THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

A New Preconditioning Approachfor an Interior Point-Proximal Method of Multipliers for Linear and Convex Quadratic Programming

Citation for published version:

Bergamaschi, L, Gondzio, J, Martínez, Á, Pearson, JW \& Pougkakiotis, S 2021, 'A New Preconditioning Approachfor an Interior Point-Proximal Method of Multipliers for Linear and Convex Quadratic Programming', Numerical Linear Algebra with Applications. https://doi.org/10.1002/nla. 2361

Digital Object Identifier (DOI):
10.1002/nla. 2361

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:

Numerical Linear Algebra with Applications

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

RESEARCH ARTICLE

A New Preconditioning Approach for an Interior Point-Proximal Method of Multipliers for Linear and Convex Quadratic Programming

Luca Bergamaschi*1 | Jacek Gondzio ${ }^{2}$ | Ángeles Martínez ${ }^{3}$ | John W. Pearson ${ }^{2}$ | Spyridon Pougkakiotis ${ }^{2}$

${ }^{1}$ Department of Civil Environmental and Architectural Engineering, University of Padova, Italy
${ }^{2}$ School of Mathematics, University of Edinburgh, UK
${ }^{3}$ Department of Mathematics and Earth Sciences, University of Trieste, Italy

Correspondence

*Luca Bergamaschi, Department of Civil Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35100 Padova, Italy. Email: luca.bergamaschi@unipd.it

Abstract

Summary In this paper, we address the efficient numerical solution of linear and quadratic programming problems, often of large scale. With this aim, we devise an infeasible interior point method, blended with the proximal method of multipliers, which in turn results in a primal-dual regularized interior point method. Application of this method gives rise to a sequence of increasingly ill-conditioned linear systems which cannot always be solved by factorization methods, due to memory and CPU time restrictions. We propose a novel preconditioning strategy which is based on a suitable sparsification of the normal equations matrix in the linear case, and also constitutes the foundation of a block-diagonal preconditioner to accelerate MINRES for linear systems arising from the solution of general quadratic programming problems. Numerical results for a range of test problems demonstrate the robustness of the proposed preconditioning strategy, together with its ability to solve linear systems of very large dimension.

KEYWORDS:

Interior Point Method, Proximal Method of Multipliers, Krylov subspace methods, Preconditioning, BFGS update

1 | INTRODUCTION

In this paper, we consider linear and quadratic programming (LP and QP) problems of the following form:

$$
\begin{equation*}
\min _{x}\left(c^{T} x+\frac{1}{2} x^{T} Q x\right), \text { s.t. } A x=b, x \geq 0 \tag{1.1}
\end{equation*}
$$

where $c, x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$. For quadratic programming problems we have that $Q \geq 0 \in \mathbb{R}^{n \times n}$, while for linear programming $Q=0$. The problem (1.1) is often referred to as the primal form of the quadratic programming problem; the dual form of the problem is given by

$$
\begin{equation*}
\max _{x, y, z}\left(b^{T} y-\frac{1}{2} x^{T} Q x\right), \text { s.t. }-Q x+A^{T} y+z=c, z \geq 0 \tag{1.2}
\end{equation*}
$$

where $z \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}$. Problems of linear or quadratic programming form are fundamental problems in optimization, and arise in a wide range of scientific applications.

A variety of optimization methods exist for solving the problem (1.1). Two popular and successful approaches are interior point methods (IPMs) and proximal methods of multipliers (PMMs). Within an IPM, a Lagrangian is constructed involving the objective function and the equality constraints of (1.1), to which a logarithmic barrier function is then added in place of the inequality constraints. Hence, a logarithmic barrier sub-problem is solved at each iteration of the algorithm (see ${ }^{11}$ for a survey on IPMs). The key feature of a PMM is that, at each iteration, one seeks the minimum of the problem (1.1) as stated, but one adds to the objective function a penalty term involving the norm of the difference between x and the previously computed estimate. Then, an augmented Lagrangian method is applied to approximately solve each such sub-problem (see ${ }^{2 / 3}$ for a review of proximal point methods, and ${ }^{4 /-7}$ for a review of augmented Lagrangian methods). In this paper we consider a blend of an infeasible IPM and a PMM, which can itself be thought of as a primal-dual regularized IPM. We refer to ${ }^{[8]}$ for a derivation of this approach as well as a proof of polynomial complexity. There are substantial advantages of applying regularization within IPMs, and the reliability and fast convergence of the hybrid IP-PMM make it an attractive approach for tackling linear and quadratic programming problems.

Upon applying such a technique, the vast majority of the computational effort arises from the solution of the resulting linear systems of equations at each IP-PMM iteration. These linear equations can be tackled in the form of an augmented system, or the reduced normal equations: we focus much of our attention on the augmented system, as unless Q has some convenient structure it is highly undesirable to form the normal equations or apply the resulting matrix within a solver. Within the linear algebra community, direct methods are popular for solving such systems due to their generalizability, however if the matrix system becomes sufficiently large the storage and/or operation costs can rapidly become excessive, depending on the computer architecture used. The application of iterative methods, for instance those based around Krylov subspace methods such as the Conjugate Gradient method (CG) ${ }^{9}$ or MINRES ${ }^{10}$, is an attractive alternative, but if one cannot construct suitable preconditioners which can be applied within such solvers then convergence can be prohibitively slow, and indeed it is possible that convergence is not achieved at all. The development of powerful preconditioners is therefore crucial.

A range of general preconditioners have been proposed for augmented systems arising from optimization problems, see $11-17$ for instance. However, as is the case within the field of preconditioning in general, these are typically sensitive to changes in structure of the matrices involved, and can have substantial memory requirements. Preconditioners have also been successfully devised for specific classes of programming problems solved using similar optimization methods: applications include those arising from multicommodity network flow problems ${ }^{\sqrt[18]{18}}$, stochastic programming problems ${ }^{\sqrt{19}}$, formulations within which the constraint matrix has primal block-angular structure ${ }^{[20}$, and PDE-constrained optimization problems ${ }^{[21}{ }^{[22}$. However, such preconditioners exploit particular structures arising from specific applications; unless there exists such a structure which hints as to the appropriate way to develop a solver, the design of bespoke preconditioners remains a challenge.

It is therefore clear that a completely robust preconditioner for linear and quadratic programming does not currently exist, as available preconditioners are either problem-sensitive (with a possibility of failure when problem parameters or structures are modified), or are tailored towards specific classes of problems. This paper therefore aims to provide a first step towards the construction of generalizable preconditioners for linear and quadratic programming problems. A particular incentive for this work is so that, when new application areas arise that require the solution of large-scale matrix systems, the preconditioning strategy proposed here could form the basis of a fast and feasible solver.

This paper is structured as follows. In Section 2 we describe the IP-PMM approach used to tackle linear and quadratic programming problems, and outline our preconditioning approach. In Section 3 we carry out spectral analysis for the resulting preconditioned matrix systems. In Section 4 we describe the implementation details of the method, and in Section 5 we present numerical results obtained using the inexact IP-PMM approach. In particular we present the results of our preconditioned iterative methods, and demonstrate that our new solvers lead to rapid and robust convergence for a wide class of problems. Finally, in Section6 we give some concluding remarks.

Notation: For the rest of this manuscript, superscripts of a vector (or matrix, respectively) will denote the respective components of the vector, i.e. x^{j} (or $M^{(i, j)}$, respectively). Given a set (or two sets) of indices \mathcal{I} (or \mathcal{I}, \mathcal{J}), the respective sub-vector (sub-matrix), will be denoted as $x^{\mathcal{I}}$ (or $M^{(\mathcal{I}, \mathcal{J})}$). Furthermore, the j-th row (or column) of a matrix M is denoted as $M^{(j,:)}\left(M^{(:, j)}\right.$, respectively). Given an arbitrary square (or rectangular) matrix M, then $\lambda_{\max }(M)$ and $\lambda_{\min }(M)$ (or $\sigma_{\max }(M)$ and $\sigma_{\min }(M)$) denote the largest and smallest eigenvalues (or singular values) of the matrix M, respectively. Given a symmetric matrix M we denote as $q(M)$ its Rayleigh Quotient, defined as

$$
q(M)=\left\{z \in \mathbb{R} \text { such that } z=\frac{x^{T} M x}{x^{T} x}, \text { for some } x \in \mathbb{R}^{n}, x \neq 0\right\}
$$

Given a square matrix $M \in \mathbb{R}^{n \times n}, \operatorname{diag}(M)$ denotes the diagonal matrix satisfying $(\operatorname{diag}(M))^{(i, i)}=M^{(i, i)}$, for all $i \in\{1, \ldots, n\}$. Finally, given a vector $x \in \mathbb{R}^{n}$, we denote by X the diagonal matrix satisfying $X^{(i, i)}=x^{i}$, for all $i \in\{1, \ldots, n\}$.

2 | ALGORITHMIC FRAMEWORK

In this section we derive a counterpart of the Interior Point-Proximal Method of Multipliers (IP-PMM) presented in ${ }^{8}$ for solving the pair $1.1-(1.2$, that employs a Krylov subspace method for solving the associated linear systems. For a polynomial convergence result of the method, in the case where the linear systems are solved exactly, the reader is referred to ${ }^{-8}$. Effectively, we merge the proximal method of multipliers with an infeasible interior point method, and present suitable general purpose preconditioners, using which we can solve the resulting Newton system, at every iteration, by employing an appropriate Krylov subspace method.

