(N) be a tensor with index k. If l is any integer with l ≥ k,

then AD = X †, where X = (Al)†∗NA2l+1∗N(Al)†.

Proof. To claim the theorem, it is enough to show (AD)† = X . As AD = AD∗NA∗NAD =
(AD)2∗NA = A∗N(AD)2. Utilizing the fact AD = AD∗NA∗NAD, l-times repetitively, we
obtain

AD = (AD)l+1∗NA
l = Al∗N(A

D)l+1. (3.8)
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Now by using Eq. (3.8), we have

AD∗NX∗NA
D = AD∗N(A

l)†∗NA
2l+1∗N(A

l)†∗NA
D

= (AD)l+1∗NA
l∗N(A

l)†∗NA
l∗NA∗NA

l∗N(A
l)†∗NA

l∗N(A
D)l+1

= (AD)l+1∗NA
l∗NA∗NA

l∗N (A
D)l+1 = AD∗NA∗NA

D = AD,

X∗NA
D∗NX = (Al)†∗NA

2l+1∗N(A
l)†∗NA

D∗N(A
l)†∗NA

2l+1∗N(A
l)†

= (Al)†∗NA
l+1∗NA

l∗N(A
l)†∗NA

l∗N(A
D)l+1∗N(A

l)†∗NA
2l+1∗N(A

l)†

= (Al)†∗NA
l+1∗NA

D∗N(A
l)†∗NA

2l+1∗N(A
l)†

= (Al)†∗NA∗NA
D∗NA

l∗N(A
l)†∗NA

l∗NA
l+1∗N(A

l)†

= (Al)†∗NA∗NA
D∗NA

l∗NA
l+1∗N (A

l)† = X .

Since

X∗NA
D = (Al)†∗NA

2l+1∗N(A
l)†∗NA

D = (Al)†∗NA
l+1∗NA

l∗N(A
l)†∗NA

l∗N(A
D)l+1

= (Al)†∗NA
l+1∗NA

l∗N(A
D)l+1 = (Al)†∗NA

l+1∗NA
D = (Al)†∗NA

l,

and AD∗NX = AD∗N(Al)†∗NA2l+1∗N(Al)† = (AD)l+1∗NAl∗N(Al)†∗NAl∗NAl+1∗N(Al)† =
(AD)l+1∗NA

l∗NA
l+1∗N(A

l)† = AD∗NA
l+1∗N(A

l)† = Al∗N(A
l)†. Therefore, (X∗NA

D)∗ =
((Al)†∗NAl)∗ = (Al)†∗NAl = X∗NAD, and (AD∗NX )∗ = (Al∗N(Al)†)∗ = Al∗N(Al)† =
AD∗NX . Hence (AD)† = X .

Using method of induction and definition of the Drazin inverse of the tensor, we present
another characterization for computation of the Drazin inverse of tensors, as follows.

Preposition 3.20. Let A ∈ CI(N)×I(N) and ind(A) = k. If there exists a tensor X ∈
C

I(N)×I(N) such that A∗NX
k+1 = X k and X∗NA

k+1 = Ak, then for m ∈ N, the followings
hold

(a) Ak = Xm∗NA
k+m,

(b) X k∗NAk = X k+m∗NAk+m,

(c) AD = X k+1∗NAk.

We now discuss the method of construction of the group inverse of a tensor using a
{1}-inverse of A.

Theorem 3.21. Let A ∈ C
I(N)×I(N) and ind(A) = 1. Then A# = A∗N(A

3)(1)∗NA, where
(A3)(1) is an arbitrary {1}-inverse of A3.

Proof. Let X = A∗N(A3)(1)∗NA. Since

A∗NX∗NA = A2∗N(A
3)(1)∗NA

2 = A∗NA∗NA
#∗NA∗N(A

3)(1)∗NA∗NA
#∗NA∗NA

= A#∗NA
3∗N(A

3)(1)∗NA
3∗NA

# = A#∗NA
3∗NA

# = A,
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X∗NA∗NX = A∗N(A
3)(1)∗NA

3∗N(A
3)(1)∗NA = (A#)2∗NA

3∗N(A
3)(1)∗NA

3∗N(A
3)(1)∗NA

= (A#)2∗NA
3∗N(A

3)(1)∗NA = A∗N(A
3)(1)∗NA = X ,

and

A∗NX = A∗NA∗N(A
3)(1)∗NA = A#∗NA

3∗N(A
3)(1)∗NA

3∗N
(
A#

)2
= (A#)2∗NA

3∗NA
#

= (A#)2∗NA
3∗N(A

3)(1)∗NA
3∗NA

# = A∗N(A
3)(1)∗NA∗NA = X∗NA.

Thus X is the group inverse of A. Hence A# = A∗N(A3)(1)∗NA.

For computation of the Drazin inverse, the index-1 nilpotent decomposition plays an
important role, which we discuss in the next theorem.

