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Characterization of the dissipative mappings and their application to

perturbations of dissipative-Hamiltonian systems

Mohit Kumar Baghel∗ Nicolas Gillis† Punit Sharma∗

Abstract

In this paper, we find necessary and sufficient conditions to identify pairs of matrices X and Y
for which there exists ∆ ∈ Cn,n such that ∆+∆∗ is positive semidefinite and ∆X = Y . Such a ∆
is called a dissipative mapping taking X to Y . We also provide two different characterizations for
the set of all dissipative mappings, and use them to characterize the unique dissipative mapping
with minimal Frobenius norm. The minimal-norm dissipative mapping is then used to determine
the distance to asymptotic instability for dissipative-Hamiltonian systems under general structure-
preserving perturbations. We illustrate our results over some numerical examples and compare
them with those of Mehl, Mehrmann and Sharma (Stability Radii for Linear Hamiltonian Systems
with Dissipation Under Structure-Preserving Perturbations, SIAM J. Mat. Anal. Appl. 37 (4):
1625-1654, 2016).

1 Introduction

In this paper, we consider the dissipative mapping problem. Given X,Y ∈ C
n,m, the dissipative

mapping problem can be divided in three subproblems:

1) Existence: find necessary and sufficient conditions on matrices X and Y for the existence of
matrices ∆ ∈ C

n,n such that ∆ +∆∗ is positive semidefinite and ∆X = Y .

2) Characterization: characterize all such dissipative matrices taking X to Y .

3) Minimal norm: characterize all solutions to the dissipative mapping problem that have minimal
norm. In this paper, we focus on the Frobenius norm, which is the standard in the literature.

The dissipative mapping problem belongs to a wider class of mapping problems: for X,Y ∈
C
n,m, the structured mapping problems require to find ∆ ∈ S ⊆ C

n,n such that ∆X = Y , where S
stands for the structure of the mapping. The mapping problems have been extensively studied in [12]
and [1, 2] for the structures that are associated with orthosymmetric scalar products. These include
symmetric, skew-symmetric, Hermitian, skew-Hermitian, Hamiltonian, skew-Hamiltonian, Hermitian,
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skew-Hermitian, persymmetric, and per-skew symmetric matrices. If S ⊆ R
n,n, then it is the real

structured mapping problem. In particular, for given X,Y ∈ C
n,m, the real dissipative mapping

problem is to find ∆ ∈ R
n,n such that ∆ +∆T is positive semidefinite and ∆X = Y .

The structured mapping problems occur and are useful in solving various distance problems related
to structured matrices and matrix polynomials, see for example [5, 6, 16, 17, 18] and the references
therein. A mapping problem closely related to the dissipative mapping is the positive semidefinite
(PSD) mapping, when S is the cone of Hermitian positive semidefinite matrices. The PSD mapping
problem has been recently solved and used in [16, 17] to derive formulas for structured distances to
instability for linear time-invariant dissipative Hamiltonian (DH) systems. DH systems have the form

ẋ(t) = (J −R)Qx(t), (1.1)

where x(t) is the state vector at time t, J∗ = −J ∈ F
n,n, R∗ = R ∈ F

n,n is positive semidefinite and is
referred to as the dissipation matrix, and Q = Q∗ ∈ F

n,n is positive definite and describes the energy
of the system via the function x 7→ x∗Qx. When the coefficient matrices in (1.1) are complex, that
is,. F = C, then it is called a complex DH system, and when the coefficient matrices in (1.1) are real,
that is, F = R, then it is called a real DH system. Such systems are special cases of port-Hamiltonian
systems; see for example [8, 20, 21, 16, 17]. A linear time-invariant (LTI) control system ẋ = Ax with
A ∈ C

n,n is called asymptotically stable around its equilibrium point at the origin if (i) for any ǫ > 0,
there exists δ1 > 0 such that if ‖x(t0)‖ < δ1, then ‖x(t)‖ < ǫ, for all t > t0, and (ii) there exists δ2 > 0
such that if ‖x(t0)‖ < δ2, then x(t) → 0 as t → ∞. It is called stable if only (i) holds. An equivalent
algebraic characterization of stability is given in terms of spectral conditions on A: the system ẋ = Ax
is called stable if all eigenvalues of the matrix A are in the closed left half of the complex plane and
those on the imaginary axis are semisimple. It is asymptotically stable if all eigenvalues of A are in
the open left half of the complex plane.

Any LTI stable system can be represented in the form (1.1) of a DH system [7]. DH systems
are always stable and remain stable as long as the perturbations preserve the DH structure. Still,
they may have eigenvalues on the imaginary axis, i.e., they are not necessarily asymptotically stable.
Therefore it is useful to know the distance to asymptotic instability for DH systems [16, 17] defined as
the smallest norm of the perturbation that makes system lose its asymptotic stability. Studying this
question is an essential topic in many applications, like in power system and circuit simulation, see, e.g.,
[14, 15, 13], and multi-body systems, see, e.g., [9, 22]. This is also useful in some specific applications,
e.g., the analysis of disk brake squeal [16, Example 1.1], of mass-spring-damper dynamical systems
[17, Example 4.1], and of circuit simulation and power system modelling [16, Example 1.2], where the
interest is in studying the stability or the instability under perturbation of the matrices J , R and Q.
In the DH modelling of physical systems, the matrix J describes the energy flux among the system’s
energy storage elements, and R represents the damping effects in the system. Thus perturbing J and
R together, or only one at a time, is of particular interest.

In [16], the authors derived various distances to asymptotic instability for DH systems (1.1) while
focusing on perturbations that affect only one matrix from {J,R,Q} at a time. Similarly in [17], the
authors derived real distances to instability for real DH systems while perturbing only the dissipation
matrix R. The framework suggested in [16] depends heavily on reformulating the instability radius
problem in terms of an equivalent problem of minimizing the generalized Rayleigh quotient of two
positive semidefinite matrices. This reformulation was achieved using minimal norm skew-Hermitian
mappings in case only J is perturbed, and PSD mappings in case only R or Q is perturbed. However,
we note that the framework suggested in [16] does not work if we allow perturbations in the DH system
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that affect more than one matrix from {J,R,Q} at a time. Analyzing the stability of the system (1.1)
when more than one matrix from {J,R,Q} is perturbed is one of the main motivations of our work.

In this paper, we focus on perturbations of DH systems that affect both J and R simultaneously.
More precisely, we find (see Section 5) that the minimal-norm solution to the dissipative mapping
problem can be a necessary tool in computing the structured distance to asymptotic instability for
DH systems (1.1) when both J and R are simultaneously perturbed.

1.1 Contributions and outline of the paper

In Section 2, we present some preliminary results that will be needed to solve the dissipative mapping
problem. For the solutions to the dissipative mapping problem, we present two different characteri-
zations in terms of three matrix variables K,G,Z with symmetry and semidefinite structures. Both
characterizations have an advantage over each other. The first characterization (see Section 3) results
in a straightforward computation of the minimal-norm solutions to the dissipative mapping problem,
but the matrix variables K,G,Z are highly constrained. We also derive necessary and sufficient con-
ditions for solving the real dissipative mapping problem and compute solutions that are of minimal
Frobenius norm. The second characterization (see Section 4) has the advantage of having a simple
form in terms of matrix variables K,G, and Z. On the other hand, it is unclear how to find minimal-
norm solutions via this second characterization. The minimal-norm dissipative mapping is used in
Section 5 for studying the structured distance to instability for DH systems (1.1) for simultaneous
perturbations of J and R. In Section 6, we present numerical examples comparing these distances to
instability with those of [16] where perturbations affect only one of the matrices J , R, or Q.

Notation In the following, we denote the identity matrix of size n×n by In, the spectral norm of a
matrix or a vector by ‖ · ‖, and the Frobenius norm by ‖ · ‖F . The Moore-Penrose pseudoinverse of a
matrix or a vector X is denoted by X†, and PX = In −XX† denotes the orthogonal projection onto
the null space of n × n matrix X∗. For a square matrix A, its Hermitian and skew-Hermitian parts
are respectively denoted by AH = A+A∗

2 and AS = A−A∗

2 . For A = A∗ ∈ F
n,n, where F ∈ {R,C},

we denote A ≻ 0 (A ≺ 0) and A � 0 (A �) if A is Hermitian positive definite (negative definite)
and Hermitian positive semidefinite (negative semidefinite), respectively, and Λ(A) denotes the set of
all eigenvalues of the matrix A. For a given matrix A ∈ C

n,m, we use the term SVD to denote the
standard singular value decomposition of A, and reduced SVD for the decomposition A = U1Σ1V

∗
1 in

which Σ1 is a square diagonal matrix of size equal to rank of A, r, with the nonzero singular values of
A on its diagonal, and U1 ∈ C

n,r and V1 ∈ C
m,r have orthonormal columns.

2 Preliminaries

In this section, we discuss some basic results from the literature and derive some elementary lemmas
that will be necessary to solve the dissipative mapping problem.

Let us start with two well-known lemmas for positive semidefinite matrices.

Lemma 2.1 [11] Let P ∈ C
n,n and X ∈ C

n,m. If P � 0, then X∗PX � 0.

Lemma 2.2 [4] Let the integer s be such that 0 < s < n, and R = R∗ ∈ C
n,n be partitioned as

R =

[
B C∗

C D

]
with B ∈ C

s,s, C ∈ C
n−s,s and D ∈ C

n−s,n−s. Then R � 0 if and only if
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1) B � 0,

2) null(B) ⊆ null(C), and

3) D − CB†C∗ � 0, where B† denotes the Moore-Penrose pseudoinverse of B.