Assume that, at some iteration k of the method, we have available an estimate η_{k} for the optimal Lagrange multiplier vector y^{*}, corresponding to the equality constraints of (1.1). Similarly, we denote by ζ_{k} the estimate of the primal solution x^{*}. Next, we define the proximal penalty function that has to be minimized at the k-th iteration of proximal method of multipliers, for solving (1.1), given the estimates η_{k}, ζ_{k} :

$$
\mathcal{L}_{\delta_{k}, \rho_{k}}^{P M M}\left(x ; \eta_{k}, \zeta_{k}\right)=c^{T} x+\frac{1}{2} x^{T} Q x-\eta_{k}^{T}(A x-b)+\frac{1}{2 \delta_{k}}\|A x-b\|^{2}+\frac{\rho_{k}}{2}\left\|x-\zeta_{k}\right\|^{2}
$$

with $\delta_{k}>0, \rho_{k}>0$ some non-increasing penalty parameters. In order to solve the PMM sub-problem, we will apply one (or a few) iterations of an infeasible IPM. To do that, we alter the previous penalty function, by including logarithmic barriers, that is:

$$
\begin{equation*}
\mathcal{L}_{\delta_{k}, \rho_{k}}^{I P-P M M}\left(x ; \eta_{k}, \zeta_{k}\right)=\mathcal{L}_{\delta_{k}, \rho_{k}}^{P M M}\left(x ; \eta_{k}, \zeta_{k}\right)-\mu_{k} \sum_{j=1}^{n} \ln x^{j}, \tag{2.1}
\end{equation*}
$$

where $\mu_{k}>0$ is the barrier parameter. In order to form the optimality conditions of this sub-problem, we equate the gradient of $\mathcal{L}_{\delta_{k}, \rho_{k}}^{I P-P M M}\left(\cdot ; \eta_{k}, \zeta_{k}\right)$ to the zero vector, i.e.:

$$
c+Q x-A^{T} \eta_{k}+\frac{1}{\delta_{k}} A^{T}(A x-b)+\rho_{k}\left(x-\zeta_{k}\right)-\mu_{k} X^{-1} \mathbf{1}_{n}=0
$$

where $\mathbf{1}_{n}$ is a vector of ones of size n, and X is a diagonal matrix containing the entries of x. We define the variables $y=$ $\eta_{k}-\frac{1}{\delta_{k}}(A x-b)$ and $z=\mu_{k} X^{-1} \mathbf{1}_{n}$, to obtain the following (equivalent) system of equations:

$$
\left[\begin{array}{c}
c+Q x-A^{T} y-z+\rho_{k}\left(x-\zeta_{k}\right) \tag{2.2}\\
A x+\delta_{k}\left(y-\eta_{k}\right)-b \\
X z-\mu_{k} \mathbf{1}_{n}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

To solve the previous mildly nonlinear system of equations, at every iteration k, we employ Newton's method and alter its right-hand side, using a centering parameter $\sigma_{k} \in(0,1)$. The centering parameter determines how fast μ_{k} is reduced. For $\sigma_{k}=1$, we attempt to find a well-centered solution, while for $\sigma_{k}=0$ we attempt to solve directly the original problem (1.1). As this is a crucial parameter in practice, it is often substituted by a predictor-corrector scheme which attempts to accelerate the convergence of the IPM (see ${ }^{[23 \mid 24}$). For brevity, we present the former approach of heuristically choosing σ_{k}, but later on (in Section 4 present the implemented predictor-corrector scheme. In other words, at every iteration of IP-PMM we have available an iteration triple $\left(x_{k}, y_{k}, z_{k}\right)$ and we wish to solve the following system of equations:

$$
\left[\begin{array}{ccc}
-\left(Q+\rho_{k} I_{n}\right) & A^{T} & I_{n} \tag{2.3}\\
A & \delta_{k} I_{m} & 0 \\
Z_{k} & 0 & X_{k}
\end{array}\right]\left[\begin{array}{c}
\Delta x_{k} \\
\Delta y_{k} \\
\Delta z_{k}
\end{array}\right]=\left[\begin{array}{c}
c+Q x_{k}-A^{T} y_{k}+\sigma_{k} \rho_{k}\left(x_{k}-\zeta_{k}\right)-z_{k} \\
b-A x_{k}-\sigma_{k} \delta_{k}\left(y_{k}-\eta_{k}\right) \\
\sigma_{k} \mu_{k} \mathbf{1}_{n}-X_{k} z_{k}
\end{array}\right]=\left[\begin{array}{l}
r_{d_{k}} \\
r_{p_{k}} \\
r_{\mu_{k}}
\end{array}\right]
$$

We proceed by eliminating variables Δz_{k}. In particular, we have that:

$$
\Delta z_{k}=X_{k}^{-1}\left(r_{\mu_{k}}-Z_{k} \Delta x_{k}\right)
$$

where Z_{k} is a diagonal matrix containing the entries of z_{k}. Then, the augmented system that has to be solved at every iteration of IP-PMM reads as follows:

$$
\left[\begin{array}{cc}
-\left(Q+\Theta_{k}^{-1}+\rho_{k} I_{n}\right) & A^{T} \tag{2.4}\\
A & \delta_{k} I_{m}
\end{array}\right]\left[\begin{array}{c}
\Delta x_{k} \\
\Delta y_{k}
\end{array}\right]=\left[\begin{array}{c}
r_{d_{k}}+z_{k}-\sigma_{k} \mu_{k} X_{k}^{-1} \mathbf{1}_{n} \\
r_{p_{k}}
\end{array}\right],
$$

where $\Theta_{k}=X_{k} Z_{k}^{-1}$. An important feature of the matrix Θ_{k} is that, as the method approaches an optimal solution, the positive diagonal matrix has some entries that (numerically) approach infinity, while others approach zero. By observing the matrix in (2.4), we can immediately see the benefits of using regularization in IPMs. On one hand, the dual regularization parameter δ_{k} ensures that the system matrix in (2.4) is invertible, even if A is rank-deficient. On the other hand, the primal regularization parameter ρ_{k} controls the worst-case conditioning of the $(1,1)$ block of 2.4 , improving the numerical stability of the method (and hence its robustness). We refer the reader to ${ }^{8 / 25 \mid 26}$ for a review of the benefits of regularization in the context of IPMs.

As we argue in the spectral analysis, in the case where $Q=0$, or Q is diagonal, it is often beneficial to form the normal equations and approximately solve them using preconditioned CG. Otherwise, we solve system (2.4) using preconditioned MINRES. The normal equations read as follows:

$$
\begin{equation*}
M_{N E, k} \Delta y_{k}=\xi_{k}, \quad M_{N E, k}=A\left(\Theta_{k}^{-1}+Q+\rho_{k} I_{n}\right)^{-1} A^{T}+\delta_{k} I_{m} \tag{2.5}
\end{equation*}
$$

where

$$
\xi_{k}=r_{p_{k}}+A\left(Q+\Theta_{k}^{-1}+\rho_{k} I_{n}\right)^{-1}\left(r_{d_{k}}+z_{k}-\sigma_{k} \mu_{k} X_{k}^{-1} \mathbf{1}_{n}\right)
$$

In order to employ preconditioned MINRES or CG to solve (2.4) or 2.5) respectively, we must find an approximation for the coefficient matrix in 2.5. To do so, we employ a symmetric and positive definite block-diagonal preconditioner for the saddlepoint system (2.4), involving approximations for the negative of the $(1,1)$ block, as well as the Schur complement $M_{N E}$. See 27.29 for motivation of such saddle-point preconditioners. In light of this, we approximate Q in the $(1,1)$ block by its diagonal, i.e. $\tilde{Q}=\operatorname{diag}(Q)$.

Then, we define the diagonal matrix E_{k} with entries

$$
E_{k}^{(i, i)}= \begin{cases}0 & \text { if }\left(\left(\Theta_{k}^{(i, i)}\right)^{-1}+\tilde{Q}^{(i, i)}+\rho_{k}\right)^{-1}<C_{E, k} \min \left\{\mu_{k}, 1\right\} \tag{2.6}\\ \left(\left(\Theta_{k}^{(i, i)}\right)^{-1}+\tilde{Q}^{(i, i)}+\rho_{k}\right)^{-1} & \text { otherwise }\end{cases}
$$

where $i \in\{1, \ldots, n\}, C_{E, k}$ is a constant, and we construct the normal equations approximation $P_{N E, k}=L_{M} L_{M}^{T}$, by computing the (exact) Cholesky factorization of

$$
\begin{equation*}
P_{N E, k}=A E_{k} A^{T}+\delta_{k} I_{m} \tag{2.7}
\end{equation*}
$$

The dropping threshold in guarantees that a coefficient in the diagonal matrix $\left(\Theta_{k}^{-1}+\tilde{Q}+\rho_{k} I^{-1}\right)^{-1}$ is set to zero only if it is below a constant times the barrier parameter μ_{k}. As a consequence fewer outer products of columns of A contribute to the normal equations, and the resulting preconditioner $P_{N E, k}$ is expected to be more sparse than $M_{N E, k}$. This choice is also crucial to guarantee that the eigenvalues of the preconditioned normal equations matrix are independent of μ. Before discussing the role of the constant $C_{E, k}$, let us first address the preconditioning of the augmented system matrix in 2.4). The matrix $P_{N E, k}$ acts as a preconditioner for CG applied to the normal equations. In order to construct a preconditioner for the augmented system matrix in 2.4, we employ a block-diagonal preconditioner of the form:

$$
P_{A S, k}=\left[\begin{array}{cc}
\tilde{Q}+\Theta_{k}^{-1}+\rho_{k} I_{n} & 0 \tag{2.8}\\
0 & P_{N E, k}
\end{array}\right]
$$

with $P_{N E, k}$ defined in 2.7. Note that MINRES requires a symmetric positive definite preconditioner and hence many other block preconditioners for (2.4) are not applicable. For example, block-triangular preconditioners, motivated by the work in ${ }^{28 \mid 30}$, would generally require a non-symmetric solver such as GMRES ${ }^{31}$. Nevertheless, block-diagonal preconditioners have been shown to be very effective in practice for problems with the block structure of (2.4) (see for example ${ }^{29,32 \mid 33}$). Furthermore, it can often be beneficial to employ CG with the preconditioner (2.7), in the case where $Q=0$ or Q is diagonal, since the former is expected to converge faster than MINRES with 2.8 . This will become clearer in the next section, where eigenvalue bounds for each of the preconditioned matrices are provided.