Theorem 3.22. Let A ∈ CI(N)×I(N). Then A has a unique decomposition A = B+N , such
that B is of index 1, N is nilpotent, and N∗NB = B∗NN = O. Further, (AD)# = B.

Proof. First we prove, if the tensorA has a decomposition, A = B+N , such that B is of index
1, N is nilpotent, and N∗NB = B∗NN = O then AD = B#. Subsequently, the uniqueness
follows from the uniqueness of the group inverse. Since B# = B∗N (B#)2 = (B#)2∗NB, so
post-multiplying by N , we obtain B#∗NN = O. Similarly, N∗NB# = O. Further, since
N nilpotent tensor, then there exists a positive integer k such that N k = O. This yields
Ak = (B+N )k = Bk+N k = Bk. Now using these results, we get Ak+1∗NB# = Bk+1∗NB# =
Bk = Ak, B#∗NA∗NB# = B∗N(B#)2 = B#, and A∗NB# = B∗NB# = B#∗NA. Thus B#

is the Drazin inverse of A. Hence B =
(
AD

)#
. Now consider B =

(
AD

)#
, and prove the

decomposition A = B + N satisfies the required conditions. In view of the Theorem 3.4
(b) we obtain N∗NB = A∗NA2∗NAD − A2∗NAD∗NA2∗NAD = A3∗NAD − A3∗NAD = O.
Similarly, one can show B∗NN = O. Now to claim N is nilpotent, we consider ind (A) = k.

Then
Ak = Bk +N k = ((AD)#)k +N k = A2k∗N(A

D)k +N k = Ak +N k.

Thus N k = O. Hence completes the proof.

Using the definition of reshape operation of a tensor A = F∗NH∗NG ∈ CI(M)×J(N), we
obtain rshrank(A) ≤ rshrank(H). On the other hand, suppose Gr is the right inverse of
G and Fl is the left inverse of F . Now pre-multiplying Fl and post-multiplying Gr to the
tensor A, we obtain H = Fl∗MA∗NGr. This implies rshrank(H) ≤ rshrank(A). As a
consequence, this is stated in the next result.

Theorem 3.23. Let A ∈ CI(M)×J(N). Suppose A = F∗NH∗NG, where F ∈ CI(M)×K(L) and
G ∈ CK(L)×J(N). If rshrank(F) = K(L) = rshrank(G), then rshrank(A) = rshrank(H).

One of its application for computing the Moore-Penrose inverse is already presented in the
recent literature [2]. The computation of the group inverse via full rank tensor factorization
is discussed in the next theorem.
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Theorem 3.24. Suppose A ∈ C
I(N)×I(N) has the full-rank factorization, A = F∗NG, where

F ∈ CI(N)×K1×···×KL and G ∈ CK1×···×KL×I(N). Then A is group invertible if and only if
G∗NF is nonsingular. Further, we have A# = F∗N(G∗NF)−2∗NG.

Proof. LetA = F∗NG and rshrank(A) = r. Now using Theorem 3.23, we obtain, rshrank(A2) =
rshrank(G∗NF). Therefore, rshrank(A2) = rshrank(A) if and only if G∗NF is non-
singular. Hence completes first part of the theorem. To claim the remaining, let X =
F∗N(G∗NF)−2∗NG. Now we have

A∗NX∗NA = F∗NG∗NF∗N(G∗NF)
−2∗NG∗NF∗NG = F∗NG = A, (3.9)

X∗NA∗NX = F∗N(G∗NF)
−2∗NG∗NF∗NG∗NF∗N(G∗NF)

−2∗NG = X , (3.10)

A∗NX = F∗NG∗NF∗N(G∗NF)
−2∗NG = F∗N(G∗NF)

−2∗NG∗NF∗NG = X∗NA. (3.11)

Thus, from (3.9), (3.10) and (3.11) one can conclude X is the group inverse of A.

4. W-weighted Drazin inverse

The W-weighted Drazin inverse, first introduced by Cline and Greville [7] for rectangular
matrices. Further, some characterization has given in [31]. Also, it extended to linear
operators [27]. In this section, we introduce the W-weighted Drazin inverse for arbitrary
order tensors via Einstein product, which is a generalization of the generalized inverses of
rectangular matrices, as follows.

Definition 4.1. Let B ∈ CI(M)×J(N) and W ∈ CJ(N)×I(M). If a tensor X ∈ CI(M)×J(N)

satisfying

(a) (B∗NW)k+1 ∗MX∗NW = (B∗NW)k for some positive integer k,

(b) X∗NW∗MB∗NW∗MX = X ,

(c) B∗NW∗MX = X∗NW∗MB,

is called the W-weighted Drazin inverse of B and denoted by BD,W .

Using the Defintion 4.1 and Theorem 3.13 one can prove the following results.

Lemma 4.2. Let B ∈ CI(M)×J(N) and W ∈ CJ(N)×I(M), be any tensors. Then

(a) (B∗NW)D = B∗N [(W∗MB)2]D∗NW,

(b) B = BD,W if and only if B = B∗NW∗MB∗NW∗MB.

