
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Fast and stable modification of the Gauss-Newton method for
low-rank signal estimation

Nikita Zvonarev | Nina Golyandina

1Faculty of Mathematics and Mechanics,
St.Petersburg State University,
Universitetskaya nab. 7/9, St.Petersburg,
Russia

Correspondence
*Nina Golyandina, SPbSU, Universitetskaya
nab. 7/9, St.Petersburg, 199034, Russia.
Email: n.golyandina@spbu.ru

Summary

The weighted nonlinear least-squares problem for low-rank signal estimation is con-
sidered. The problem of constructing a numerical solution that is stable and fast for
long time series is addressed. A modified weighted Gauss-Newton method, which
can be implemented through the direct variable projection onto a space of low-rank
signals, is proposed. For a weight matrix which provides the maximum likelihood
estimator of the signal in the presence of autoregressive noise of order p the compu-
tational cost of iterations is O(Nr2+Np2+ rN logN) asN tends to infinity, where
N is the time-series length, r is the rank of the approximating time series. Moreover,
the proposed method can be applied to data with missing values, without increasing
the computational cost. The method is compared with state-of-the-art methods based
on the variable projection approach in terms of floating-point numerical stability and
computational cost.

KEYWORDS:
low-rank approximation, time series, Hankel matrix, variable projection, Gauss-Newton method, iterative
methods

1 INTRODUCTION

In this study we consider the ‘signal plus noise’ observation scheme:

xn = sn + �n, n = 1, 2,… , N.

Denote by X = (x1,… , xN)T , S = (s1,… , sN)T and � = (�1,… , �N)T the vectors of observations, signal values and errors
respectively. We will refer to vectors of observations in ℝN as time series (or shortly series, since the observations are not
necessarily temporal; e.g., they can be spatial).
We assume that the signal S can be written in the parametric form as a finite sum

sn =
d
∑

k=1
Pmk(n) exp(�kn) sin(2�!kn + �k), (1)

where Pmk(n) are polynomials in n of degree mk. In signal processing applications, the signal in the form (1) is usually a sum
of sine waves1 or a sum of damped sinusoids2. The problem of estimating the unknown signal values sn is as important as the
problem of estimating the parameters in the explicit form (1). We will be concentrated on the signal estimation.
Certainly, there are many numerical methods for estimating signals in the form (1) in the ‘signal plus noise’ observation

scheme. Our aim is to construct a method, which is accurate and fast for large series lengthsN and also is competitive. It would be

ar
X

iv
:2

10
6.

14
21

5v
1

 [
m

at
h.

N
A

]
 2

7
Ju

n
20

21

2

a great advantage if the constructed method could deal with time series with gaps keeping algorithms’ efficiency characteristics.
The case of autoregressive noise is of special interest.
We will solve the problem of signal estimation in a class of signals, which is wider than that given in (1) and has a different

parameterization from the explicit one. To describe the class of signals, we need some definitions. The rank of a signal S is
defined as follows. For a given integerL, 1 < L < N , called the window length, we define the embedding operator TL ∶ ℝN →
ℝL×(N−L+1), which maps S into a Hankel matrix, by

TL(S) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

s1 s2 … sN−L+1

s2 s3 …
...

...
... … sN−1

sL sL+1 … sN

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (2)

The columns of TL(S) are sequential lagged vectors; this is why TL(S) is often called the trajectory matrix of S. We say that the
signal S has rank r < N∕2 if rank Tr+1(S) = r. It is known that rank Tr+1(S) = r if and only if rank TL(S) = r for any L such
that min(L,N − L + 1) > r (see3, Corollary 5.1 for the proof).
For a sufficiently large time-series lengthN , the signal in the form (1) has rank r, which is determined by the parameters mk,

�k and !k 4. For example, the signal with values sn has rank r = 2 for a sum of two exponentials sn = c1 exp(�1n) + c2 exp(�2n),
a sine wave sn = c sin(2�!n + �), where 0 < ! < 0.5, or a linear function sn = an + b. Thus, the model fixes the rank r but
does not fix the form of the signal, i.e., the number of terms and the orders of the polynomials in (1).
The considered model of signals, where the Hankel matrix TL(S) is rank-deficient, is one of the standard models in many

areas, signal processing1, 5, speech recognition6, control theory and linear systems2, 7 among others.

Let us state the optimization problem for estimating the signal. Denote r the set of series of rank r. Since the set r is not
closed, we will seek for the solution in its closure r. It is well-known that r consists of series of rank not larger than r (this
result can be found in8, Remark 1.46 for the complex case; the real-valued case is considered in4).
Thus, in what follows, we study the weighted least-squares (WLS) problem

Y⋆ = argmin
Y∈r

‖X − Y‖W, (3)

where W is a symmetric positive-definite weight matrix, ‖Z‖2W = ZTWZ. If noise � is Gaussian with covariance matrix �
and zero mean, the WLS estimate with the weight matrix W = �−1 is the maximum likelihood estimator (MLE). The same
is true if W is scaled by a constant. In the case when noise is an autoregressive process of order p (AR(p)), the matrix W is
(2p + 1)-diagonal9, p.534.
Although the common case is the case of a positive definite matrixW, the problem (3), whereW is positive semi-definite,

is of considerable interest. For example, the case of a diagonal matrixW with several zero diagonal elements corresponds to
the problem of low-rank approximation for time series with missing values if the noise is white. Let us consider the case of a
general weight matrix and time series with missing values. Let a symmetric positive definite matrixW0 be given for the whole
time series including gaps. Then the weight matrix W is constructed from W0 by setting the columns and rows with indices
equal to entries of missing values to zero. Note that ifW is not positive-definite, then ‖ ⋅ ‖W is semi-norm and the problem (3)
may become ill-posed. In particular, the topology of r is not consistent with the semi-norm and therefore the minimum in (3)
should be changed to infimum, which can be not achieved at time series in r.
Different approaches for solving (3). The optimization problem (3) is non-convex with many local minima10. The problem

(3) is commonly considered as a structured (more precisely, Hankel) low-rank approximation problem (SLRA, HSLRA)7, 11, 12.
A well-known subspace-based method for solving (3) is called ‘Cadzow iterations’1 and belongs to the class of alternating-
projection methods. The method of Cadzow iterations can be extended to a class of oblique Cadzow iterations in the norm,
which differs from the Euclidean norm13. The Cadzow method has two drawbacks: first, the properties of the limiting point of
the Cadzow iterations are unknown14 and second, it tries to solve the problem (3) with a weight matrix which generally differs
from the given W. Therefore, it is not optimal (the method does not provide the MLE), even for the case of white Gaussian
noise15. The reason is that the problems are commonly stated in SLRA as matrix approximation problems, while the original
problem (3) is stated in terms of time series.
Many methods have been proposed to solve HSLRA, including the Riemannian SVD15, Structured total least-norm16,

Newton-like iterations17, proximal iterations18, symbolic computations10, stochastic optimization19, fixed point iterations14, a
penalization approach20.

3

Since we consider the problem ofWLS time series approximation, which generally differs from the problem of matrix approx-
imation due to different weights (see e.g.21), let us use as a benchmark the effective and general approach of Markovsky and
Usevich22, 23, which is based on the variable projection principle24 combined with the Gauss-Newton method for solving the
optimization subproblem; we call it VPGN. The method of22, 23 is able to deal with the problem in the form (3), i.e., exactly with
the given weight matrix; moreover, it is elaborated in general form for a wide class of structured matrices and at the same time
its iteration complexity scales linearly with the length of data for a class of weight matrices. Thus, the VPGN method can be
considered as a start-of-art method of low-rank time series approximation. Nevertheless, the approach has a couple of disadvan-
tages. First, the Cholesky factorization is used for solving least-squares subproblems to obtain a fast algorithm; unfortunately,
this squares the condition number (more stable decompositions like QR factorization are slower). Then, the VPGN method is
efficient only if the inverse of the weight matrix is banded. Note that the approach of Markovsky and Usevich can be applied
to the case of rank-deficient matrices W in25 and7, Section 4.4. However, it is not clear how to implement the algorithm, which
proposed in these papers, effectively in terms of computational costs. In4, a version S-VPGN, which improves the stability of
several steps of VPGN is considered; however, it does not overcome these drawbacks.
The proposed approach. Let us consider another approach to solving the problem (3); the considered approach is similar to

VPGN but different. It is discussed in Section 2.1 that each time series S in r is characterized by a vector a ∈ ℝr+1, which
provides the coefficients of a generalized linear recurrence relation (GLRR) governing the time series, i.e. aTTr+1(S) is the
zero vector. For each a, we can consider the space (a) of signals governed by the GLRR with the given coefficients. Iterative
algorithms that use the variable projection method for solving the problem (3) include the projection onto(a) as a subproblem.
In this paper, we propose to overcome the drawbacks of the methods of22, 23 and4 in the following manner. First, the proposed

modification helps to avoid computing the pseudoinverse of the Jacobian matrix (compare (16) and (18)). Then, as well as in4