Next, we state a result [1, Theorem 2.2.3] for skew-Hermitian mappings in terms that allow a
direct use in deriving the second characterization for dissipative mappings.

Theorem 2.3 Let X,Y ∈ C
n,k and define S := {∆ ∈ C

n,n : ∆∗ = −∆, ∆X = Y }. Then S 6= ∅ if

and only if (X∗Y )∗ = −X∗Y . Further, if S 6= ∅, then

S =
{
Y X† − (Y X†)∗ + (X†)∗X∗Y X† + PXZPX : Z ∈ C

n,n, Z∗ = −Z
}
.

The next two lemmas will be used in deriving real dissipative matrices taking a complex X ∈ C
n,m

to a complex Y ∈ C
n,m.

Lemma 2.4 [3, Lemma 3.3] Let A,B ∈ C
n,p. Then [A A][B B]† is a real matrix.

Lemma 2.5 Let X,Y ∈ C
n,k be such that M = ([X X ]∗[Y Y ] + [Y Y ]∗[X X ])−1 exists. Then

[X X ]M [Y Y ]∗ is a real matrix.

Proof. Let Q =

[
O Ik
Ik O

]
, where O ∈ C

k,k is the zero matrix. Then

[X X ]M [Y Y ]∗ = [X X]Q2MQ2[Y Y ]∗ = ([X X]Q)(QMQ)(Q[Y Y ]∗) = [X X ]QMQ[Y Y ]∗,

because [X X ]Q = [X X] and Q[Y Y ]∗ = [Y Y ]∗. Thus we prove the assertion by showing that
QMQ = M . This follows from the following derivations:

QMQ = Q([X X ]∗[Y Y ] + [Y Y ]∗[X X ])−1Q

= Q([X X ]∗[Y Y ] + [Y Y ]∗[X X])−1Q

= Q([X X ]∗[Y Y ] + [Y Y ]∗[X X])
−1

Q

= Q([X X]∗[Y Y ] + [Y Y ]∗[X X])−1Q

=
(
Q[X X]∗[Y Y ]Q+Q[Y Y ]∗[X X]Q

)−1

=
(
[X X]∗[Y Y ] + [Y Y ]∗[XX ]

)−1

= M.

We close the section by discussing some simple mapping results that will be necessary to compute
the structured distances to instability in Section 5.

Lemma 2.6 Let x ∈ C
q and y ∈ C

r. Then

inf
{
‖∆1‖2F + ‖∆2‖2F : ∆1,∆2 ∈ C

r,q, (∆1 −∆2)x = y
}
= inf

{
‖∆‖2F
2

: ∆ ∈ C
r,q,∆x = y

}
. (2.1)
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Proof. First, let ∆ ∈ C
r,q such that ∆x = y, and set ∆1 = ∆/2 and ∆2 = −∆/2. Then (∆1−∆2)x =

∆x = y, and ‖∆1‖2F + ‖∆2‖2F =
‖∆‖2

F

4 +
‖∆‖2

F

4 =
‖∆‖2

F

2 . This implies “≤” in (2.1). Conversely, let
∆1,∆2 ∈ C

r,q be such that (∆1 −∆2)x = y, and set ∆ = ∆1 −∆2. Then ∆x = y and

‖∆‖2F = ‖∆1 −∆2‖2F ≤ (‖∆1‖F + ‖∆2‖F )2

= ‖∆1‖2F + ‖∆2‖2F + 2‖∆1‖F‖∆2‖F
≤ 2

(
‖∆1‖2F + ‖∆2‖2F

)
.

Thus
‖∆‖2

F

2 ≤ ‖∆1‖2F + ‖∆2‖2F . This implies “≥” in (2.1).

Lemma 2.7 Let x, y ∈ C
r. Then

inf
{
‖∆1‖2F + ‖∆2‖2F : ∆1,∆2 ∈ C

r,r,∆∗
1 = −∆1,∆2 � 0, (∆1 −∆2)x = y

}

= inf
{
‖∆‖2F : ∆ ∈ C

r,r,∆+∆∗ � 0,∆x = y
}
. (2.2)

Proof. The idea behind the proof is similar to Lemma 2.6. Let ∆ ∈ C
r,r be such that ∆ + ∆∗ � 0

and ∆x = y. Set ∆1 = ∆S and ∆2 = −∆H . Then clearly ∆∗
1 = −∆1, ∆2 � 0 since ∆ + ∆∗ � 0,

and (∆1 − ∆2)x = ∆x = y. Also ‖∆1‖2F + ‖∆2‖2F = ‖∆S‖2F + ‖∆H‖2F = ‖∆‖2F . This implies “≤”
in (2.2). Conversely, let ∆1,∆2 ∈ C

r,r be such that ∆∗
1 = −∆1, ∆2 � 0, and (∆1 −∆2)x = y. Now

set ∆ = ∆1−∆2. Then clearly ∆x = y and ∆+∆∗ = −2∆2 � 0, since ∆2 � 0. Further we have that
‖∆‖2F = ‖∆S‖2F + ‖∆H‖2F = ‖∆1‖2F + ‖∆2‖2F . This proves “≥” in (2.2).

Lemma 2.8 [16, Theorem 2.8] Let B ∈ C
n,r with rank(B) = r, x ∈ C

r \ {0}, y ∈ C
n \ {0}, and let

∆ ∈ C
r,r. Then B∆x = y if and only if ∆x = B†y and BB†y = y.

3 First characterization of dissipative mappings

In this section, we derive the first characterization of dissipative mappings. This characterization
allows us to find the minimal Frobenius norm solutions to the dissipative mapping problem which is
shown to be unique. This minimal-norm solution will turn out to be a necessary tool in computing
the structured stability radius in Section 5. For given X ∈ C

n,m and Y ∈ C
n,m, we define the set of

dissipative mappings from X to Y as follows

S(X,Y ) := {∆ ∈ C
n,n : ∆ +∆∗ � 0, ∆X = Y }.

We will need the following lemma in characterizing the set of all solutions to the dissipative mapping
problem.

Lemma 3.1 Let X,Y ∈ C
n,m. Suppose that rank(X) = p and consider the reduced singular value

decomposition X = U1Σ1V
∗
1 with U1 ∈ C

n,p, Σ1 ∈ C
p,p and V1 ∈ C

m,p. If X∗Y + Y ∗X � 0, then

U∗
1

(
Y X† + (Y X†)

∗)
U1 � 0.
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Proof. Since X = U1Σ1V
∗
1 , we have X† = V1Σ

−1
1 U∗

1 . Thus

X∗Y + Y ∗X � 0 ⇐⇒ V1Σ1U
∗
1Y + Y ∗U1Σ1V

∗
1 � 0

=⇒ V ∗
1 (V1Σ1U

∗
1Y + Y ∗U1Σ1V

∗
1 )V1 � 0 (∵ usingLemma 2.1)

⇐⇒ Σ1U
∗
1Y V1 + V ∗

1 Y
∗U1Σ1 � 0 (∵ V ∗

1 V1 = Ip)

⇐⇒ Σ−1
1 (Σ1U

∗
1Y V1 + V ∗

1 Y
∗U1Σ1) Σ

−1
1 � 0

⇐⇒ U∗
1Y V1Σ

−1
1 +Σ−1

1 V ∗
1 Y

∗U1 � 0

⇐⇒ U∗
1

(
Y V1Σ

−1
1 U∗

1 + U1Σ
−1
1 V ∗

1 Y
∗)U1 � 0

⇐⇒ U∗
1

(
Y X† + (Y X†)

∗)
U1 � 0,

which completes the proof.

Theorem 3.2 Let X,Y ∈ C
n,m, and suppose that rank(X) = p. Then S(X,Y ) 6= ∅ if and only if

Y X†X = Y and X∗Y + Y ∗X � 0. Moreover, if S(X,Y ) 6= ∅, then

1) Characterization: Let X = UΣV ∗ be the the singular value decomposition of X with U = [U1 U2],
where U1 ∈ C

n,p. Then

S(X,Y ) =
{
U

[
U∗
1Y X†U1 U∗

1 (Y X†)∗U2 + U∗
1ZU2

U∗
2Y X†U1 U∗

2 (K +G)U2

]
U∗ :

Z,K,G ∈ C
n,n satisfying (3.2)− (3.4)

}
, (3.1)

where

G∗ = −G, K � 0, (3.2)

null
(
U∗
1 (Y X† + (Y X†)∗)U1

)
⊆ null

(
U∗
2 (2Y X† + Z∗)U1

)
, (3.3)

K − 1

8
(2Y X† + Z∗)

(
XX†Y X† + (Y X†)∗XX†

)†
(2Y X† + Z∗)∗ � 0. (3.4)

2) Minimal norm mapping:

inf
∆∈S(X,Y )

‖∆‖2F = 2‖Y X†‖2F − trace
(
(Y X†)∗XX†(Y X†)

)
, (3.5)

where the infimum is uniquely attained by the matrix H := Y X†− (Y X†)
∗PX , which is obtained

by setting K = 0, G = 0, and Z = −2U∗
1 (Y X†)∗U2 in (3.1).