In connection with the above lemma of an arbitrary-order tensor, the following theorem
collects some useful identities of the W-weighted Drazin inverse of tensors.

Theorem 4.3. Let B ∈ CI(M)×J(N) and W ∈ CJ(N)×I(M). Then for every positive integer p,
the following holds

(a) W∗M [(B∗NW)p]D = [(W∗MB)p]D∗NW,
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(b) B∗N [(W∗MB)
p]D = [(B∗NW)p]D∗MB.

Proof. By using method of induction, we will claim the first part. Let us assume p = 1. Now
by Lemma 4.2 (a) and Theorem 3.4 (a), we getW∗M [(B∗NW)]D =W∗MB∗N [(W∗MB)2]D∗NW =
(W∗MB)D∗NW∗MB∗N(W∗MB)D∗NW = (W∗MB)D∗NW. Thus the claim is true for p = 1.
Assume it is true for p = k. That is W∗M [(B∗NW)k]D = [(W∗MB)

k]D∗NW. Next we will
claim for p = k + 1. Since

W∗M [(B∗NW)k+1]D = W∗M [(B∗NW)k]D∗N(B∗NW)D = [(W∗MB)
k]D∗MW∗M(B∗NW)D

= [(W∗MB)
k]D∗N(W∗MB)

D∗NW = [(W∗MB)
D]k∗N(W∗MB)

D∗NW

= [(W∗MB)
D]k+1∗NW = [(W∗MB)

k+1]D∗NW.

Therefore, W∗M [(B∗NW)p]D = [(W∗MB)p]D∗NW, p ∈ N. Using the similar lines, we can
show B∗N [(W∗MB)p]D = [(B∗NW)p]D∗MB for all p ∈ N.

We next present another characterization of the W-weighted Drazin inverse of tensors.

Theorem 4.4. Let B ∈ CI(M)×J(N) and W ∈ CJ(N)×I(M). Then for every positive integer p,
there exist an unique tensor X ∈ CI(M)×J(N) such that

(a) (B∗NW)D∗MX∗NW = [(B∗NW)p]D,

(b) B∗NW∗MX = X∗NW∗MB,

(c) B∗NW∗M(B∗NW)D∗MX = X . Further, X = B∗N [(W∗MB)p]D.

Proof. Let X = B∗N [(W∗MB)p]D, we first claim that X satisfies all the three equations and
then will discuss the uniqueness. Let X = B∗N [(W∗MB)p]D. Now by Theorem 4.3, we have

(B∗NW)D∗MX∗NW = (B∗NW)D∗MB∗N [(W∗MB)
p]D ∗NW

= (B∗NW)D∗M
[
(B∗NW)D

]p
∗MB∗NW =

[
(B∗NW)D

]p+1
∗MB∗NW

=
[
(B∗NW)D

]p
= [(B∗NW)p]D ,

and B∗NW∗MX = B∗NW∗MB∗N [(W∗MB)
p]

D
= B∗NW∗M [(B∗NW)p]

D ∗MB

= B∗N [(W∗MB)
p]

D ∗NW∗MB = X∗NW∗MB,

and B∗NW∗M(B∗NW)D∗MX = B∗NW∗M(B∗NW)D∗MB∗N [(W∗MB)p]D = [(B∗NW)p]D∗MB =
B∗N [(W∗MB)p]

D = X . Hence X satisfies all the required equations. Let Y be another tensor
which satisfies (a) − (c). Now Y = B∗NW∗M (B∗NW)D∗MY = (B∗NW)D∗MB∗NW∗MY =
(B∗NW)D∗MY∗NW∗MB = [(B∗NW)p]D∗MB = B∗N [(W∗MB)p]D = X .

Using the method as in the proof of Theorem 4.4, one can prove the next theorem.

Theorem 4.5. Let B ∈ CI(M)×J(N) and W ∈ CJ(N)×I(M). Then for every positive integer p,
there exists an unique tensor X ∈ CI(M)×J(N) such that

(a) X∗NW = B∗NW∗M [(B∗NW)p]D,
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(b) W∗MX =W∗MB∗N [(W∗MB)
p]D,

(c) X∗NW∗M (B∗NW)p−1∗MX = X . Further, X = B∗N [(W∗MB)p]D.

By combining Theorem 4.4 and Theorem 4.5 for a particular choice of p = 2, we get the
following result as a corollary.

Corollary 4.6. Let B ∈ CI(M)×J(N) andW ∈ CJ(N)×I(M). Then the tensor X = B∗N [(W∗MB)2]D

is the W-weighted Drazin inverse of B.

The above Corollary reflected the existence of the W-weighted drazin inverse and the
uniqueness of the W-weighted Drazin inverse is discussed in the next theorem.

Theorem 4.7. The tensor X = B∗N [(W∗MB)2]D is the unique solution of the following
tensor equations

(a) (B∗NW)k+1∗MX∗NW = (B∗NW)k,

(b) X = X∗NW∗MB∗NW∗MX ,
(c) B∗NW∗MX = X∗NW∗MB.