(and unlike23), the projection is calculated directly onto the space (a) and is not obtained through projecting on its orthogonal
complement(a). Finally, for calculating the projection, we use fast algorithms with improved numerical stability (the compen-
sated Horner scheme, see Remark 5). As a result, the proposed method sometimes can be just slightly slower and is much faster
in many real-life scenarios, but also is more stable (see Section 5 with the comparison results). Moreover, the algorithm with
direct projections onto the space (a) can be extended to the case of a degenerate weight matrixW (in particular, to the case of
missing values) without loss of effectiveness (see Section 4.3); compare with that in25, where projections to the subspace (a)
are used and the computational cost considerably increases for degenerate weight matrices.
Structure of the paper. In Section 2 we briefly discuss the parameterization of r and its properties and introduce neces-

sarily notation. In Section 3 we describe the known (VPGN) and the new proposed (MGN) iterative methods for solving the
optimization problem (3). The algorithm VPGN is described in the way different from that in23, since the description in23 is
performed for general SLRA problems, whereas we consider a particular case of time series. Section 4 presents the algorithms
with the implementations of VPGN and MGN. In Section 5 we compare computational costs and numerical stability of the
VPGN and MGN algorithms. Section 6 concludes the paper.
Main notation. In this paper, we use lowercase letters (a,b,. . .) and alsoL,K ,M ,N for scalars, bold lowercase letters (a,b,. . .)

for vectors, bold uppercase letters (A,B,. . .) for matrices, and the calligraphic font for sets. Formally, time series are vectors;
however, we use the uppercase sans serif font (A,B,. . .) for time series to distinguish them from ordinary vectors. Additionally,
IM ∈ ℝM×M is the identity matrix, 0M×k denotes the M × k zero matrix, 0M denotes the zero vector in ℝM , ei is the i-th
standard basis vector.
Denote b the vector consisting of the elements of a vector b with indices in a set . For matrices, denote B, ∶ the matrix

consisting of rows of a matrix B with indices in  and B ∶, the matrix consisting of columns of a matrix B with indices in .
Finally, we put a brief list of main common symbols and acronyms.

LRR is a linear recurrence relation.
GLRR(a) is a generalized LRR with the coefficients given by a.
r is the set of time series of rank r.
r is the set of time series of rank not larger than r.
(a) ∈ ℝN is the set of time series of length N governed by the minimal GLRR(a); Z(a) is a matrix consisting of its basis
vectors.
(a) is the orthogonal complement to (a); Q(a) is the matrix consisting of its special basis vectors (see Section 2.2).
W ∈ ℝN×N is a weight matrix.
(F)†W is the weighted pseudoinverse matrix; F† stands for (F)†IN .
JS is the Jacobian matrix of a map S.

4

TM ∶ ℝN → ℝM×(N−M+1) is the embedding operator, which constructs theM-trajectory matrix.
H� : ℝr → ℝr+1 is the operator, which inserts −1 in the position �.
�,W is theW-orthogonal projection onto , �L,W is theW-orthogonal projection onto the column space colspace(L); ifW is
the identity matrix, it is omitted in the notation.
S⋆� (ȧ) = �(H� (ȧ)),WX, where ȧ ∈ ℝr.

2 PARAMETERIZATION OF LOW-RANK SERIES

In this section, we introduce the notations and describe the results of4 which we will use further.

2.1 Generalized linear recurrence relations
It is well known26, Theorem 3.1.1 that for sufficiently large N , a time series in the form (1) satisfies a linear recurrence relation

(LRR) of some order m:

sn =
m
∑

k=1
bksn−k, n = m + 1,… , N ; bm ≠ 0. (4)

One time series can be governed by many different LRRs. The LRR of minimal order r (it is unique) is called minimal. If
r < N∕2, the corresponding time series has rank r. The minimal LRR uniquely defines the form of (1) and the parameters mk,
�k, !k.
The relations (4) can be expressed in vector form as aTTm+1(S) = 0TN−m, where a = (bm,… , b1,−1)T ∈ ℝm+1. The vector

a corresponding to the minimal LRR (m = r + 1) and the first r values of the series S uniquely determine the whole series S.
Therefore, r coefficients of an LRR of order r and r initial values (2r parameters altogether) can be chosen as parameters of a
series of rank r. However, this parameterization does not describe the whole set. For example, S = (1, 1, 1, 1, 1, 2)T has rank 2
and does not satisfy an LRR of order m < N − 1.
Let us generalize LRRs. We say that a time series satisfies a generalized LRR (GLRR) of order m if aTTm+1(S) = 0TN−m for

some non-zero a ∈ ℝm+1; we call this linear relation GLRR(a). If am+1 = −1, the same relation is called LRR(a). As well as for
LRRs, the minimal GLRR can be introduced. The difference between a GLRR and an ordinary LRR is that the last coefficient
in the GLRR is not necessarily non-zero and therefore the GLRR does not necessarily set a recurrence. However, at least one of
the coefficients of the GLRR should be non-zero.
Let us demonstrate the difference between LRRs and GLRRs by an example. Let S = (s1,… , sN)T be a signal and a =

(a1, a2, a3)T. Then GLRR(a) and LRR(a) mean the same: a1si + a2si+1 + a3si+2 = 0 for i = 1,… , N − 2. For LRR(a), we state
that a3 = −1 (or just not equal to 0). Then this linear relation becomes a recurrence relation since si+2 = a1si + a2si+1. For
GLRR(a), we assume that some of ai is not zero (or equal to −1). It may be a1 or a2 or a3. For example, S = (1, 1, 1, 1, 1, 2)T
satisfies the GLRR(a) with a = (1,−1, 0)T.
Thus, we consider the parameterization with the help of GLRR(a); in fact, the same approach is used in22, 23. In what follows,

we assume that 2r < N .
The following properties clarify the difference between the spaces r and its closure r: (a) r = {Y ∶ ∃a ∈ ℝr+1, a ≠

0r+1 ∶ aTTr+1(S) = 0TN−r} or, equivalently, Y ∈ r if and only if there exists a GLRR(a) of order r, which governs Y; (b) Y ∈ r
if and only if there exists a GLRR(a) of order r, which governs Y, and this GLRR is minimal.

2.2 Subspace approach
Let(a), a ∈ ℝr+1, be the space of time series of lengthN governed by theGLRR(a); that is,(a) = {S ∶ aTTr+1(S) = 0TN−r}.

Therefore r =
⋃

a
(a).

5

Define the operator Q ∶ ℝr+1 → ℝM×(N−r) as

(

Q(a)
)T =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1 a2 … … ar+1 0 … 0

0 a1 a2 … … ar+1
. . .

...
...
. 0

0 … 0 a1 a2
. ar+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5)

Then the other convenient form of (a) is (a) = {S ∶ QT(a)S = 0N−r}.
The following notation will be used below: (a) = colspace(Q(a)) and denote Z(a) a matrix whose column vectors form a

basis of (a).

2.3 Parameterization
Let us describe the details of the considered parameterization. Consider a series S0 ∈ r, which satisfies a minimal GLRR(a0)

of order r defined by a non-zero vector a0 = (a(0)1 ,… , a(0)r+1)
T. Let us fix � such that a(0)� ≠ 0. Since GLRR(a0) is invariant to

multiplication by a constant, we assume that a(0)� = −1. This condition on � is considered to be valid hereinafter. Let us build a
parameterization of r in the vicinity of S0; parameterization depends on the index �. Note that we can not construct a global
parameterization, since for any index � there exists a point a of r such that the �-th element of a is zero.
In the case of a series governed by an ordinary LRR(a), a ∈ ℝr+1, since the last coordinate of a is equal to −1, the series

is uniquely determined by the first r elements of a and r initial values of the series. Then, applying the LRR to the initial data,
which are taken from the series that is governed by the LRR, we restore this series. In the case of an arbitrary series in r, the
approach is similar but a bit more complicated. For example, we should take the boundary data (� − 1 values at the beginning,
and r + 1 − � values at the end) instead of the r initial values at the beginning of the series.
Denote (�) = {1,… , N}⧵ {�,… , N − r−1+ �} and(�) = {1,… , r+1}⧵ {�} two sets of size r. The set (�) consists of

the indices of the series values (we call them boundary data), which are enough to find all the series values with the help of the
vector a(�) ∈ ℝr consisting of the elements of a vector a ∈ ℝr+1 with indices in(�); that is, a(�) = (a1,… , a�−1, a�+1, ar+1)T.
To simplify notation, let us introduce the operator H� : ℝr → ℝr+1, which acts as follows. Let ȧ ∈ ℝr and H�(ȧ) = a. Then

a = (a1,… , ar+1)T is such that a(�) = ȧ and a� = −1; that is, ȧ ∈ ℝr is extended to a ∈ ℝr+1 by inserting −1 in the �-th
position. In this notation, a(�) = H−1

� (a).
Let Z = Z(a) be a matrix consisting of basis vectors of (a) andG(ȧ) = Z

(

Z(�), ∶
)−1; here Z(�), ∶ ∈ ℝr×r,G(ȧ) ∈ ℝN×r. It

follows from the explicit form of the parameterization given in4 that the parameterization mapping S� ∶ ℝ2r → r has the form

S = S�(ṡ, ȧ) = G(ȧ)ṡ. (6)

Note thatG(ȧ) does not depend on the choice of basis vectors of(a) used for forming Z. The expressionG(ȧ)ṡ gives the linear
combination of the chosen basis vectors such that ṡ = (S)(�). Thus, S ∈ (A) and has boundary data ṡ.
Note that for different series S0 ∈ r we may have different parameterizations ofr in vicinities of S0. Moreover, for a fixed

S0, there is a variety of parameterizations provided by different choices of the index �.