In view of the previous discussion, we observe that the quality of both preconditioners heavily depends on the choice of constant $C_{E, k}$, since this constant determines the quality of the approximation of the normal equations using (2.7). In our implementation this constant is tuned dynamically, based on the quality of the preconditioner and its required memory (see Section 47. Moreover, following the developments in ${ }^{88}$, we tune the regularization variables δ_{k}, ρ_{k} based on the barrier parameter μ_{k}. In particular, δ_{k}, ρ_{k} are forced to decrease at the same rate as μ_{k}. The exact updates of these parameters are presented in Section 4. As we will show in the next section, this tuning choice is numerically beneficial, since if δ_{k}, ρ_{k} are of the same order as μ_{k}, then the spectrum of the preconditioned normal equations is independent of μ_{k}; a very desirable property for preconditioned systems arising from IPMs.

3 | SPECTRAL ANALYSIS

3.1 | Preconditioned normal equations

In this section we provide a spectral analysis of the preconditioned normal equations in the LP or separable QP case, assuming that (2.7) is used as the preconditioner. Although this is a specialized setting, we may make use of the following result in our analysis of the augmented system arising from the general QP case.
Let us define this normal equations matrix $\tilde{M}_{N E, k}$, as

$$
\begin{equation*}
\tilde{M}_{N E, k}=A \tilde{G}_{k} A^{T}+\delta_{k} I_{m}, \quad \text { with } \tilde{G}_{k}=\left(\tilde{Q}+\Theta^{-1}+\rho_{k} I_{n}\right)^{-1} . \tag{3.1}
\end{equation*}
$$

The following Theorem provides lower and upper bounds on the eigenvalues of $P_{N E, k}^{-1} \tilde{M}_{N E, k}$, at an arbitrary iteration k of Algorithm IP-PMM.

Theorem 1. There are $m-r$ eigenvalues of $P_{N E, k}^{-1} \tilde{M}_{N E, k}$ at one, where r is the column rank of A^{T}, corresponding to linearly independent vectors belonging to the nullspace of A^{T}. The remaining eigenvalues are bounded as

$$
1 \leq \lambda \leq 1+\frac{C_{E, k} \mu_{k}}{\delta_{k}} \sigma_{\max }^{2}(A) .
$$

Proof. The eigenvalues of $P_{N E, k}^{-1} \tilde{M}_{N E, k}$ must satisfy

$$
\begin{equation*}
A \tilde{G}_{k} A^{T} u+\delta_{k} u=\lambda A E_{k} A^{T} u+\lambda \delta_{k} u . \tag{3.2}
\end{equation*}
$$

Multiplying 3.2 on the left by u^{T} and setting $z=A^{T} u$ yields

$$
\lambda=\frac{z^{T} \tilde{\boldsymbol{G}}_{k} z+\delta_{k}\|u\|^{2}}{z^{T} E_{k} z+\delta_{k}\|u\|^{2}}=1+\frac{z^{T}\left(\tilde{\boldsymbol{G}}_{k}-E_{k}\right) z}{z^{T} E_{k} z+\delta_{k}\|u\|^{2}}=1+\alpha .
$$

For every vector u in the nullspace of A^{T} we have $z=0$ and $\lambda=1$. The fact that both E_{k} and $\tilde{\boldsymbol{G}}_{k}-E_{k} \geq 0$ (from the definition of $\left.E_{k}\right)$ implies the lower bound. To prove the upper bound we first observe that $\lambda_{\max }\left(\tilde{G}_{k}-E_{k}\right) \leq C_{E, k} \mu_{k}$; then

$$
\alpha=\frac{z^{T}\left(\tilde{\boldsymbol{G}}_{k}-E_{k}\right) z}{z^{T} E_{k} z+\delta_{k}\|u\|^{2}} \leq \frac{z^{T}\left(\tilde{\boldsymbol{G}}_{k}-E_{k}\right) z}{\delta_{k}\|u\|^{2}}=\frac{z^{T}\left(\tilde{\boldsymbol{G}}_{k}-E_{k}\right) z}{\|z\|^{2}} \frac{1}{\delta_{k}} \frac{\|z\|^{2}}{\|u\|^{2}}=\frac{z^{T}\left(\tilde{\boldsymbol{G}}_{k}-E_{k}\right) z}{\|z\|^{2}} \frac{1}{\delta_{k}} \frac{u^{T} A A^{T} u}{\|u\|^{2}},
$$

and the thesis follows by inspecting the Rayleigh Quotients of $\tilde{G}_{k}-E_{k}$ and $A A^{T}$.
Remark 1. Following the discussion in the end of the previous section, we know that $\frac{\mu_{k}}{\delta_{k}}=O(1)$, since IP-PMM forces δ_{k} to decrease at the same rate as μ_{k}. Combining this with the result of Theorem 1 implies that the condition number of the preconditioned normal equations is asymptotically independent of μ_{k}.
Remark 2. In the LP case ($Q=0$), or the separable QP case (Q diagonal), Theorem 1 characterizes the eigenvalues of the preconditioned matrix within the CG method.

3.2 | BFGS-like low-rank update of the $\boldsymbol{P}_{N E, k}$ preconditioner

Given a rectangular (tall) matrix $V \in \mathbb{R}^{m \times p}$ with maximum column rank, it is possible to define a generalized block-tuned preconditioner P satisfying the property

$$
P^{-1} \tilde{M}_{N E, k} V=\nu V,
$$

so that the columns of V become eigenvectors of the preconditioned matrix corresponding to the eigenvalue v. A way to construct P (or its explicit inverse) is suggested by the BFGS-based preconditioners used e.g. in ${ }^{\sqrt{34}}$ for accelerating Newton linear systems or analyzed in ${ }^{[35}$ for general sequences of linear systems, that is

$$
P^{-1}=\nu V \Pi V^{T}+\left(I_{m}-V \Pi V^{T} \tilde{M}_{N E, k}\right) P_{N E, k}^{-1}\left(I_{m}-\tilde{M}_{N E, k} V \Pi V^{T}\right), \quad \text { with } \quad \Pi=\left(V^{T} \tilde{M}_{N E, k} V\right)^{-1} .
$$

Note also that if the columns of V would be chosen as e.g. the p exact rightmost eigenvectors of $P_{N E, k}^{-1} \tilde{M}_{N E, k}$ (corresponding to the p largest eigenvalues) then all the other eigenpairs,

$$
\left(\lambda_{1}, z_{1}\right), \ldots,\left(\lambda_{m-p}, z_{m-p}\right),
$$

of the new preconditioned matrix $P^{-1} \tilde{M}_{N E, k}$ would remain unchanged (nonexpansion of the spectrum of $P^{-1} \tilde{M}_{N E, k}$, see ${ }^{\sqrt[36]{ }}$), as stated in the following:

Theorem 2. If the columns of V are the exact rightmost eigenvectors of $P_{N E, k}^{-1} \tilde{M}_{N E, k}$ then, for $j=1, \ldots, m-p$, it holds that

$$
P^{-1} \tilde{M}_{N E, k} z_{j}=P_{N E, k}^{-1} \tilde{M}_{N E, k} z_{j}=\lambda_{j} z_{j}
$$

Proof. The eigenvectors of the symmetric generalized eigenproblem $\tilde{M}_{N E, k} x=\lambda P_{N E, k} x$ form a $P_{N E, k}$-orthonormal basis, and therefore $V^{T} P_{N E, k} z_{j}=V^{T} \tilde{M}_{N E, k} z_{j}=0, j=1, \ldots, m-p$. Then

$$
\begin{aligned}
P^{-1} \tilde{M}_{N E, k} z_{j}= & v V \Pi V^{T} \tilde{M}_{N E, k} z_{j} \\
& +\left(I_{m}-V \Pi V^{T} \tilde{M}_{N E, k}\right) P_{N E, k}^{-1}\left(\tilde{M}_{N E, k} z_{j}-\tilde{M}_{N E, k} V \Pi V^{T} \tilde{M}_{N E, k} z_{j}\right) \\
= & \left(I_{m}-V \Pi V^{T} \tilde{M}_{N E, k}\right) P_{N E, k}^{-1} \tilde{M}_{N E, k} z_{j}=\left(I_{m}-V \Pi V^{T} \tilde{M}_{N E, k}\right) \lambda_{j} z_{j}=\lambda_{j} z_{j} .
\end{aligned}
$$

A similar result to Theorem 2 can be found in $\frac{36}{}$, where the low-rank correction produces what the authors call a second-level preconditioner.

Usually columns of V are chosen as the (approximate) eigenvectors of $P_{N E, k}^{-1} \tilde{M}_{N E, k}$ corresponding to the smallest eigenvalues of this matrix ${ }^{37]}$. However, this choice would not produce a significant reduction in the condition number of the preconditioned matrix as the spectral analysis of Theorem 1 suggests a possible clustering of smallest eigenvalues around 1 . We choose instead, as the columns of V, the rightmost eigenvectors of $P_{N E, k}^{-1} \tilde{M}_{N E, k}$, approximated with low accuracy by the function eigs of MATLAB. The v value must be selected to satisfy $\lambda_{\min }\left(P_{N E, k}^{-1} \tilde{M}_{N E, k}\right)<v \ll \lambda_{\max }\left(P_{N E, k}^{-1} \tilde{M}_{N E, k}\right)$. We choose $v=10$, to ensure that this new eigenvalue lies in the interior of the spectral interval, and the column size of V as $p=10$. This last choice is driven by experimental evidence that in most cases there are a small number of large outliers in $P_{N E, k}^{-1} \tilde{M}_{N E, k}$. A larger value of p would (unnecessarily) increase the cost of applying the preconditioner.

Finally, by computing approximately the rightmost eigenvectors, we would expect a slight perturbation of $\lambda_{1}, \ldots, \lambda_{m-p}$, depending on the accuracy of this approximation. For a detailed perturbation analysis see e.g. 39].

