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Abstract. In this paper, we present explicit expressions for the mixed and componentwise

condition numbers of the truncated total least squares (TTLS) solution of Ax ≈ b under the

genericity condition, where A is a m×n real data matrix and b is a real m-vector. Moreover,

we reveal that normwise, componentwise and mixed condition numbers for the TTLS prob-

lem can recover the previous corresponding counterparts for the total least squares (TLS)

problem when the truncated level of for the TTLS problem is n. When A is a structured

matrix, the structured perturbations for the structured truncated TLS (STTLS) problem are

investigated and the corresponding explicit expressions for the structured normwise, compo-

nentwise and mixed condition numbers for the STTLS problem are obtained. Furthermore,

the relationships between the structured and unstructured normwise, componentwise and

mixed condition numbers for the STTLS problem are studied. Based on small sample sta-

tistical condition estimation, reliable condition estimation algorithms are proposed for both

unstructured and structured normwise, mixed and componentwise cases, which utilize the

SVD of the augmented matrix [A b]. The proposed condition estimation algorithms can be

integrated into the SVD-based direct solver for the small and medium size TTLS problem

to give the error estimation for the numerical TTLS solution. Numerical experiments are

reported to illustrate the reliability of the proposed condition estimation algorithms.

Keywords: Truncated total least squares, normwise perturbation, componentwise perturbation, structured

perturbation, singular value decomposition, small sample statistical condition estimation.

AMS subject classifications: 15A09, 65F20, 65F35

1. Introduction

In this paper, we consider the following linear model

Ax ≈ b, (1.1)

where the data matrix A ∈ Rm×n and the observation vector b ∈ Rm are both perturbed. When
m > n, the linear model (1.1) is overdetermined. To find a solution to (1.1), one may solve the
following minimization problem:

min
∥∥[∆A ∆b]

∥∥
F

subject to (s.t.) (A+ ∆A)x = b + ∆b,
(1.2)

where ‖·‖F means the Frobenius matrix norm. This is the classical total least square (TLS) problem,
which was originally proposed by Golub and Van Loan [11].
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The TLS problem is often used for the linear model (1.1) when the augmented matrix [A b] is
rank deficient, i.e., the small singular values of [A b] are assumed to be separated from the others.
More interestingly, the truncated total least square (TTLS) method aims to solve the linear model
(1.1) in the sense that the small singular values of [A b] are set to be zeros. For the discussion of
the TTLS, one may refer to [27, §3.6.1] and [6,8]. The TTLS problem arises in various applications
such as linear system theory, computer vision, image reconstruction, system identification, speech
and audio processing, modal and spectral analysis, and astronomy, etc. The overview of the TTLS
can be found in [25].

Let k be the predefined truncated level, where 1 ≤ k ≤ n. The TTLS problem aims to solve the
following problem:

xk = arg min ‖x‖2, subject to Akx = bk, (1.3)

where ‖ · ‖2 denotes the Euclidean vector norm or its induced matrix norm and [Ak bk] is the best
rank-k approximation of [A b] in the Frobenius norm. The TTLS problem can be viewed as the
regularized TLS (1.2) by truncating the small singular values of [A b] to be zero (cf. [6, 8]).

In order to solve (1.3), we first recall the singular value decomposition (SVD) of [A b] which is
given by

[A b] = UΣV >, (1.4)

where U ∈ Rm×m and V ∈ R(n+1)×(n+1) are orthogonal matrices and Σ is a m × (n + 1) real
matrix with a vector [σ1, . . . , σp]

> on its diagonal and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, where p =
min{m,n + 1}. Here, diag(x) is a diagonal matrix with a vector x on its diagonal and the su-
perscript “·>” takes the transpose of a matrix or vector. Then we have [Ak bk] = UΣkV

>, where

Σk = diag([σ1, . . . , σk, 0, . . . , 0]) ∈ Rm×(n+1). Suppose the truncation level k < min{m, n + 1}
satisfies the condition

σk > σk+1. (1.5)

Define

V =

[
V11 V12

V21 V22

]
, V11 ∈ Rn×k. (1.6)

If

V22 6= 0, (1.7)

then the TTLS problem is generic and the TTLS solution xk is given by [14]

xk = − 1

‖V22‖22
V12V

>
22 . (1.8)

Condition numbers measure the worst-case sensitivity of an input data to small perturbations.
Normwise condition numbers for the TLS problem (1.2) under the genericity condition were studied
in [1, 16], where SVD-based explicit formulas for normwise condition numbers were derived. The
normwise condition number of the truncated SVD solution to a linear model as (1.1) was introduced
in [2]. When the data is sparse or badly scaled, it is more suitable to consider the componentwise
perturbations since normwise perturbations only measure the perturbation for the data by means
of norm and may ignore the relative size of the perturbation on its small (or zero) entries (cf. [15]).
There are two types of condition numbers in componentwise perturbations. The mixed condition
number measures the errors in the output using norms and the input perturbations componentwise,
while the componentwise condition number measures both the error in the output and the pertur-
bation in the input componentwise (cf. [9]). The Kronecker product based formulas for the mixed
and componentwise condition numbers to the TLS problem (1.2) were derived in [4, 31]. The cor-
responding componentwise perturbation analysis for the multidimensional TLS problem and mixed
least squares-TLS problem can be found in [29,30].

Gratton et al. in [14] investigated the normwise condition number for the TTLS problem (1.3).
The normwise condition number formula and its computable upper bounds for the TTLS solution



3

(1.3) were derived (cf. [14, Theorems 2.4-2.6]), which rely on the SVD of the augmented matrix
[A b]. Since the normwise condition number formula for the TTLS problem (1.3) involves Kronecker
product, which is not easy to compute or evaluate even for the medium size TTLS problem, the
condition estimation method based on the power method [15] or the Golub-Kahan-Lanczos (GKL)
bidiagonalization algorithm [10] was proposed to estimate the spectral norm of Fréchet derivative
matrix related to (1.3). Furthermore, as point in [14], first-order perturbation bounds based on the
normwise condition number can significantly improve the pervious normwise perturbation results
in [7, 28] for (1.3).

As mentioned before, when the TTLS problem (1.3) is sparse or badly scaled, which often occurs
in scientific computing, the conditioning based on normwise perturbation analysis may severely
overestimate the true error of the numerical solution to (1.3). Indeed, from the numerical results
for Example 5.1 in Section 5, the TTLS problem (1.3) with respect to the specific data A and
b is well-conditioned under componentwise perturbation analysis while it is very ill-conditioned
under normwise perturbation, which implies that the normwise relative errors for the numerical
solution to (1.3) are pessimistic. In this paper, we propose the mixed and componentwise condition
number for the TTLS problem (1.3) and the corresponding explicit expressions are derived, which
can capture the true conditioning of (1.3) with respect to the sparsity and scaling for the input
data. As shown in Example 5.1, the introduced mixed and componentwise condition numbers for
(1.3) can be much smaller than the normwise condition number appeared in [14], which can improve
the first-order perturbation bounds for (1.3) significantly. Furthermore, when the truncated level
k in (1.3) is selected to be n, (1.3) reduces to (1.2). The normwised, mixed and componentwise
condition numbers for the TTLS problem (1.3) are shown to be mathematically equivalent to the
corresponding ones [1, 16,31] for the untruncated case from their explicit expressions.

Structured TLS problems [17,22,25] had been studied extensively in the past decades. For struc-
tured TLS problems, it is suitable to investigate structured perturbations on the input data, because
structure-preserving algorithms that preserve the underlying matrix structure can enhance the ac-
curacy and efficiency of the TLS solution computation. Structured condition numbers for structured
TLS problems can be found in [4, 5, 23] and references therein. In this paper, we introduce struc-
tured perturbation analysis for the structured TTLS (STTLS) problem. The explicit structured
normwise, mixed and componentwise condition numbers for the STTLS problem are obtained, and
their relationships corresponding to the unstructured ones are investigated.

The Kronecker product based expressions, for both unstructured and structured normwise, mixed
and componentwise condition numbers of the TTLS solution in Theorems 2.1 and 2.2, involve higher
dimensions and thus prevent the efficient calculations of these condition numbers. In practice, it is
important to estimate condition numbers efficiently since the forward error for the numerical solution
can be obtained via combining condition numbers with backward errors. In this paper, based on the
small sample statistical condition estimation (SCE) [18], we propose reliable condition estimation
algorithms for both unstructured and structured normwise, mixed and componentwise condition
numbers of the TTLS solution, which utilize the SVD of [A b] to reduce the computational cost.
Furthermore, the proposed condition estimation algorithms can be integrated into the SVD-based
direct solver for the small or medium size TTLS problem (1.3). Therefore, one can obtain the reliable
forward error estimations for the numerical TTLS solution after implementing the proposed condition
estimation algorithms. The main computational cost in condition number estimations for (1.3) is
to evaluate the directional derivatives with respect to the generated direction during the loops in
condition number estimations algorithms. We point out that the power method [15] for estimating
the normwise condition number in [14] needs to evaluate the directional derivatives twice in one
loop. However, only evaluating direction derivative once is needed in the loop of Algorithms 1 to
3. Therefore, compared with the normwise condition number estimation algorithm proposed in [14],
our proposed condition number estimations algorithms in this paper are more efficient in terms
of the computational complexity, which are also applicable for estimating the componentwise and



4

structured perturbations for (1.3). For recent SCE’s developments for (structured) linear systems,
linear least squares and TLS problem, we refer to [5, 19–21] and references therein.