Proof. First suppose that ∆ ∈ S(X,Y ), i.e., ∆ +∆∗ � 0 and ∆X = Y . Then Y X†X = ∆XX†X =
∆X = Y . By Lemma 2.1

X∗Y + Y ∗X = X∗∆X +X∗∆∗X = X∗(∆ +∆∗)X � 0,
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since ∆+∆∗ � 0. Conversely, suppose that X and Y satisfy Y X†X = Y and X∗Y +Y ∗X � 0. Then
the matrix H satisfies HX = Y X†X = Y and

H+H∗ = Y X† − (Y X†)
∗PX + (Y X†)

∗ − PXY X†

= (Y X†)
∗
XX† +XX†(Y X†) (∵ PX = In −XX†)

= XX†
(
(Y X†)

∗
+ Y X†

)
XX† (∵ X†XX† = X†, (XX†)∗ = XX†)

= U1U
∗
1

(
(Y X†)

∗
+ Y X†)U1U

∗
1 (∵ XX† = U1U

∗
1 )

=
[
U1 U2

] [ U∗
1

(
(Y X†)

∗
+ Y X†)U1 0

0 0

] [
U1 U2

]∗

� 0,

where the last identity follows by using Lemma 3.1, since X∗Y + Y ∗X � 0, and by Lemma 2.1.
Next, we prove (3.1). First suppose that ∆ ∈ S(X,Y ), i.e., ∆ + ∆∗ � 0 and ∆X = Y . Let Σ =[

Σ1 0
0 0

]
and V =

[
V1 V2

]
, where V1 ∈ C

m,p, V2 ∈ C
m,m−p, and Σ1 ∈ C

p,p such that X = U1Σ1V
∗
1

is the reduced SVD of X. Then X∗ = V1Σ1U
∗
1 and X† = V1Σ

−1
1 U∗

1 . Consider ∆ = UU∗∆UU∗ and

∆̃ = U∗∆U = ∆̃H + ∆̃S , where

∆̃H = U∗∆HU =

[
H11 H12

H∗
12 H22

]
and ∆̃S = U∗∆SU =

[
S11 S12

−S∗
12 S22

]
.

Clearly, ‖∆‖F = ‖∆̃‖F and also ∆H � 0 ⇐⇒ ∆̃H � 0. As ∆X = Y , we have

U∗∆UU∗X = U∗Y =⇒ ∆̃

[
U∗
1

U∗
2

]
X =

[
U∗
1Y

U∗
2Y

]

=⇒
[
H11 + S11 H12 + S12

H∗
12 − S∗

12 H22 + S22

] [
Σ1V

∗
1

0

]
=

[
U∗
1Y

U∗
2Y

]
.

This implies that
(H11 + S11)Σ1V

∗
1 = U∗

1Y, (3.6)

and
(H∗

12 − S∗
12)Σ1V

∗
1 = U∗

2Y. (3.7)

Thus from (3.6), we have H11 + S11 = U∗
1Y V1Σ

−1
1 = U∗

1Y X†U1, since X† = V1Σ
−1
1 U∗

1 and X†U1 =
V1Σ

−1
1 . This implies that

H11 = U∗
1

(
(Y X†) + (Y X†)∗

2

)
U1 and S11 = U∗

1

(
(Y X†)− (Y X†)∗

2

)
U1. (3.8)

Note that since X∗Y + Y ∗X � 0, in view of Lemma 3.1, we have that H11 � 0. Similarly, from (3.7)
we have H∗

12 − S∗
12 = U∗

2Y V1Σ
−1
1 = U∗

2Y X†U1. This implies that

H12 = U∗
1 (Y X†)∗U2 + S12, (3.9)

where S12 ∈ C
p,n−p is a matrix variable. Thus from (3.8) and (3.9), ∆̃ has the form

∆̃ =

[
H11 + S11 H12 + S12

H∗
12 − S∗

12 H22 + S22

]
=

[
U∗
1Y X†U1 U∗

1 (Y X†)∗U2 + 2S12

U∗
2Y X†U1 H22 + S22

]
, (3.10)
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where H22, S22 ∈ C
n−p,n−p and S12 ∈ C

p,n−p are such that ∆̃H � 0 and ∆̃S = −∆̃∗
S. That means, in

view of Lemma 2.2, S22 satisfies that S∗
22 = −S22, and H22 and S12 satisfy the following constraints:

H22 � 0,

H22 − (U∗
2Y X†U1 + S∗

12)

(
U∗
1 (Y X† + (Y X†)∗)U1

2

)†
(U∗

2Y X†U1 + S∗
12)

∗ � 0, (3.11)

and

null

(
U∗
1 (Y X† + (Y X†)∗)U1

2

)
⊆ null

(
U∗
2Y X†U1 + S∗

12

)
. (3.12)

Thus from (3.10), we have

∆ = U∆̃U∗ =
[
U1 U2

] [ U∗
1Y X†U1 U∗

1 (Y X†)∗U2 + 2S12

U∗
2Y X†U1 H22 + S22

] [
U∗
1

U∗
2

]
. (3.13)

By setting Z = 2U1S12U
∗
2 , K = U2H22U

∗
2 , G = U2S22U

∗
2 , and by using the fact that U1U

∗
1 + U2U

∗
2 =

UU∗ = In, U1U
∗
1 = XX†, U∗

1U1 = Ip, and U∗
2U2 = In−p, we obtain that

∆ = U

[
U∗
1Y X†U1 U∗

1 (Y X†)∗U2 + U∗
1ZU2

U∗
2Y X†U1 U∗

2 (K +G)U2

]
U∗,

where G, Z, and K satisfy the conditions (3.2)–(3.4). This proves “ ⊆ ” in (3.1).
For the other inclusion in (3.1), let

A = U

[
U∗
1Y X†U1 U∗

1 (Y X†)∗U2 + U∗
1ZU2

U∗
2Y X†U1 U∗

2 (K +G)U2

]
U∗,

where G, Z, and K satisfy the conditions (3.2)–(3.4), which can be written as

A = Y X† + (Y X†)∗PX +XX†ZPX + PXKPX + PXGPX . (3.14)

Clearly AX = Y since Y X†X = Y and PXX = 0. Also A+A∗ � 0. Indeed,

U∗AU =

[
U∗
1Y X†U1 U∗

1 (Y X†)∗U2 + U∗
1ZU2

U∗
2Y X†U1 U∗

2 (K +G)U2

]
,

and thus

U∗(A+A∗)U =

[
U∗
1

(
Y X† + (Y X†)∗

)
U1 2U∗

1 (Y X†)∗U2 + U∗
1ZU2

2U∗
2Y X†U1 + U∗

2Z
∗U1 2U∗

2KU2

]
� 0,

because of Lemma 2.2, since K, Z, G satisfy (3.2)–(3.4). This completes the proof of (3.1).
Suppose that S(X,Y ) 6= ∅ and let ∆ ∈ S(X,Y ), then from (3.10) ∆ satisfies

‖∆‖2F = ‖∆̃‖2F =

∥∥∥∥
[
U∗
1Y X†U1 U∗

1 (Y X†)∗U2 + 2S12

U∗
2Y X†U1 H22 + S22

]∥∥∥∥
2

F

,

where S22 ∈ C
n−p,n−p satisfies that S∗

22 = −S22, and H22 ∈ C
n−p,n−p and S12 ∈ C

p,n−p satisfy (3.11)
and (3.12). This implies that

‖∆‖2F = ‖U∗
1Y X†U1‖

2

F + ‖U∗
2Y X†U1‖

2

F + ‖U∗
1 (Y X†)∗U2 + 2S12‖

2

F + ‖H22 + S22‖2F
= ‖Y X†U1‖

2

F + ‖U∗
1 (Y X†)∗U2 + 2S12‖

2

F + ‖H22‖2F + ‖S22‖2F , (3.15)
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where the last equality follows as ‖U∗
1Y X†U1‖2F+‖U∗

2Y X†U1‖2F = ‖UY X†U1‖2F = ‖Y X†U1‖2F because

‖ · ‖F is unitary invariant, and by the fact that for any square matrix A = AH +AS we have ‖A‖2F =
‖AH‖2F + ‖AS‖2F . Further, from (3.15) we have that

‖∆‖2F ≥ ‖Y X†U1‖
2

F + ‖U∗
1 (Y X†)∗U2 + 2S12‖

2

F ,

where the lower bound is attained by setting H22 = 0 and S22 = 0. Thus any ∆ ∈ S(X,Y ) satisfies

‖∆‖2F ≥ ‖Y X†U1‖
2

F + ‖U∗
1 (Y X†)∗U2 + 2S12‖

2

F ,

where S12 satisfies (3.11) and (3.12) with H22 = 0, but the only S12 that satisfies (3.11) with H22 = 0
is S12 = −U∗

1 (Y X†)∗U2 because U∗
1

(
(Y X†) + (Y X†)∗

)
U1 � 0. Hence by setting H22 = 0, S22 = 0,

and S12 = −U∗
1 (Y X†)∗U2 in (3.10), we obtain the unique matrix

∆ =
[
U1 U2

] [ U∗
1Y X†U1 −U∗

1 (Y X†)∗U2

U∗
2Y X†U1 0

] [
U∗
1

U∗
2

]

= (U1U
∗
1 + U2U

∗
2 )Y X†U1U

∗
1 − U1U

∗
1 (Y X†)∗U2U

∗
2

= Y X†XX† −XX†(Y X†)∗PX

= Y X† − (Y X†)∗PX

= H

which implies that (3.5) holds.
The following corollary of Theorem 3.2 for the vector case (m = 1) of the minimal norm dissipative

mapping is of particular interest for us as it will be used in Section 5 in finding the structured stability
radius for DH systems when both J and R are perturbed.