3.3 | Preconditioned augmented system

In the MINRES solution of QP instances the system matrix is

$$
M_{A S, k}=\left[\begin{array}{cc}
-F_{k} & A^{T} \\
A & \delta_{k} I_{m}
\end{array}\right], \quad F_{k}=Q+\Theta_{k}^{-1}+\rho_{k} I_{n}
$$

while the preconditioner is

$$
P_{A S, k}=\left[\begin{array}{cc}
\tilde{F}_{k} & 0 \\
0 & P_{N E, k}
\end{array}\right], \quad \tilde{F}_{k}=\tilde{Q}+\Theta_{k}^{-1}+\rho_{k} I_{n} \equiv \tilde{G}_{k}^{-1}
$$

The following Theorem will characterize the eigenvalues of $P_{A S, k}^{-1} M_{A S, k}$ in terms of the extremal eigenvalues of the preconditioned (1,1) block of $\sqrt[2.4]{2 .}, \tilde{F}_{k}^{-1} F_{k}$, and of $P_{N E, k}^{-1} \tilde{M}_{N E, k}$ as described by Theorem 1 We will work with (symmetric positive definite) similarity transformations of these matrices defined as

$$
\begin{equation*}
\hat{F}_{k}=\tilde{F}_{k}^{-1 / 2} F_{k} \tilde{F}_{k}^{-1 / 2}, \quad \hat{M}_{N E, k}=P_{N E, k}^{-1 / 2} \tilde{M}_{N E, k} P_{N E, k}^{-1 / 2} \tag{3.3}
\end{equation*}
$$

and set

$$
\begin{aligned}
& \alpha_{N E}=\lambda_{\min }\left(\hat{M}_{N E, k}\right), \beta_{N E}=\lambda_{\max }\left(\hat{M}_{N E, k}\right), \kappa_{N E}=\frac{\beta_{N E}}{\alpha_{N E}} \\
& \alpha_{F}=\lambda_{\min }\left(\hat{F}_{k}\right), \quad \beta_{F}=\lambda_{\max }\left(\hat{F}_{k}\right), \quad \kappa_{F}=\frac{\beta_{F}}{\alpha_{F}}
\end{aligned}
$$

Hence, an arbitrary element of the numerical range of these matrices is represented as:

$$
\gamma_{N E} \in q\left(\hat{M}_{N E, k}\right)=\left[\alpha_{N E}, \beta_{N E}\right], \quad \gamma_{F} \in q\left(\hat{F}_{k}\right)=\left[\alpha_{F}, \beta_{F}\right] .
$$

Similarly, an arbitrary element of $q\left(P_{N E, k}\right)$ is denoted by

$$
\gamma_{p} \in\left[\lambda_{\min }\left(P_{N E, k}\right), \lambda_{\max }\left(P_{N E, k}\right)\right] \subseteq\left[\delta_{k}, \frac{\sigma_{\max }^{2}(A)}{\rho_{k}}+\delta_{k}\right) .
$$

Observe that $\alpha_{F} \leq 1 \leq \beta_{F}$ as

$$
\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}\left(\tilde{F}_{k}^{-1} F_{k}\right)=\frac{1}{n} \operatorname{Tr}\left(\tilde{F}_{k}^{-1} F_{k}\right)=1
$$

Theorem 3. Let k be an arbitrary iteration of IP-PMM. Then, the eigenvalues of $P_{A S, k}^{-1} M_{A S, k}$ lie in the union of the following intervals:

$$
I_{-}=\left[-\beta_{F}-\sqrt{\beta_{N E}},-\alpha_{F}\right] ; \quad I_{+}=\left[\frac{1}{1+\beta_{F}}, 1+\sqrt{\beta_{N E}-1}\right]
$$

Proof. The eigenvalues of $P_{A S, k}^{-1} M_{A S, k}$ are the same as those of

$$
P_{A S, k}^{-1 / 2} M_{A S, k} P_{A S, k}^{-1 / 2}=\left[\begin{array}{cc}
\tilde{F}_{k}^{-1 / 2} & 0 \\
0 & P_{N E, k}^{-1 / 2}
\end{array}\right]\left[\begin{array}{cc}
-F_{k} & A^{T} \\
A & \delta_{k} I_{m}
\end{array}\right]\left[\begin{array}{cc}
\tilde{F}_{k}^{-1 / 2} & 0 \\
0 & P_{N E, k}^{-1 / 2}
\end{array}\right]=\left[\begin{array}{cc}
-\hat{F}_{k} & R_{k}^{T} \\
R_{k} & \delta_{k} P_{N E, k}^{-1}
\end{array}\right]
$$

where \hat{F}_{k} is defined in 3.3 and $R_{k}=P_{N E, k}^{-1 / 2} A \tilde{F}_{k}^{-1 / 2}$.
Any eigenvalue λ of $P_{A S, k}^{-1 / 2} M_{A S, k} P_{A S, k}^{-1 / 2}$ must therefore satisfy

$$
\begin{align*}
-\hat{F}_{k} w_{1}+R_{k}^{T} w_{2} & =\lambda w_{1} \tag{3.4}\\
R_{k} w_{1}+\delta_{k} P_{N E, k}^{-1} w_{2} & =\lambda w_{2} \tag{3.5}
\end{align*}
$$

First note that

$$
\begin{equation*}
R_{k} R_{k}^{T}=P_{N E, k}^{-1 / 2} A \tilde{F}_{k}^{-1} A^{T} P_{N E, k}^{-1 / 2}=P_{N E, k}^{-1 / 2}\left(\tilde{M}_{N E, k}-\delta_{k} I_{m}\right) P_{N E, k}^{-1 / 2}=\hat{M}_{N E, k}-\delta_{k} P_{N E, k}^{-1} \tag{3.6}
\end{equation*}
$$

The eigenvalues of $R_{k} R_{k}^{T}$ are therefore characterized by Theorem 1 . If $\lambda \notin\left[-\beta_{F},-\alpha_{F}\right]$ then $\hat{F}_{k}+\lambda I_{n}$ is symmetric positive (or negative) definite; moreover $R_{k}^{T} w_{2} \neq 0$. Then from 3.4 we obtain an expression for w_{1} :

$$
w_{1}=\left(\hat{F}_{k}+\lambda I_{n}\right)^{-1} R_{k}^{T} w_{2}
$$

which, after substituting in (3.5) yields

$$
R_{k}\left(\hat{F}_{k}+\lambda I_{n}\right)^{-1} R_{k}^{T} w_{2}+\delta_{k} P_{N E, k}^{-1} w_{2}=\lambda w_{2}
$$

Premultiplying by w_{2}^{T} and dividing by $\left\|w_{2}\right\|^{2}$, we obtain the following equation where we set $z=R_{k}^{T} w_{2}$:

$$
\lambda=\frac{z^{T}\left(\hat{F}_{k}+\lambda I_{n}\right)^{-1} z}{z^{T} z} \frac{w_{2}^{T} R_{k} R_{k}^{T} w_{2}}{w_{2}^{T} w_{2}}+\delta_{k} \frac{w_{2}^{T} P_{N E, k}^{-1} w_{2}}{w_{2}^{T} w_{2}}=\frac{1}{\gamma_{F}+\lambda}\left(\gamma_{N E}-\frac{\delta_{k}}{\gamma_{p}}\right)+\frac{\delta_{k}}{\gamma_{p}} .
$$

So λ must satisfy the following second-order algebraic equation

$$
\lambda^{2}+\left(\gamma_{F}-\omega\right) \lambda-\left(\omega\left(\gamma_{F}-1\right)+\gamma_{N E}\right)=0
$$

where we have set $\omega=\frac{\delta_{k}}{\gamma_{p}}$ satisfying $\omega \leq 1$ for all $k \geq 0$.
We first consider the negative eigenvalue solution of the previous algebraic equation, that is:

$$
\begin{aligned}
\lambda_{-} & =\frac{1}{2}\left[\omega-\gamma_{F}-\sqrt{\left(\gamma_{F}-\omega\right)^{2}+4\left(\omega \gamma_{F}-\omega+\gamma_{N E}\right)}\right] \\
& =\frac{1}{2}\left[\omega-\gamma_{F}-\sqrt{\left(\gamma_{F}+\omega\right)^{2}+4\left(\gamma_{N E}-\omega\right)}\right] \\
& \leq \frac{1}{2}\left[\omega-\gamma_{F}-\sqrt{\left(\gamma_{F}+\omega\right)^{2}}\right]=-\gamma_{F} \leq-\alpha_{F}
\end{aligned}
$$

where the last line is obtained by noting that $\gamma_{N E} \geq 1$ from Theorem 1 , and $\omega \leq 1$. In order to derive a lower bound on λ_{-}we use the fact that λ_{-}is an increasing function with respect to ω, and decreasing with respect to $\gamma_{N E}$ and γ_{F}. Hence,

$$
\begin{aligned}
\lambda_{-} & =\frac{1}{2}\left[\omega-\gamma_{F}-\sqrt{\left(\gamma_{F}+\omega\right)^{2}+4\left(\gamma_{N E}-\omega\right)}\right] \\
& \geq \frac{1}{2}\left[-\gamma_{F}-\sqrt{\gamma_{F}^{2}+4 \gamma_{N E}}\right] \\
& \geq \frac{1}{2}\left[-\beta_{F}-\sqrt{\beta_{F}^{2}+4 \beta_{N E}}\right] \geq-\beta_{F}-\sqrt{\beta_{N E}}
\end{aligned}
$$

Combining all the previous yields:

$$
\lambda_{-}\left\{\begin{array}{l}
\geq-\beta_{F}-\sqrt{\beta_{N E}} \\
\leq-\alpha_{F}
\end{array}\right.
$$

Note that this interval for λ_{-}contains the interval $\left[-\beta_{F},-\alpha_{F}\right]$, which we have excluded in order to carry out the analysis.
Regarding the positive eigenvalues we have that:

$$
\lambda_{+}=\frac{1}{2}\left[\omega-\gamma_{F}+\sqrt{\left(\gamma_{F}-\omega\right)^{2}+4\left(\omega \gamma_{F}-\omega+\gamma_{N E}\right)}\right]=\frac{1}{2}\left[\omega-\gamma_{F}+\sqrt{\left(\gamma_{F}+\omega\right)^{2}+4\left(\gamma_{N E}-\omega\right)}\right] .
$$