The rest of this paper is organized as follows. In Section 2 we review pervious perturbation
results on the TTLS problem and derive explicit expressions of the mixed and componentwise con-
dition numbers. The structured normwise, mixed and componentwise condition numbers are also
investigated in Section 2, where the relationships between the unstructured normwise, mixed and
componentwise condition numbers for (1.3) with the corresponding structured counterparts are in-
vestigated. In Section 3 we establish the relationship between normwise, componentwise and mixed
condition numbers for the TTLS problem and the corresponding counterparts for the untruncated
TLS. In Section 4 we are devoted to propose several condition estimation algorithms for the norm-
wise, mixed and componentwise condition numbers of the TTLS problem. Moreover, the structured
condition estimation is considered. In Section 5, numerical examples are shown to illustrate the
efficiency and reliability of the proposed algorithms and report the perturbation bounds based on
the proposed condition number. Finally, some concluding remarks are drawn in the last section.

2. Condition numbers for the TTLS problem

In this section we review previous perturbation results on the TTLS problem. The explicit ex-
pressions of the mixed and componentwise condition numbers for the TTLS problem are derived.
Furthermore, for the structured TTLS problem, we propose the normwise, mixed and componen-
twise condition numbers, where explicit formulas for the corresponding counterparts are derived.
The relationships between the unstructured normwise, mixed and componentwise condition num-
bers for (1.3) with the corresponding structured counterparts are investigated. We first introduce
some conventional notations.

Throughout this paper, we use the following notation. Let ‖ · ‖∞ be the vector ∞-norm or its
induced matrix norm. Let In be the identity matrix of order n. Let ej be the j-th column vector

of an identity matrix of an appropriate dimension. The superscripts “·−” and“·†” mean the inverse
and the Moore-Penrose inverse of a matrix respectively. The symbol “�” means componentwise
multiplication of two conformal dimensional matrices. For any matrix B = (bij), let |B| = (|bij |),
where |bij | denote the absolute value of bij . For any two matrices B,C ∈ Rm×n, |B| ≤ |C| represents
|bij | ≤ |cij | for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. For any x,y ∈ Rn, we define z := y

x by

zi =

 xi/yi, if yi 6= 0,
0, if xi = yi = 0,
∞, otherwise.

Let vec(B) be a column vector obtained by stacking the columns of B on top of one another. For a
vector b ∈ Rmn, let B = unvec(b) ∈ Rm×n, where Bij = bi+(j−1)m for i = 1, . . . ,m and j = 1, . . . , n.

The symbol “⊗” means the Kronecker product and Πm,n ∈ Rmn×mn is a permutation matrix defined
by

vec(B>) = Πm,nvec(B), ∀B ∈ Rm×n. (2.1)

Given the matrices X ∈ Rm×n, D ∈ Rn×p, and Y ∈ Rp×q, and X1, X2, Y1, Y2 with appropriate
dimensions, we have the following propertes of the Kronecker product and vec operator [13]:

vec(XDY ) = (Y > ⊗X)vec(D),

(X1 ⊗X2)(Y1 ⊗ Y2) = (X1Y1)⊗ (X2Y2),

Πp,m(Y ⊗X) = (X ⊗ Y )Πn,q.

(2.2)

2.1. Preliminaries. In this subsection, we recall the definition of absolute normwise condition
number of the TTLS solution xk defined by (1.3) (cf. [14]). The absolute normwise condition number
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of xk in (1.3) is defined by

κ(A, b) = lim
ε→0

sup
‖∆H‖F≤ε

‖ψk([A b] + ∆H)− ψk([A b])‖2
‖∆H‖F

, (2.3)

where the function ψk is given by

ψk([A b]) : Rm×n × Rm → Rn : [A b] 7→ xk. (2.4)

Let the SVD of [A b] ∈ Rm×(n+1) be given by (1.4). If the truncation level k satisfies the conditions
(1.5) and (1.7), then the explicit expression of κ(A, b) is given by [14, Theorem 2.4]

κ(A, b) = ‖Mk‖2, (2.5)

where

Mk =
1

‖V22‖22
[In xk]V KD

−1[Ik ⊗ Σ>2 Σ1 ⊗ In−k+1]W (2.6)

with

Σ1 = diag
(

[σ1, . . . , σk]
)
∈ Rk×k, Σ2 = diag

(
[σk+1, . . . , σp]

)
∈ R(m−k)×(n−k+1),

σ1 ≥ · · · ≥ σk > σk+1 ≥ · · · ≥ σp ≥ 0, k < p = min{m,n+ 1},

K =

[
(V22 ⊗ Ik)Πn−k+1,k

V21 ⊗ In−k+1

]
, D = Σ2

1 ⊗ In−k+1 − Ik ⊗ (Σ>2 Σ2),

W =

[
V >1 ⊗ U>2

Πn−k+1,k(V
>

2 ⊗ U>1 )

]
, U = [U1 U2], V = [V1 V2],

V1 =

[
V11

V21

]
∈ R(n+1)×k, V2 =

[
V12

V22

]
∈ R(n+1)×(n−k+1), U1 ∈ Rm×k, U2 ∈ Rm×(m−k).

Please be noted the the dimension of Mk may be large even for medium size TTLS problems. The
explicit formula κ(A, b) given by (2.5) involves the computation of the spectral norm of Mk. Hence,
upper bounds for κ(A, b) is obtain in [14, §2.4], which only rely on the singular values of [A b] and
‖x‖2. When the data is sparse or badly scaled, the normwise condition number κ(A, b) may not reveal
the conditioning of (1.3), since normwise perturbations ignore the relative size of the perturbation on
its small (or zero) entries. Therefore, it is more suitable to consider the componentwise perturbation
analysis for (1.3) when the data is sparse or badly scaled. In the next subsection, we shall introduce
the mixed and componentwise condition number for (1.3).

In [14, §2.3], if both xk and the full SVD of [A b] are available, then one may compute ‖Mk‖2 by
using the power method [15, Chap. 15] to Mk or the Golub-Kahan-Lanczos (GKL) bidiagonalization
algorithm [10] to Mk, where only the matrix-vector product is needed. However, as pointed in the
introduction part, the normwise condition number estimation algorithm in [14] are devised based on
the power method [15], which needs to evaluate the matrix-vector products Mkf and M>k g in one
loop for some suitable dimensional vectors f and g. In Section 4, SCE-based condition estimation
algorithms for (1.3) shall be proposed, where in one loop we only need to compute the directional
derivative Mkf but the matrix-vector product M>k g is not involved. Therefore, compared with
normwise condition number estimation algorithm in [14], SCE-based condition estimation algorithms
in Section 4 are more efficient.

2.2. Mixed and componentwise condition numbers. In Lemma 2.1 below, the first order
perturbation expansion of ψk with respect to the perturbations of the data A and b is reviewed,
which involves the Kronecker product. In order to avoid forming Kronecker product explicitly in
the explicit expression for the directional derivative of ψk, we derive the corresponding equivalent
formula (2.7) in Lemma 2.2. Furthermore, the directional derivative (2.7) can be used to save
computation memory of SCE-based condition estimation algorithms in Section 4.
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Lemma 2.1. [14, Theorem 2.4] Let the SVD of the augmented matrix [A b] ∈ Rm×(n+1) be given

by (1.4). Suppose k is a truncation level such that V22 6= 0 and σk > σk+1. If [Ã b̃] = [A b] + ∆H
with ‖∆H‖F sufficiently small, then, for the TTLS solution xk of Ax ≈ b and the TTLS solution

x̃k of Ãx ≈ b̃, we have

x̃k = xk +Mk vec(∆H) +O(‖∆H‖2F ).

Lemma 2.2. Under the same assumptions as in Lemma 2.1, if [Ã b̃] = [A b]+[∆A ∆b] ≡ [A b]+∆H
with ‖∆H‖F sufficiently small, then the directional derivative of xk at [A b] in the direction [∆A ∆b]
is given by

ψ′k([A b]; [∆A ∆b]) =
1

‖V22‖22

V11 (Z>1 + Z2)V >22 + V12 (Z1 + Z>2 )V >21 + xk

4∑
j=1

cj

 , (2.7)

where

Z1 =
(

Σ>2 U
>
2 ∆HV1

)
�D ∈ R(n−k+1)×k, Z2 =

(
Σ>1 U

>
1 ∆HV2

)
�D> ∈ Rk×(n−k+1),

c1 = V21Z
>
1 V
>

22 , c2 = V21Z2V
>

22 , c3 = V22Z1V
>

21 , c4 = V22Z
>
2 V
>

21 ,

D = [D(:, 1), . . . ,D(:, k)] ∈ R(n−k+1)×k with

D(:, i) =





(σ2
i − σ2

k+1)−1

...
(σ2
i − σ2

m)−1

σ−2
i
...

σ−2
i


∈ R(n−k+1), if m < n+ 1,

(σ2
i − σ2

k+1)−1

...
(σ2
i − σ2

n+1)−1

 ∈ R(n−k+1), if m ≥ n+ 1.