Corollary 3.3 Let x, y ∈ C
n \ {0}. Then S(x, y) 6= ∅ if and only if Re (x∗y) ≥ 0. Moreover, if

S(x, y) 6= ∅, then
inf

∆∈S(x,y)
‖∆‖2F = 2

‖y‖2
‖x‖2 − |x∗y|2

‖x‖4 , (3.16)

where the infimum is attained by the unique matrix H := yx∗

‖x‖2 − xy∗

‖x‖2 + (y∗x) xx∗

‖x‖4 .

3.1 Real dissipative mappings

For X, Y ∈ C
n,m, if we consider the real dissipative mapping problem, i.e., finding ∆ ∈ R

n,n such
that ∆ + ∆T � 0 and ∆X = Y , then the minimal Frobenius norm solution can be easily obtained
from Theorem 3.2. To see this, observe that for a real ∆, ∆X = Y if and only if ∆[X X ] = [Y Y ].
In the following, we show that if there exists a complex dissipative mapping ∆ satisfying ∆X = Y
where X = [X X] and Y = [Y Y ], then there also exists a real dissipative mapping. Moreover, from
Theorem 3.2, we can easily find a minimal norm real dissipative mapping taking X to Y .

Theorem 3.4 Let X,Y ∈ C
n,m, and define SR(X,Y ) := {∆ ∈ R

n,n : ∆ +∆T � 0, ∆X = Y }. Let

X = [X X ] and Y = [Y Y ]. Suppose that rank(X ) = p. Then SR(X,Y ) 6= ∅ if and only if YX †X = Y
and X ∗Y + Y∗X � 0. Moreover, if SR(X,Y ) 6= ∅ and if we consider the singular value decomposition

X = UΣV T with U = [U1 U2], where U1 ∈ C
n,p, then the set
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{
U

[
U∗
1YX †U1 U∗

1 (YX †)∗U2 + U∗
1ZU2

U∗
2YX †U1 U∗

2 (K +G)U2

]
U∗ : Z,K,G ∈ R

n,n satisfying (3.17)− (3.19)

}
,

where

GT = −G, K � 0, (3.17)

null
(
U∗
1 (YX † + (YX †)T )U1

)
⊆ null

(
U∗
2 (2YX † + ZT )U1

)
, (3.18)

K − 1

8
(2YX † + ZT )

(
XX †YX † + (YX †)TXX †

)†
(2YX † + ZT )T � 0, (3.19)

is contained in SR(X,Y ). Further,

inf
∆∈SR(X,Y )

‖∆‖2F = 2‖YX †‖2F − trace
(
(YX †)∗XX †(YX †)

)
,

where the infimum is attained by the matrix H := YX † − (YX †)
∗PX .

Proof. In view of Lemma 2.4, the proof follows from Theorem 3.2. Indeed, from Theorem 3.2 there
exists ∆ ∈ S(X ,Y) if and only if YX †X = Y and X ∗Y+Y∗X � 0. Assuming the latter two conditions
hold true, and consider a family of mappings defined by

∆(Z,K,G) := U

[
U∗
1YX †U1 U∗

1 (YX †)∗U2 + U∗
1ZU2

U∗
2YX †U1 U∗

2 (K +G)U2

]
U∗,

where Z,K,G ∈ R
n,n satisfy (3.17)-(3.19). Using Lemma 2.4, it is easy to check that ∆(Z,K,G) is

real, which implies that ∆(Z,K,G) ∈ SR(X,Y ) since SR(X ,Y) = SR(X,Y ). Further, we have that

inf
∆∈S(X ,Y)

‖∆‖F ≤ inf
∆∈SR(X,Y )

‖∆‖F , (3.20)

and the left hand side infimum in (3.20) is attained by the unique mapH = YX †−(YX †)
∗PX . Observe

from Lemma 2.4 that the matrix H is real, that is, H ∈ SR(X,Y ). This implies that

inf
∆∈SR(X,Y )

‖∆‖2F = ‖H‖2F = 2‖YX †‖2F − trace
(
(YX †)∗XX †(YX †)

)
, (3.21)

which completes the proof.

4 Second characterization of dissipative mappings

In this section, for given X,Y ∈ C
n,m\{0} such that X∗Y +Y ∗X is of full rank, we provide a different

characterization of dissipative mappings from X to Y . The main advantage of this characterization
over Theorem 3.2 is that it is explicitly in terms of the matrix variables K,Z,G ∈ C

n,n such that
K � 0 and G∗ = −G, and the matrices K,Z,G do not have to satisfy other constraints like (3.2)-
(3.4). However, extracting the minimal Frobenius norm solutions from this characterization cannot
be obtained easily.
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Theorem 4.1 Let X,Y ∈ C
n,m\{0} and suppose that M := (X∗Y +Y ∗X)−1 exists. Then S(X,Y ) 6=

∅ if and only if X∗Y + Y ∗X ≻ 0 and Y X†X = Y . Moreover,

S(X,Y ) = {H + H̃(K,G,Z) | K,G,Z ∈ C
n,n,K � 0, G∗ = −G}, (4.1)

where H and H̃ are respectively defined by

H :=
1

2

(
Y X† −X†∗Y ∗

)
+

1

2

{
YMY ∗ + YMX∗Y X† + (Y X†)∗XMY ∗

+(Y X†)∗XMX∗Y X†
}

(4.2)

and

H̃(K,G,Z) :=
1

2

(
PXKPX + PXGPX − PXZ∗XX† +X†∗X†ZPX + YMX∗ZPX

+(Y X†)∗XMX∗ZPX + PXZ∗XMY ∗ + PXZ∗XMX∗Y X† + PXZ∗XMX∗ZPX

)
. (4.3)

Proof. If there exists ∆ such that ∆X = Y and ∆+∆∗ � 0, then

X∗Y + Y ∗X = X∗(Y +∆∗X) = X∗(∆ +∆∗)X.

This implies that X∗Y + Y ∗X is positive definite as ∆ + ∆∗ � 0 and X∗Y + Y ∗X is invertible. For
the converse, let X,Y be such that X∗Y + Y ∗X ≻ 0. Then the matrix H in (4.2) is well defined and
satisfies HX = Y . Also H +H∗ is a positive semidefinite matrix of the form BB∗ for some B ∈ C

n,n.
Indeed, if we let M = M1M

∗
1 , where M1 is the Cholesky factor of M , then we have

H +H∗ = YMY ∗ + YMX∗Y X† + (Y X†)∗XMY ∗ + (Y X†)∗XMX∗Y X†

=
(
YM1 + (Y X†)∗XM1

)(
YM1 + (Y X†)∗XM1

)∗

= BB∗,

where B = YM1 + (Y X†)∗XM1.
Next we prove “ ⊆ ” in (4.1). For this, let ∆ ∈ S, that is, ∆X = Y and ∆ + ∆∗ � 0. By [23,

Lemma 1.3], there exists Z ∈ C
n,n such that

∆ = Y X† + ZPX . (4.4)

Also, we can write ∆ as

∆ =
∆+∆∗

2
+

∆−∆∗

2
. (4.5)

Now since ∆+∆∗ � 0 we have ∆+∆∗ = A∗A for some A ∈ C
n,n. This implies that (∆+∆∗)X = A∗AX

and thus ∆X +∆∗X = A∗AX. By setting W := AX, we obtain Y +∆∗X = A∗W because ∆X = Y.
This yields the mappings AX = W and A∗W = Y +∆∗X. The matrices X, Y and W satisfy

X∗(Y +∆∗X) = X∗Y +X∗∆∗X = X∗(∆ +∆∗)X,= X∗A∗AX = W ∗W, (4.6)

Y X†X = Y and WX†X = W . Therefore, from [17, Theorem 2.1], A can be written as

A = WX† +
(
(Y +∆∗X)W †

)∗
−

(
(Y +∆∗X)W †

)∗
XX† +

(
In −WW †)R1PX , (4.7)
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for some R1 ∈ C
n,n. This can be further simplified as

A = ((Y +∆∗X)W †)∗ + (In −WW †)R1PX , (4.8)

using the fact that ((Y +∆∗X)W †))∗XX† = WX†, since (Y +∆∗X)∗X = W ∗W . Thus from (4.8),
we have

A∗A =
((

(Y +∆∗X)W †)∗ +
(
In −WW †)R1PX

)∗((
(Y +∆∗X)W †)∗ +

(
In −WW †)R1PX

)

= (Y +∆∗X)M(Y +∆∗X)∗ + PXR∗
1

(
In −WW †)(In −WW †)R1PX . (4.9)

Define K := R∗
1

(
In −WW †)(In −WW †)R1, then K � 0, and from (4.9) we have

A∗A = (Y +∆∗X)M(Y +∆∗X)∗ + PXKPX . (4.10)

Now we consider the skew-Hermitian part ∆−∆∗ of ∆. Let S = ∆−∆∗. Then SX = ∆X −∆∗X =
Y −∆∗X. Again since

X∗(Y −∆∗X) = X∗∆X −X∗∆∗X = X∗(∆ −∆∗)X = −(Y ∗ −X∗∆)X = −(Y −∆∗X)∗X,

by Theorem 2.3, we have

S = (Y −∆∗X)X† − ((Y −∆∗X)X†)∗PX + PXGPX , (4.11)

for some skew-Hermitian matrix G ∈ C
n,n. By inserting ∆ = Y X†+ZPX from (4.4) and W †(W †)∗ =

((Y +∆∗X)∗X)−1 = (X∗Y + Y ∗X)−1 in (4.10) and (4.11), we respectively obtain

A∗A = YMY ∗ + YMX∗Y X† + YMX∗ZPX + (Y X†)∗XMY ∗ + (Y X†)∗XMX∗Y X†

+(Y X†)∗XMX∗ZPX + PXZ∗XMY ∗ + PXZ∗XMX∗Y X† + PXZ∗XMX∗ZPX + PXKPX ,

(4.12)

and

S = Y X† −X†∗Y ∗XX† − PXZ∗XX† −X†∗Y ∗PX +X†∗X†ZPX + PXGPX . (4.13)

By inserting ∆ +∆∗ = A∗A from (4.12) and ∆−∆∗ = S from (4.13) in (4.5), and by separating the
terms with and without matrices G, K, Z, the matrix ∆ can be written as

∆ = H + H̃(K,G,Z).