3 OPTIMIZATION

Let us consider different numerical methods for solving the problem (3). First, note that we search for a local minimum. Then,
since the objective function is smooth in the considered parameterization, one can apply the conventional weighted version of
the Gauss-Newton method (GN), see27 for details. However, this approach appears to be numerically unstable and has a high
computational cost.
In23, the variable-projection method (VP) is used for solving the minimization problem. When the reduced minimization

problem is solved again by the Gauss-Newton method, we will refer to it as VPGN.
We propose a similar (but different) approach called Modified Gauss-Newton method (MGN), which appears to have some

advantages in comparison with VPGN that is one of the best methods for solving the problem (3). Below we will show that the
MGN algorithm consists of different numerical sub-problems to be solved, which are more well-conditioned than in the VPGN

6

case (see28, where different properties of problems such as stability and well-conditioning are discussed); thereby, MGN allows
a better numerically stable implementation.
Note that the considered methods are used for solving a weighted least-squares problem and therefore we consider their

weighted versions, omitting ‘weighted’ in the names of the methods.

Let us introduce the notation, which is used in this section. For a matrix F = ℝN×p, define its weighted pseudoinverse29
(F)†W = (FTWF)−1FTW; this pseudoinverse arises in the solution of the weighted linear least-squares problemminp ‖y−Fp‖2W
with y ∈ ℝN , since its solution is equal to pmin = (F)

†
W y. In the particular caseW = IN , (F)

†
W is the ordinary pseudoinverse;

we will denote it F†. Denote the projection (it is oblique ifW is not the identity matrix) onto the column space  of a matrix F
as �F,W = F (F)†W. If it is not important which particular basis of  is considered, we use the notation � ,W.

Remark 1. If the matrix F is complex, the above formulas and considerations are still valid with the change of the transpose FT
to the complex conjugate FH.

The structure of this section is as follows. After a brief discussion of the problem (3), we start with the description of the
methods GN and VP for a general optimization problem; then we apply these methods to (3) and finally present the new method
MGN.

3.1 Approaches for solving a general nonlinear least-squares problem
Let x ∈ ℝN be a given vector and consider a general WLS minimization problem

p⋆ = argmin
p

‖x − S(p)‖2W, (7)

where p ∈ ℝp is the vector of parameters, S ∶ ℝp → ℝN is some parameterization of a subset of ℝN such that S(p) is a
differentiable vector-function of p,W ∈ ℝN×N is a positive (semi-)definite symmetric matrix.
If the problem (7) is nonlinear, iterative methods with linearization at each iteration are commonly used, such as the Gauss-

Newton method or its variations27. One of the commonly used variations is the Levenberg-Marquardt method, which is a
regularized version of the Gauss-Newton method. This regularization improves the method far from the minimum value and
does not affect near the minimum. Therefore, in the paper, we consider the Gauss-Newton method without regularization. We
use the weighted Gauss-Newton method, which is a straightforward extension of the unweighted version withW = IN .

3.1.1 Gauss-Newton method
One iteration of the Gauss-Newton algorithm with step
 is

pk+1 = pk +

(

JS(pk)
)†
W (x − S(pk)), (8)

where JS(pk) is the Jacobian matrix of S(p) at pk. Note that the iteration step (8) is uniquely defined for any positive semi-
definite matrix, see Remark 6. The choice of step
 is a separate problem. For example, one can apply the backtracking line
search starting from
 = 1 and then decreasing the step if the next value is worse (that is, if the value of the objective functional
increases).
An additional aim of the WLS problem is to find the approximation S(p⋆) of x, where p⋆ is the solution of (7). Then we can

write (8) in the form of iterations of approximations:

S(pk+1) = S
(

pk +

(

JS(pk)
)†
W
(

x − S(pk)
)

)

. (9)

The following remark explains the approach, which underlies the Modified Gauss-Newton method proposed in this paper (see
Section 3.3).

Remark 2. The iteration step (9) can be varied by means of the change of S(pk+1) to S̃(pk+1), where S̃(pk+1) is such that
‖x − S̃(pk+1)‖W ≤ ‖x − S(pk+1)‖W. This trick is reasonable if S̃(pk+1) can be calculated faster and/or in a more stable way
than S(pk+1).

7

3.1.2 Variable projection
Let p =

(

b
c

)

∈ ℝp, b ∈ ℝp1 , c ∈ ℝp2 . Consider the (weighted) least-squares problem (7), where S(p) is linear in c and the

nonlinear part is defined by G(b) ∈ ℝN×p2 :

S(p) = G(b)c.

This problem can be considered as a problem of projecting the data vector x onto a given set:

min
y∈

‖x − y‖W, where  =
{

G(b)c ∣
(

b
c

)

∈ ℝp
}

. (10)

Here {'(z) ∣ z ∈ } means the set of values of '(z) for z ∈ . The variable projection method takes advantage of the known
explicit solution of the subproblem:

C⋆(b) = argmin
c

‖x −G(b)c‖W = (G(b))†W x.

Denote S⋆(b) = G(b)C⋆(b), (b) = {G(b)c ∣ c ∈ ℝp2}. Then

S⋆(b) = argmin
s∈(b)

‖x − s‖W = �(b),Wx. (11)

Thus, we can reduce the problem (10) to the projection onto a subset ⋆ ⊂  and thereby to the optimization in the nonlinear
part of parameters only:

min
y∈⋆

‖x − y‖W with ⋆ = {S⋆(b) ∣ b ∈ ℝp1}. (12)

This is called “variable projection” principle (see24 for the case of the Euclidean norm).

3.2 Known iterative methods for low-rank approximation
Let us turn from a general nonlinear least-squares problem (7) to the specific problem (3).
A variation from the standard way of the use of iterative methods is that the parameterization S�(p), p = (ṡ, ȧ) (which is based

on �) is changed at each iteration in a particular way. At (k + 1)-th iteration, the parameterization is constructed in the vicinity
of a0 = a(k). The index �, which determines the parameterization, is chosen in such a way to satisfy a(0)� ≠ 0. We propose the
following approach to the choice of �. Let � be the index of the maximum absolute entry of a0. Since the parameterization is
invariant to the multiplication of a0 by a constant, it can be assumed that a(0)� = −1 and |a(0)i | ≤ 1 for any i, 1 ≤ i ≤ r + 1.

3.2.1 Weighted Gauss-Newton method
The Gauss-Newton algorithm can be applied to the problem (3) in a straightforward manner, taking into consideration that the

parameterization S� may be changed at each iteration. The Gauss-Newton iteration has the form pk+1 = pk+

(

JS� (pk)
)†
W (X−

S�(pk)).
To apply the method, S�(pk) and the Jacobian matrix JS� (pk) should be calculated. Formally, their computing can be

implemented; however, the direct calculation is not numerically stable and very time-consuming.

3.2.2 Gauss-Newton method with variable projection
The explicit form of the parameterization S�(p) = S�(ṡ, ȧ) given in (6), where ṡ is presented in S�(ṡ, ȧ) in a linear manner,

allows one to apply the variable projection principle.
Assume that S0 is governed by a GLRR(a0) with a(0)� = −1 and consider the problem (3) in the vicinity of the series S0 ∈ r.
Substitute in (12)  = r, ⋆ = ⋆

r ⊂ r, where ⋆
r = {�(H� (ȧ)),WX ∣ ȧ ∈ ℝr}, b = ȧ, G(b) = G, where G =

Z
(

Z(�), ∶
)−1 (see (6)), C⋆(b) = (G)†W X. Then

S⋆� (ȧ) = �(a),W(X) (13)
where a = H�(ȧ), and we obtain the equivalent problem for projecting the elements of the set r to the subset ⋆

r , where the
parameter ṡ is eliminated:

Y⋆ = argmin
Y∈⋆

r

‖X − Y‖W. (14)

8

or, the same,
ȧ⋆ = argmin

ȧ∈ℝr
‖X − S⋆� (ȧ)‖W, (15)

Thus, for the numerical solution of the equation (3), it is sufficient to consider iterations for the nonlinear part of the parameters.
This is the VP approach used in22, 23.
Let us denote JS⋆� (ȧ) the Jacobian matrix of S⋆� (ȧ). Then the iterations of the Gauss-Newton method for solving the problem

(15) have the form
ȧ(k+1) = ȧ(k) +

(

JS⋆� (ȧ
(k))

)†

W

(

X − S⋆� (ȧ
(k))

)

. (16)

The VPGN algorithm together with an explicit form of JS⋆� (ȧ
(k)) is presented in4; its iteration step is described in Algorithm 4.