(2.8)

Proof. From Lemma 2.1 we have

ψ′k([A b]; [∆A ∆b]) = Mkvec(∆H),

where Mk is defined by (2.6). Using (2.2), it is easy to verify that

[Ik ⊗ Σ>2 Σ1 ⊗ In−k+1]W = (Ik ⊗ Σ>2 ) (V >1 ⊗ U>2 ) + (Σ>1 ⊗ In−k+1) Πn−k+1,k(V
>

2 ⊗ U>1 )

= V >1 ⊗ (Σ>2 U
>
2 ) + (Σ>1 U

>
1 ⊗ V >2 )Πm,n+1, (2.9)

Using the fact that vec(∆H) = [vec(∆A)>vec(∆b)>]> and (2.2) we have

[Ik ⊗ Σ>2 Σ1 ⊗ In−k+1]W vec(∆H)

=
(
V >1 ⊗ (Σ>2 U

>
2 )
)
vec(∆H) + (Σ>1 U

>
1 ⊗ V >2 )Πm,n+1 vec(∆H)

= vec(Σ>2 U
>
2 ∆HV1) + vec(V >2 ∆H>U1Σ1). (2.10)

From (2.6), we see that the i-th diagonal block D(i) of D is given by

D(i) =

 diag
(

[σ2
i − σ2

k+1, . . . , σ
2
i − σ2

m, σ
2
i , . . . , σ

2
i ]
>
)
∈ R(n−k+1)×(n−k+1), if m < n+ 1,

diag
(

[σ2
i − σ2

k+1, . . . , σ
2
i − σ2

n+1]>
)
∈ R(n−k+1)×(n−k+1), if m ≥ n+ 1,

(2.11)
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for i = 1, . . . , k. By the definition of D ∈ R(n−k+1)×k we have{
D−1vec(Σ>2 U

>
2 ∆HV1) = vec

((
Σ>2 U

>
2 ∆HV1

)
�D

)
,

D−1vec(V >2 ∆H>U1Σ1) = vec
((
V >2 ∆H>U1Σ1

)
�D

)
.

(2.12)

Then, using the partition of V given by (1.6) we have

[In xk]V K = [In xk]

[
V11 V12

V21 V22

] [
(V22 ⊗ Ik)Πn−k+1,k

V21 ⊗ In−k+1

]
= V11(V22 ⊗ Ik)Πn−k+1,k + V12(V21 ⊗ In−k+1) + xkV21(V22 ⊗ Ik)Πn−k+1,k + xkV22(V21 ⊗ In−k+1).

This, together with (2.10) and (2.12), yields

[In xk]V KD
−1[Ik ⊗ Σ>2 Σ1 ⊗ In−k+1]W vec(∆H)

=
(
V11(V22 ⊗ Ik)Πn−k+1,k + V12(V21 ⊗ In−k+1) + xkV21(V22 ⊗ Ik)Πn−k+1,k + xkV22(V21 ⊗ In−k+1)

)
(
vec
(

(Σ>2 U
>
2 ∆HV1) �D

)
+ vec

(
(V >2 ∆H>U1Σ1) �D

))
= V11

((
V >1 ∆H>U2Σ2

)
�D>

)
V >22 + V11

((
Σ>1 U

>
1 ∆HV2

)
�D>

)
V >22

+V12

((
Σ>2 U

>
2 ∆HV1

)
�D

]
V >21 + V12

((
V >2 ∆H>U1Σ1

)
�D

)
V >21

+xkV21

((
V >1 ∆H>U2Σ2

)
�D>

)
V >22 + xkV21

((
Σ>1 U

>
1 ∆HV2

)
�D>

)
V >22

+xkV22

((
Σ>2 U

>
2 ∆HV1

)
�D

]
V >21 + xkV22

((
V >2 ∆H>U1Σ1

)
�D

)
V >21 .

This completes the proof. �
When the data is sparse or badly-scaled, it is more suitable to adopt the componentwise pertur-

bation analysis to investigate the conditioning of the TTLS problem. In the following definition, we
introduce the relative mixed and componentwise condition numbers for the TTLS problem.

Definition 2.1. Suppose the truncation level k is chosen such that V22 6= 0 and σk > σk+1. The
mixed and componentwise condition numbers for the TTLS problem (1.3) are defined as follows:

m(A, b) = lim
ε→0

sup
|∆H|≤ε

∣∣[A b]
∣∣ ‖ψk([A b] + ∆H)− ψk([A b])‖∞

ε‖xk‖∞
,

c(A, b) = lim
ε→0

sup
|∆H|≤ε

∣∣[A b]
∣∣ 1

ε

∥∥∥∥ψk([A b] + ∆H)− ψk([A b])

xk

∥∥∥∥
∞
.

In the following theorem, we give the Kronecker product based explicit expressions of m(A, b) and
c(A, b).

Theorem 2.1. Suppose the truncation level k is chosen such that V22 6= 0 and σk > σk+1. Then the
mixed and componentwise condition numbers m(A, b) and c(A, b) defined in Definition 2.1 for the
TTLS problem (1.3) can be characterized by

m(A, b) =

∥∥∥|Mk|vec( [|A| |b|] )
∥∥∥
∞

‖xk‖∞
, (2.13a)

c(A, b) =

∥∥∥∥ |Mk|vec( [|A| |b|] )

xk

∥∥∥∥
∞
. (2.13b)

Proof. Let ∆H = [∆A ∆b], where ∆A ∈ Rm×n and ∆b ∈ Rm. For any ε > 0, it follows from
|∆H| ≤ ε

∣∣ [A b]
∣∣ that

|∆A| ≤ ε|A| and |∆b| ≤ ε|b|.
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Define

ΘA = diag(vec(A)) and Θb = diag(b).

By Lemma 2.1 we have for ε > 0 sufficiently small,

ψk([A b] + ∆H)− ψk([A b]) = Mk vec(∆H) +O(‖∆H‖2F ) (2.14)

= Mk

[
ΘA

Θb

][
Θ†Avec(∆A)

Θ†bvec(∆b)

]
+O(‖[∆A ∆b]‖2F ),

and taking infinity norms we have

‖ψk([A b] + ∆H)− ψk([A b])‖∞ =

∥∥∥∥∥Mk

[
ΘA

Θb

][
Θ†Avec(∆A)

Θ†bvec(∆b)

]∥∥∥∥∥
∞

+O(‖[∆A ∆b]‖2F )

≤ ε
∥∥∥∣∣Mk

∣∣ [|ΘA|
|Θb|

]∥∥∥
∞

+O(ε2),

where the fact that O(‖[∆A ∆b]‖2F ) ≤ O(ε2) is used. Thus,

m(A, b) ≤

∥∥∥∥∥|Mk|

[
|ΘA|

|Θb|

]∥∥∥∥∥
∞

‖xk‖∞
=

∥∥∥∥∥|Mk|

[
|ΘA|

|Θb|

]
1mn+m

∥∥∥∥∥
∞

‖xk‖∞

=

∥∥∥∥|Mk|
[
vec(|A|)
|b|

]∥∥∥∥
∞

‖xk‖∞
=

∥∥∥∥|Mk|vec ([|A| |b|])
∥∥∥∥
∞

‖xk‖∞
,

where 1mn+m = [1, . . . , 1]> ∈ Rmn+m.
On the other hand, let the index a is such that∥∥|Mk|vec ([|A| |b|])

∥∥
∞ = |Mk(a, :)|vec([|A| |b|]),

where |Mk(a, :)| denotes the a-th row of |Mk|. We choose

vec(∆H) = εΘ vec([|A| |b|]),

where Θ ∈ Rmn×mn is a diagonal matrix such that θjj=sign((Mk)aj) for j = 1, 2, . . . ,m(n + 1).
Using (2.14) we have

m(A, b) ≥ lim
ε→0

∥∥εMkΘ vec([|A| |b|]) +O(ε‖vec([|A| |b|])‖22)
∥∥
∞

ε‖xk‖∞

=
‖MkΘ vec([|A| |b|])‖∞

‖xk‖∞

=
‖|Mk|vec([|A| |b|])‖∞

‖xk‖∞
.

Therefore, we derive (2.13a). One can use the similar argument to obtain (2.13b). �

Remark 2.1. Based on (2.3) and (2.5), the relative normwise condition number for the TTLS
problem (1.3) can be defined and has the following expression

κrel(A, b) = lim
ε→0

sup
‖∆H‖F≤ε

∥∥[A b]
∥∥
F

‖ψk([A b] + ∆H)− ψk([A b])‖2
ε‖xk‖2

=
‖Mk‖2 ‖[A b]‖F

‖xk‖2
. (2.15)
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Using the fact that 

∥∥ |Mk|
∥∥

2
= ‖Mk‖2,

‖Mk‖∞ ≤
√
m(n+ 1) ‖Mk‖2,

‖xk‖2 ≤
√
n‖xk‖∞,∥∥vec([A b])
∥∥
∞ ≤

∥∥[A b]
∥∥
F
,

it is easy to see that

m(A, b) ≤
√

(n+ 1)nm κrel(A, b). (2.16)

From Example 5.1, we can see m(A, b) and c(A, b) can be much smaller than κrel(A, b) when the data
is sparse and badly scaled. Therefore, one should adopt the mixed and componentwise condition
number to measure the conditioning of (1.3) instead of the normwise condition number when [A b]
is spare or badly scaled. However, since the explicit expressions of m(A, b) and c(A, b) are based on
Kronecker product, which involves large dimensional computer memory to form them explicitly even
for medium size TLS problems, it is necessary to propose efficient and reliable condition estimations
for m(A, b) and c(A, b), which will be investigated in Section 4.

In [3, 17, 22], the structured TLS (STTLS) problem has been studied extensively. Hence, it is
interesting to study the structured perturbation analysis for the STTLS problem. In the following,
we propose the structured normwise, mixed and componentwise condition numbers for the STTLS
problem, where A is a linear structured data matrix. Assume that S ⊂ Rm×n is a linear subspace
which consists of a class of basis matrices. Suppose there are t (t ≤ mn) linearly independent
matrices S1, . . . , St in S, where Si are matrices of constants, typically 0’s and 1’s. For any A ∈ S,
there is a uniques vector a = [a1, . . . , at]

> ∈ Rt such that

A =

t∑
i=1

aiSi. (2.17)

In the following, we study the sensitivity of the STTLS solution xk to perturbations on the data a
and b, which is defined by

ψs,k(a, b) : Rt × Rm → Rn : (a, b) 7→ xk, (2.18)

where xk is the unique solution to the STTLS problem (1.3) and (2.17).