This proves “ ⊆ ” in (4.1).
Now, let us prove “ ⊇ ” in (4.1). Suppose, ∆ = H + H̃(K,G,Z), where H is defined in (4.2) and

H̃(K,G,Z) is defined in (4.3) for some matrices G,K,Z ∈ C
n,n such that K � 0 and G∗ = −G. Then

it is easy to check that ∆X = Y since H and H̃ satisfy HX = Y and H̃(K,G,Z)X = 0. Also

∆ +∆∗ =
(
H + H̃(K,G,Z)

)
+

(
H + H̃(K,G,Z)

)∗ � 0. (4.14)

Indeed,
(
H + H̃(K,G,Z)

)
+

(
H + H̃(K,G,Z)

)∗

= (H +H∗) + (H̃(K,G,Z) + H̃(K,G,Z)∗)

= YMY ∗ + YMX∗Y X† + (Y X†)∗XMY ∗ + (Y X†)∗XMX∗Y X† + YMX∗ZPX +

(Y X†)∗XMX∗ZPX + PXZ∗XMY ∗ + PXZ∗XMX∗Y X† + PXZ∗XMX∗ZPX + PXKPX

= BB∗ + PXKPX , (4.15)
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where B = YM1 + (Y X†)∗(XM1) + PXZ∗XM1, and M = M1M
∗
1 where M1 is the Cholesky factor

of M . The first term in (4.15) is PSD being a matrix of the form BB∗ and the second term is PSD
because K � 0. Thus (4.15) is PSD being the sum of two PSD matrices. Hence ∆ ∈ S(X,Y ). This
shows “ ⊇ ” in (4.1) and hence completes the proof.

Remark 4.2 The assumption that X∗Y + Y ∗X is invertible is not necessary for the existence of a
dissipative mapping which only requires X∗Y + Y ∗X to be positive semidefinite; see Theorem 3.2.
This assumption is more of a technical need for the second characterization of dissipative mappings in
Theorem 4.1. However, there are situations, such as computing the eigenpair backward error for DH
matrices, where one has to find dissipative mappings takingX ∈ C

n,r to Y ∈ C
n,r such thatX∗Y+Y ∗X

is invertible. For example, consider a DH matrix J −R with Q = In, λ ∈ C which is not an eigenvalue
of J −R, and X̂ ∈ C

n,r with rank(X̂) = r. Then the structured eigenpair backward error for the DH
matrix J −R, for making λ an eigenvalue of multiplicity r and the columns of X̂ as the corresponding
eigenvectors, is the smallest norm of the perturbations ∆J −∆R such that (J −∆J) + (R−∆R) is a
DH matrix and ((J −∆J) + (R−∆R))X̂ = λX̂ . By Lemma 2.7, the latter condition is equivalent to
finding a dissipative mapping ∆ such that ∆X̂ = Ŷ , where Ŷ = (λIn− (J −R))X̂ . Such a dissipative
mapping exists if and only if X̂∗Ŷ + Ŷ ∗X̂ = X̂∗(Re (λ)In + R)X̂ � 0. Hence if Re (λ) > 0, then
X̂∗Ŷ + Ŷ ∗X̂ ≻ 0 since R � 0.

A result analogous to Corollary 3.3 for the vector case (when m = 1), where the conditions on the
vectors x and y are simpler than for Theorem 4.1, is stated below.

Corollary 4.3 Let x, y ∈ C
n \ {0}. Then S(x, y) 6= ∅ if and only if Re (x∗y) ≥ 0. Moreover, if

Re (x∗y) > 0, then

S(x, y) = {H + H̃(K,G,Z) | K,G,Z ∈ C
n,n,K � 0, G∗ = −G},

where H and H̃ are respectively defined as

H :=
1

2

(
yx∗

‖x‖2 − xy∗

‖x‖2
)
+

α

2

{
yy∗ + (x∗y)

yx∗

‖x‖2 + (y∗x)
xy∗

‖x‖2 + (|x∗y|2) xx
∗

‖x‖4
}

and

H̃(K,G,Z) :=
1

2

(
PxKPx + PxGPx + (α(y∗x) + 1)xx†ZPx + (α(x∗y)− 1)PxZ

∗xx†

+αPxZ
∗xy∗ + αyx∗ZPx + αPxZ

∗xx∗ZPx

)
,

where α = 1
2Re (x∗y) .

Remark 4.4 Along the lines of Section 3.1, we can also obtain a second family of real dissipative
mappings from Theorem 4.1, where the restrictions on matrix variables K,G,Z are more simplified
than Theorem 3.4. Indeed, let X, Y ∈ C

n,m. Then for X = [X, X] and Y = [Y, Y ], from Theorem 4.1
whenever there exists a complex dissipative mapping ∆ satisfying ∆X = Y, then there also exists a
real dissipative mapping. In fact, in view of Lemmas 2.4 and 2.5, the matrix H in Theorem 4.1 is real.
Moreover, H + H̃(K,G,Z) with real K,G,Z ∈ R

n,n such that K � 0 and GT = −G, gives a family of
real dissipative mappings from X to Y .
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5 Structured distance to asymptotic instability for DH systems

In this section, we study the distance to asymptotic instability for DH systems ẋ = (J −R)Qx defined
in (1.1). DH systems are always stable, but they are not necessarily asymptotically stable. In [16], the
authors have obtained various structured distances to asymptotic instability for complex DH systems
while perturbing J , R, or Q (only one matrix at a time). Similarly in [17], authors derived the real
distances to asymptotic instability for real DH systems while perturbing only R. The main tool in
the computation of stability radii in [16, 17] is minimal norm solutions to Hermitian, skew-Hermitian
and semidefinite mapping problems. To compute such radii in the case of perturbing both J and R
simultaneously, we will need minimal norm solutions to complex and real dissipative mappings that
map one vector to another vector.

Therefore, in this section, we exploit the minimal norm solutions to the dissipative mapping prob-
lem from previous sections and derive the structured distance to asymptotic instability for DH systems
while perturbing both J and R at a time. By following the terminology in [16], we define the unstruc-
tured and the structured distances to asymptotic instability for DH systems as follows:

Definition 5.1 Let F ∈ {R,C}. Consider a DH system of the form (1.1) and let B ∈ F
n,r and

C ∈ F
q,n be given matrices. Then we define

1) the unstructured stability radius rF(J,R;B,C) of system (1.1) with respect to general perturba-

tions to J and R under the restrictions (B,C) by

rF(J,R;B,C) = inf
{ √

‖∆J‖2F + ‖∆R‖2F : ∆J ,∆R ∈ F
r,q,

Λ
(
(J −R)Q+B(∆J −∆R)CQ

)
∩ iR 6= ∅

}
; (5.1)

2) the structured stability radius rSd

F
(J,R;B) of system (1.1) with respect to structure preserving

skew-Hermitian perturbations to J and negative semidefinite perturbations to R from the set

SF

d (J,R;B) =
{
(∆J ,∆R) ∈ (Fr,r)2 : ∆∗

J = ∆J ,∆R � 0, R+B∆RB
∗ � 0

}
; (5.2)

by

rSd

F
(J,R;B) = inf

{ √
‖∆J‖2F + ‖∆R‖2F : (∆J ,∆R) ∈ SF

d (J,R;B),

Λ
(
(J −R)Q+B(∆J −∆R)B

∗Q
)
∩ iR 6= ∅

}
. (5.3)

In the complex case (F = C), rC(J,R;B,C) and rSd

C
(J,R;B) are respectively called the complex

unstructured and complex structured stability radii. Similarly, in the real case (F = R), rR(J,R;B,C)
and rSd

R
(J,R;B) are respectively called the real unstructured and real structured stability radii.

In order to obtain bounds for the structured stability radius rSd

F
(J,R;B), we also define the struc-

tured eigenvalue backward error as follows

ηSd

F
(J,R;B,λ) = inf

{√
‖∆J‖2F + ‖∆R‖2F : (∆J ,∆R) ∈ SF

d (J,R;B),

det ((J −R)Q+B(∆J −∆R)B
∗Q− λIn) = 0

}
, (5.4)

where λ ∈ C, (J − R)Q is a DH matrix, and the perturbation set SF

d (J,R;B) is as defined in (5.2).
Consequently, we have the following result.
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Theorem 5.2 Consider an asymptotically stable DH system of the form (1.1). Then

rSd

F
(J,R;B) = inf

w∈R
ηSd

F
(J,R;B, iw). (5.5)

5.1 Complex stability radius

Consider a complex LTI DH system of the form

ẋ(t) = (J −R)Qx(t), (5.6)

where J,R,Q ∈ C
n,n such that J∗ = −J , R∗ = R � 0, and Q∗ = Q ≻ 0. Here, we study the complex

stability radii rC(J,R;B,C) and rSd

C
(J,R;B).

