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Abstract
This paper is concerned with the convergence analysis of an extended variation of the locally optimal precondi-

tioned conjugate gradient method (LOBPCG) for the extreme eigenvalue of a Hermitian matrix polynomial which
admits some extended form of Rayleigh quotient. This work is a generalization of the analysis by Ovtchinnikov
(SIAM J. Numer. Anal., 46(5):2567–2592, 2008). As instances, the algorithms for definite matrix pairs and hy-
perbolic quadratic matrix polynomials are shown to be globally convergent and to have an asymptotically local
convergence rate. Also, numerical examples are given to illustrate the convergence.
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value problem
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1 Introduction

Given a Hermitian matrix polynomial
F (�) =

m
∑

k=0
Ak�

m−k, (1)

of degree m, where Ak ∈ ℂn×n for k = 0,… , m, and an interval  = (�−, �+). Suppose F (�−) is negative definite.
For some nonzero x ∈ ℂn, consider the equation

xHF (�)x = 0, � ∈ . (2)
Let  denote the set of all x for which (2) has at lease one root � = �(x) in , while ℂn ⧵  is the set of all x for
which (2) has no root in . For any x ∈ , define

�(x) ∶= xHF ′(�(x))x =
m−1
∑

k=0
(m − k)Ak�(x)m−k−1.

Suppose that �(x) > 0 for any x ∈ . Then (2) has only one root in , which is called the Rayleigh quotient of
F (�) at x. Suppose the matrix polynomial F (�) has l eigenvalues in , namely �1 ≤ ⋯ ≤ �l, while for any matrix
X ∈ ℂn×k with a proper constraint, the projected polynomial XHF (�)X has lX ≤ l eigenvalues in , namely
�1,X ≤⋯ ≤ �lX ,X . Furthermore, suppose the eigenvalues of F (�) admit min-max principles, such as

1. the Wielandt-Lidskii min-max principle:

min
1⊂⋯⊂k
dimj=ij

max
xj∈j

X=[x1,…,xk]
rank(X)=k
proper X

k
∑

j=1
�j,X =

k
∑

j=1
�ij ; (3)
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2. the Courant-Fischer min-max principle obtained by setting k = 1 in (3) and noticing �(x) = �1,X :
min

dim=i
max
x∈proper x

�(x) = �i; (4)

3. the Fan trace min principle obtained by setting ij = j in (3):

min
rank(X)=k
proper X

k
∑

j=1
�j,X =

k
∑

j=1
�j ; (5)

4. or the extreme eigenvalue characterization obtained by setting i = 1 in (4) or k = 1 in (5):
minproper x �(x) = �1, (6)

where the phrase “proper X” in the min/max means that the minimum/maximum is obtained under some proper
constraint.

These min-max principles motivate us to use the Rayleigh-Ritz procedure and gradient-type optimization meth-
ods, such as the steepest descent method (SD) or the conjugate gradient method (CG), to obtain several smallest
eigenvalues and their corresponding eigenvectors. In this view, the locally optimal block preconditioned (extended)
conjugate gradient method (LOBP(e)CG) has been developed to solve some kinds of eigenvalue problems. Locally
optimal CG for nonlinear optimizationwas first described by Takahashi [25]. Later, Knyazev [7] established LOBPCG
for the generalized Hermitian eigenvalue problem A − �B, where A ≻ 0. Because of its efficiency, this method has
been used to solve different kinds of eigenvalue problems. Nevertheless, up to now, the convergence analysis of this
method has been incomplete. As far as we know, current results on the estimate for the convergence rate fall into two
categories. Ovtchinnikov [22, 23] dealt with the convergence rate of a standard form for LOBPCG applied to stan-
dard Hermitian eigenvalue problems and generalized Hermitian eigenvalue problems (A − �B)x = 0 with a positive
definite B. He analyzed the convergence rate of LOBPCG by constructing a relationship to SD and then bringing in
the convergence rate of SD by Samokish [24]. On the other hand, also for those two types of eigenvalue problems,
Neymeyr and his co-authors derived the convergence rate of a special form named “sharp estimate” for preconditioned
inverse vector iteration (PINVIT) and (preconditioned) SD in a series of works [19, 8, 21, 20, 2]. In this paper, we
will consider several instances of the generalized eigenvalue problem and try to apply the developed ideas to them
for the algorithm LOBPCG for computing the extreme eigenvalue, which means the block size is 1, or equivalently,
a vector version of LOBPCG. The problems are:

1. Definite matrix pair F (�) = �B −A, which means there exists �0 ∈ ℝ such that F (�0) ≺ 0. Let  = (�0,+∞)
and = {x ∈ ℂn ∶ xHBx > 0}, and let the proper constraint beXHBX = I , satisfying the assumptions above
(see, e.g. [10, 18, 16, 14]). Here, the investigated algorithm coincides with the algorithm given by Kressner et
al [11, Algorithm 1].

2. Hyperbolic quadratic matrix polynomial F (�) = �2A + �B + C , with A ≻ 0 and assuming there exists
�0 ∈ ℝ such that F (�0) ≺ 0. Let  = (�0,+∞) and  = ℂn, and let the proper constraint be rank(X) = k
or XHAX = I , satisfying the assumptions above (see, e.g. [4, 17, 6, 15]). Here, the investigated algorithm
coincides with the algorithm given by Liang and Li [15, Algorithm 11.2].