Definition 2.2. Suppose the truncation level k is chosen such that V22 6= 0 and σk > σk+1. The
absolute structured normwise, mixed and componentwise condition number for the STTLS problem
(1.3) and (2.17) are defined as follows:

κs(a, b) = lim
ε→0

sup∥∥∥∥∥
[
∆a
∆b

]∥∥∥∥∥
2

≤ ε

‖ψs,k((a, b) + (∆a, ∆b))− ψs,k(a, b)‖2∥∥∥∥[∆a
∆b

]∥∥∥∥
2

,

ms(a, b) = lim
ε→0

sup
|∆a|≤ε|a|
|∆b|≤ε|b|

‖ψs,k((a, b) + (∆a, ∆b))− ψs,k(a, b)‖∞
ε‖xk‖∞

,

cs(a, b) = lim
ε→0

sup
|∆a|≤ε|a|
|∆b|≤ε|b|

1

ε

∥∥∥∥ψs,k((a, b) + (∆a, ∆b))− ψs,k(a, b)

xk

∥∥∥∥
∞
.

In the following lemma, we provide the first order expansion of the STTLS solution xk with respect
to the structured perturbations ∆a on a and ∆b on b, which help us to derive the structured
condition number expressions for the STTLS problem (1.3) and (2.17). In view of the fact that

vec(∆A) =
∑t

i=1 ∆aivec(Si), we can prove the following lemma from Lemma 2.1. The detailed
proof is omitted here.
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Lemma 2.3. Under the same assumptions of Lemma 2.1, if [Ã b̃] = [A b] +
[∑t

i=1 ∆aiSi ∆b
]

with
∥∥[∆a> ∆b>]>

∥∥
2

sufficiently small, then, for the STTLS solution xk of Ax ≈ b and the STTLS

solution x̃k of Ãx ≈ b̃, we have

x̃k = xk +Mk

[
M 0
0 Im

] [
∆a
∆b

]
+O

(∥∥∥∥[∆a
∆b

]∥∥∥∥2

2

)
,

where M = [vec(S1), . . . , vec(St)] ∈ Rmn×t.

The following theorem concerns with the explicit expressions for the structured normwise, mixed
and componentwise condition numbers κs(a, b), ms(a, b), and cs(a, b) defined in Definition 2.2 when
A can be expressed by (2.17). Since the proof is similar to Theorem 2.1, we omit it here.

Theorem 2.2. Suppose the truncation level k is chosen such that V22 6= 0 and σk > σk+1. The
absolute structured normwise, mixed and componentwise condition numbers κs(a, b), ms(a, b), and
cs(a, b) defined in Definition 2.2 for the STTLS problem (1.3) and (2.17) can be characterized by

κs(a, b) =

∥∥∥∥Mk

[
M 0
0 Im

]∥∥∥∥
2

,ms(a, b) =

∥∥∥∥ ∣∣∣∣Mk

[
M 0
0 Im

]∣∣∣∣ [|a||b|
]∥∥∥∥
∞

‖xk‖∞
, cs(a, b) =

∥∥∥∥∥∥∥∥
∣∣∣∣Mk

[
M 0
0 Im

]∣∣∣∣ [|a||b|
]

xk

∥∥∥∥∥∥∥∥
∞

.

Remark 2.2. Based on Definition 2.2 and Theorem 2.2, the relative normwise condition number
for the STTLS problem (1.3) and (2.17) can be defined and has the following expression

κrel
s (a, b) = lim

ε→0
sup∥∥∥∥∥

[
∆a
∆b

]∥∥∥∥∥
2

≤ ε

∥∥∥∥∥
[
a
b

]∥∥∥∥∥
2

‖ψs,k((a, b) + (∆a, ∆b))− ψs,k(a, b)‖2
ε‖xk‖2

=

∥∥∥∥Mk

[
M 0
0 Im

]∥∥∥∥
2

∥∥∥∥[ab
]∥∥∥∥

2

‖xk‖2
. (2.19)

Similar to (2.16), we have

ms(a, b) ≤
√

(t+m)n κrel
s (a, b). (2.20)

In Example 5.2, we can see ms(A, b) can be much smaller than κrel
s (A, b). Hence, structured condition

number can explain that structure-preserving algorithms can enhance the accuracy of the numerical
solution, since structure-preserving algorithms preserve the underlying matrix structure.

In the following proposition, we show that, when A is a linear structured matrix defined by
(2.17), the structured normwise, mixed and componentwise condition numbers κs(a, b), ms(a, b),
and cs(a, b) are smaller than the corresponding unstructured condition numbers κ(A, b), m(A, b)
and c(A, b) respectively.

Proposition 2.1. Using the notations above, we have κs(a, b) ≤ κ(A, b). Moreover, if |A| =∑t
i=1 |ai||Si|, then we have

ms(a, b) ≤ m(A, b), cs(a, b) ≤ c(A, b).

Proof. From [23, Theorem 4.1], the matrix M is column orthogonal. Hence, ‖M‖2 = 1 and it
is not difficult to see that κs(a, b) ≤ κ(A, b) by comparing their expressions. Using the monotonicity
of infinity norm, it can be obtained that∥∥∥∥ ∣∣∣∣Mk

[
M 0
0 Im

]∣∣∣∣ [|a||b|
]∥∥∥∥
∞
≤
∥∥∥∥ |Mk|

[
|M| 0

0 Im

] [
|a|
|b|

]∥∥∥∥
∞

=

∥∥∥∥ |Mk|
[
vec(|A|)
|b|

]∥∥∥∥
∞
,

therefore we prove that ms(a, b) ≤ m(A, b) and cs(a, b) ≤ c(A, b) can be proved similarly. �
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3. Revisiting condition numbers of the untruncated TLS problem

In this section, we investigate the relationship between normwise, componentwise and mixed condi-
tion numbers for the TTLS problem and the previous corresponding counterparts for the untruncated
TLS. In the following, let xn be the untruncated TLS solution to (1.2). First let us review previous
results on condition numbers for the untruncated TLS problem.

Let σ̃n be the smallest singular value of A. As noted in [11], if

σ̃n > σn+1, (3.1)

then the TLS problem (1.2) has a unique TLS solution

xn = (A>A− σ2
n+1In)−1A>b.

Let L>xn be a linear function of the TLS solution xn, where L ∈ Rn×l is a fixed matrix with
l ≤ n. We define the mapping

h : Rm×n × Rm → Rl : (A, b) 7→ L>xn = L>(A>A− σ2
n+1In)−1A>b. (3.2)

As in [1], the absolute normwise condition number of L>x can be characterized by

κ1(L,A, b) = max
[∆A, ∆b] 6=0

‖h′(A, b) · (∆A,∆b)‖2∥∥[∆A ∆b]
∥∥
F

=
(
1 + ‖xn‖22

)1/2 ∥∥∥∥L>P−1
(
A>A+ σ2

n+1

(
In −

2xnx
>
n

1 + ‖xn‖22

))
P−1L

∥∥∥∥1/2

2

, (3.3)

where

P = A>A− σ2
n+1In. (3.4)

Later, in [16], an equivalent expression of κ1(In, A, b) was given by

κ1(In, A, b) =
√

1 + ‖xn‖22
∥∥∥V −>11 S

∥∥∥1/2

2
, (3.5)

where V11 is defined by (1.6) with k = n and S = diag([s1, . . . , sn]>) with

si =

√
σ2
i + σ2

n+1

σ2
i − σ2

n+1

.

Recall that κ(A, b) is given by (2.5). The relationship between the upper bound for κ(A, b) and
the corresponding counterpart for κ1(In, A, b) was studied in [14, §2.5]. The following theorem shows
the equivalence of κ(A, b) and κ1(In, A, b).

Theorem 3.1. For the untruncated TLS problem (1.2), the explicit expression of κ(A, b) given by
(2.5) with k = n is equivalent to that of κ1(In, A, b) given by (3.5)

Proof. When k = n, it is easy to see that Πn,1 = Π1,n = In. Also we have

Mn =
1

V 2
22

[In xn]V KD−1
∗ [In ⊗ Σ>2 Σ1]W, (3.6)

where Σ1 = diag([σ1, . . . , σn]>) ∈ Rn×n, Σ2 = [σn+1, 0, . . . , 0]> ∈ Rm−n, D∗ = Σ2
1 − σ2

n+1In, and

K =

[
V22In
V21

]
, W =

[
V >1 ⊗ U>2
V >2 ⊗ U>1

]
. (3.7)
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When k = n, under the genericity condition (3.1), the following identities hold for the TLS solution
xn (cf. [11]) [

xn
−1

]
= − 1

V22
V2 = − 1

V22

[
V12

V22

]
, V22 =

1√
1 + x>nxn

, (3.8)

where V has the partition in (1.6) and xn = −V12/V22 given by (1.8). Thus it is not difficult to see
that

1

V 2
22

[In xn]V K =
1

V 2
22

[In xn]

[
V11 V12

V21 V22

] [
V22In
V21

]
=

1

V22

(
V11 −

1

V22
V12V21

)
. (3.9)

Since [
V >11 V >21

V >12 V22

] [
V11 V12

V21 V22

]
=

[
In 0
0 1

]
,

we know that

V >11V11 + V >21V21 = In, V >11V12 + V22V
>

21 = 0,

thus, it can be verified that

In = V >11

(
V11 −

1

V22
V12V21

)
. (3.10)

Combining (3.9) and (3.10) with the expression of Mn given by (3.6), we have

Mn =
1

V22
V −>11 D−1

∗ [In ⊗ Σ>2 Σ1]W. (3.11)

This, together with WW> = Imn, yields

MnM
>
n = (1 + ‖xn‖22)V −>11 S2V −1

11 ,

where S is defined in (3.5). Therefore, when k = n the expression of κ(A, b) given by (2.5) is reduced
to

κ(A, b) = ‖Mn‖2 = ‖MnM
>
n ‖

1/2
2 = κ1(In, A, b).