Proof. The existence of solution is trivially holds by Corollary 4.6. It is enough to show only
the uniqueness of X . Suppose there exists another tensor Y which satisfies the conditions
(a)− (c). Now, we have

X = (X∗NW∗MB)∗NW∗MX = (B∗NW)∗MX∗NW∗MX

= (B∗NW)2∗M(X∗NW)2∗MX = · · ·

= (B∗NW)k∗M(X∗NW)k∗MX = (B∗NW)k+1∗MY∗NW∗M(X∗NW)k∗MX

= Y∗N(W∗MB)
k+1∗NW∗M(X∗NW)k∗MX

= Y∗NW∗MB∗NW∗M(B∗NW)k∗M(X1∗NW)k∗MX = Y∗NW∗M(B∗NW∗MX )

= Y∗NW∗MX∗NW∗MB = Y∗NW∗MB∗NW∗MY∗NW∗MX∗NW∗MB

= Y∗NW∗MB∗NW∗MY∗NW∗MB∗NW∗MY∗NW∗MX∗NW∗MB

= Y∗NW∗MY∗NW∗MB∗NW∗MY∗NW∗MB∗NW∗MX∗NW∗MB

= Y∗NW∗MY∗NW∗MY∗NW∗MB∗NW∗MB∗NW∗MX∗NW∗MB

= Y∗NW∗MY∗NW∗MY∗NW∗M(B∗NW)2∗MX∗NW∗MB

= Y∗NW∗MY∗NW∗MY∗NW∗MB∗NW∗MB

= Y∗NW∗MY∗NW∗MB∗NW∗MY∗NW∗MB = Y∗NW∗MY∗NW∗MB

= Y∗NW∗MB∗NW∗MY = Y .

Therefore, X = B∗N [(W∗MB)2]D is the unique solution.

We conclude this section with an additional property of the W-weighted Drazin inverse,
which helps to compute the W-weighted Drazin inverse via index one tensors.

Theorem 4.8. Let B,X ∈ CI(M)×J(N). Then X = B∗N [(W∗MB)2]D, for some tensor W if
and only if X = B∗NY∗MB∗NY∗MB for some tensor Y ∈ CJ(N)×I(M) with ind (B∗NY) = 1 =
ind (Y∗MB).
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Proof. Let X = B∗N [(W∗MB)
2]D. By using Theorem 4.3 and Theorem 3.4 (a), we obtain

X = B∗N [(W∗MB)
2]D = B∗N (W∗MB)

D∗N(W∗MB)
D = (B∗NW)D∗MB∗N(W∗MB)

D

= (B∗NW)∗M [(B∗NW)2]D∗MB∗N [(W∗MB)
2]D∗N (W∗MB)

= B∗N [(W∗MB)
2]D∗NW∗MB∗N [(W∗MB)

2]D∗NW∗MB = B∗NY∗MB∗NY∗MB,

where Y = [(W∗MB)2]D∗NW. Next we will show B∗NY and Y∗MB are of index one.
As B∗NY = B∗N [(W∗MB)2]D∗NW = [(B∗NW)2]D∗MB∗NW = (B∗NW)D and Y∗MB =
[(W∗MB)2]D∗NW∗MB = (W∗MB)D. Therefore, both have index one. Which completes the
sufficient part.

Conversely, let X = B∗NY∗MB∗NY∗MB and W = Y∗M [(B∗NY)
2]D = [(Y∗MB)

2]D∗NY
such that ind(B∗NY) = ind(Y∗MB) = 1. To claim the necessary part, it is enough to show,
X satisfies all the assumptions of Theorem 4.5 for p = 2. Notice that, fromW, we easily get
(W∗MB)D = Y∗MB and (B∗NW)D = B∗NY , since B∗NY and Y∗MB are of index one. Now
X∗NW = B∗NY∗MB∗NY∗MB∗NY∗M [(B∗NY)2]D = (B∗NY)3 ∗N [(B∗NY)D]2 = B∗NY =
(B∗NW)D = B∗NW∗M [(B∗NW)2]D. Similarly, W∗MX = (W∗MB)∗NY∗MB∗NY∗MB =
(Y∗MB)D∗NY∗MB∗NY∗MB = Y∗MB = (W∗MB)D = W∗MB∗N [(W∗MB)2]D. Further, we
have X∗NW∗MB∗NW∗MX = B∗NY∗MB∗NY∗MB = X .

5. Multilinear system

The main objective of this section is solving multilinear systems. In the first part, we discuss
the solution of the singular multilinear system using the Drazin inverse of tensor, and in the
second part, we address iterative method (higher order Gauss-Seidel) and its convergence
analysis, for solving high-dimensional Poisson problems in the multilinear system framework.