Inspired by the proof of [10, Proposition 2.1], we obtain the following formula for the unstructured
stability radius rC(J,R;B,C).

Theorem 5.3 Consider an asymptotically stable DH system of the form (5.6). Let B ∈ C
n,r and C ∈

C
q,n be given restriction matrices. Then rC(J,R;B,C) is finite if and only if G(w) = CQ (iwIn − (J −R)Q)−1 B

is not zero for some w ∈ R. In the latter case, we have

rC(J,R;B,C) =
1√
2
inf
w∈R

1

‖G(w)‖ .

Proof. In view of (5.1), note that for any ∆J ,∆R ∈ C
r,q Λ

(
(J − R)Q + B(∆J − ∆R)CQ

)
∩

iR 6= ∅ if and only if det ((J −R)Q+B(∆J −∆R)CQ− iwIn) = 0 for some w ∈ R if and only if
det

(
In − (∆J −∆R)CQ(iwIn − (J −R)Q)−1B

)
= 0 for some w ∈ R. Using this in (5.1), we have

rC(J,R;B,C) = inf
{√

‖∆J‖2F + ‖∆R‖2F : ∆J ,∆R ∈ C
r,q, w ∈ R

det
(
In − (∆J −∆R)CQ(iwIn − (J −R)Q)−1B

)
= 0

}

= infw∈R inf
{√

‖∆J‖2F + ‖∆R‖2F : ∆J ,∆R ∈ C
r,q, x ∈ C

r \ {0}

(∆J −∆R)CQ(iwIn − (J −R)Q)−1Bx = x
}
. (5.7)

In view of Lemma 2.6, (5.7) becomes

rC(J,R;B,C)2 = inf
w∈R

inf
{‖∆‖2F

2
: ∆ ∈ C

r,q, x ∈ C
r \ {0},∆CQ(iwIn−(J−R)Q)−1Bx=x

}
. (5.8)

Note that rC(J,R;B,C) ≥ 0. Therefore rC(J,R;B,C) is finite if and only if the inner infimum in (5.8)
is finite for some w ∈ R, which is true if and only if G(w) := CQ ((J −R)Q− iwIn)

−1 B 6= 0 for some
w ∈ R. Indeed, if G(w) 6= 0 for some w ∈ R then for any x ∈ C

r \ {0}, there exists ∆̃ ∈ C
r,q such that

∆̃G(w)x = x. This implies, using (5.8), that rC(J,R;B,C) ≤ ‖∆̃‖2
F

2 . Using the fact that ‖∆‖F ≥ ‖∆‖
for any ∆ in (5.8) , we have

rC(J,R;B,C) ≥ inf
w∈R

inf
{‖∆‖2

2
: ∆ ∈ C

r,q, x ∈ C
r \ {0},∆CQ((J −R)Q− iwIn)

−1Bx = x
}

(5.9)

=
1

2
inf
w∈R

1

‖G(w)‖2
,
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where the last equality follows by slightly modifying the proof of [10, Proposition 2.1]. In fact, we
have the equality in (5.9) because for any w ∈ R the infimum in the right hand side of (5.9) is attained
for a rank one matrix ∆ for which we have ‖∆‖ = 1

‖G(w)‖ = ‖∆‖F [10].

Next, using Theorem 5.2, we derive bounds for rSd

C
(J,R;B) via bounds for the backward error

ηSd

C
(J,R;B,λ).

Theorem 5.4 Consider a DH matrix (J − R)Q and let w ∈ R be such that (J − R)Q − iwIn is

invertible. Let B ∈ C
n,r be of full column rank and define Ω = null

(
(In −BB†)(iwIn − (J −R)Q)

)
.

Suppose that Ω 6= ∅. Then

ηSd

C
(J,R;B, iw)2 ≥ inf

x∈Ω

{
2‖B†(iwIn − (J −R)Q)x‖2

‖B∗Qx‖2
− |x∗Q(iwIn − (J −R)Q)x|2

‖B∗Qx‖4

}
. (5.10)

Moreover, let the infimum in the right hand side of (5.10) be attained at x̂ ∈ Ω and define ∆̂R =

−x̂∗QRQx̂ (B∗Qx̂)(B∗Qx̂)∗

‖B∗Qx̂‖4 . If R+B∆̂RB
∗ � 0, then equality holds in (5.10). In this case, we have

√
2σmin

(
B†(iwIn − (J −R)Q)UW−∗

)
≥ ηSd

C
(J,R;B, iw) ≥ σmin

(
B†(iwIn − (J −R)Q)UW−∗

)
,

(5.11)
where the columns of U form an orthonormal basis for Ω and W is the Cholesky factor of U∗QBB∗QU .

Proof. By definition (5.4),

ηSd

C
(J,R;B, iw) = inf

{√
‖∆J‖2F + ‖∆R‖2F : (∆J ,∆R) ∈ SC

d (J,R;B), x ∈ C
n \ {0},

((J −R)Q+B(∆J −∆R)B
∗Q− iwIn) x = 0

}
,

= inf
{√

‖∆J‖2F + ‖∆R‖2F : (∆J ,∆R) ∈ SC

d (J,R;B), x ∈ C
n \ {0},

B(∆J −∆R)B
∗Qx = (iwIn − (J −R)Q)x

}
,

= inf
{√

‖∆J‖2F + ‖∆R‖2F : (∆J ,∆R) ∈ SC

d (J,R;B), x ∈ Ω \ {0},

(∆J −∆R)B
∗Qx = B†(iwIn − (J −R)Q)x

}
, (5.12)

= inf
{
‖∆‖F : ∆ ∈ C

r,r,∆R = −(∆ +∆∗) � 0, R +B∆RB
∗ � 0,

x ∈ Ω \ {0},∆B∗Qx = B†(iwIn − (J −R)Q)x
}
, (5.13)

≥ inf
{
‖∆‖F : ∆ ∈ C

r,r,∆R = −(∆ +∆∗) � 0, x ∈ Ω \ {0},

∆B∗Qx = B†(iwIn − (J −R)Q)x
}
, (5.14)

where we have used Lemma 2.8 in (5.12) and Lemma 2.7 in (5.13). If Ω 6= ∅, then infimum on the right
hand side of (5.14) is finite. In fact, from Corollary 3.3 for any x ∈ Ω there exists ∆ ∈ C

r,r such that
∆+∆∗ � 0 and ∆B∗Qx = B†(iwIn−(J−R)Q)x if and only if Re

(
(B∗Qx)∗B†(iwIn − (J −R)Q)x

)
≥
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0. Clearly for any x ∈ Ω, we have

Re
(
(B∗Qx)∗B†(iwIn − (J −R)Q)x

)
= Re

(
x∗QBB†(iwIn − (J −R)Q)x

)

= Re (x∗Q(iwIn − (J −R)Q)x) (∵ x ∈ Ω)

= Re (x∗((iwQ −QJQ) +QRQ)x)

= Re (x∗QRQx) (∵ iwQ−QJQ is skew-Hermitian)

= x∗QRQx ≥ 0 (∵ R � 0, Q ≻ 0).

Thus using the minimal norm mapping from Corollary 3.3 in (5.14), we obtain

ηSd

C
(J,R;B, iw)2 ≥ inf

x∈Ω

{
2‖B†(iwIn − (J −R)Q)x‖2

‖B∗Qx‖2
− |x∗Q(iwIn − (J −R)Q)x|2

‖B∗Qx‖4

}
. (5.15)

This proves (5.10). Now suppose infimum in the right hand side of (5.15) is attained at x̂ ∈ Ω, then
in view of Corollary 3.3 consider

∆̂ = B†(iwIn−(J−R)Q)x̂x̂∗QB

‖B∗Qx̂‖2 + (B†(iwIn−(J−R)Q)x̂)∗B∗Qx̂

‖B∗Qx̂‖4 (B∗Qx̂)(B∗Qx̂)∗

−B∗Qx̂(B†(iwIn−(J−R)Q)x̂)∗

‖B∗Qx̂‖2 .

Then ∆̂B∗Qx̂ = B†(iwIn − (J −R)Q)x̂ and ∆̂ + ∆̂∗ � 0. Set ∆̂R = − ∆̂+∆̂∗

2 and ∆̂J = ∆̂−∆̂∗

2 . Then

∆̂R � 0. Thus, if R+B∆̂RB
∗ � 0, then clearly (∆̂J , ∆̂R) ∈ SC

d (J,R;B), and

‖∆̂J‖
2

F + ‖∆̂R‖
2

F = ‖∆̂‖2F =
2‖B†(iwIn − (J −R)Q)x̂‖2

‖B∗Qx̂‖2
− |x̂∗Q(iwIn − (J −R)Q)x̂|2

‖B∗Qx̂‖4
.