The proof is complete. �

In [31], Zhou et al. defined and derived the relative mixed and componentwise condition numbers

for the untruncated TLS problem (1.2) as follows: Let [Ã b̃] = [A b] + [∆A ∆b], where ∆A and ∆b
are the perturbations of A and b respectively. When the norm ‖[∆A,∆b]‖F is small enough, for the

TLS solution xn of Ax ≈ b and the TTLS solution x̃n of Ãx ≈ b̃, we have

m1(A, b) = lim
ε→0

sup
|∆A|≤ε|A|,
|∆b|≤ε|b|

‖x̃n − xn‖∞
ε‖xn‖∞

=

∥∥∥∣∣M +N
∣∣ vec([ |A| |b|])∥∥∥

∞
‖x‖∞

, (3.12)

c1(A, b) = lim
ε→0

sup
|∆A|≤ε|A|,
|∆b|≤ε|b|

1

ε

∥∥∥∥ x̃n − xn
xn

∥∥∥∥
∞

=

∥∥∥∥∥∥
|M +N | vec

([
|A| |b|

])
xn

∥∥∥∥∥∥
∞

, (3.13)

where

M =
[
P−1 ⊗ b> − x>n ⊗ (P−1A>) P−1A>

]
, N = 2σn+1P

−1xn(v>n+1 ⊗ u>n+1),

and vn+1 are the (n+ 1)-th column of U and V respectively.
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Recently, in [4], Diao and Sun defined and gave mixed and componentwise condition numbers for
the linear function L>xn as follows.

m1,L(A, b) =

∥∥∥ ∣∣∣L>P−1
(
x>n ⊗

(
A> + 2xnr>

1+x>nxn

)
− In ⊗ r>

)∣∣∣ vec(|A|) +
∣∣∣L>P−1

(
A> + 2xnr>

1+x>nxn

)∣∣∣ |b|∥∥∥
∞

‖L>xn‖∞
,

c1,L(A, b) =

∥∥∥∥D†L>xn
∣∣∣∣L>P−1

(
x>n ⊗

(
A> +

2xnr
>

1 + x>nxn

)
− In ⊗ r>

)∣∣∣∣ vec(|A|)
+D†

L>x

∣∣∣∣L>P−1

(
A> +

2xnr
>

1 + x>nxn

)∣∣∣∣ |b|∥∥∥∥
∞
,

where r = b − Axn. Moreover, when L = In, the expressions of m1,In(A, b) and c1,In(A, b) were
equivalent to the explicit expressions of m1(A, b) and c1(A, b) given by (3.12)–(3.13) (cf. [4, Theorem
3.2]).

In the following theorem, we prove that, when k = n, m(A, b) and c(A, b) given by Theorem 2.1
are reduced to those of m1(A, b) and c1(A, b), respectively.

Theorem 3.2. Using the notations above, when k = n, we have m(A, b) = m1(A, b) and c(A, b) =
c1(A, b).

Proof. From the proof of [5, Lemma 2], for P given by (3.4) we have

P = V11D∗V
>

11 ,

where D∗ and V11 are defined in (3.6) and (1.6), respectively. Thus, when k = n, using (3.11) and
(3.7) we have

Mn =
1

V22
V −>11 D−1

∗

(
V >1 ⊗ (Σ>2 U

>
2 ) + Σ1(V >2 ⊗ U>1 )

)
=

1

V22
P−1V11

(
V >1 ⊗ (Σ>2 U

>
2 ) + Σ1(V >2 ⊗ U>1 )

)
= P−1 (Mn,1 +Mn,2) , (3.14)

where

Mn,2 =
1

V22
V11Σ1(V >2 ⊗ U>1 ), Mn,1 =

1

V22
V11

(
V >1 ⊗ (Σ>2 U

>
2 )
)
. (3.15)

Partition Mn,1 and Mn,2 as follows:

Mn,1 = [N1 N2], Mn,2 = [T1 T2], N1, T1 ∈ Rn×mn. (3.16)

By comparing the expressions of m1,In(A, b) and m(A, b) with k = n, we only need to show that

N1 + T1 = Q1, N2 + T2 = Q2, (3.17)

where

Q1 = In ⊗ r> − x>n ⊗Q2, Q2 = A> +
2xnr

>

1 + x>nxn
.

Using the SVD of [A, b] in (1.4), the partitions of V , U in (1.6) and Σ in (2.5), it follows that

A> =

(
[A b]

[
In
0

])>
= V11Σ1U

>
1 + V12Σ>2 U

>
2 = V11Σ1U

>
1 + σn+1V12u

>
n+1, (3.18)

where un+1 is the (n+ 1)-th column of U . We note that

Σ2 = σn+1e
(m−n)
1 , Σ>2 U

>
2 = u>n+1, (3.19)
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where e
(m−n)
1 is the first column of Im−n. From the SVD of [A b] and (3.8), it is easy to check that

r = b−Axn = −[A b]

[
xn
−1

]
=

1

V22
[A b]V2 =

σn+1

V22
un+1. (3.20)

Substituting (3.18), (3.8) and (3.20) into the expression of Q2 and Q1 yields

Q2 = V11Σ1U
>
1 − σn+1V12u

>
n+1, (3.21)

Q1 =
σn+1

V22
In ⊗ u>n+1 +

1

V22
V >12 ⊗ (V11Σ1U

>
1 )− σn+1

V22
V >12 ⊗

(
V12u

>
n+1

)
. (3.22)

Since V11V
>

11 + V12V
>

12 = In, V11V
>

21 + V22V12 = 0, we deduce that

V11V
>

11 = In − V12V
>

12 , V11V
>

21 = −V22V12. (3.23)

Using (3.15), (3.19), and (3.23) we have

Mn,1 =
1

V22

(
V11V

>
1 ⊗ (Σ>2 U

>
2 )
)

=
1

V22
σn+1

[
V11V

>
11 V11V

>
21

]
⊗ u>n+1

= σn+1

[
1

V22
(In − V12V

>
12)⊗ u>n+1 − V12 ⊗ u>n+1

]
,

N1 =
σn+1

V22
(In − V12V

>
12)⊗ u>n+1, N2 = −σn+1V12 ⊗ u>n+1 = −σn+1V12u

>
n+1. (3.24)

Using the partition of V >2 = [V >12 V22] and (3.15) we have

Mn,2 =
1

V22

[
V11Σ1(V >12 ⊗ U>1 ) V11Σ1(V >22 ⊗ U>1 )

]
,

T1 =
1

V22
V11Σ1(V >12 ⊗ U>1 ) =

1

V22
V >12 ⊗ (V11Σ1U

>
1 ), T2 =

1

V22
V11Σ1V22U

>
1 = V11Σ1U

>
1 . (3.25)

From (3.24), (3.25), (3.22), and (3.21), it is easy to check that the two inequalities in (3.17) hold.
The proof is complete. �

Remark 3.1. From (3.14), (3.16), (3.17) we have

Mn = P−1

[
−x>n ⊗

(
A> +

2xnr
>

1 + x>nxn

)
+ In ⊗ r> A> +

2xnr
>

1 + x>nxn

]
.

The structured condition numbers for the untruncated TLS problem with linear structures were
studied by Li and Jia in [23]. For the structured matrix A defined by (2.17), denote

K = P−1

(
2A>

rr>

‖r‖22
G(xn)−A>G(xn) +

[
In ⊗ r> 0

])
, G(xn) =

[
x>n − 1

]
⊗ Im, (3.26)

where P is defined by (3.4). The structured mixed condition number ms,n(a, b) is characterized
as [23]

ms,n(a, b) = lim
ε→0

sup
|∆a|≤ε|a|,
|∆b|≤ε|b|

‖x̃n − xn‖∞
ε‖xn‖∞

=

∥∥∥∥ ∣∣∣∣K [M 0
0 Im

]∣∣∣∣ [|a||b|
] ∥∥∥∥
∞

‖xn‖∞
. (3.27)

In [23, Theorem 4.3], Li and Jia proved that ms,n(a, b) ≤ m1(A, b) and K = Mn, where m1(A, b) is
given by (3.12). Hence we have the following proposition. Indeed, we prove that, when k = n, the
expression of ms,n(a, b) given by (3.27) is reduced to that of ms(a, b) in Theorem 2.2.