5.1. Drazin-inverse solution

Let A ∈ CI(N)×I(N) and consider the following singular tensor equation

A∗NX = B, X , B ∈ C
I(N). (5.1)

If the tensor B ∈ R(Ak), then Eq. (5.1) is called the Drazin consistent multilinear system
and its solution, we call Drazin-inverse solution or simply solution. Such multilinear systems
arise in numerous applications in computational science and engineering such as continuum
physics and engineering, isotropic and anisotropic elasticity [13]. Multilinear systems are
also prevalent in solving PDEs numerically. Let us recall the lemma of Drazin consistent
multilinear system which was proved in [11], very recently.

Lemma 5.1 (Lemma 5.1, [11]). Let A ∈ CI(N)×I(N) and ind(A) = k. Then AD∗NB is a
solution of (5.1) if and only if B ∈ R(Ak).

In addition to this, the authors of [11] discussed the general solution of (5.1), as follows.
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Theorem 5.2 (Theorem 5.2, [11]). Let A ∈ C
I(N)×I(N) and ind(A) = k. If B ∈ R(Ak),

then the general solution of (5.1) is of the form X = AD∗NB + (I −AD∗NA)∗NZ, for any
arbitrary tensor Z ∈ R(Ak−1) +N (A).

We now show the existence and uniqueness of the Drazin inverse solution in the following
theorem.

Lemma 5.3. Let A ∈ CI(N)×I(N) and ind(A) = k. If X ∈ R(Ak), then the singular tensor
equation

A∗NX = B,

has one and only one solution, and is given by X = AD∗NB.

Proof. Let X ∈ R(Ak). So there exists a tensor Y ∈ CI(N) such that X = Ak∗NY . Now
using Definition 2.3, we get

X = Ak∗NY = Ak+1∗NA
D∗NY = AD∗NA

k+1∗NY = AD∗NA∗NX = AD∗NB.

Further, in view of the Lemma 5.1 and Theorem 2.5 (a), we obtain X −AD∗NB ∈ R(Ak).
Again by Theorem 5.2 and Theorem 2.5 (b) we get X − AD∗NB ∈ N (Ak). Hence X −
AD∗NB ∈ R(Ak) ∩ N (Ak) = {0}. Therefore, the solution AD∗NB is unique.

In case of index one (k = 1), the result is stated in the next corollary.

Corollary 5.4. Let A ∈ CI(N)×I(N) and ind(A) = 1. If X ∈ R(A), then singular tensor Eq.
(5.1) has unique solution, and is given by X = A#∗NB.

We now discuss some results concerning the equivalent multilinear systems of the Drazin
inverse of tensors. In particular, the relationship between the solutions of the multilinear
system (5.1) and the following tensor-based Drazin normal equation,

Ak+1∗NX = Ak∗NB. (5.2)

is analyzed, i.e., if B ∈ R(Ak) and ind(A) = k, then it is easy to verify that, each solution
of Eq. (5.1) is also a solution of Eq. (5.2) and vice versa. In spite of this fact, we discuss
the solution of the Drazin normal equation for tensor, as follows.

Theorem 5.5. Let A ∈ CI(N)×I(N), B ∈ R(Ak) and ind(A) = k. Then the set of all solutions
of Eq. (5.2) is given by

X = AD∗NB +N (Ak).

Moreover, X = AD∗NB is the unique solution of (5.2) in R(Ak).

Proof. From the definition of the Drazin inverse of a tensor A ∈ CI(N)×I(N), we have

Ak+1 ∗N (X −AD∗NB) = A
k∗NA∗NX −A

k∗NA∗NA
D∗NB = Ak∗NB −A

k∗NB = O.

Using the Theorem 2.6, we obtain X −AD∗NB ∈ N (Ak+1) = N (Ak). Hence X = AD∗NB+
N (Ak). To show the uniqueness in R(Ak), let U ∈ R(Ak) be any solution of Eq. (5.2). Now
U − AD∗NB ∈ R(Ak), and Ak+1∗NU − Ak+1∗NAD∗NB = Ak∗NB − Ak∗NB = O. Thus
U − AD∗NB ∈ N (Ak). Therefore, U − AD∗NB ∈ R(Ak) ∩ N (Ak) = {0}. Hence completes
the proof.
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One can find the matrix version of the above result in [23, 32]. Further, we discuss the
Drazin solution of another normal equation, called modified Drazin normal equation and is
defined by the following tensor equation

A2k∗NX = Ak∗NB, A ∈ C
I(N)×I(N), X , B ∈ C

I(N). (5.3)

Theorem 5.6. Let A ∈ C
I(N)×I(N), B ∈ R(Ak) and ind(A) = k. Then, the set of all

solutions of Eq. (5.3) is given by

X = (Ak)D∗NB +N (Ak).

Proof. The tensor equation (5.3) is alwasy consistent, since Ak∗NB ∈ R(Ak) = R(A2k).
By Theorem 3.4 (a) and Corollary 3.5, we have (Ak)D∗NB = (Ak)#∗NB ∈ R(Ak). Now
A2k∗N (X −(Ak)D∗NB) = A2k∗NX −Ak∗NAk∗N(Ak)#∗NB = Ak∗NB−Ak∗NB = O. Hence
X − (Ak)D∗NB ∈ N (A2k) = N (Ak). So X = (Ak)D +N (Ak) is the solution of (5.3).