We proceed by finding a lower bound for λ_{+}. To that end, we notice that λ_{+}is a decreasing function with respect to the variable γ_{F} and increasing with respect to $\gamma_{N E}$. Hence, we have that:

$$
\begin{aligned}
\lambda_{+} & \geq \frac{1}{2}\left[\omega-\beta_{F}+\sqrt{\left(\beta_{F}+\omega\right)^{2}+4\left(\alpha_{N E}-\omega\right)}\right] \\
& \geq \frac{1}{2}\left[\omega-\beta_{F}+\sqrt{\left(\beta_{F}+\omega\right)^{2}+4(1-\omega)}\right], \text { since } \alpha_{N E} \geq 1, \text { from Theorem } 1 \\
& \geq \frac{1}{2}\left[-\beta_{F}+\sqrt{\beta_{F}^{2}+4}\right], \text { since the previous is increasing with respect to } \omega, \\
& \geq \frac{1}{1+\beta_{F}} .
\end{aligned}
$$

Similarly, in order to derive an upper bound for λ_{+}, we observe that λ_{+}is an increasing function with respect to ω, decreasing with respect to γ_{F}, and increasing with respect to $\gamma_{N E}$. Combining all the previous yields:

$$
\lambda_{+} \leq \frac{1}{2}\left[1-\alpha_{F}+\sqrt{\left(\alpha_{F}+1\right)^{2}+4\left(\beta_{N E}-1\right)}\right] \leq 1+\sqrt{\beta_{N E}-1}
$$

where we used the fact that $\omega \leq 1$. Then, combining all the previous gives the desired bounds, that is:

$$
\lambda_{+}\left\{\begin{array}{l}
\geq \frac{1}{1+\beta_{F}} \\
\leq 1+\sqrt{\beta_{N E}-1}
\end{array}\right.
$$

and completes the proof.
Remark 3. It is well known that a pessimistic bound on the convergence rate of MINRES can be obtained if the size of I_{-}and I_{+}are roughly the same ${ }^{40}$. In our case, as usually $\beta_{F} \ll \beta_{N E}$, we can assume that the length of both intervals is roughly $\sqrt{\beta_{N E}}$. As a heuristic we may therefore use ${ }^{41]}$ Theorem 4.14, which predicts the reduction of the residual in the $P_{A S}^{-1}$-norm in the case where both intervals have exactly equal length. This then implies that

$$
\frac{\left\|r_{k}\right\|}{\left\|r_{0}\right\|} \leq 2\left(\frac{\kappa-1}{\kappa+1}\right)^{\lfloor k / 2\rfloor}
$$

where

$$
\begin{aligned}
\kappa & \approx \frac{1+\beta_{F}}{\alpha_{F}}\left(1+\sqrt{\beta_{N E}-1}\right)\left(\beta_{F}+\sqrt{\beta_{N E}}\right) \leq 2 \kappa_{F}\left(\sqrt{1+\beta_{N E}}\right)\left(\beta_{F}+\sqrt{\beta_{N E}}\right) \\
& \approx 2 \beta_{N E} \cdot \kappa_{F} \leq 2 \kappa_{N E} \cdot \kappa_{F} .
\end{aligned}
$$

Remark 4. In the LP case $\tilde{F}_{k}=F_{k}$ and therefore $\kappa_{F}=1$. It then turns out that $\kappa \approx 2 \kappa_{N E}$. The number of MINRES iterations is then driven by $2 \kappa_{N E}$ while the CG iterations depend on $\sqrt{\kappa_{N E}}$.42]. We highlight that different norms are used to describe the reduction in the relative residual norm for MINRES and CG.

4 | ALGORITHMS AND IMPLEMENTATION DETAILS

In this section, we provide some implementation details of the method. The code was written in MATLAB and can be found here: https://github.com/spougkakiotis/Inexact_IP-PMM (source link). In the rest of this manuscript, when referring to CG or

MINRES, we implicitly assume that the methods are preconditioned. In particular, the preconditioner given in 2.7) is employed when using CG, while the preconditioner in (2.8) is employed when using MINRES.

4.1 | Input problem

The method takes input problems of the following form:

$$
\min _{x}\left(c^{T} x+\frac{1}{2} x^{T} Q x\right), \text { s.t. } A x=b, x^{I} \geq 0, x^{F} \text { free, }
$$

where $I=\{1, \ldots, n\} \backslash F$ is the set of indices indicating the non-negative variables. In particular, if a problem instance has only free variables, no logarithmic barrier is employed and the method reduces to a standard proximal method of multipliers.

In the pre-processing stage, we check if the constraint matrix is well scaled, i.e. if:

$$
\left(\max _{i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}}\left(\left|A^{(i, j)}\right|\right)<10\right) \wedge\left(\min _{i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}:\left|A^{(i, j)}\right|>0}\left(\left|A^{(i, j)}\right|\right)>0.1\right)
$$

If the previous is not satisfied, we apply geometric scaling to the rows of A, that is, we multiply each row of A by a scalar of the form:

$$
d_{i}=\frac{1}{\sqrt{\max _{j \in\{1, \ldots, n\}}\left(\left|A^{(i,:)}\right|\right) \cdot \min _{j \in\{1, \ldots, n\}:\left|A^{(i, j)}\right|>0}\left(\left|A^{(i,:)}\right|\right)}}, \forall i \in\{1, \ldots, m\}
$$

4.2 | Interior point-proximal method of multipliers

4.2.1 | Parametrization and the Newton system

Firstly, in order to construct a reliable starting point for the method, we follow the developments in ${ }^{[23}$. To this end, we try to solve the pair of problems $1.1-1.2$, ignoring the non-negativity constraints, which yields

$$
\tilde{x}=A^{T}\left(A A^{T}\right)^{-1} b, \quad \tilde{y}=\left(A A^{T}\right)^{-1} A(c+Q \tilde{x}), \quad \tilde{z}=c-A^{T} \tilde{y}+Q \tilde{x}
$$

However, we regularize the matrix $A A^{T}$ and employ the preconditioned CG method to solve these systems without forming the normal equations. We use the Jacobi preconditioner to accelerate CG, i.e. $P=\operatorname{diag}\left(A A^{T}\right)+\delta I_{m}$, where $\delta=8$ is set as the regularization parameter. Then, in order to guarantee positivity and sufficient magnitude of x_{I}, z_{I}, we shift these components by some appropriate constants. These shift constants are the same as the ones used in the starting point developed in ${ }^{23}$, and hence are omitted for brevity of presentation.

The Newton step is computed using a predictor-corrector method. We provide the algorithmic scheme in Algorithm PC, and the reader is referred to ${ }^{23}$ for a complete presentation of the method. We solve the systems (4.1) and (4.2), using the proposed preconditioned iterative methods (i.e. CG or MINRES). Note that in case CG is employed, we apply it to the normal equations of each respective system. Since we restrict the maximum number of Krylov iterations, we must also check whether the solution is accurate enough. If it is not, we drop the computed directions and improve our preconditioner. If this happens for 10 consecutive iterations, the algorithm is terminated.

The PMM parameters are initialized as follows: $\delta_{0}=8, \rho_{0}=8, \lambda_{0}=y_{0}, \zeta_{0}=x_{0}$. At the end of every iteration, we employ the algorithmic scheme given in AlgorithmPEU. In order to ensure numerical stability, δ and ρ are not allowed to become smaller than a suitable positive threshold, $\operatorname{reg}_{t h r}$. We set $\operatorname{reg}_{t h r}=\max \left\{\frac{\operatorname{tol}}{\max \left\{\|A\|_{\infty}^{2},\|Q\|_{\infty}^{2}\right\}}, 10^{-13}\right\}$. This value is based on the developments $\mathrm{in}{ }^{25}$, where it is shown that such a constant introduces a controlled perturbation in the eigenvalues of the non-regularized linear system. If numerical instability is detected while solving the Newton system, we increase the regularization parameters (δ, ρ) by a factor of 2 and solve the Newton system again. If this happens while either δ or ρ have reached their minimum value, we also increase this threshold. If the threshold is increased 10 times, the method is terminated with a message indicating ill-conditioning.

4.2.2 | Preconditioner: Low-rank updates and dynamic refinement

At each IP-PMM iteration we check the number of non-zeros of the preconditioner used in the previous iteration. If this number exceeds some predefined constant (depending on the number of constraints m), we perform certain low-rank updates to the preconditioner, to ensure that its quality is improved, without having to use very much memory. In such a case, the following

```
Algorithm PC Predictor-Corrector Method
    Compute the predictor:
\[
\left[\begin{array}{cc}
-\left(Q+\Theta^{-1}+\rho_{k} I_{n}\right) & A^{T}  \tag{4.1}\\
A & \delta_{k} I_{m}
\end{array}\right]\left[\begin{array}{c}
\Delta_{p} x \\
\Delta_{p} y
\end{array}\right]=\left[\begin{array}{c}
c+Q x_{k}-A^{T} y_{k}-\rho_{k}\left(x_{k}-\zeta_{k}\right)-d_{1} \\
b-A x_{k}-\delta_{k}\left(y_{k}-\eta_{k}\right)
\end{array}\right],
\]
```

where $d_{1}^{I}=-\mu_{k}\left(X^{I}\right)^{-1} e_{|I|}$ and $d_{1}^{F}=0$ (components of d_{1} corresponding to inequality constraints and free variables).
Retrieve $\Delta_{p} z$:

$$
\Delta_{p} z^{I}=d_{1}^{I}-\left(X^{I}\right)^{-1}\left(Z^{I} \Delta_{p} x^{I}\right), \quad \Delta_{p} z^{F}=0 .
$$

Compute the step in the non-negativity orthant:

$$
\alpha_{x}^{\max }=\min _{\left(\Delta_{p} x^{I(i)}<0\right)}\left\{1,-\frac{x^{I(i)}}{\Delta_{p} x^{I(i)}}\right\}, \alpha_{z}^{\max }=\min _{\left(\Delta_{p} z^{I(i)}<0\right)}\left\{1,-\frac{z_{k}^{I(i)}}{\Delta_{p} z^{I(i)}}\right\},
$$

for $i=1, \ldots,|I|$, and set:

$$
\alpha_{x}=\tau \alpha_{x}^{\max }, \quad \alpha_{z}=\tau \alpha_{z}^{\max }
$$

with $\tau=0.995$ (avoid going too close to the boundary).
Compute a centrality measure:

$$
g_{\alpha}=\left(x^{I}+\alpha_{x} \Delta_{p} x^{I}\right)^{T}\left(z^{I}+\alpha_{z} \Delta_{p} z^{I}\right)
$$