Proposition 3.1. Using the notations above, when k = n, we have ms(a, b) = ms,n(a, b).
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4. Small sample statistical condition estimation

Based on small sample statistical condition estimation (SCE), reliable condition estimation algo-
rithms for both unstructured and structured normwise, mixed and componentwise are devised, which
utilize the SVD of the augmented matrix [A b]. In the following, we first review the basic idea of
SCE. Let ψ : Rp → R be a differentiable function. For the input vector u, we want to estimate the
sensitivity of the output ψ(u) with respect to small perturbation εd on u, where d is a unit vector
and ε is a small positive number. The Taylor expansion of ψ at u is given by

ψ(u + εd) = ψ(u) + ε(∇ψ(u))>d +O(ε2),

where ∇ψ(u) ∈ Rp is the gradient of ψ at u. Neglecting the second and higher order terms of ε we
have

|ψ(u + εd)− ψ(u)| ≈ ε(∇ψ(u))>d,

from which we conclude that the local sensitivity can be measured by ‖∇ψ(u)‖2. Let the Wallis
factor be given by [18]

ωp =


1, for p ≡ 1,
2
π , for p ≡ 2,
1·3·5···(p−2)
2·4·6···(p−1) , for p odd and p > 2,
2
π

2·4·6···(p−2)
1·3·5···(p−1) , for p even and p > 2.

As in [18], if d is selected uniformly and randomly from the unit p-sphere Bp−1 (denoted as d ∈
U(Bp−1)), then the expected value E(|(∇ψ(u))>d|/ωp) is ‖∇ψ(u)‖2. In practice, the Wallis factor
can be approximated accurately by [18]

ωp ≈
√

2

π(p− 1
2)
. (4.1)

Therefore, the following quantity

ν =

∣∣(∇ψ(u))>d
∣∣

ωp

can be used as a condition estimator for ‖∇ψ(u)‖2 with high probability for the function ψ at u.
For example, let γ > 1, which indicates the accuracy of the estimator, it is shown that

P
(
‖∇ψ(u)‖2

γ
≤ ν ≤ γ‖∇ψ(u)‖2

)
≥ 1− 2

πγ
+O

(
1

γ2

)
.

In general, we are interested in finding an estimate that is accurate to a factor of 10 (γ = 10). The
accuracy of the condition estimator can enhanced by using multiple samples of d, denoted dj . The
`-sample condition estimation is given by

ν(`) =
ω`
ωp

√√√√∑̀
j=1

|∇ψ(u)>dj |2,

where the matrix [d1, . . . ,d`] is orthonormalized after d1, . . . ,d` are selected uniformly and randomly
from U(Bp−1). Usually, at most two or three samples are sufficient for high accuracy. For example,
the accuracies of ν(2) and ν(3) are given by [18]

P
(
‖∇ψ(u)‖2

γ
≤ ν(2) ≤ γ‖∇ψ(u)‖2

)
≈ 1− π

4γ2
, γ > 1,

P
(
‖∇ψ(u)‖2

γ
≤ ν(3) ≤ γ‖∇ψ(u)‖2

)
≈ 1− 32

3π2γ3
, γ > 1.
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As an illustration, for ` = 3 and γ = 10, the estimator ν(3) has probability 0.9989, which is within
a relative factor 10 of the true condition number ‖∇ψ(u)‖2.

The above results can be easily extended to vector-valued or matrix-valued functions.

4.1. Normwise perturbation analysis. In this subsection, we propose an algorithm for the norm-
wise condition estimation of the TTLS problem (1.3) based on SCE. The input data of Algorithm
1 includes the matrix A ∈ Rm×n, the vector b ∈ Rm, the SVD of [A b], and the computed solution

xk ∈ Rn. The output includes the condition vector K
TTLS,(`)

abs and the estimated relative condition

number κ
TTLS,(`)
SCE .

Algorithm 1 Small sample condition estimation for the TTLS problem under normwise perturba-
tion analysis

1. Generate matrices [∆Â1 ∆b̂1], . . . , [∆Â` ∆b̂`] ∈ Rm×(n+1) with entries being in N (0, 1), the
standard Gaussian distribution. Orthonormalize the following matrix[

vec(∆Â1) vec(∆Â2) · · · vec(∆Â`)

∆b̂1 ∆b̂2 · · · ∆b̂`

]
to obtain [q1 q2, . . . , q`] via the modified Gram-Schmidt orthogonalization process. Set

∆Hi := [∆Ai ∆bi] = unvec(qi), i = 1, . . . , `.

2. Let p = m(n+ 1). Approximate ωp and ω` by (4.1).
3. For i = 1, 2, . . . , `, compute

gi =
1

‖V22‖22

V11 (Z>1 + Z2)V >22 + V12 (Z1 + Z>2 )V >21 + xk

4∑
j=1

cj

 , (4.2)

where Zi and ci are defined in (2.7) with ∆H = ∆Hi. Estimate the absolute condition vector

K
TTLS,(`)

abs =
ω`
ωp

√√√√∑̀
j=1

|gj |2.

Here, for any vector g = [g1, . . . , gn]> ∈ Rn, |g|2 = [|g1|2, . . . , |gn|2]> and
√
|g| =

[
√
|g1|, . . . ,

√
|gn|]>.

4. Compute the normwise condition number as follows,

κ
TTLS,(`)
SCE =

N
TTLS,(`)
SCE

∥∥[A b]
∥∥
F

||xk||2
,

where N
TTLS,(`)
SCE := ω`

ωp

√∑`
j=1 ||gj ||22 = ‖K TTLS,(`)

abs ‖F .

Next, we give some remarks on the computational cost of Algorithm 1. In Step 1, the modified
Gram-Schmidt orthogonalization process [12] is adopted to form an orthonormal matrix [q1 q2, . . . , q`]
and the total flop count is about O(mn`2). The cost associated with step 3 is about O(`k(mn +
m(m− `)+(5k−n−1)(n+1−k))) flops that is mainly from computing the directional derivative in
Lemma 2.2. The last step needs O(mn+ n`) flops. We note that ` = 3 generates a good condition
estimation. In this case, the total cost of Algorithm 1 is O(mnk + m2k + k(5k − n)(n + 1 − k)),
which does not exceed the cost of computing the SVD of [A b] and xk. Furthermore, the direc-
tional derivative (4.2) only be computed once in one loop of Algorithm 1. On the contrary, Gratton
et. al [14] proposed the normwise condition number estimation algorithm through using the power
method [15], which needs to evaluate the matrix-vector products Mkf and M>k g in one loop for
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some suitable dimensional vectors f and g. Therefore, Algorithm 1 is more efficient compared with
the normwise condition number estimation method in [14].

4.2. Componentwise perturbation analysis. If the perturbation in the input data is measured
componentwise rather than by norm, it may help us to measure the sensitivity of a function more
accurately [26]. The SCE method can also be used to measure the sensitivity of componentwise
perturbations [18], which may give a more realistic indication of the accuracy of a computed solution
than that from the normwise condition number. In componentwise perturbation analysis, for a
perturbation ∆A = (∆aij) of A = (aij) ∈ Rm×n, we assume that |∆A| ≤ ε|A|. Therefore, the
perturbation ∆A can be rewritten as ∆A = δ (A � A) with |δ| ≤ ε and each entry of A being in
the interval [−1, 1]. Based on the above observations, we can obtain a componentwise sensitivity
estimate of the solution xk of the TTLS problem (1.3) as follows. The detailed descriptions are given
in Algorithm 2, which is a modification of Algorithm 1 directly.

Algorithm 2 Small sample condition estimation for the TTLS problem under componentwise per-
turbation analysis

1. Generate matrices [∆Â1 ∆b̂1] [∆Â2 ∆b̂2], . . . , [∆Â` ∆b̂`] ∈ Rm×(n+1) with entries being in
N (0, 1). Orthonormalize the following matrix[

vec(∆Â1) vec(∆Â2) · · · vec(∆Â`)

∆b̂1 ∆b̂2 · · · ∆b̂`

]
to obtain [q1 q2, . . . , q`] via the modified Gram-Schmidt orthogonalization process. Set

[∆Ãi ∆b̃i] = unvec(qi) i = 1, . . . , `.

Set
∆Hi := [∆Ai ∆bi] = [Âi b̂i] � [∆Ãi ∆b̃i] i = 1, . . . , `.

2. Let p = m(n+ 1). Approximate ωp and ω` by (4.1).
3. For j = 1, 2, . . . , `, calculate gj by (4.2). Estimate the absolute condition vector

C
TTLS,(`)
abs =

ω`
ωp

√√√√∑̀
j=1

|gj |2.

4. Set the relative condition vector C
TTLS,(`)
rel = C

TTLS,(`)
abs /xk. Compute the mixed and compo-

nentwise condition estimations m
TTLS,(`)
SCE and c

TTLS,(`)
SCE as follows,

m
TTLS,(`)
SCE =

∥∥∥CTTLS,(`)
abs

∥∥∥
∞

‖xk‖∞
, c

TTLS,(`)
SCE =

∥∥∥CTTLS,(`)
rel

∥∥∥
∞

=

∥∥∥∥∥C
TTLS,(`)
abs

xk

∥∥∥∥∥
∞

.

To estimate the mixed and componentwise condition numbers via Algorithm 2, we only need
additional computational cost `m(n+ 1) flops comparing with Algorithm 1.

4.3. Structured perturbation analysis. For the structured TLS problem, it is reasonable to
consider the case that the perturbation ∆A has the same structure as A. Suppose the matrix A
takes the form of (2.17), i.e., A =

∑t
i=1 aiSi. Here, S1, . . . , St are linearly independent matrices of

a linear subspace S ⊂ Rm×n. It is easy to see that

vec(A) = Φsta,

where a = [a1, a2, . . . , at]
> ∈ Rt and Φst = [vec(S1), vec(S2), . . . , vec(St)]. For

S = {all m× n real Toeplitz matrices},
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we have t = m+ n− 1,

S1 = toeplitz(e1, 0), . . . , Sm = toeplitz(em, 0),

Sm+1 = toeplitz(0, e2) . . . , Sm+n−1 = toeplitz(0, en),

where the Matlab-routine notation A = toeplitz(Tc, Tr) ∈ S denotes a Toeplitz matrix having

Tc ∈ Rm as its first column and Tr ∈ Rn as its first row, and A =
∑t

i=1 aiSi, where a = [T>c , Tr(2 :

end)]> ∈ Rm+n−1. This means that a Toeplitz matrix A can be obtained by taking S = Rm+n−1

and letting τ be the map

τ(a) =


a1 am+1 · · · am+n−2 am+n−1

a2 a1 · · · am+n−3 am+n−2
...