Using the method as in the proof of Theorem 5.5, one can show (Ak)D∗NB is the unique
solution of Eq. (5.3) in R(Ak).

In the following, we present an example to illustrate our result. In order to show how
the Drazin inverse of tensors are employed in the two dimensional Poisson problem.

Example 5.7. Consider the following partial differential equation

∂2u

∂x2
+

∂2u

∂y2
= f(x, y), (x, y) ∈ Ω = [0, 1]× [0, 1] (5.4)

with Neumann boundary conditions. If we apply 5-point stencil central difference scheme on
a uniform grid with m2 nodes, we obtain the following tensor equation

A ∗2 X = B, X = (ukl) ∈ R
m×m and B = (bij) ∈ R

m×m, (5.5)

and the tensor A = (aijkl) ∈ Rm×m×m×m is of the form

A = Im ⊗ P +Q⊗ Im + D, (5.6)

where Im ∈ R
m×m is the second order identity tensor. The second order tensors P ∈ R

m×m

and Q ∈ Rm×m are of the form

P = tridiagonal (−1, 0,−1) =








0 −1 0

−1
. . .

. . .
. . .

. . . −1
0 −1 0








= Q.

Further, the tensor D ∈ Rm×m×m×m is a diagonal tensor, where the diagonal elements will
change with respect to number of grid points. From the representation (5.6) (the coefficient
tensor A), it is clear that ind(A) = 1. Thus the solution of the multilinear system (5.5)
becomes X = A# ∗2 B. We consider a tensor B from R(A), and calculate the approximate
solution of the partial differential equation (5.4) with different choices of m, which are pre-
sented in Figure 1.
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Figure 1: Solution of the multilinear system for different values of m.

5.2. Iterative method

Recently there has been increasing interest in developing the tensor-based iterative method
for solving multilinear systems [5, 15, 16, 18, 20]. In case of nonsingular and positive definite
tensor, few iterative schemes such as Jacobi and biconjugate gradient (BiCG) are discussed
in [5] with help of Einstein product. A general form of tensor-based iterative method for
the multilinear system (5.1) is defined as

X (k+1) = H∗NX
(k) + C, for k = 0, 1, 2, · · · (5.7)

where X (k+1) and X (k)are the approximations for the tensor X at the (k + 1)-th and k-th
iteration, respectively. Here H is called the iteration tensor depending on A and C. In case
of limiting, when k →∞, X (k) converges to the exact solution

X = A−1 ∗N B.

Now the iteration scheme (5.7) becomes, A−1 ∗N B = H ∗N A−1 ∗N B + C, which implies
C = (I −H)∗NA−1 ∗N B. Consider A = L+D+U , where L is the lower off-diagonal tensor,
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D is the diagonal tensor and U is the upper off-diagonal tensor. Then the Gauss-Seidel
iteration method gives the iteration tensor H = −(D+L)−1 ∗N U and C = (D+L)−1 ∗N B.
Thus our aim is to analyze the iteration tensor H.

Now, we recall the Frobenius norm ||·||F of a tensor A ∈ CI(N)×J(N) which was introduced
in [29], as follows.

‖A‖F =




∑

i(N),j(N)

∣
∣ai(N),j(N)

∣
∣2





1/2

.

With reference to the Frobenius norm || · ||F , we define the maximum norm

|| · ||∞ = max
j(N)





Î(N)
∑

i(N)

∣
∣ai(N),j(N)

∣
∣



 .

Using the above definition, we now prove the following result on Frobenius norm.

Lemma 5.8. Let A ∈ C
I(N)×P(N) and B ∈ C

P(N)×J(N). Then ‖A∗NB‖F ≤ ‖A‖F · ‖B‖F .

Proof. By applying Cauchy-Schwarz inequality to the inner summation, we have

‖A∗NB‖F =




∑

i(N),j(N)

∣
∣
∣
∣
∣
∣

∑

k(N)

ai(N),k(N)bk(N),j(N)

∣
∣
∣
∣
∣
∣

2



1/2

≤




∑

i(N),j(N)




∑

k(N)

|ai(N),k(N)bk(N),j(N)|





2



1/2

≤




∑

i(N),j(N)




∑

k(N)

|ai(N),k(N)|
2
∑

k(N)

|bk(N),j(N)|
2









1/2

=




∑

i(N),k(N)

|ai(N),k(N)|
2





1/2

·




∑

k(N),j(N)

|bk(N),j(N)|
2





1/2

= ‖A‖F · ‖B‖F .

In case of B = A, we obtain the following result as a corollary.

Corollary 5.9. Let A ∈ CI(N)×I(N). Then ‖Ak‖ ≤ ‖A‖k for any positive integer k.