3.3 Modified Gauss-Newton method for low-rank approximation
In this section, we propose a new iterative method for the problem (3), which is a modified Gauss-Newton method.
Let us return to the problem with the full set of parameters (ṡ, ȧ) and apply the approach that is described in Remark 2, with

S̃(p) = S⋆� (ȧ). We can do it, since S⋆� (ȧ) = �(H� (ȧ)),W X and therefore (11) is valid with (ȧ) = (H�(ȧ)). Thus, we can
consider S⋆�

(

ȧ(k+1)
)

∈ ⋆
r as the result of the (k + 1)-th iteration instead of S�

(

ṡ(k+1), ȧ(k+1)
)

∈ r. It appears (see4) that then
we can use more stable numerical calculations for the iteration implementation. The proposed modification is similar to variable
projections, since we can omit the part ṡ of parameters.
Thus, we introduce the MGN iteration in the form

ȧ(k+1) = ȧ(k) +

(

(

JS� (ṡ
(k), ȧ(k))

)†
W

(

X − S⋆� (ȧ
(k))

)

)

∶,{r+1,…,2r}
, (17)

where ṡ(k) are the corresponding boundary data taken from S⋆� (ȧ
(k)), i.e. ṡ(k) =

(

S⋆� (ȧ
(k))

)

(�). As well as in the variable
projection method with the iteration step (16), S⋆� (ȧ

(k+1)) ∈ ⋆
r for each k.

Theorem 3.1. LetW1∕2JS� (ṡ
(k), ȧ(k)) have full rank. Denote S = Tr+1

(

�(H� (a(k))),W X
)

,M = −
(

S(�), ∶
)T. Then the iteration

step (17) is equivalent to
ȧ(k+1) = ȧ(k) +

(

(

IN −�(H� (ȧ(k))),W
)

F̂a
)†

W

(

X − S⋆� (ȧ
(k))

)

, (18)

where F̂a ∈ ℂN×2r is an arbitrary matrix satisfying the equality QT(H�(ȧ(k)))F̂a =M.

Let us fix the iteration number k. Denote by Fs =
(

JS�
)

∶,{1,…,r}
the first r columns of the Jacobian matrix JS� = JS(ṡ

(k), ȧ(k)),
and by Fa =

(

JS�
)

∶,{r+1,…,2r}
the last r columns of JS� .

Before proving the theorem, let us write down the statements of several propositions of4.
By definition, the tangent space at the point S coincides with colspace

(

JS� (ṡ, ȧ)
)

. Note that the tangent space is invariant with
respect to the choice of a certain parameterization of r in the vicinity of S.
Define by a2 the acyclic convolution of a with itself:

a2 = (a(2)i) ∈ ℝ2r+1, a(2)i =
min(i,r+1)
∑

j=max(1,i−r)
ajai−j+1.

Lemma 1 (4). QT(a)Fs = 0(N−r)×r; colspace(Fs) = (a).

Lemma 2 (4). QT(a)Fa = −(S(�), ∶)T, where S = Tr+1(S); colspace(Fa) ⊂ (a2).

Theorem 3.2 (4). The tangent space of r at the point S has dimension 2r and is equal to (a2).

Proof of Theorem 3.1. Let us rewrite the weighted pseudoinverse in the (17) as
(

(

JS� (ṡ
(k), ȧ(k))

)†
W

(

X − S⋆� (ȧ
(k))

)

)

∶,{r+1,…,2r}
=
(

(

W1∕2JS� (ṡ
(k), ȧ(k))

)†W1∕2(X − S⋆� (ȧ
(k))

)

)

∶,{r+1,…,2r}
.

9

Applying the Frisch-Waugh-Lovell theorem30 about the partitioned regression to the obtained pseudoinverse for regressors
W1∕2Fs andW1∕2Fa, we get the following sequence of equalities:

(

(

W1∕2JS� (ṡ
(k), ȧ(k))

)†W1∕2(X − S⋆� (ȧ
(k))

)

)

∶,{r+1,…,2r}
=

(

(IN −�W1∕2Fs)W
1∕2Fa

)† (IN −�W1∕2Fs)W
1∕2(X − S⋆� (ȧ

(k))) =
(

(IN −�(H� (ȧ(k))),W)Fa
)†
W (IN −�(H� (ȧ(k))),W)(X −�(H� (ȧ(k))),W X).

Since IN − �(H� (ȧ(k))),W is a projector, (IN − �(H� (ȧ(k))),W)
2 = IN − �H� ((a(k))),W. Thus, we obtain the following iteration

equivalent to (17):
ȧ(k+1) = ȧ(k) +

(

(IN −�(H� (ȧ(k))),W)Fa
)†
W (IN −�(H� (ȧ(k))),W)X. (19)

By Lemma 2,QT(H�(ȧ(k)))Fa =M. By the theorem’s conditions,QT(H�(ȧ(k)))F̂a =M. Thus,QT(H�(ȧ(k)))(Fa−F̂a) = 0(N−r)×r.
Since (a) is the orthogonal complement to (a), (IN −�(H� (ȧ(k))),W)(Fa − F̂a) = 0N×r, which finishes the proof.

Remark 3. In the case when S�(ṡ(k), ȧ(k)) ∈ r, the Jacobian matrix JS� (ṡ
(k), ȧ(k)) has full rank, according to Theorem 3.2. This

is sufficient for validity of the condition of Theorem 3.1 ifW has full rank. In the case of a rank-deficient matrixW, the condition
of Theorem 3.1 is discussed in Remark 6 with F = JS� (ṡ

(k), ȧ(k)).

Thus, we have constructed the equivalent version (18) of the iteration step (17) in such a way to reduce its complexity to
the computational costs of computing the projections to (H�(ȧ)) = (a) and calculating the matrices F̂a for different a. A
numerically robust algorithm for calculating the iteration step (18) is given in Algorithm 5.

4 ALGORITHMS OF THE VPGN AND MGNMETHODS

The common scheme of the VPGN and MGN algorithms is given in Algorithm 1.

Algorithm 1 The common scheme of VPGN and MGN
Input: X ∈ ℝN , a0 ∈ ℝr+1, a stopping criterion STOP.

1: Set k = 0, b(0) = a0.
2: repeat
3: Choose � such that b(k)� ≠ 0; for example, find � = argmaxi |b

(k)
i |. Calculate a(k) = −b(k)∕b(k)� to obtain a(k)� = −1 and

take ȧ(k) = H−1
� (a

(k)).
4: Calculate Sk = S⋆� (ȧ

(k)), where S⋆� (ȧ
(k)) = �(a(k)),WX.

5: Calculate the direction Δk = Δ(ȧ(k), Sk).
6: Choose the size
k and perform the step of size
k in the descent direction given by Δk. For example, find
k =
 ,
0 ≤
 ≤ 1, such that ‖X − S⋆� (ȧ

(k) +
Δk)‖W ≤ ‖X − S⋆� (ȧ
(k))‖W by the backtracking line search method27, Section 3.1.

7: Set ȧ(k+1) = ȧ(k) +
kΔk, b(k+1) = H�(ȧ(k+1)).
8: Set k = k + 1.
9: until STOP
10: return S̃ = S⋆� (ȧ

(k)) as an estimate of the signal.

As it is shown in4, the calculation of the direction in step 5 is the “bottleneck” of the VPGN algorithm, since the calculation of
S⋆� in steps 4 and 6 can be stably implemented (see S-VPGN in4). Moreover, the computational cost of step 5 is very large for the
case of banded weight matricesW, which correspond to autoregressive noise. The MGN method is designed to improve step 5.
Thus, we have Algorithm 1 with

VGPN: Δ(ȧ(k), Sk) =
(

JS⋆� (ȧ
(k))

)†

W

(

X − Sk
)

, (20)

MGN: Δ(ȧ(k), Sk) =
(

(

IN −�(H� (ȧ(k))),W
)

F̂a
)†

W

(

X − Sk
)

, (21)

10

where Sk = S⋆� (ȧ
(k)) = �(H� (ȧ(k))),W X.

The stable versions of calculating the projection are described in4 (the algorithms S-VPGN and S-VPGN-H). All the version
of VPGN still have a “bottleneck” in calculation of JS⋆� (ȧ

(k)), while the whole MGN algorithm can be stably implemented.