Set: $\mu=\left(\frac{g_{\alpha}}{\left(x_{k}^{I}\right)^{T} z_{k}^{I}}\right)^{2} \frac{g_{\alpha}}{|I|}$
Compute the corrector:

$$
\left[\begin{array}{cc}
-\left(Q+\Theta^{-1}+\rho_{k} I_{n}\right) & A^{T} \tag{4.2}\\
A & \delta_{k} I_{m}
\end{array}\right]\left[\begin{array}{c}
\Delta_{c} x \\
\Delta_{c} y
\end{array}\right]=\left[\begin{array}{c}
d_{2} \\
0
\end{array}\right],
$$

with $d_{2}^{I}=\mu\left(X^{I}\right)^{-1} e^{|I|}-\left(X^{I}\right)^{-1} \Delta_{p} X^{I} \Delta_{p} z^{I}$ and $d_{2}^{F}=0$.
Retrieve $\Delta_{c} z$:

$$
\begin{gathered}
\Delta_{c} z^{I}=d_{2}^{I}-\left(X^{I}\right)^{-1}\left(Z^{I} \Delta_{c} x^{I}\right), \Delta_{c} z^{F}=0 . \\
(\Delta x, \Delta y, \Delta z)=\left(\Delta_{p} x+\Delta_{c} x, \Delta_{p} y+\Delta_{c} y, \Delta_{p} z+\Delta_{c} z\right)
\end{gathered}
$$

Compute the step in the non-negativity orthant:

$$
\alpha_{x}^{\max }=\min _{\Delta x^{I(i)}<0}\left\{1,-\frac{x^{I(i)}}{\Delta x^{I(i)}}\right\}, \alpha_{z}^{\max }=\min _{\Delta z^{I(i)}<0}\left\{1,-\frac{z^{I(i)}}{\Delta z^{I(i)}}\right\},
$$

and set:

$$
\alpha_{x}=\tau \alpha_{x}^{\max }, \quad \alpha_{z}=\tau \alpha_{z}^{\max }
$$

Update:

$$
\left(x_{k+1}, y_{k+1}, z_{k+1}\right)=\left(x_{k}+\alpha_{x} \Delta x, y_{k}+\alpha_{z} \Delta y, z_{k}+\alpha_{z} \Delta z\right)
$$

tasks are performed as sketched in Algorithm LRU-0. Then, at every Krylov iteration, the computation of the preconditioned residual $\hat{r}=P^{-1} r$ requires the steps outlined in Algorithm LRU-1

In our implementation, the first step of Algorithm LRU-0 is performed using the restarted Lanczos method through the inbuilt MATLAB function eigs, requesting 1-digit accurate eigenpairs. This requires and additional number of applications of the preconditioned $M_{N E}$ matrix within eigs. To save on this cost we employ the first 5 Lanczos iterations to assess the order of magnitude of the largest eigenvalue $\lambda_{\max }\left(P_{N E}^{-1} M_{N E}\right)$. If $\lambda_{\max }<100$ we assume that a condition number of the preconditioned matrix less than 100 must not be further reduced, and we stop computing eigenvalues, otherwise we proceed. The number of matrix-vector prodicts required by eigs can not be known in advance. However, fast Lanczos convergence is expected when the largest eigenvalues are well separated which in turn will provide a notable reduction of the condition number of the preconditioned matrices. This extra cost is payed for by: (a) a decreased number of PCG iterations in both the predictor and corrector steps; (b) an improved conditioning of the linear system; (c) a saving in the density of the Cholesky factor at the subsequent IP iteration, since, as it will explained at the end of this Section 4.2.2, fast PCG convergence at a given IP step will cause a sparsification of $P_{N E}$ at the next outer iteration. We finally remark that a good approximation of the largest eigenvalues of the preconditioned matrix could be extracted for free ${ }^{43}$ during the PCG solution of the correction linear system and used them to

```
Algorithm PEU Penalty and Estimate Updates
    \(r=\frac{\left|\mu_{k}-\mu_{k+1}\right|}{\mu_{k}}\) (rate of decrease of \(\mu\) ).
    if \(\left(\left\|A x_{k+1}-b\right\| \leq 0.95 \cdot\left\|A x_{k}-b\right\|\right)\) then
        \(\eta_{k+1}=y_{k+1}\).
        \(\delta_{k+1}=(1-r) \cdot \delta_{k}\).
    else
        \(\eta_{k+1}=\eta_{k}\).
        \(\delta_{k+1}=\left(1-\frac{1}{3} r\right) \cdot \delta_{k}\).
    end if
    \(\delta_{k+1}=\max \left\{\delta_{k+1}\right.\), reg \(\left.{ }_{t h r}\right\}\), for numerical stability (ensure quasi-definiteness).
    if \(\left(\left\|c+Q x_{k+1}-A^{T} y_{k+1}-z_{k+1}\right\| \leq 0.95 \cdot\left\|c+Q x_{k}-A^{T} y_{k}-z_{k}\right\|\right)\) then
        \(\zeta_{k+1}=x_{k+1}\).
        \(\rho_{k+1}=(1-r) \cdot \rho_{k}\).
    else
        \(\zeta_{k+1}=\zeta_{k}\).
        \(\rho_{k+1}=\left(1-\frac{1}{3} r\right) \cdot \rho_{k}\).
    end if
    \(\rho_{k+1}=\max \left\{\rho_{k+1}\right.\), reg \(\left._{t h r}\right\}\).
    \(k=k+1\).
```

accelerate the predictor linear system by the low-rank correction. This approach, not implemented in the present version of the code, would save on the cost of computing eigenpairs but would provide acceleration in the second linear system only.

The cost of computing Z is equal to p matrix-vector products with matrix $M_{N E}$. Then, T is computed in $O(p m)$ operations, while Π is computed via an LU decomposition, which costs $O\left(p^{3}\right)$ operations. All the previous need to be calculated once before employing the Krylov subspace method. Algorithm LRU-1 introduces an additional $O(4 p m)$ cost per iteration of the Krylov subspace method (notice that a similar computation as in the third step of Algorithm LRU-1 is required even without enabling low-rank updates). The memory requirements of Algorithms LRU-0 LRU-1 are of the order $O(p m)$.

```
Algorithm LRU-0 Low-Rank Updates-0: Before the Krylov Solver Iteration
    Compute the \(p\) rightmost (approximate) eigenvectors \(v_{m}, \ldots, v_{m-p+1}\) of \(M_{N E} v=\lambda P_{N E} v\).
    Set \(V=\left[\begin{array}{lll}v_{m} & \ldots & v_{m-p+1}\end{array}\right]\)
    Compute \(Z=M_{N E} V ; T=V^{T} Z ; \Pi=T^{-1}\).
```

```
Algorithm LRU-1 Low-Rank Updates-1: Computation of \(\hat{r}=P^{-1} r\)
    \(w=\Pi\left(V^{T} r\right)\).
    \(z=r-Z w\).
    Solve \(P_{N E} t=z\).
    \(u=\Pi\left(Z^{T} t\right)\).
    \(\hat{r}=V(v w-u)+t\).
```

In Section 3 we showed that the quality of both preconditioners in 2.8 and 2.7 depends heavily on the quality of the approximation of the normal equations. In other words, the quality of the preconditioner for the normal equations in 2.7 governs the convergence of both MINRES and CG. In turn, we know from Theorem 1 that the quality of this preconditioner depends on the choice of the constant $C_{E, k}$, at every iteration of the method. By combining the previous with the definition of E in 2.6, we expect that as $C_{E, k}$ decreases (which potentially means that there are fewer zero diagonal elements in E), the quality of $P_{N E, k}$ is improved. Hence, we control the quality of this preconditioner, by adjusting the value of $C_{E, k}$.

More specifically, the required quality of the preconditioner depends on the quality of the preconditioner at the previous iteration, as well as on the required memory of the previous preconditioner. In particular, if the Krylov method converged fast in the previous IP-PMM iteration (compared to the maximum allowed number of Krylov iterations), while requiring a substantial amount of memory, then the preconditioner quality is lowered (i.e. $C_{E, k+1}>C_{E, k}$). Similarly, if the Krylov method converged slowly, the preconditioner quality is increased (i.e. $C_{E, k}>C_{E, k+1}$). If the number of non-zeros of the preconditioner is more than a predefined large constant (depending on the available memory), and the preconditioner is still not good enough, we further increase the preconditioner's quality (i.e. we decrease $C_{E, k}$), but at a very slow rate, hoping that this happens close to convergence (which is what we observe in practice, when solving large scale problems). As a consequence, allowing more iterations for the Krylov solvers results in a (usually) slower method that requires less memory. On the other hand, by sensibly restricting the maximum number of iterations of the iterative solvers, one can achieve fast convergence, at the expense of robustness (the method is slightly more prone to inaccuracy and could potentially require more memory).