Theorem 5.10. Let A ∈ C
I(N)×I(N). Then

(a) lim
k→∞
Ak = O if ‖A‖ < 1 or if and only ρ(A) < 1.
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(b) the series

∞∑

k=0

Ak is convergent if and only if lim
k→∞
Ak = O. Further, the series converges

to (I − A)−1.

Proof. Let ‖A‖ < 1. Using Corollary 5.9, we get ‖ lim
k→∞
Ak‖ ≤ lim

k→∞
‖A‖k = 0. Therefore,

lim
k→∞
Ak = O. To show the second part of (a), let ρ(A) < 1. In the view of the Lemma

2.18, the singular value decomposition of the tensor Ak can be written as Ak = U∗ND∗NV
∗,

where U , V ∈ CI(N)×I(N) are unitary tensors. The diagonal entries of the diagonal tensor
D ∈ CI(N)×I(N) are the eigenvalues of Ak. Hence lim

k→∞
Ak = O if and only |d i(N),i(N)| < 1.

Thus completes (a). To claim part (b), it is enough to show the necessary part since only if
part is trivial from the Definition 2.14. Let lim

k→∞
Ak = O. So by Theorem 5.10 (a), ρ(A) < 1.

Thus all the eigenvalues of (I−A) are nonzero. This leads the tensor (I−A) is nonsingular.
Now

(I +A+A2 + · · ·+Ak)∗N(I −A) = I −A
k+1. (5.8)

Post-multiplying Eq. (5.8) by (I−A)−1, we get I+A+A2+· · ·+Ak = (I−Ak+1)∗N(I−A)−1.

By taking k →∞, we obtain

∞∑

k=0

Ak = (I − A)−1.

Theorem 5.11. The iterative scheme (5.7) obtained from the tensor splitting, converges to
A−1∗NB for any initial guess X (0) if and only if ρ(H) < 1.

Proof. Without loss of generality, assume X (0) = O. Then by Eq. (5.7), we obtain X (1) = C.
This leads X (2) = H∗NX (1) + C = H∗NC + C = (H + I)∗NC. By succeeding (k + 1)-times,
we get

X (k+1) = (I +H +H2 + · · ·+Hk)∗NC.

By taking k →∞ and applying Theorem 5.10 (b), we obtain lim
k→∞
X (k+1) = (I −H)−1∗NC if

and only if ρ(H) < 1. This is equivalently, lim
k→∞
X (k+1) = A−1∗NB if and only if ρ(H) < 1.

In view of Theorem 5.10 (a) and 5.11, we state the following result as a corollary.

Corollary 5.12. If ‖H‖ < 1, then the iterative scheme (5.7) converges to A−1∗NB for any
initial guess X (0).

Theorem 5.13. If the tensor A ∈ CI(N)×I(N) is a strictly diagonally dominant, then the
Gauss-Seidel iteration scheme converges for any initial tensor X (0).

Proof. The Gauss-Seidel iteration scheme is given by

X (k+1) = −(D + L)−1 ∗N U ∗N X
(k) + (D + L)−1 ∗N B

= −(D + L)−1 ∗N [A− (D + L)] ∗N X
(k) + (D + L)−1 ∗N B

= [I − (D + L)−1∗NA]∗NX
(k) + (D + L)−1 ∗N B.
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The iteration scheme will convergent if ρ([I − (D+L)−1∗NA]) < 1. Let λ be the eigenvalue
of I − (D + L)−1∗NA. Then (I − (D + L)−1∗NA)∗NX = λX , which implies

(D + L)∗NX −A∗NX = λ(D + L) ∗N X . (5.9)

This can be written in term of components,

−

Î(N)
∑

j(N)=i(N)+1

ai(N),j(N)xj(N) = λ

i(N)
∑

j(N)=1

ai(N),j(N)xj(N), (5.10)

where j(N) from 1 to i(N), indicates {j1 = 1, j2 = 1, · · · , jN = 1} to {j1 = i1, j2 =
i2, · · · , jN = iN}. Similarly, one can represent j(N), from (i(N) + 1) to Î(N). Now Eq.
(5.10) can be written as

λai(N),i(N)xi(N) = −

Î(N)
∑

j(N)=i(N)+1

ai(N),j(N)xj(N) − λ

i(N)−1
∑

j(N)=1

ai(N),j(N)xj(N),

which equivalent to,

∣
∣λai(N),i(N)xi(N)

∣
∣ ≤

Î(N)
∑

j(N)=i(N)+1

∣
∣ai(N),j(N)

∣
∣
∣
∣xj(N)

∣
∣ + |λ|

i(N)−1
∑

j(N)=1

∣
∣ai(N),j(N)

∣
∣
∣
∣xj(N)

∣
∣ . (5.11)

Without loss of generality, one can assume that ||X ||∞ = 1. Choose indices i(N) such that
|xi(N)| = 1 and xj(N) ≤ 1 for all i(N) 6= k(N). We obtain from the above Eq. (5.11),

|λ|
∣
∣ai(N),i(N)

∣
∣ ≤

Î(N)
∑

j(N)=i(N)+1

∣
∣ai(N),j(N)

∣
∣+ |λ|

i(N)−1
∑

j(N)=1

∣
∣ai(N),j(N)

∣
∣ ,

or

|λ|




∣
∣ai(N),i(N)

∣
∣−

i(N)−1
∑

j(N)=1

∣
∣ai(N),j(N)

∣
∣



 ≤

Î(N)
∑

j(N)=i(N)+1

∣
∣ai(N),j(N)

∣
∣ .