4.1 Stable auxiliary algorithms
Algorithm 2 below contains the stable implementation of computing the basis for calculating the projection�(H� (ȧ(k))),W

4. The
step of MGN additionally contains the calculation of F̂a. Applying the technique of4, we can derive Algorithm 3 for calculating
F̂a.
Let us briefly describe the approach of4. Denote

ga(z) =
r
∑

k=0
ak+1z

k (22)

the complex polynomial with coefficients a = (a1,… , ar+1)T; we do not assume that the leading coefficient is non-zero.
Let the circulant matrix C(a) be the extension of the partial circulant QT(a). Then the construction of a basis of (a) can be

reduced to solving the system of linear equations

C(a)vk = eN−k+1, k = 1,… , r. (23)

The eigenvalues of C(a) coincide with the values of the polynomial ga(z) in nodes of the equidistant grid  =
{

exp
(i2�j

N

)

, j = 0,… , N − 1
}

on the complex unit circle T = {z ∈ ℂ ∶ |z| = 1}. Therefore, the nondegeneracy of C(a) is
equivalent to that there are no roots of the polynomial ga(z) in .
Let us define the unitary matrix

TM (�) = diag
(

(1, ei� ,… , ei(M−1)�)T
)

, (24)
where � is a real number,M is a natural number.

Remark 4. In the exact arithmetic, an arbitrary small non-zero value of the smallest eigenvalue of a matrix provides its non-
degeneracy. However, in practice, the numerical stability and accuracy ofmatrix calculations depend on the condition numbers of
matrices. Therefore, the aim of the choice of a proper � is to do the condition number ofC(ã(�)), where ã = ã(�) =

(

Tr+1(−�)
)

a,
as small as possible. This minimization problem can be approximately reduced to the problem of maximization of the smallest
eigenvalue |�min(�)| = minz∈(�) |ga(z)| of C(ã(�)), since the maximal eigenvalue is not larger than maxz∈T |ga(z)|.

Denote N and −1
N the Fourier transform and the inverse Fourier transform for series of length N , respectively. Define

N (X) = [N (x1) ∶ … ∶ N (xr)], where X = [x1 ∶ … ∶ xr]; the same for −1
N (Y). Algorithm 2 exploits the fact that the

operations with circulant matrices can be implemented by means of fast Fourier transform31.

Algorithm 2 Calculation of a basis of (a) ⊂ ℂN 4

Input: a ∈ ℝr.
1: Find �0 = argmax−�∕N≤�<�∕N minz∈(�) |ga(z)| by means of a 1D numerical optimization method.
2: Calculate the vector ag = (ag,0,… , ag,N−1)T consisting of the eigenvalues of C(ã) by ag,j = ga

(

exp(i(2�j
N
− �0)

)

, j =
0,… , N − 1, where ã =

(

Tr+1(−�)
)

a; Ag = diag(ag).
3: Calculate the matrices Rr = N ([eN−r+1 ∶ … ∶ eN]) and Lr = A−1g Rr.
4: Compute Ur: find Or such that LrOr consists of orthonormal columns (Or can be found by either the QR factorization or

the SVD); calculate B = RrOr and Ur = A−1g B.
5: Compute Z̃ = −1

N (Ur).
6: return Z = (TN (−�0))Z̃ ∈ ℂN×r, whose columns form an orthonormal basis of (a), �0 and Ag .

Let us now turn to calculating the matrix F̂a. According to Theorem 3.1, it is sufficient to find an arbitrary matrix such that
QT(a)F̂a =M, whereM ∈ ℝ(N−r)×r is defined in Theorem 3.1. Therefore, it is sufficient to solve the following systems of linear

11

equations:

C(a)F̂a =
(

M
0r×r

)

. (25)

The following lemma is a direct application of the theorem about the solution of a linear system of equations given by a circulant
matrix32.

Lemma 3. Define F̂a = −1
N (A

−1
g R̂r), where R̂r = N

((

M
0r×r

))

. Then QT(a)F̂a = M, i.e. F̂a satisfies the conditions of

Theorem 3.1.

Remark 4 together with Lemma 3 provide Algorithm 3.

Algorithm 3 Calculation of a matrix F̂a in (18)
Input: a ∈ ℝr and a series S ∈ ℝN governed by the GLRR(a).

1: Compute �0, Ag using steps 1 and 2 of Algorithm 2.
2: ConstructM = −(S(�), ∶)T, where S = Tr+1 (S).

3: Calculate M̃ =
(

(TN−r(�0))M
0r×r

)

.

4: Calculate R̂r = N (M̃) and F̃a = −1
N (A

−1
g R̂r).

5: return F̂a = (TN (−�0))F̃a ∈ ℂN×2r.

Remark 5. In4, an enhanced version of Algorithm 2 using the compensated Horner scheme of33 is considered. In the version
with the compensated Horner scheme, this scheme is applied to calculating the values of the polynomial g and multiplication
RrOr. It is shown that this way of calculations considerably improves the stability of the projection algorithm. The construction
of Algorithm 3 allows one to improve its stability by the change of the first step “Compute �0, Ag using Algorithm 2” to its
enhanced version.

4.2 Algorithms for the iteration step in VPGN and MGN
Thus, both VPGN and MGN are particular cases of Algorithm 1 with different directions of the line search given by formulas

20 and 21 and presented in Algorithms 4 and 5.

Algorithm 4 Calculating the direction in VPGN
Input: X ∈ ℝN , ȧ(k) ∈ ℝr+1.

1: Calculate Sk = S⋆� (ȧ
(k)) as Sk = �(a(k)),WX.

2: Calculate JS⋆� (ȧ
(k)).

3: Calculate Δk =
(

JS⋆� (ȧ
(k))

)†

W
(X − Sk).

4: return Δk

The technique for calculating the projector�(a),W developed in4 uses the basis consisting of the vectors found byAlgorithm 2.
This technique supplemented by Algorithm 3 allows one to create fast and stable implementation of MGN (Algorithm 5). The
calculation of JS⋆� (ȧ

(k)) does not allow for both a fast and stable implementation of VPGN, even if Algorithm 2 is used for
calculating the projector �(a),W (the S-VPGN algorithm in4).

12

Algorithm 5 Calculating the direction in MGN
Input: X ∈ ℝN , ȧ(k) ∈ ℝr+1.

1: Calculate Sk = S⋆� (ȧ
(k)) as Sk = �(a(k)),WX.

2: Calculate F̂a(k) by Algorithm 3 with a = a(k) and S = Sk.
3: Calculate Δk =

(

(

IN −�(a(k)),W
)

F̂a(k)
)†

W
(X − Sk).

4: return Δk

4.3 The case of degenerate (2p + 1)-diagonalW
Let us show how Algorithm 5 in MGN can be implemented for a time series with missing values. Let a symmetric positive-

definite matrixW0 be given for the whole time series including missing entries. Then the weight matrixW is constructed from
W0 by setting the values of its columns and rows with indices equal to the entries of missing values to zero. In the case of AR(p)
noise, the matrixW0 (and thereforeW) is (2p + 1)-diagonal.
Thus, consider a (2p + 1)-diagonal matrixW which can be degenerate.
In the considered algorithms, there is a problem of calculating the weighted pseudoinverses and projections if the weight

matrixW is degenerate. Let us extend the definition of (F)†W and �F,W for some matrix F.
Consider a degenerate case when FTWF is not positive definite or, the same,W1∕2F is rank-deficient (W1∕2 is the principal

square root of W). Then we can use a different representation for the weighted pseudoinverse: (F)†W = (W1∕2F)†W1∕2. This
corresponds to the minimum-(semi)norm solution of the correspondingWLS problemminp ‖y−Fp‖2W. Although the projection
�F,W is generally not uniquely defined in the degenerate case, we will consider its uniquely defined version given by the formula
�F,W = F (F)†W.

Remark 6. Note that the matrixW1∕2F is rank-deficient if F is rank-deficient. However, for a full-rank F and a degenerateW,
W1∕2F is not necessarily rank-deficient. For example, if the orthogonal projections of the columns of F on colspace(W) are
linearly independent, thenW1∕2F is full-rank.

Calculation of weighted projection onto subspace with a given basis
Consider the Cholesky decompositionW = CTC; hereC is an upper triangular matrix with p nonzero superdiagonals34, p. 180.
The calculation of the pseudoinverse (CZ)† can be reduced to solving a linear least-squares problem and therefore its

computing can be performed with the help of either the QR factorization or the SVD of the matrix CZ.
Although Algorithm 6 for calculating the projection can be applied to the case of positive semidefinite weight matrices, the

general case of the Cholesky factorization of a degenerate matrixW is complicated, see35, p. 201.

Algorithm 6 Calculation of (Z)†W and �Z,Wx with the use ofW = CTC
Input: Z ∈ ℂN×r,W ∈ ℝN×N and x ∈ ℂN .

1: Compute the vector Cx and the matrix CZ.
2: Calculate q = (CZ)†(Cx).
3: return (Z)†W = q ∈ ℝr×N and �Z,Wx = Zq ∈ ℝN .