This show the equality in (5.15) and hence in (5.14), i.e.,

ηSd

C
(J,R;B, iw)2 = inf

x∈Ω

{
2‖B†(iwIn − (J −R)Q)x‖2

‖B∗Qx‖2
− |x∗Q(iwIn − (J −R)Q)x|2

‖B∗Qx‖4

}
. (5.16)

Now suppose k = dim(Ω) and let columns of U ∈ C
n,k forms an orthonormal basis for Ω. Then

x(6= 0) ∈ Ω if and only if x = Uα for some α ∈ C
k \ {0}. Using this in (5.16), we obtain

ηSd

C
(J,R;B, iw)2 = inf

α∈Ck\{0}

{
2‖B†(iwIn − (J −R)Q)Uα‖2

‖B∗QUα‖2
− |α∗U∗Q(iwIn − (J −R)Q)Uα|2

‖B∗QUα‖4

}
.

(5.17)
Note that B∗QU is a full rank matrix because if suppose B∗QUα = 0 for some α ∈ C

k \ {0}. This
implies that

0 = B∆̂B∗QUα = (iwIn − (J −R)Q)Uα,

so that iw ∈ Λ((J −R)Q) which is a contradiction. Thus the matrix U∗QBB∗QU is positive definite.
Let U∗QBB∗QU = WW ∗, where W is the unique Cholesky factor of U∗QBB∗QU , then by using
y = W ∗α in (5.17), we have

ηSd

C
(J,R;B, iw)2 =

infy∈Ck\{0}

{
2‖B†(iwIn−(J−R)Q)UW−∗y‖2

‖y‖2 − |y∗W−1U∗Q(iwIn−(J−R)Q)UW−∗y|2
‖y‖4

}
. (5.18)
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In view of the Cauchy-Schwarz inequality, note that for every y ∈ C
k \ {0} we have

2‖B†(iwIn − (J −R)Q)UW−∗y‖2

‖y‖2
≥ 2‖B†(iwIn − (J −R)Q)UW−∗y‖2

‖y‖2

−|y∗W−1U∗Q(iwIn − (J −R)Q)UW−∗y|2
‖y‖4

≥ ‖B†(iwIn − (J −R)Q)UW−∗y‖2

‖y‖2
.

Using this in (5.18) yields

2 inf
y∈Ck\{0}

‖B†(iwIn − (J −R)Q)UW−∗y‖2

‖y‖2
≥ ηSd

C
(J,R;B, iw)2

≥ inf
y∈Ck\{0}

‖B†(iwIn − (J −R)Q)UW−∗y‖2

‖y‖2
,

and hence

√
2σmin

(
B†(iwIn − (J −R)Q)UW−∗

)
≥ ηSd

C
(J,R;B, iw) ≥ σmin

(
B†(iwIn − (J −R)Q)UW−∗

)
.

This completes the proof.
By using Theorem 5.4 in Theorem 5.2, we obtain a lower bound for the structured stability radius

rSd

C
(J,R;B) as follows.

Theorem 5.5 Consider an asymptotically stable DH system of the form (5.6). Let B ∈ C
n,r be of full

column rank. For w ∈ R, define Ωw := null
(
(In −BB†)(iwIn − (J −R)Q)

)
. Suppose that Ωw 6= ∅

for some w ∈ R. Then

rSd

C
(J,R;B)2 ≥ inf

w∈R
inf

x∈Ωw

{
2‖B†(iwIn − (J −R)Q)x‖2

‖B∗Qx‖2
− |x∗Q(iwIn − (J −R)Q)x|2

‖B∗Qx‖4

}
.

Remark 5.6 We conclude the section with a few remarks about Theorem 5.4.

• Since ∆̂R in Theorem 5.4 is a rank-one matrix with only one negative eigenvalue, if R ≻ 0 and
R + B∆̂RB

∗ is singular, then from [16, Lemma 4.4] R + B∆̂RB
∗ is positive semidefinite, and

this implies the equality in (5.10).

• As a particular case of Theorem 5.4, i.e., when w = 0, we obtain the distance to singularity
dSd(J,R;B) := ηSd(J,R;B, 0) with respect to structure-preserving perturbations to both J and
R from the set Sd(J,R;B) which is an analogous result to [16, Theorem 6.2]. Note that in [16],
the structured distances to singularity for DH matrices were obtained for structure-preserving
perturbations to Q only.
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5.2 Real stability radius

Consider a real LTI DH system of the form

ẋ(t) = (J −R)Qx(t), (5.19)

where J,R,Q ∈ R
n,n such that JT = −J , RT = R � 0, and QT = Q ≻ 0. In this section, we

discuss the real unstructured distance rR(J,R;B,C) defined by (5.1) and the real structured distance
rSd

R
(J,R;B) defined by (5.3) for real DH systems. For this, define, for a given M ∈ C

p,m,

µR,q(M) :=
(
inf

{
‖∆‖q : ∆ ∈ R

m,p, det(Im −∆M) = 0
})−1

, (5.20)

where q ∈ {2, F}. Let us first state a result from [19] that will be useful in determining the unstructured
distance rR(J,R;B,C).

Theorem 5.7 ([19]) We have

µR,2(M) = inf
γ∈(0,1]

σ2

([
ReM −γ ImM

γ−1 ImM ReM

])
,

where σ2(A) is the second largest singular value of a matrix A. Furthermore, an optimal ∆ that attains

the value of µR,2(M) can be chosen of rank at most two.

Let us now prove a result bounding µR,F (M) using µR,2(M).

Theorem 5.8 We have
1√
2
µR,2(M) ≤ µR,F (M) ≤ µR,2(M). (5.21)

Proof. By definition,

µR,2(M)−1 = inf {‖∆‖2 : ∆ ∈ R
m,p, det(Im −∆M) = 0}

≤ inf {‖∆‖F : ∆ ∈ R
m,p, det(Im −∆M) = 0}

= µR,F (M)−1, (5.22)

since for any ∆ ∈ R
m,p, we have ‖∆‖2 ≤ ‖∆‖F . Now suppose ∆̂ ∈ R

m,p such that µR,2(M)−1 = ‖∆̂‖2.
Then from the first part ∆̂ is of rank at most two. This implies that det(Im − ∆̂M) = 0 and
‖∆̂‖F ≤

√
2‖∆̂‖2, which yields that

µR,F (M)−1 ≤
√
2‖∆̂‖2 = µR,2(M). (5.23)

Hence from (5.22) and (5.23), we obtain (5.21).
As an application of the above theorem we bound the real unstructured distance rR(J,R;B,C).

Theorem 5.9 Consider a real asymptotically stable DH system of the form (5.19) and let B ∈ R
n,r

and C ∈ R
q,n be restriction matrices. Then

1√
2

inf
w∈R

µR,2(G(w))−1 ≤ rR(J,R;B,C) ≤ inf
w∈R

µR,2(G(w))−1,

where µR,2(G(w))−1 = infγ∈(0,1] σ2

([
ReG(w) −γ ImG(w)

γ−1 ImG(w) ReG(w)

])
and G(w) = CQ (iwIn − (J −R)Q)−1 B.
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Proof. By Definition (5.1), we have

rR(J,R;B,C)

= inf
{√

‖∆J‖2F + ‖∆R‖2F : ∆J ,∆R ∈ R
r,q,Λ

(
(J −R)Q+B(∆J −∆R)CQ

)
∩ iR 6= ∅

}

= inf
{√

‖∆J‖2F + ‖∆R‖2F : ∆J ,∆R ∈ R
r,q, w ∈ R

det ((J −R)Q+B(∆J −∆R)CQ− iwIn) = 0
}

= infw∈R inf
{√

‖∆J‖2F + ‖∆R‖2F : ∆J ,∆R ∈ R
r,q,

det
(
In − (∆J −∆R)CQ(iwIn − (J −R)Q)−1B

)
= 0

}

= infw∈R inf
{

‖∆‖
F√
2

: ∆ ∈ R
r,q,det

(
In −∆CQ(iwIn − (J −R)Q)−1B

)
= 0

}
(5.24)

= 1√
2
infw∈R (µR,FG(w))−1 , (5.25)

where G(w) = CQ (iwIn − (J −R)Q)−1 B. The equality (5.24) follows from Lemma 2.6, and (5.25)
follows by definition of µR,FG(w) in (5.20). Thus the result follows immediately using the inequal-
ity (5.23) in Theorem 5.8.

We note that a result similar to Theorem 5.4 for the real backward error, ηSd

R
(J,R;B), defined

in (5.4) may be obtained by using minimal-norm real dissipative mappings from Theorem 3.4. Thus in
view of Theorem 5.2 we can obtain a lower bound for the real structured stability radius rSd

R
(J,R;B).

In the following we state this result for ηSd

R
(J,R;B) and skip its proof as it is similar to the proof of

Theorem 5.4.

Theorem 5.10 Consider a real DH system of the form (5.19). Let w ∈ R be such that iwIn − (J −R)Q
is invertible. Let B ∈ R

n,r be of full column rank and let Ω be the subset of null
(
(In −BB†)(iwIn − (J −R)Q)

)

such that if x ∈ Ω then x∗QRQx ≥ |xT (iwQ +QRQ)x|. Suppose that Ω 6= ∅. Then

ηSd

R
(J,R;B, iw)2 ≥ inf

x∈Ω

(
2
∥∥∥YX †

∥∥∥
2

F
− trace

(
(YX †)∗(XX †)(YX †)

))
, (5.26)

where for x ∈ Ω, Y =
[
B†(iwIn − (J −R)Q)x B†(iwIn − (J −R)Q)x

]
and X =

[
BTQx BTQx

]
.