...
. . .

...
...

am−1 am−2 · · · an−1 an
am am−1 · · · an−2 an−1

 = A ∈ Rm×n, ∀a =


a1

a2
...

am+n−1

 ∈ Rm+n−1.

The SCE method maintains the desired matrix structure by working with the perturbations of
A and b in the linear space of S × Rm. This produces only slight changes in the SCE algorithm.
By simply generating ∆ai and ∆b randomly instead of ∆A = and ∆b as in Algorithm 1, we obtain
an algorithm to estimate the condition of a composite map f ◦ τ . We summarize the structured
normwise condition estimation in Algorithm 3, which also includes the structured componentwise
condition estimation. The computational cost of Algorithm 3 is reported in Table 1.

Table 1. Computational complexity for Algorithm 3.

Step 1 2 3
Algorithm 3 O(`2(m+ r) + `(m+ r)) O(mn) O(mn`+ n2`)

5. Numerical examples

In this section, we present some numerical examples to illustrate the reliability of the SCE for the
TTLS problem (1.3). For a given TTLS problem, the TTLS solution xk with truncation level k can
be computed by utilizing the SVD of [A b] and (3.8). The corresponding exact condition numbers
are computed by their explicit expressions associated with the given data [A b]. All the sample
number ` in Algorithms 1 to 3 are set to be ` = 3. All the numerical experiments are carried out on
Matlab R2019b with the machine epsilon µ ≈ 2.2× 10−16 under Microsoft Windows 10.

Example 5.1. Let

A =

2 0
0 3
0 10−s

 , b =

10−s

0
1

 ,
where s ∈ R+.

In Table 2, we compare our SCE-based estimations κ
TTLS,(`)
SCE , m

TTLS,(`)
SCE and c

TTLS,(`)
SCE from Al-

gorithms 1 and 2 with the corresponding exact condition numbers for Example 5.1. The symbol
“ × ” in Table 2 means the condition numbers κrel1 (A, b), m1(A, b) and c1(A, b) are not defined for
the truncation level k = 1. From the numerical results listed in Table 2, it is easy to find that the
normwise condition number κrel(A, b) defined by (2.15) are much greater than results of mixed and
componentwise condition numbers m(A, b) and c(A, b) given by Theorem 2.1. The (untruncated)
TTL problem (1.3) is well conditioned under componentwise perturbations regardless of the choice
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Algorithm 3 Small sample condition estimation for the STTLS problem under structured pertur-
bation analysis

1. Generate matrices [∆â1,∆â2, . . . ,∆â`], [∆b̂1,∆b̂2, . . . ,∆b̂`] with entries in N (0, 1), where

∆âi ∈ Rt and ∆b̂i ∈ Rm. Orthonormalize the following matrix[
∆â1 ∆â2 · · · ∆â`
∆b̂1 ∆b̂2 · · · ∆b̂`

]
,

to obtain an orthonormal matrix [ξ1 ξ2, . . . , ξ`] by using the modified Gram-Schmidt orthog-
onalization process. Set

[∆ã>i ∆b̃
>
i ]> = ξi, i = 1, . . . , `.

Set

[∆a>i ∆b>i ]> = [â>i b̂
>
i ]> � [∆ã>i ∆b̃

>
i ]>, i = 1, . . . , `

and

∆Hi := [∆Ai ∆bi], ∆Ai =

t∑
j=1

∆ajSj , i = 1, . . . , `.

2. Let p = t+m. Approximate ωp and ω` by (4.1).
3. For j = 1, 2, . . . , `, calculate gj by (4.2). Compute the absolute condition vector

K̄abs =
ω`
ωt

√√√√∑̀
j=1

|gj |2.

4. Compute the normwise condition numbers as follows:

κ
STTLS,(`)
SCE =

∥∥K̄abs

∥∥
2

∥∥ [a> b>]>
∥∥

2

‖xk‖2
,

Compute the mixed and componentwise condition estimations m
STTLS,(`)
SCE and c

STTLS,(`)
SCE as

follows,

m
STTLS,(`)
SCE =

∥∥K̄S
abs

∥∥
∞

‖xk‖∞
, c

TTLS,(`)
SCE =

∥∥∥∥K̄S
abs

xk

∥∥∥∥
∞
.

of s and k. Compared with the normwise condition number, the mixed and componentwise condi-
tion numbers may capture the true conditioning of this TTLS problem. We also observe that the
SCE-based condition estimations can provide reliable estimations. Moreover, numerical results of
the untruncated mixed and componentwise condition numbers m(A, b) and c(A, b) given in Theorem
2.1 are equal to corresponding values of the untruncated ones m1(A, b) and c1(A, b) given by (3.12)–
(3.13), respectively. The similar conclusion can be drawn for comparing κrel(A, b) and κrel1 (A, b) for
k = 2.

Example 5.2. [27] Let the data matrix A and the observation vector b be given by

A =



m− 1 −1 · · · −1
−1 m− 1 · · · −1
...

...
. . .

...
−1 −1 · · · m− 1
−1 −1 · · · −1
−1 −1 · · · −1


∈ Rm×(m−2), b =


−1
−1
...

m− 1
−1

 ∈ Rm.
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Table 2. Comparisons of exact normwise, mixed and componentwise condition numbers
with SCE-based condition estimations for Example 5.1 via Algorithms 1 and 2 with ` = 3.

s k κrel(A, b) κrel1 (A, b) κ
TTLS,(`)
SCE m(A, b) m1(A, b) m

TTLS,(`)
SCE c(A, b) c1(A, b) c

TTLS,(`)
SCE

3 1 1.18 · 104 × 1.15 · 104 4.50 × 2.70 16.20 × 11.65
3 2 4.11 · 103 4.11 · 103 5.46 · 103 3.33 3.33 1.40 4.50 4.50 2.19

6 1 1.18 · 107 × 1.51 · 107 4.50 × 3.02 16.05 × 10.16
6 2 4.11 · 106 4.11 · 106 5.67 · 106 3.33 3.33 2.35 4.50 4.50 2.35

9 1 1.18 · 1010 × 1.42 · 1010 4.50 × 2.31 4.50 × 2.31

9 2 4.11 · 109 4.11 · 109 2.98 · 109 3.33 3.33 2.43 4.50 4.50 3.69

12 1 1.18 · 1013 × 1.61 · 1013 4.50 × 3.37 4.50 × 3.37

12 2 4.11 · 1012 4.11 · 1012 3.83 · 1012 3.33 3.33 1.20 4.50 4.50 3.17

Table 3. Comparisons of true structured normwise, mixed and componentwise condition
numbers with SCE-based condition estimations for Example 5.2 via Algorithms 3 with the
truncated level k = m− 2 and ` = 3.

m κrel(A, b) κrels (A, b) κ
STTLS,(`)
SCE m(A, b) ms(A, b) m

STTLS,(`)
SCE c(A, b) cs(A, b) c

STTLS,(`)
SCE

100 8.98 · 102 9.24 · 101 7.37 · 103 2.49 2.49 2.84 2.49 2.49 2.84

200 1.80 · 103 1.31 · 102 1.93 · 104 2.50 2.50 2.27 2.50 2.50 2.27

300 2.71 · 103 1.60 · 102 3.80 · 104 2.50 2.50 2.21 2.50 2.50 2.21

400 3.61 · 103 1.85 · 102 5.82 · 104 2.50 2.50 2.19 2.50 2.50 2.19

500 4.52 · 103 2.06 · 102 8.05 · 104 2.50 2.50 2.14 2.50 2.50 2.14

Since the first m-2 singular values of the augmented matrix [A b] are equal and larger than the
(m − 1)-th singular value σm−1, the truncated level k can only be m − 2. It is clear that A is a
Toeplitz matrix.

A condition estimation is said to be reliable if the estimations fall within one tenth to ten times
of the corresponding exact condition numbers (cf. [15, Chapter 15]). Table 3 displays the numerical
results for Example 5.2 by choosing from m = 100 to m = 500. From Table 3, we can conclude
that Algorithms 3 can provide reliable mixed and componentwise condition estimations for this
specific Toeplitz matrix A and the observation vector b, while the normwise condition estimation
may seriously overestimate the true relative normwise condition number. We also see that the
unstructured mixed and componentwise condition numbers m(A, b), c(A, b) given by Theorem 2.1
are not smaller than the corresponding structured ones ms(A, b), cs(A, b) shown in Theorem 2.2,
which is consistent with Proposition 2.1. Numerical values of the structured normwise, mixed and
componentwise condition number are smaller than the corresponding counterparts.