However, there is a particular case of degenerate weight matrices, which correspond to a time series with missing values. In
this case, the weight matrixW has zero columns and rows corresponding to missing entries and thereby can be easily processed.
Denote u ∈ ℝN the vector with ones at the places of observations and zeros at the places of missing values, U = diag(u). Then
the matrixW can be expressed asW = UTW0U. Suppose thatW0 is positive definite. Consider the Cholesky decomposition
W0 = CT0C0, where C0 is upper triangle, and set C = C0U. ThenW = CTC. Note that if C0 is upper triangular with p nonzero
superdiagonals, then C is also upper triangular and has p nonzero superdiagonals.

13

5 COMPARISON OF THE VPGN AND MGN ALGORITHMS

Let us compare the VPGN method and the proposed MGN method from the computational viewpoint.

5.1 Design of comparison
We consider several versions of the algorithms VPGN and MGN with the directions of line search given by Algorithm 4 and

Algorithm 5 respectively. The method VPGN is suggested in23. The difference between VPGN and S-VPGN is described in4;
in S-VPGN, the projections �(a),W are calculated in a more stable way using the techniques introduced in4 (see Algorithm 2
for calculating the special basis of (a) and Algorithm 6 for calculating the projection itself in the case of a banded W). In
MGN, the projections are always stably calculated. The addition of ‘-H’ at the end of the method abbreviations means that the
Compensated Horner scheme is used for calculating the projections.
The source code (R and C++) for these algorithms can be found in36, where the MGN and VPGN methods are implemented

for the case of a common (not necessarily diagonal) weight matrix W. The implementation of VPGN in36 extends that of37,
which is suitable for diagonal weight matrices only, and has the same order of computational cost.
The comparison of VPGN, S-VPGN and S-VPGN-Hwas performed in4. This comparison demonstrated that the technique for

the projection calculation, which was proposed in4, improves the algorithm numerical stability; however, this techniques cannot
be applied to the calculation of Δk given in 20 and therefore does not allow one to considerably improve the VPGN method.
The MGN method changes the iteration step in such a way (see 21) that the techniques developed in4 can be used for all steps
of the optimization algorithm.

5.2 Theoretical comparison
We start the comparison from comparing the algorithms by the computational costs. Then, we will compare the stability of

the algorithms when the algorithms are comparable by the computational costs. This depends on the structure of the weight
matrixW. The special case of interest is the case when the weight matrixW is (2p+1)-diagonal with a small p (this is the case
of autoregressive noise of order p and therefore a natural assumption). Note that the special case when both W and W−1 are
banded corresponds to the case of a diagonal matrixW.

5.2.1 Computational cost
Let us estimate computational costs in flops and study the asymptotic costs of one iteration asN →∞.

The MGN method
The computation cost of theMGNmethod differs from that of the S-VPGNmethod only by the cost of calculating Fa(k) instead

of JS⋆� (ȧ
(k)) (compare Algorithms 5 and 4), since the projection �(a(k)),W is calculated by the same algorithms (with the cost

O(rN logN +Nr2 +Npr)4).
As it is shown in4, ifW−1 is (2p+ 1)-diagonal, the asymptotic cost of the calculation of JS⋆� (ȧ

(k)) is O(Nr2 +Np2) flops; for
the case whenW is (2p+1)-diagonal, where p > 0, it takes O(N3). The calculation of Fa(k) is performed by Algorithm 3, which
calls Algorithm 2. The S-VPGN method contains Algorithm 2 with the cost O(rN logN +Nr2) for any form ofW4; therefore,
we need to discuss the cost of additional steps of Algorithm 3 only.
Algorithm 3 includes the first two steps of Algorithm 2; the other steps can be performed in O(rN logN) flops. Thus, the

cost of Algorithm 3 is O(rN logN + Nr2). Therefore, the asymptotic cost of one iteration of MGN given in Algorithm 5 is
O(Nr2 +Np2 + rN logN), or O(Np2 +N logN) for a fixed rank r.
Table 1 summarizes the computational costs for different methods.

Remark 7. Thus, if the inverseW−1 of the weight matrixW is (2p + 1)-diagonal, then the computational cost of the proposed
MGN method is slightly larger in comparison with the VPGN method. However, if the weight matrixW is (2p + 1)-diagonal
and p > 0 (the case of autoregressive noise of order p), then the computational cost of the MGN method is significantly smaller
by order. In the case of a diagonal matrixW and a fixed r, the costs of MGN and VPGN areO(N logN) andO(N) respectively.

14

TABLE 1 r-Rank approximation: Asymptotic computational costs in flops

Method W is (2p + 1)-diagonal, p > 0 W−1 is (2p + 1)-diagonal
VPGN O(N3) O(Nr2 +Np2)
S-VPGN, S-VPGN-H O(N3) O(Nr2 +Np2 + rN logN)
MGN, MGN-H O(Nr2 +Np2 + rN logN) O(Nr2 +Np2 + rN logN)

5.2.2 Stability
It is discussed in4 that the main “stability bottlenecks” of the VPGN algorithms consists of solving the systems of linear

equations. In fact, we say about inverting the matrices depending on a, that is, on the coefficients of GLRR(a) governing the
signal. The stability is measured by the orders of the condition numbers of these matrices as the time-series length N tends to
infinity.
For the MGN algorithm, the matrix Ag is inverted in Algorithm 2. It was shown in4 that the order of the condition number

of the matrix Ag is N t, where t is the maximal multiplicity of the roots of the characteristic polynomial g(a) (22) on the unit
circle. It is worth to mention that the use of the compensated Horner scheme increases the accuracy of computing the diagonal
elements of Ag and does not change its condition number.
For stability comparison, we consider the case whenW−1 is banded, since otherwise the computational cost of the VPGN

algorithm is very large. Independent noise with a diagonal covariance matrix � corresponds to this case in practice; thenW =
�−1 is diagonal. It was discussed in4 with reference to23, Section 6.2 that the condition number of the “bottleneck” matrix of the
VPGN algorithm has orderN2t.
Therefore, the advantage of the MGN algorithm in the accuracy is more significant in the case of the existence of unit-

modulus roots of large enough multiplicity. In the general form (1), the multiplicity of a root is determined by the order of the
corresponding polynomial Pmk and is equal to mk + 1. The root has unit modulus if �k = 0. Therefore, the typical examples are
polynomial signals and sinusoids with polynomial amplitude modulations.

5.3 Numerical comparison
For the numerical comparison of the considered algorithms, we use the example of a quadratic signal constructed in4, where

a local solution of (3) is known. Let us briefly describe this example. For constructing a solution of rank r = 3, the well-known
theory explaining the relation of linear recurrence relations, characteristic polynomials, their roots and the explicit form of the
series, see e.g. the book38, Section 3.2 with a brief description of this relation in the context of time series structure.
Let Y⋆N = (bt21,… , bt2N)

T, where ti, i = 1,… , N , form the equidistant grid in [−1; 1] and the constant b is such that ‖Y⋆N‖ = 1.
The series Y⋆N satisfies the GLRR(a∗) for a∗ = (1,−3, 3,−1)T. Since the last component of a∗ is equal to −1, we can say
that the series satisfies the LRR(a∗); the characteristic polynomial of this LRR has one unit root of multiplicity t = 3. Denote
R̂N = (c|t1|,… , c|tN |)T, where the constant c is such that ‖R̂N‖ = 1. Construct the observed series as XN = Y⋆N + RN , where
RN = R̂N − �((a∗)2),WR̂N . Thus, the pair X0 = Y⋆N and X = XN satisfies the necessary conditions for local minima4. The
sufficient condition was tested numerically forN < 100. Details of the example implementation see in4.
All computations are performed in double precision. When the compensated Horner scheme is used, the accuracy of calcu-

lations in double precision is the same as if the calculation would be in quadruple precision without the compensated Horner
scheme.

5.3.1 Stability
The comparison is performed for the methods VPGN, S-VPGN-H, MGN and MGN-H for different N from 100 to 50000.

For simplicity, consider the non-weighted case, whenW is the identity matrix.
Denote Ỹ⋆ the result of an algorithm participating in the comparison. We compare the algorithms by the accuracy, that is, by

the Euclidean distance between Ỹ⋆ and Y⋆N (Fig. 1).
The algorithms were started from the GLRR(a0), where a0 = a∗ + 10−6dT and each components of d is randomly distributed

in [−1, 1]. We used 100 simulations to obtain the averaged results. The iterations stop when the backtracking line search method

15

100 200 500 1000 2000 5000 20000 50000

1e
−

08
1e

−
06

1e
−

04
1e

−
02

1e
+

00

N

D
is

ta
nc

e
to

 s
ol

ut
io

n

VPGN
S−VPGN−H
MGN
MGN−H

FIGURE 1 Comparison of algorithms by distance to the solution, for differentN .