Since the tensor A is strictly diagonally dominant, the above inequality becomes

|λ| ≤

Î(N)
∑

j(N)=i(N)+1

∣
∣ai(N),j(N)

∣
∣




∣
∣ai(N),i(N)

∣
∣−

i(N)−1
∑

j(N)=1

∣
∣ai(N),j(N)

∣
∣





< 1.
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The idea behind iterative methods is to save memory and operational costs for solving
multilinear systems. In light of this, the higher order Gauss-Seidel method is described
in Algorithm 1. The application of this algorithm is illustrated in the following Poisson
problem.

Algorithm 1 Higher order Gauss-Seidel Method

1: procedure Gauss-Seidel(A,B, ǫ,MAX)
2: Given A ∈ R

I(N)×I(N), B ∈ R
I(N), and MAX

3: Initial guess X (0) ∈ RI(N)

4: for k = 1 to MAX
5: for i(N) = 1 to Î(N)
6: for j(N) = 1 to Ĵ(N)

7: (X (k))i(N) =
1

ai(N),i(N)



bi(N) −

i(N)−1
∑

j(N)=1

ai(N),j(N)(X
(k))j(N) −

Ĵ(N)
∑

j(N)=i(N)+1

ai(N),j(N)(X
(k−1))j(N)





8: end for

9: end for

10: if (‖X (k) − X (0)‖ < ǫ) then
11: break

12: end if

13: X (0) ← X (k)

14: end for

15: return X (k)

16: end procedure

Example 5.14. Consider the two-dimension Poisson problem

−∇2u = f(x, y) in Ω

u = 0 on ∂Ω,

where Ω = {(x, y) : 0 < x, y < 1} with boundary ∂Ω, f(x, y) is a given function, and

∇2u =
∂2u

∂x2
+

∂2u

∂y2
.

Here, our aim is to compute an approximation of the unknown function u(x, y). Using
5-point stencil central difference scheme on a discretizing the unit square domain with n

interior nodes, we obtain a multilinear system

A ∗2 X = B, where A ∈ R
n×n×n×n, X ∈ R

n×n, and B ∈ R
n×n.

The tensor A is of the form

A = In ⊗ Pn + Pn ⊗ In, (5.12)
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Figure 2: Residual error with respect to the number of iterations for different values of n.

where In is the second order identity tensor and Pn is also a second order tensor of the
form Pn = tridiagonal(−1, 2,−1). By applying 7-point stencil formula [5] for 3-dimensional
Poisson equation with same boundary conditions, we obtain the following tensor equation

A ∗3 X = B, A ∈ R
n×n×n×n×n×n, X ∈ R

n×n×n, and B ∈ R
n×n×n,

where the tensor A is the following form

A = Pn ⊗ In ⊗ In + In ⊗ Pn ⊗ In + In ⊗ In ⊗Pn. (5.13)

Extending, the same idea to 4-dimensional Poisson problem, we obtain the following multi-
linear system

A ∗4 X = B, A ∈ R

8 times

︷ ︸︸ ︷

n× · · · × n, X ∈ R
n×n×n×n, and B ∈ R

n×n×n×n, (5.14)

where the tensor A is the following form

A = Pn ⊗ In ⊗ In ⊗ In + In ⊗ Pn ⊗ In ⊗ In + In ⊗ In ⊗ Pn ⊗ In + In ⊗ In + In ⊗ Pn.(5.15)
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In the light of the above Eqs (5.12), (5.13) and (5.15) one can generate the tensor A to solve
higher dimensional Poisson problem. In order to illustrate the efficiency of the proposed
iterative method, we consider the four-dimensional Poisson problem (5.14) and a tensor B
from R(A). The residual error with respect to the number of iterations for different choices
of n are shown in Figure-2. In addition to this, the residual error is also compared with
higher order Jacobi iterative method [5].

6. Conclusion

We have discussed some more results on the Drazin inverse of tensors via the Einstein prod-
uct to the existing theory. In particular, we have studied different characterizations of the
Drazin inverse and W-weighted Drazin inverse of tensors. Further, the concept of full rank
decomposition is used to compute the group inverse of tensors and applications of these
results discussed by solving multilinear systems. In addition to this, we have discussed the
convergence analysis of the iterative technique. The obtained results in this paper are impor-
tant for the tensor splitting theory. During our study, we obtain a few sufficient conditions
of the reverse-order law for the Drazin inverse of tensors. However, various reverse-order
laws for the Drazin inverse of tensor formulas associated with rank and block-tensor works
are currently underway.
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