Example 5.3. This test problem comes from [14, §3.2]. The augmented matrix [A b] ∈ Rm×(n+1)

are builded by using the SVD [A b] = USV >. Here, U is an arbitrary orthogonal matrix with the
size of m × m, and Σ be a diagonal matrix with equally spaced singular values in [10−2, 1]. The
matrix V is generated as following: compute the QR decomposition of the matrix[√

1− β2c X
βd Y

]
with the Q-factor Q, where X and Y are random matrices, c ∈ Rk and d ∈ Rn+1−k are normalized
random vectors. Here, k ≤ min{m,n} is truncation level. Then we set V to be an orthogonal matrix

that commutes the first and last rows of Q>. It is easy to verify that V22 = βd> and ‖V22‖ = β. In
this test, we take m = 400, n = 120, k = 80, and β = 10−3. The perturbation matrices ∆A and ∆b
of A and b are generated as follows:

∆A = ε (E �A), ∆b = ε (f � b), (5.1)

where E and f are random matrices whose entries are uniformly distributed in the open interval
(−1, 1), ε = 10−8 represents the magnitude of the perturbation.
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We note that both ∆A and ∆b are componentwise perturbations on A and b respectively. In

order to illustrate the validity of these estimators κ
TTLS,(`)
SCE , m

TTLS,(`)
SCE and c

TTLS,(`)
SCE via Algorithms

1 and 2, we define the normwise, mixed and componentwise over-estimation ratios as follows

rκ =
κ

TTLS,(`)
SCE ε

‖x̃k − xk‖2/‖xk‖2
, rm =

m
TTLS,(`)
SCE ε

‖x̃k − xk‖∞/‖xk‖∞
, rc =

c
TTLS,(`)
SCE ε

‖ x̃k−xkxk
‖∞

,

Typically the ratios in (0.1, 10) are acceptable [15, Chap. 15].

(a) Normwise over-
estimation ratios

(b) Mixed over-
estimation ratios

(c) Component-
wise over-estimation
ratios

Figure 1. SCE for the TLS problem under unstructured componentwise perturba-
tions with 1000 samples for Example 5.3.

Figure 1 displays the numerical results for Example 5.3, where we generate 1000 random samples

[A b]. From Figure 1, we see that κ
TTLS,(`)
SCE may seriously overestimate the true relative normwise

error. All the normwise over-estimation ratios of 1000 samples is more than 10, and the mean value
of these estimations is 453.8841. All elements of the mixed over-estimation ratios of 1000 samples
are within (0.1, 10) and the mean value of these estimations is 1.3563. There are only 6 entries of the
componentwise over-estimation ratios are greater than 10 and the mean value of these estimations
is 2.4716. The maximal values of the normwise, mixed and componentwise over-estimation vector
are 712.5759, 2.7908 and 11.6508, while their corresponding minimum are 263.3766, 0.6078, 0.4261

accordingly. Therefore the mixed and componentwise condition estimations m
TTLS,(`)
SCE and c

TTLS,(`)
SCE

are reliable.

Example 5.4. Let the Toeplitz matrix A and the vector b are defined in Example 5.2, where
m = 500. We generate 1000 structured componentwise perturbations ∆A1 = ε (E1 � A) and 1000
unstructured componentwise perturbations ∆A2 = ε (E2�A), where E1 is a random Toeplitz matrix
and E2 is a random matrix whose entries are uniformly distributed in the open internal (−1, 1). And
∆b = ε (f � b), where f is a random matrix with components uniformly distributing in the open
interval (−1, 1).

For Example 5.4, we use rSκ , rSm and rSc to denote the structured normwise, mixed and componen-
twise over-estimation ratios corresponding to structured componentwise perturbations of ∆A1 and
∆b, and rκ, rm and rc are unstructured normwise, mixed and componentwise over-estimation ratios
corresponding to unstructured componentwise perturbations of ∆A2 and ∆b, where

rS
κ =

κ
STTLS,(`)
SCE ε

‖x̃k − xk‖2/‖xk‖2
, rS

m =
m

STTLS,(`)
SCE ε

‖x̃k − xk‖∞/‖xk‖∞
, rS

c =
c

STTLS,(`)
SCE ε

‖ x̃k−xkxk
‖∞

,
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rκ =
κ

TTLS,(`)
SCE ε

‖x̃k − xk‖2/‖xk‖2
, rm =

m
TTLS,(`)
SCE ε

‖x̃k − xk‖∞/‖xk‖∞
, rc =

c
TTLS,(`)
SCE ε

‖ x̃k−xkxk
‖∞

.

Figure 2 displays the numerical results for Example 5.4 with ` = 3 and ε = 10−8. Here, in Figure
2(A)–Figure 2(C), the symbol “+” in the blue color denote the numerical values of rS

κ, rS
m and rS

c

corresponding to 1000 structured perturbations while the symbol “*” in the red color denote the
numerical values of rκ, rm and rc corresponding to 1000 unstructured perturbations.

From Figure 2, we observe that the mixed and componentwise condition estimations m
STTLS,(`)
SCE ,

c
STTLS,(`)
SCE , m

TTLS,(`)
SCE and c

TTLS,(`)
SCE are reliable, while the structured normwise condition estimation

κ
STTLS,(`)
SCE may seriously over-estimate the true relative normwise error. Furthermore, we can also

conclude that the over-estimation ratios associated with the structured mixed and component con-
dition numbers are smaller than the unstructured counterparts in most cases, which are consistent
with the conclusion in Proposition 2.1. The mean values of rS

m, rm, rS
c , and rc of 1000 samples are

1.7140, 2.4642, 1.7140, and 2.4642 respectively. Moreover, all these unstructured and structured
mixed and componentwise condition over-estimation ratios are with (0.1, 10), which indicate mixed
and componentwise condition estimations are reliable.

(a) Unstructured
and structured
normwise over-
estimation ratios

(b) Unstructured
and structured
mixed over-
estimation ratios

(c) Unstructured
and structured
componentwise
over-estimation
ratios

Figure 2. SCE for the TLS problem under unstructured and structured componentwise
perturbations with 1000 unstructured and structured perturbations for Example 5.4.

Example 5.5. This example comes from the model that restructures the image named Shepp-
Logan “head phantom” (Shepp and Logan 1974) by the TTLS technique, which is widely used in
inverse scattering studies. In fact, the TTLS method has been used to study the ultrasound inverse
scattering imaging [24]. Here, we utilize the MATLAB file “paralleltomo.m” from the testprobs
suite1 to create parallel-beam CT test problem and obtain the exact phantom. The input parameters
of “paralleltomo.m” are set to be N = 40, θ = 0 : 5 : 175, and p = 55, hence we can obtain a 1834-
by-1600 matrix A and 1834-by-1 right-hand vector b. The 500 perturbations ∆A and ∆b of A and
b are generated as in (5.1).

Table 4 lists the condition estimations κ
STTLS,(`)
SCE , c

TTLS,(`)
SCE and m

TTLS,(`)
SCE with truncation level k =

1536 and the corresponding relative errors with respect to different magnitude ε of the perturbation
for Example 5.5. From Table 4, we can see that the relative errors are bounded by the product of ε
and corresponding condition estimations, which means that the proposed condition estimations can

1Netlib: http://www.netlib.org/numeralgo/ or GitHub: https://github.com/jakobsj/AIRToolsII.

http://www.netlib.org/numeralgo/
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Table 4. Comparison of the relative errors and SCE-based estimations by Algorithms 1
and 2 under 500 perturbations with different perturbation magnitudes for Example 5.5.

ε 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

‖x̃k−xk‖2
‖xk‖2

3.25 · 10−2 3.25 · 10−3 3.26 · 10−4 3.26 · 10−5 3.26 · 10−6 3.26 · 10−7 3.26 · 10−8 3.26 · 10−9

κ
TTLS,(`)
SCE 3.33 · 104 3.33 · 104 3.33 · 104 3.33 · 104 3.33 · 104 3.333 · 104 3.33 · 104 3.33 · 104

‖x̃k−xk‖∞
‖xk‖∞

2.62 · 10−2 2.82 · 10−3 2.89 · 10−4 2.90 · 10−5 2.90 · 10−6 2.90 · 10−7 2.90 · 10−8 2.90 · 10−9

m
TTLS,(`)
SCE 3.74 · 101 3.74 · 101 3.74 · 101 3.74 · 101 3.74 · 101 3.74 · 101 3.74 · 101 3.74 · 101∥∥∥ x̃k−xk
xk

∥∥∥
∞

3.65 · 102 7.79 · 101 8.38 · 100 8.44 · 10−1 8.44 · 10−2 8.44 · 10−3 8.44 · 10−4 8.44 · 10−5

c
TTLS,(`)
SCE 1.85 · 106 1.85 · 106 1.85 · 106 1.85 · 106 1.85 · 106 1.85 · 106 1.85 · 106 1.85 · 106

give reliable error bounds. The componentwise condition estimation c
TTLS,(`)
SCE is much larger than

κ
STTLS,(`)
SCE and m

TTLS,(`)
SCE since the minimum absolute component of the TTLS solution xk is too

small, which is order of 10−6. Hence the component of the TTLS solution xk in the sense of the
tiny magnitude is very sensitive to small perturbations on the underlying component of xk.

6. Concluding remarks

In this paper, we study the mixed and componentwise condition numbers of the TTLS problem
under the genericity condition. We also consider the structured condition estimation for the STTLS
problem and investigate the relationship between the unstructured condition numbers and the cor-
responding structured counterparts. When the TTLS problem degenerates the untrunctated TLS
problem, we prove that condition numbers for the TTLS problem can recover the previous condition
numbers for the TLS problem from their explicit expressions. Based on SCE, normwise, mixed and
componentwise condition estimations algorithms are proposed for the TTLS problem, which can
be integrated into the SVD-based direct solver for the TTLS problem. Numerical examples indi-
cate that, in practice, it is better to adopt the componentwise perturbation analysis for the TTLS
problem and the proposed algorithms are reliable, which provide posterior error estimations of high
accuracy. The results in this paper can be extended to the truncated singular value solution of a
linear ill-posed problem [2]. We will report our progresses on the above topic elsewhere in the future.
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