Moreover, let the infimum in the right hand side of (5.26) be attained at x̃ ∈ Ω and define ∆̃R := ỸX̃ †−
(ỸX̃ †)

∗PX̃ , where Ỹ =
[
B†(iwIn − (J −R)Q)x̃ B†(iwIn − (J −R)Q)x̃

]
and X̃ =

[
BTQx̃ BTQx̃

]
.

If R+B∆̃RB
T � 0, then equality holds in (5.26).

Proof. In view of Theorem 3.4, the proof is similar to Theorem 5.4.
We close the section by noting that a result analogous to Theorem 5.5 can be obtain for real

structured stability radius rSd

R
(J,R;B) by using Theorem 5.10 in Theorem 5.2.

6 Numerical experiments

In this section, we illustrate the significance of our distances obtained in Theorems 5.3 and 5.5 and
compare them with those of [16], where various structured stability radii have been obtained for DH
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systems while perturbing only J or only R one at a time. In the following, l.b. stands for “lower
bound”, rC(R;B,C) (resp. rC(J ;B,C)) denotes the unstructured stability radius while perturbing
only R (resp. J) with restriction matrices B and C [16, Theorem 3.3], rS

C
(J ;B) denotes the struc-

tured stability radius with respect to structure-preserving perturbations to J [16, Theorem 5.1], and
rSd

C
(R;B) denotes the structured stability radius with respect to structure-preserving negative semidef-

inite perturbations to R [16, Theorem 4.2]. We note that rC(R;B,C) = rC(J ;B,C) [16, Theorem
3.3]. It is also clear that rC(J,R;B,C) ≤ rC(R;B,C) and the minimum of rS

C
(J ;B) and rSd

C
(R;B)

gives an upper bound to rSd

C
(J,R;B).

All the experiments are performed in Matlab Version No. 9.1.0 (R2016b). To compute these values
(or lower bounds), we proceed as follows.

• The formulas for the three radii rC(R;B,B∗), rS
C
(J ;B), and rSd

C
(R;B) were obtained in [16]

in terms of some non-convex optimization problems. In [16], the authors used the function
fminsearch in Matlab to solve these optimization problems which only gives a local minimum
starting from an initial guess. We instead used the GlobalSearch solver in Matlab, with its default
parameters which attempts to locate the global solution. However, we can only guarantee that
the computed solutions are lower bounds to the exact distances.

• rC(J,R;B,B∗): a formula for rC(J,R;B,B∗) is obtained in Theorem 5.3 which is 1√
2
times the

unstructured distance rC(R;B,B∗).

• rSd

C
(J,R;B): a lower bound for rSd

C
(J,R;B) is obtained in Theorem 5.5. We again used the

GlobalSearch solver in Matlab for this to get a good approximation for the lower bound. We
note that solving the optimization problem involved in (5.10) is challenging, and beyond the
scope of this this paper. This paper aims to solve the dissipative mapping problem and show it
is useful in engineering applications such as DH systems. A possible future work would be to
develop more sophisticated ways to solve (5.10).

Example 6.1 [16, Example 7.1] Consider a prototype example of disk brake squeal problem with the
matrices G,M,K,D from [16]. We consider the DH system ẋ = (J −R)Qx with

J =

[
G K + 1

2N
−(K + 1

2N
∗) 0

]
, R =

[
D 0
0 0

]
, and Q =

[
M 0
0 K

]−1

.

We compute the various distances for the restriction matrices B = I4 and C = I4, which are given in
the following table:

rC(J,R;B,B∗) rC(R;B,B∗) l.b. to rSd

C
(J,R;B) rS

C
(J ;B) rSd

C
(R;B)

0.0218 0.0308 0.0310 2.4725 5.6149

The lower bound 0.0310 ≤ rSd

C
(J,R;B) is obtained by Theorem 5.5, which as expected shows that

the unstructured radius, rC(J,R;B,B∗) = 0.0218, is smaller than the structured radius rSd

C
(J,R;B).

If we replace the J matrix by J1 =

[
G K
−K 0

]
, then the corresponding results are as follows:

rC(J1, R;B,B∗) rC(R;B,B∗) l.b. to rSd

C
(J1, R;B) rS

C
(J1;B) rSd

C
(R;B)

0.0826 0.1169 0.1185 2.2340 5.7971
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In this case, the difference between the unstructured radius rC(J1, R;B,B∗) and the structured radius
rSd

C
(J,R;B) is more significant. This implies that if the magnitude of the structured perturbations to

both J and R in Frobenius norm is smaller than 0.1185 than the system remains stable.

Example 6.2 To emphasize more on the stability radii rC(J,R;B,B∗) and rSd

C
(J,R;B) obtained

in this paper and to show that these general distances are indeed different than the ones in [16],
we generate matrices J , R, Q, B ∈ C

n,n of different sizes (n ≤ 9) randomly following a normal
distribution with mean 0 and standard deviation 1 (randn(m,n) in Matlab) which we project on the
feasible set, that is, J = −J∗ and R,Q � 0, so that ẋ = (J −R)Qx is a DH system, and all restricted
stability radii were finite. The restriction matrices B and C = B∗ are chosen to be of full rank. We
compute our distances rC(J,R;B,B∗) and rSd

C
(J,R;B) and compare these results with those of [16]

in Table 6.1. We see that (i) the various unstructured and structured distances are quite a different;
(ii) as expected, the stability radii rC(J,R;B,B∗) and rSd(J,R;B) are significantly smaller than their
counterparts from [16] of perturbing only one of J and R; (iii) the results indicate that the lower
bound to rSd

C
(J,R;B) in some cases (n = 3, 8, 9) is significantly larger than the unstructured distances

(columns 2-3 in Table 6.1) and reasonably close to the upper bound (minimum of the last two columns
in Table 6.1).

Table 6.1: Various disances to instability for DH matrices

size n rC(J,R;B,B∗) rC(R;B) l.b. to rSd

C
(J,R;B) rS

C
(J ;B) rSd

C
(R;B)

3 0.1162 0.1644 0.7353 7.8741 1.5038

4 0.0047 0.0067 0.5157 4.4828 620.6015

5 0.0550 0.0778 0.5108 1.2273 2.5896

6 0.0566 0.0801 0.2764 2.1462 1.1335

7 0.0165 0.0234 0.2421 0.8284 4.7189

8 0.0415 0.0587 0.9596 4.3467 1.9909

9 0.0632 0.0894 1.3540 1.7549 3.6928

7 Conclusion

In this paper, we have derived necessary and sufficient conditions for the existence of the dissipative
mappings taking X ∈ C

n,k to Y ∈ C
n,k, charactered the set of dissipative mappings, and found the

minimal Frobenius norm solution. We have then applied these results to DH systems. In particular, we
have used dissipative mappings to derive bounds for the structured distance to asymptotic instability
for both complex and real DH systems (1.1) when both J and R are subject to perturbations.

The bounds computed in this paper involve solving a difficult non-convex optimization problem.
Possible future works include more sophisticated methods to compute (5.10), and to study other
applications of the dissipative mappings.
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for parametric model reduction in the simulation of disc brake squeal, ZAMM-Journal of Applied Mathe-
matics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 96 (2016), pp. 1388–1405.

[10] D. Hinrichsen and A. J. Pritchard, Stability radii of linear systems, Systems & Control Letters, 7
(1986), pp. 1–10.

[11] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

[12] D S. Mackey, N. Mackey, and F. Tisseur, Structured mapping problems for matrices associated with

scalar products. part i: Lie and jordan algebras, SIAM Journal on Matrix Analysis and Applications, 29
(2008), pp. 1389–1410.

[13] N. Martins, Efficient eigenvalue and frequency response methods applied to power system small-signal

stability studies, IEEE Transactions on Power Systems, 1 (1986), pp. 217–224.

[14] N. Martins and L. Lima, Determination of suitable locations for power system stabilizers and static

var compensators for damping electromechanical oscillations in large scale power systems, IEEE Trans. on
Power Systems, 5 (1990), pp. 1455–1469.

[15] N. Martins, P.C. Pellanda, and J. Rommes, Computation of transfer function dominant zeros with

applications to oscillation damping control of large power systems, IEEE Transactions on Power Systems,
22 (2007), pp. 1657–1664.

[16] C. Mehl, V. Mehrmann, and P. Sharma, Stability radii for linear Hamiltonian systems with dissipation

under structure-preserving perturbations, SIAM Journal on Matrix Analysis and Applications, 37 (2016),
pp. 1625–1654.

[17] , Stability radii for real linear Hamiltonian systems with perturbed dissipation, BIT Numerical Math-
ematics, 57 (2017), pp. 811–843.

23



[18] M. L. Overton and P. Van Dooren, On computing the complex passivity radius, in Proceedings of the
44th IEEE Conference on Decision and Control, 2005, pp. 7960–7964.

[19] Li Qiu, B. Bernhardsson, A. Rantzer, E.J. Davison, P.M. Young, and J.C. Doyle, A formula

for computation of the real stability radius, Automatica, 31 (1995), pp. 879–890.

[20] A.J. van der Schaft, Port-Hamiltonian systems: an introductory survey, in Proc. of the International
Congress of Mathematicians, vol. III, Invited Lectures, J.L. Verona M. Sanz-Sole and J. Verdura, eds.,
Madrid, Spain, pp. 1339ñ–1365.
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