(a)

100 200 500 1000 2000 5000

1e
−

14
1e

−
11

1e
−

08
1e

−
05

1e
−

02

N

P
ro

po
rt

io
n

of
 r

es
id

ua
l s

in
gu

la
r

va
lu

es
, p

ro
je

ct
io

n

VPGN
S−VPGN−H
MGN
MGN−H

(b)

100 200 500 1000 2000 5000

1e
−

14
1e

−
11

1e
−

08
1e

−
05

1e
−

02

N

P
ro

po
rt

io
n

of
 r

es
id

ua
l s

in
gu

la
r

va
lu

es
, g

ra
di

en
t

VPGN
S−VPGN−H
MGN
MGN−H

FIGURE 2 Shares of the residual eigenvalues, for differentN ; (a) the projection toDr and (b) the Jacobian matrix with columns
from a 2r-dimensional space.

(in step 6 of Algorithm 1) with decreasing search steps
 = 1, 1∕2, 1∕4,… , 2−50 does not decrease the value of the objective
function.
Figure 1 shows that the accuracy of MGN and MGN-H is asymptotically much better than the accuracy of VPGN and S-

VPGN-H; moreover, the errors of VPGN and S-VPGN-H increases drastically for largeN . Note that in exact arithmetic, VPGN
and S-VPGN-H would produce the same results; the same is true for the pair of MGN and MGN-H.
Figure 2 explains the difference between the algorithms. In4, the projection algorithms for calculating �Z,WX are compared

by the difference with the true value. In Figure 2(a), the comparison of the computed projectors to the set of time series of
rank not larger than r is performed by the proximity of their results to r-rank time series. Let YN be the numerical result of the
projection, choose L = [N∕2] and denote {�i}Li=1 the singular values of the L-trajectory matrix Y = TL(YN). We measure the

projector accuracy as
√

∑L
i=r+1 �

2
i ∕‖Y‖F, where ‖Y‖

2
F =

∑L
i=1 �

2
i is the Frobenius norm. The projection �Z,WX is performed

in the same way in the algorithms S-VPGN-H and MGN-H. Therefore, their accuracies coincide. MGN does not use the Horner
compensation scheme and therefore it is a bit worse. The algorithm used in VPGN is less numerically accurate.
The key difference between the VPGN andMGN algorithms is in the 5-th step of Algorithm 1, that is, in the way of calculation

of the Jacobian matrix; this can be performed in MGN with improved accuracy. Since each column of the Jacobian matrix
(that is, each gradient vector) has rank 2r (Theorem 3.2), we can check the accuracy of its calculation by summing the shares

16

√

∑L
i=2r+1 �

2
i ∕‖Y‖F for columns YN of JS⋆� (ȧ

(k)) for VPGN and of
(

IN − �(H� (ȧ(k))),W
)

F̂a for MGN, see (20) and (21) and
Algorithms 4 and 5.
Figure 2(b) confirms that VPGN and S-VPGN-H lack numerical stability when computing the direction (step 5 of

Algorithm 1); recall that the multiplicity t equals 3 for this example (see discussion in Section 5.2.2). Figure 2(a) shows that
VPGN produces a resultant series far from r-rank one, for large N . Both of these factors lead to that VPGN and S-VPGN-H
perform worse than the MGN and MGN-H methods (a “plateau” visible in Figure 1 for VPGN and S-VPGN-H for N > 2000
is due to the fact that the distance can not be greater than the series norm).

5.3.2 Computational cost
For effectively implemented algorithms, the computational speed should have the same order as the theoretical computational

cost in flops. Let us numerically confirm Remark 7. We will consider the computational time for different implementations of
Algorithms 4 and 5, which calculate the search directions. This time characterizes the computational speed of one iteration. We
consider different time series lengths N and two types of the weight matrix W, the identity matrix and a 3-diagonal matrix,
which is the inverse of the covariance matrix of AR(1) with the coefficient 0.9 (the explicit form of this inverse can be found
e.g. in39). The speed is estimated with the help of the example described in Section 5.3.1.
The results for the CPU time are depicted in Fig. 3. Since we compare asymptotic behavior (as N → ∞), we eliminate

the constant time, which does not depend on N , in the following way. For each algorithm, we consider the CPU times for
different values of N starting from 100 and then divide them by the CPU time for N equal 100. Note that if W is diagonal,
the computational times of the algorithms are asymptotically almost the same. However, if W contains three diagonals, the
computational times for the methods MGN and MGN-H are much smaller than that for the methods VPGN and S-VPGN-H.

(a)

100 500 5000 50000

1
2

5
10

20

N

T
im

es
 s

lo
w

er

VPGN
S−VPGN−H
MGN
MGN−H

(b)

100 500 5000 50000

1
2

5
10

50
20

0

N

T
im

es
 s

lo
w

er

VPGN
S−VPGN−H
MGN
MGN−H

FIGURE 3 Comparison of algorithms by CPU times of one iteration for differentN ; (a) diagonalW and (b) 3-diagonalW.

5.4 Signal estimation using MGN: with and without gaps
Consider a time series Y50 similar to the one considered in20, which is the sum of a signal of rank r = 4 and Gaussian white

noise. That is, let the signal S50 have the following form: S50 = (s1,… , s50)T, where

si = 0.9i cos
(�
5
i
)

+ 1
5
1.05i cos

(�
12
i + �

4

)

, i = 1,… , 50, (26)

and
Y50 = S50 + 0.2

R50
‖R50‖

‖S50‖;

here the series R50 consists of i.i.d. normal random variables with zero mean and unit variance. Note that since Y50 contains a
random component, we were not able to reproduce the time series studied in20 exactly; we used set.seed(15) in R version
4.0.2, see36.

17

Let us consider two versions of the time series Y50, the first one is without missing data and the second time series with
artificial gaps at positions i = 10…19 and i = 35…39, and construct two estimates of the signal by the MGN-H method.
Since the noise is white, the identity matrixW = I50 was taken for the case without gaps; for the case with gaps, we consider
W0 = I50 and construct W changing ones on the diagonal of W0 at the positions of missing data to zeros (see Section 4.3).
For constructing the initial GLRR, we replace the missing entries by the mean value of the time series and then set the GLRR
coefficients equal to (r + 1)-th left singular vector of the SVD of the (r + 1)-trajectory matrix Tr+1(Y50).
The results are presented in Figure 4. The series Y50 is indicated by the black dots, the signal S50 is depicted by the blue line,

and the obtained approximation S̃ is shown by the red solid line. Note that in both cases S̃ gives a fairly close estimate of S50,
despite even a large gap at 10…19 in the case with missing values.

(a)

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●
●

●

● ●

●

● ●

●
●

●

●
●

● ●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

Index

V
al

ue

● Series
Approximation
Signal

(b)

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

Index

V
al

ue

● Series
Approximation
Signal
Missing value

FIGURE 4 Estimates of the signal S50 using the MGN algorithm, (a) without gaps (b) with gaps.

Let us consider the same signal (26) corrupted by AR(1) noise with coefficient 0.9 (red noise) instead of white noise. We
compare two versions of the MGN-H algorithm, with W(W) = IN and with W(R) = �−1, where � is the N × N covariance
matrix of the AR process. The latter corresponds to the MLE estimate. To eliminate the influence of the initial GLRR on the
comparison, we take it as the minimal GLRR governing the signal.
The estimates of RMSE are obtained by 1000 iterations; in the parentheses we indicate the computational time in seconds.

For signal estimation without gaps, we have RMSE equal to 0.075 forW = W(W) (80 sec) and 0.066 forW = W(R) (75 sec).
For gap imputation accuracy in presence of gaps, we have 0.136 forW0 =W(W) (105 sec) and 0.097 forW0 =W(R) (100 sec).
The difference between the errors is statistically significant. The computational times are similar and even a bit smaller for the
MLE version. This confirms that MGN-H is well working for time series with possible gaps and autoregressive noise.

18

6 CONCLUSION

In this paper we presented a new iterative algorithm (MGN, Algorithm 1 with Δk calculated by Algorithm 5) for comput-
ing the numerical solution to the problem (3) and compared it with a state-of-art algorithm based on the variable projection
approach (VPGN, Algorithm 1 with Δk calculated by Algorithm 4). We showed that the proposed algorithm MGN allows the
implementation, which is more numerically stable especially for the case of multiple unit-modulus roots of the characteristic
polynomial (in particular, for polynomial series, where the multiplicity is equal to the polynomial order plus one). This effect
can be explained by the inversion of matrices with condition number of orderN t in MGN, where t is the multiplicity, while the
direct implementation of VPGN deals with matrices with condition number of orderN2t.
The comparison of computational costs in Section 5.2.1 shows that the algorithm MGN has slightly larger costs for the

case of banded inverses W−1 of weight matrices. However, in the case of autoregressive noise with covariance matrix �, the
corresponding weight matrixW = �−1, which provides the MLE estimate, is banded itself andW−1 is not banded. Then the
proposed algorithm MGN has a much lower computational cost in comparison with VPGN.
An important feature of the MGN algorithm is that it can be naturally extended to the case of missing data without increasing

the computational cost (see Sections 4.3 and 5.4).