4.2.3 | Termination criteria

The termination criteria of the method are summarized in Algorithm TC In particular, the method successfully terminates if the scaled 2-norm of the primal and dual infeasibility, as well as the complementarity, are less than a specified tolerance. The following two conditions in Algorithm TC are employed to detect whether the problem under consideration is infeasible. For a theoretical justification of these conditions, the reader is referred to ${ }^{8}$. If none of the above happens, the algorithm terminates after a pre-specified number of iterations.

```
Algorithm TC Termination Criteria
Input: \(k\), tol, maximum iterations
    if \(\left(\frac{\left\|c-A^{T} y+Q x-z\right\|}{\max \{\|c\|, 1\}} \leq \mathrm{tol}\right) \wedge\left(\frac{\|b-A x\|}{\max \{\|b\|, 1\}} \leq \mathrm{tol}\right) \wedge(\mu \leq \mathrm{tol})\) then
        Declare convergence.
    end if
    if \(\left(\left\|c+Q x_{k}-A^{T} y_{k}-z_{k}+\rho_{k}\left(x_{k}-\zeta_{k}\right)\right\| \leq \operatorname{tol}\right) \wedge\left(\left\|x_{k}-\zeta_{k}\right\|>10^{10}\right)\) then
        if ( \(\zeta_{k}\) not updated for 5 consecutive iterations) then
            Declare infeasibility.
        end if
    end if
    if \(\left(\left\|b-A x_{k}-\delta_{k}\left(y_{k}-\eta_{k}\right)\right\| \leq \operatorname{tol}\right) \wedge\left(\left\|y_{k}-\eta_{k}\right\|>10^{10}\right)\) then
        if ( \(\eta_{k}\) not updated for 5 consecutive iterations) then
            Declare infeasibility.
        end if
    end if
    if ( \(k>\) iterations limit) then
        Exit (non-optimal).
    end if
```


5 | NUMERICAL RESULTS

At this point, we present computational results obtained by solving a set of small to large scale linear and convex quadratic problems. Throughout all of the presented experiments, we set the maximum number of IP-PMM iterations to 200. The experiments were conducted on a PC with a 2.2 GHz Intel Core i7 processor (hexa-core), 16 GB RAM, run under Windows 10 operating system. The MATLAB version used was R2019a. For the rest of this section, the reported number of non-zeros of a constraint matrix of an arbitrary problem does not include possible extra entries created to transform the problem to the IP-PMM format.

Firstly, we run the method on the Netlib collection ${ }^{444}$. The test set consists of 96 linear programming problems. We set the desired tolerance to tol $=10^{-4}$. In Table 1. we collect statistics from the runs of the method over some medium scale instances
of the Netlib test set (see ${ }^{44}$). For each problem, two runs are presented; in the first one, we solve the normal equations of systems (4.1)-4.2) using CG, while in the second one, we solve 4.1-4.2) using MINRES. As we argued in Section 3, the MINRES can require more than twice as many iterations as CG to deliver an equally good direction. Hence, we set maxit ${ }_{\text {MINRES }}=3 \cdot$ maxit $_{\mathrm{CG}}=$ 300 (i.e. maxit $_{\mathrm{CG}}=100$). As we already mentioned in Remark 4 . it is not entirely clear how many more iterations MINRES requires to guarantee the same quality of solution as PCG, since the two algorithms optimize different residual norms. Hence, requiring three times more iterations for MINRES is based on the behavior we observed through numerical experimentation. It comes as no surprise that IP-PMM with MINRES is slower, however, it allows us to solve general convex quadratic problems for which the normal equations are too expensive to be formed, or applied to a vector (indeed, this would often require the inversion of the matrix $Q+\Theta^{-1}+\rho_{k} I_{n}$, which is possibly non-diagonal). More specifically, IP-PMM with CG solved the whole set successfully in 141.25 seconds, requiring 2,907 IP-PMM iterations and 101,382 CG iterations. Furthermore, IP-PMM with MINRES also solved the whole set successfully, requiring 341.23 seconds, 3,012 total IP-PMM iterations and 297,041 MINRES iterations.

TABLE 1 Medium Scale Linear Programming Problems

Name	$\mathrm{nnz}(\boldsymbol{A})$	IP-PMM: CG			IP-PMM: MINRES		
		Time (s)	IP-Iter.	CG-Iter.	Time (s)	IP-Iter.	MR-Iter.
80BAU3B	29,063	3.15	48	1,886	10.74	47	4,883
D2Q06C	35,674	2.16	42	1,562	7.48	46	5,080
D6CUBE	43, 888	0.97	30	933	3.26	30	3,279
DFL001	41,873	10.18	54	2,105	29.07	54	6,292
FIT2D	138, 018	3.16	28	836	10.62	28	2,558
FIT2P	60,784	40.78	31	924	65.15	31	2,978
PILOT87	73, 804	7.29	40	1,260	18.36	42	3,543
QAP12	44, 244	4.38	14	495	8.62	14	1,465
QAP15	110,700	22.83	18	575	47.45	18	1,808

While we previously presented the runs of IP-PMM using MINRES over the Netlib collection, we did so only to compare the two variants. In particular, for the rest of this section we employ the convention that IP-PMM uses CG whenever $Q=0$ or Q is diagonal, and MINRES whenever this is not the case. Next, we present the runs of the method over the Maros-Mészáros test set ${ }^{[45]}$, which is comprised of 127 convex quadratic programming problems. In Table 2 , we collect statistics from the runs of the method over some medium and large scale instances of the collection.

TABLE 2 Medium and Large Scale Quadratic Programming Problems

		IP-PMM			
Name	$\boldsymbol{n})$		Time (s)	IP-Iter.	Krylov-Iter.
AUG2DCQP			4.46	41	1,188
CONT-100	49,005	10,197	3.95	23	68
CONT-101	49,599	2,700	8.83	85	282
CONT-200	198,005	40,397	39.84	109	422
CONT-300	448,799	23,100	134,76	126	405
CVXQP1_L	14,998	69,968	54.77	111	12,565
CVXQP3_L	22,497	69,968	80.18	122	14,343
LISWET1	30,000	10,002	3.55	41	1,249
POWELL20	20,000	10,000	2.71	31	937
QSHIP12L	16,170	122,433	2.99	26	3,312

TABLE 3 Robustness of Inexact IP-PMM

Collection	Tol	Solved (\%)	IP-PMM		
			Time (s)	IP-Iter.	Krylov-Iter.
Netlib	10^{-4}	100	$\%$	141.25	2,907
Netlib	10^{-6}	100	$\%$	183.31	3,083
Netlib	10^{-8}	96.87%	337.21	3,670	107,911
Maros-Mészáros	10^{-4}	99.21%	422.75	3,429	247,724
Maros-Mészáros	10^{-6}	97.64%	545.26	4,856	291,286
Maros-Mészáros	10^{-8}	92.91%	637.35	5,469	321,636

TABLE 4 Large-Scale Linear Programming Problems

Name	$\mathbf{n n z}(\boldsymbol{A})$	IP-PMM: CG		
		Time (s)	IP-Iter.	CG-Iter.
CONT1-1		$*^{1}$	$*$	$*$
FOME13	285,056	72.59	54	2,098
FOME21	465,294	415.51	96	4,268
LP-CRE-B	260,785	14.25	51	2,177
LP-CRE-D	246,614	16.04	58	2,516
LP-KEN-18	358,171	128.78	42	1,759
LP-OSA-30	604,488	20.88	67	2,409
LP-OSA-60	$1,408,073$	56.65	65	2,403
LP-NUG-20	304,800	132.41	17	785
LP-NUG-30	$1,567,800$	$2,873.67$	22	1,141
LP-PDS-30	340,635	363.89	81	3,362
LP-PDS-100	$1,096,002$	$3,709.93$	100	6,094
LP-STOCFOR3	43,888	8.96	60	1,777
NEOS	$1,526,794$	\dagger^{2}	\dagger	\dagger
NUG08-3rd	148,416	80.72	17	682
RAIL2586	$8,011,362$	294.12	51	1,691
RAIL4284	$11,284,032$	391.93	46	1,567
WATSON-1	$1,055,093$	181.63	73	2,588
WATSON-2	$1,846,391$	612.68	140	5,637

$1 *$ indicates that the solver was stopped due to excessive run time.
$2 \dagger$ indicates that the solver ran out of memory.

In Table 3 we collect the statistics of the runs of the method over the entire Netlib and Maros-Mészáros test sets. In particular, we solve each set with increasing accuracy and report the overall success rate of the method, the total time, as well as the total IP-PMM and Krylov iterations. All previous experiments demonstrate that IP-PMM with the proposed preconditioning strategy inherits the reliability of IP-PMM with a direct approach (factorization) ${ }^{8}$, while allowing one to control the memory and processing requirements of the method (which is not the case when employing a factorization to solve the resulting Newton systems). Most of the previous experiments were conducted on small to medium scale linear and convex quadratic programming problems. In Table 4 we provide the statistics of the runs of the method over a small set of large scale problems. The tolerance used in these experiments was 10^{-4}.

FIGURE 1 Performance profiles for large-scale linear programming problems

We notice that the proposed version of IP-PMM is able to solve larger problems, as compared to IP-PMM using factorization (see ${ }^{8}$, and notice that the experiments there were conducted on the same PC, using the same version of MATLAB). To summarize the comparison of the two approaches, we include Figure 1 It contains the performance profiles of the two methods, over the 26 largest linear programming problems of the QAPLIB, Kennington, Mittelmann, and Netlib libraries, for which at least one of the two methods was terminated successfully. In particular, in Figure 1a we present the performance profiles with respect to time, while in Figure 1b we show the performance profiles with respect to the number of IPM iterations. IP-PMM with factorization is represented by the green line (consisting of triangles), while IP-PMM with PCG is represented by the blue line (consisting of stars). In both figures, the horizontal axis is in logarithmic scale, and represents the ratio with respect to the best performance achieved by one of the two methods, for every problem. The vertical axis shows the percentage of problems solved by each method, for different values of the performance ratio. Robustness is "measured" by the maximum attainable percentage, with efficiency measured by the rate of increase of each of the lines (faster increase indicates better efficiency). We refer the reader to ${ }^{46}$ for a complete review of this benchmarking approach. As one can observe, IP-PMM with factorization was able to solve only 84.6% of these problems, due to excessive memory requirements (namely, problems LP-OSA-60, LP-PDS-100, RAIL4284, LP-NUG-30 were not solved due to insufficient memory). As expected, however, it converges in fewer iterations for most problems that are solved successfully by both methods. Moreover, IP-PMM with PCG is able to solve every problem that is successfully solved by IP-PMM with factorization. Furthermore, it manages to do so requiring significantly less time, which can be observed in Figure 1 a Notice that we restrict the comparison to only large-scale problems, since this is the case of interest. In particular, IP-PMM with factorization is expected to be more efficient for solving small to medium scale problems.