ACKNOWLEDGMENTS

The reported study was funded by RFBR, project number 20-01-00067.

References

1. Cadzow J. Signal enhancement-a composite property mapping algorithm. IEEE Trans Acoust, Speech, Signal Process.
1988;36:49–62.

2. Markovsky I. Structured low-rank approximation and its applications. Automatica. 2008 apr;44(4):891–909.

3. Heinig G, and Rost K. Algebraic Methods for Toeplitz-like Matrices and Operators (Operator Theory: Advances and
Applications). Birkhäuser Verlag; 1985.

4. Zvonarev N, and Golyandina N. Low-rank signal subspace: parameterization, projection and signal estimation; 2021.
Available from: https://arxiv.org/abs/2101.09779.

5. Tufts DW, and Shah AA. Estimation of a signal waveform from noisy data using low-rank approximation to a data matrix.
IEEE Trans Signal Process. 1993 apr;41(4):1716–1721.

6. DendrinosM, Bakamidis S, and Carayannis G. Speech enhancement from noise: A regenerative approach. Speech Commun.
1991 feb;10(1):45–57.

7. Markovsky I. Low Rank Approximation: Algorithms, Implementation, Applications (Communications and Control
Engineering). 2nd ed. Springer; 2019.

8. Iarrobino A, and Kanev V. Power Sums, Gorenstein Algebras, and Determinantal Loci. Lecture Notes in Mathematics.
Springer Berlin Heidelberg; 1999.

9. Shaman P. An Approximate Inverse for the Covariance Matrix of Moving Average and Autoregressive Processes. Ann
Statist. 1975 03;3(2):532–538.

10. Ottaviani G, Spaenlehauer PJ, and Sturmfels B. Exact solutions in structured low-rank approximation. SIAM JMatrix Anal
Appl. 2014;35(4):1521–1542.

11. Chu MT, Funderlic RE, and Plemmons RJ. Structured low rank approximation. Linear Algebra Appl. 2003;366(0):157 –
172. Special issue on Structured Matrices: Analysis, Algorithms and Applications.

https://arxiv.org/abs/2101.09779

19

12. Markovsky I, Willems JC, Van Huffel S, and De Moor B. Exact and approximate modeling of linear systems: A behavioral
approach. vol. 11. SIAM; 2006.

13. Gillard J, and Zhigljavsky A. Weighted norms in subspace-based methods for time series analysis. Numer Linear Algebra
Appl. 2016;23(5):947–967.

14. Andersson F, and Carlsson M. Alternating Projections on Nontangential Manifolds. Constr Approx. 2013 sep;38(3):489–
525.

15. De Moor B. Total least squares for affinely structured matrices and the noisy realization problem. IEEE Trans Signal
Process. 1994;42(11):3104–3113.

16. Lemmerling P, Mastronardi N, and Van Huffel S. Fast algorithm for solving the Hankel/Toeplitz Structured Total Least
Squares problem. Numer Algorithms. 2000 Jul;23(4):371–392.

17. Schost E, and Spaenlehauer PJ. Newton-like iteration for determinantal systems and structured low rank approximation.
ACM Commun Comput Algebra. 2014 Jan;47(3/4):96–97.

18. Condat L, and Hirabayashi A. Cadzow denoising upgraded: A new projection method for the recovery of Dirac pulses from
noisy linear measurements. Sampl Theory Signal Image Process. 2015;14(1):17–47.

19. Gillard J, and Zhigljavsky A. Optimization challenges in the structured low rank approximation problem. Journal of Global
Optimization. 2013;57(3):733–751.

20. Ishteva M, Usevich K, and Markovsky I. Factorization approach to structured low-rank approximation with applications.
SIAM J Matrix Anal Appl. 2014;35(3):1180–1204.

21. Zvonarev N, and Golyandina N. Iterative algorithms for weighted and unweighted finite-rank time-series approximations.
Statistics and Its Interface. 2017;10(1):5–18.

22. Usevich K, and Markovsky I. Structured low-rank approximation as a rational function minimization. IFAC Proceedings
Volumes. 2012;45(16):722–727.

23. Usevich K, and Markovsky I. Variable projection for affinely structured low-rank approximation in weighted 2-norms. J
Comput Appl Math. 2014;272:430–448.

24. Golub G, and Pereyra V. Separable nonlinear least squares: the variable projection method and its applications. Inverse
Prob. 2003;19(2):R1.

25. Markovsky I, and Usevich K. Structured low-rank approximation with missing data. SIAM Journal on Matrix Analysis and
Applications. 2013;34(2):814–830.

26. Hall M. Combinatorial Theory. Wiley-Interscience; 1998.

27. Nocedal J, and Wright S. Numerical optimization. Springer Science & Business Media; 2006.

28. Deuflhard P, and Hohmann A. Numerical Analysis in Modern Scientific Computing: An Introduction. 2nd ed. Berlin,
Heidelberg: Springer-Verlag; 2003.

29. Stewart GW. On scaled projections and pseudoinverses. Linear Algebra Appl. 1989 jan;112:189–193.

30. Lovell MC. A simple proof of the FWL theorem. The Journal of Economic Education. 2008;39(1):88–91.

31. Korobeynikov A. Computation- and space-efficient implementation of SSA. Statistics and Its Interface. 2010;3(3):357–368.

32. Davis PJ. Circulant matrices. American Mathematical Soc.; 2012.

33. Graillat S, and Ménissier-Morain V. Compensated Horner scheme in complex floating point arithmetic. In: Proceedings of
the 8th Conference on Real Numbers and Computers, Santiago de Compostela, Spain; 2008. p. 133–146.

20

34. Golub GH, and Van Loan CF. Matrix Computations. 4th ed. Baltimore: The Johns Hopkins University Press; 2013.

35. Higham NJ. Accuracy and Stability of Numerical Algorithms: Second Edition. Other Titles in Applied Mathematics.
Society for Industrial and Applied Mathematics; 2002.

36. Zvonarev N. R code for Modified Gauss-Newton algorithm; 2021. Available from: https://github.com/neg99/MGN.

37. Markovsky I, and Usevich K. Software package for Hankel structured low-rank approximation; 2014. Available from:
https://github.com/slra/slra.

38. Golyandina N, and Zhigljavsky A. Singular Spectrum Analysis for Time Series. 2nd ed. Springer-Verlag; 2020.

39. Golyandina N, and Zhigljavsky A. Blind deconvolution of covariance matrix inverses for autoregressive processes. Linear
Algebra and its Applications. 2020;593:188–211.

AUTHOR BIOGRAPHY

Nikita Zvonarev. Nikita Zvonarev is an Assistant Professor at St. Petersburg State University, St. Peters-
burg, Russia. Dr. Zvonarev received the M.S. degree in Applied Mathematics in 2015 and Ph.D. degree in
Computational Mathematics with the thesis entitled “Structured time series approximations” in 2018 from
St. Petersburg State University. His research interests are optimization methods and time series analysis.

Nina Golyandina. Nina Golyandina is an Associate Professor at St. Petersburg State University, St. Peters-
burg, Russia. Dr. Golyandina received the M.S. degree in Applied Mathematics in 1985 and Ph.D. degree in
Probability Theory and Mathematical Statistics in 1998 from St. Petersburg State University. Her research
interests are in applied statistics and time series analysis. She is the co-author of three monographs devoted
to singular spectrum analysis.

https://github.com/neg99/MGN
https://github.com/slra/slra

	Fast and stable modification of the Gauss-Newton method for low-rank signal estimation
	Abstract
	1 Introduction
	2 Parameterization of low-rank series
	2.1 Generalized linear recurrence relations
	2.2 Subspace approach
	2.3 Parameterization

	3 Optimization
	3.1 Approaches for solving a general nonlinear least-squares problem
	3.1.1 Gauss-Newton method
	3.1.2 Variable projection

	3.2 Known iterative methods for low-rank approximation
	3.2.1 Weighted Gauss-Newton method
	3.2.2 Gauss-Newton method with variable projection

	3.3 Modified Gauss-Newton method for low-rank approximation

	4 Algorithms of the VPGN and MGN methods
	4.1 Stable auxiliary algorithms
	4.2 Algorithms for the iteration step in VPGN and MGN
	4.3 The case of degenerate (2p+1)-diagonal W

	5 Comparison of the VPGN and MGN algorithms
	5.1 Design of comparison
	5.2 Theoretical comparison
	5.2.1 Computational cost
	5.2.2 Stability

	5.3 Numerical comparison
	5.3.1 Stability
	5.3.2 Computational cost

	5.4 Signal estimation using MGN: with and without gaps

	6 Conclusion
	Acknowledgments
	References
	Author Biography