Finally, in order to clarify the use of the low-rank (LR) updates we conducted an analysis on two specific - yet representative - linear systems, at (predictor and corrector) IP step \#12 for problem nug20. In Table 5 we report the results in solving these linear systems with the low-rank strategy and different accuracy/number of eigenpairs ($\mathrm{LR}(p$, tol) meaning that we approximate p eigenpairs with eigs with a tolerance tol). The best choice, using $p=10$ and 0.1 accuracy, improves the $P_{N E}$ preconditioner both in terms of linear iterations and total CPU time.

		predictor		corrector		
	CPU(eigs)	its	CPU	its	CPU	CPU tot
No tuning		95	10.71	95	11.10	21.81
LR (5,0.1)	2.39	79	9.51	78	9.59	21.49
LR (10,0.1)	3.00	69	8.14	67	7.64	18.78
LR (20,0.1)	5.98	64	7.79	63	7.85	22.62
LR $\left(20,10^{-3}\right)$	9.59	64	7.79	63	7.85	26.23

TABLE 5 CPU times and number of linear iterations for the various preconditioners at IP iteration \#12 for problem nug20.

Figure 2 accounts for the steepest convergence profile of the preconditioned-with-tuning normal equations matrix, when using the optimal parameters.

FIGURE 2 Convergence profiles of PCG accelerated with $P_{N E}$ and $P_{N E}$ updated with LR(10, 0.1). Linear systems at IP iteration \#12 for problem nug20.

6 | CONCLUDING REMARKS

In this paper, we have considered a combination of the interior point method and the proximal method of multipliers to efficiently solve linear and quadratic programming problems of large size. The combined method, in short IP-PMM, produces a sequence of linear systems whose conditioning progressively deteriorates as the iteration proceeds. One main contribution of this paper is the development and analysis of a novel preconditioning technique for both the normal equations system arising in LP and separable QP problems, and the augmented system for general QP instances. The preconditioning strategy consists of the construction of symmetric positive definite, block-diagonal preconditioners for the augmented system or a suitable approximation of the normal equations coefficient matrix, by undertaking sparsification of the $(1,1)$ block with the aim of controlling the memory requirements and computational cost of the method. We have carried out a detailed spectral analysis of the resulting preconditioned matrix systems. In particular, we have shown that the spectrum of the preconditioned normal equations is independent of the logarithmic barrier parameter in the LP and separable QP cases, which is a highly desirable property for preconditioned systems arising from IPMs. We have then made use of this result to obtain a spectral analysis of preconditioned matrix systems arising from more general QP problems.

We have reported computational results obtained by solving a set of small to large linear and convex quadratic problems from the Netlib and Maros-Mészáros collections, and also large-scale linear programming problems. The experiments demonstrate that the new solver, in conjunction with the proposed preconditioned iterative methods, leads to rapid and robust convergence for a wide class of problems. We hope that this work provides a first step towards the construction of generalizable preconditioners for linear and quadratic programming problems.

Acknowledgements

The authors express their gratitude to the reviewers for their valuable comments. This work was partially supported by the Project granted by the CARIPARO foundation Matrix-Free Preconditioners for Large-Scale Convex Constrained Optimization Problems (PRECOOP). L. Bergamaschi and A. Martínez were also supported by the INdAM-GNCS Project (Year 2019), while J. Gondzio and S. Pougkakiotis were also supported by the Google project Fast $(1+x)$-order Methods for Linear Programming. We wish to remark that this study does not have any conflict of interest to disclose.

References

1. Gondzio J. Interior point methods 25 years later. European Journal of Operational Research. 2013;218(3):587-601.
2. Parikh N, and Boyd S. Proximal algorithms. Foundations and Trends in Optimization. 2014;3(1):123-231.
3. Rockafellar RT. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization. 1976;14(5):877-898.
4. Bertsekas PD. Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific; 1996.
5. Hestenes MR. Multiplier and gradient methods. Journal of Optimization Theory and Applications. 1969;4(5):303-320.
6. Powell MJD. A method for nonlinear constraints in minimization problems. In: Fletcher R, editor. Optimization. New York, NY: Academic Press; 1969. p. 283-298.
7. Rockafellar RT. Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Mathematics of Operations Research. 1976;1(2):97-116.
8. Pougkakiotis S, and Gondzio J. An interior point-proximal method of multipliers for convex quadratic programming. Computational Optimization and Applications. 2020; DOI = https://doi.org/10.1007/s10589-020-00240-9,
9. Hestenes MR, and Stiefel E. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards. 1952;49(6):409-436.
10. Paige CC, and Saunders MA. Solution of sparse indefinite systems of linear equations. SIAM Journal on Numerical Analysis. 1975;12(4):617-629.
11. Bergamaschi L, Gondzio J, Venturin M, and Zilli G. Inexact constraint preconditioners for linear systems arising in interior point methods. Computational Optimization and Applications. 2007;36(2-3):137-147.
12. Bergamaschi L, Gondzio J, and Zilli G. Preconditioning indefinite systems in interior point methods for optimization. Computational Optimization and Applications. 2004;28(2):149-171.
13. Chai JS, and Toh KC. Preconditioning and iterative solution of symmetric indefinite linear systems arising from interior point methods for linear programming. Computational Optimization and Applications. 2007;36(2-3):221-247.
14. Durazzi C, and Ruggiero V. Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems. Numerical Linear Algebra with Applications. 2003;10(8):673-688.
15. Schenk O, Wächter A, and Weiser M. Inertia-revealing preconditioning for large-scale nonconvex constrained optimization. Computational Optimization and Applications. 2008;31(2):939-960.
16. Bocanegra S, Campos F, and Oliveira ARL. Using a hybrid preconditioner for solving large-scale linear systems arising from interior point methods. Computational Optimization and Applications. 2007;36:149-164.
17. Oliveira ARL, and Sorensen DC. A new class of preconditioners for large-scale linear systems from interior point methods for linear programming. Linear Algebra and its Applications. 2005;394:1-24.
18. Castro J. A specialized interior-point algorithm for multicommodity network flows. SIAM Journal on Optimization. 2000;10(3):852-877.
19. Cao Y, Laird CD, and Zavala VM. Clustering-based preconditioning for stochastic programs. Computational Optimization and Applications. 2016;64(2):379-406.
20. Castro J, and Cuesta J. Quadratic regularizations in an interior-point method for primal block-angular problems. Mathematical Programming. 2011;130(2):415-455.
21. Pearson JW, and Gondzio J. Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization. Numerische Mathematik. 2017;137(4):959-999.
22. Pearson JW, Porcelli M, and Stoll M. Interior point methods and preconditioning for PDE-constrained optimization problems involving sparsity terms. Numerical Linear Algebra with Applications. 2019;27(2):e2276.
23. Mehrotra S. On the implementation of a primal-dual interior-point method. SIAM Journal on Optimization. 1992;2(4):575601.
24. Gondzio J. Multiple centrality corrections in a primal-dual method for linear programming. Computational Optimization and Applications. 1996;6:137-156.
25. Pougkakiotis S, and Gondzio J. Dynamic non-diagonal regularization in interior point methods for linear and convex quadratic programming. Journal of Optimization Theory and Applications. 2019;181(3):905-945.
26. Altman A, and Gondzio J. Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Optimization Methods and Software. 1999;11(1-4):275-302.
27. Kuznetsov YA. Efficient iterative solvers for elliptic finite element problems on nonmatching grids. Russian Journal of Numerical Analysis and Mathematical Modelling. 1995;10(3):187-211.
28. Murphy MF, Golub GH, and Wathen AJ. A note on preconditioning for indefinite linear systems. SIAM Journal on Scientific Computing. 2000;21(6):1969-1972.
29. Silvester D, and Wathen A. Fast iterative solution of stabilized Stokes systems, Part II: Using general block preconditioners. SIAM Journal on Numerical Analysis. 1994;31(5):1352-1367.
30. Ipsen ICF. A note on preconditioning non-symmetric matrices. SIAM Journal on Scientific Computing. 2001;23(3):10501051.
31. Saad Y, and Schultz MH. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing. 1986;7(3):856-869.
32. Benzi M, Golub GH, and Liesen J. Numerical solutions of saddle point problems. Acta Numerica. 2005;14:1-137.
33. Notay Y. A new analysis of block preconditioners for saddle point problems. SIAM Journal on Matrix Analysis and Applications. 2014;35(1):143-173.
34. Bergamaschi L, Bru R, and Martínez A. Low-rank update of preconditioners for the inexact Newton method with SPD Jacobian. Mathematical and Computer Modelling. 2011;54(7-8):1863-1873.
35. Martínez A. Tuned preconditioners for the eigensolution of large SPD matrices arising in engineering problems. Numerical Linear Algebra with Applications. 2016;23(3):427-443.
36. Gratton S, Sartenaer A, and Tshimanga J. On a class of limited memory preconditioners for large scale linear systems with multiple right-hand sides. SIAM Journal on Optimization. 2011;21(3):912-935.
37. Saad Y, Yeung M, Erhel J, and Guyomarc'h F. A deflated version of the conjugate gradient algorithm. SIAM J Sci Comput. 2000;21(5):1909-1926. Iterative methods for solving systems of algebraic equations (Copper Mountain, CO, 1998).
38. Bergamaschi L. A survey of low-rank updates of preconditioners for sequences of symmetric linear systems. Algorithms. 2020;13(4).
39. Tshimanga J. On a class of limited memory preconditioners for large scale linear nonlinear least-squares problems (with application to variational ocean data assimilation). Facultés Universitaires Notre Dame de la Paix, Namur; 2007.
40. Greenbaum A. Iterative Methods for Solving Linear Systems. Philadelphia, PA: SIAM; 1997.
41. Elman HC, Silvester DJ, and Wathen AJ. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. 2nd ed. Numerical Mathematics and Scientific Computation. Oxford University Press; 2014.
42. Liesen J, and Tichý P. Convergence analysis of Krylov subspace methods. GAMM-Mitteilungen. 2005;27(2):153-173.
43. Bergamaschi L, Facca E, Martínez A, and Putti M. Spectral preconditioners for the efficient numerical solution of a continuous branched transport model. 2019;254:259-270.
44. Netlib; 2011. http://netlib.org/lp
45. Maros I, and Mészáros C. A repository of convex quadratic programming problems. Optimization Methods and Software. 1999;11(1-4):671-681.
46. Dolan DE, and Moré JJ. Benchmarking optimization software with performance profiles. Mathematical Programming. 2002;91(Ser. A):201-213.