The rest of this paper is organized as follows. First, some notation is introduced. Section 2 presents the generic
framework of LOBPeCG for any kind of Hermitian matrix polynomial satisfying the assumptions at the beginning of
the paper, and also its convergence analysis. Section 3 applies this convergence analysis to the two problems listed
above. In Section 4, two numerical examples are given to illustrate the convergence rate. Some conclusions are
provided in Section 5. Appendices A and B are used to take care of detailed and difficult estimates in the proof of the
convergence analysis in Section 2.
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Notation. Throughout this paper, In (or simply I if its dimension is clear from the context) is the n × n iden-
tity matrix, and ej is its jth column. 1n =

∑n
j=1 ej (or also simply 1 if its dimension is clear from the context).

diag(�1,… , �n) is a diagonal matrix whose diagonal entries are �1,… , �n. XH is the conjugate transpose of a vector
or matrix X, and ‖X‖ is its spectral norm, X† is the Moore-Penrose inverse of a matrix X.

Given amatrixA and a vector x, the (m+1)-dimensional Krylov subspace is denoted bym(A, x) = span{x,Ax,… , Amx},
and(A) denotes A’s column subspace.

We use A ≻ 0 (A ⪰ 0) to indicate that A is Hermitian positive (semi-)definite, and A ≺ 0 (A ⪯ 0) if −A ≻ 0
(−A ⪰ 0). For A ⪰ 0, A1∕2 is the unique positive semidefinite square root of A.

For a Hermitian matrix A, its eigenvalues are denoted by
�min(A) ≤ �(2)min(A) ≤⋯ ≤ �(n)min(A), or �(n)max(A) ≤⋯ ≤ �(2)max(A) ≤ �max(A).

For any two functions f (x), g(x), by f (x) ∼ g(x)we denote the case that �2f (x) ≤ g(x) ≤ �1f (x) for some �1, �2 > 0
and all x in the joint domain of f and g. Similarly, by fi ∼ gi we denote the same situation for two sequences
{fi}, {gi}. Clearly “∼” is an equivalence relation.

Recall the matrix polynomial F (�) from (1). Define the corresponding residual vector r(x) ∶= F (�(x))x. Then
xHr(x) = 0 and

r(x) = −1
2
�(x)∇�(x),

because
0 = ∇(xHF (�(x))x) = xHF ′(�(x))x∇�(x) + 2F (�(x))x = �(x)∇�(x) + 2r(x).

Denote the divided difference by
�(�1, �2) ∶=

F (�1) − F (�2)
�1 − �2

.

Then for any nonzero x, define
Px,�1,�2 ∶=

xxH�(�1, �2)
xH�(�1, �2)x

,

and
F̌�1,�2(�; x) ∶=

(

I − PH
x,�1,�2

)

F (�)
(

I − Px,�1,�2
)

.

It is easy to check that
Px,�1,�2x = x, xH�(�1, �2)Px,�1,�2 = xH�(�1, �2), P 2

x,�1,�2
= Px,�1,�2 ,

i.e., Px,�1,�2 is an (oblique) projection.

2 Generic LOBPeCG Framework

First we present a framework for LOBPeCG, namely Algorithm 2.1. Note that in the shortcut LOCG(nb, me), nb
represents the block size, i.e., the number the eigenpairs to compute simultaneously, while me indicates the size of
the subspace extension so that me + 1 is the dimension of the Krylov subspace.

We will deal with LOCG(1, me) in the following. Since j ≡ 1, we can omit the index j safely.
In every iteration of the algorithm, computing the proper eigenpairs of ZHF (�)Z is equivalent to solving the

following optimization problem:
�i+1 = �(Ziyi) = minproper y �(Ziy), (7)

where Zi is a basis of span{xi, KiF (�i)xi,… , (KiF (�i))me−1xi, xi−1}.
Theorem 2.1. Let the sequences {�i}, {xi}, {ri ∶= F (�i)xi} be produced by LOCG(1, me). Suppose that for all i, yi
is a stationary point of �(Ziy).

1. Only one of the following two mutually exclusive situations can occur:

3



Algorithm 2.1 Locally optimal block preconditioned extended conjugate gradient method: LOCG(nb, me)
Given an initial proper approximation X0 ∈ ℂn×nb , and an integer me ≥ 1, and a series of preconditioners {Ki;j}, the
algorithm computes the approximations of the eigenpairs (�j , uj) for j ∈ J, where J = {1 ≤ j ≤ nb} for computing
the few smallest eigenpairs.
1: solve the projected problem for XH

0 F (�)X0 to get its eigenpairs (�0;j , yj);
2: X0 ( = [… , x0;j ,…]) = X0[y1,… , ynb], X−1 = 0, J = {1 ≤ j ≤ nb};
3: for i = 0, 1,… do
4: construct preconditioners Ki;j for j ∈ J;
5: compute a basis matrix Zi of the subspace∑j∈Jme(Ki;jF (�i;j), xi;j) +(Xi−1);
6: compute the nb proper eigenpairs of ZH

i F (�)Zi: (�i+1;j , yi;j) for j ∈ J and let 
i+1 = diag(… , �i+1;j ,…)
whose diagonal entries are those for j ∈ J;

7: Xi+1 ( = [… , xi+1;j ,…]) = ZiYi, where Yi = [… , yi;j ,…] whose columns are those for j ∈ J;
8: end for
9: return approximate eigenpairs to (�j , uj) for j ∈ J.

(a) For some i, ri = 0, and then me(KiF (�i), xi) = span{xi} for me ≥ 2. Then we have

�i = �i+1 = … , xi = xi+1 = … , ri = ri+1 =⋯ = 0, (8)
and (�i, xi) is an eigenpair of F (�).

(b) �i is strictly monotonically decreasing, and �i → �̂ ∈ [�−, �+] as i→ ∞, and ri ≠ 0 for all i, and no two
xi are linearly dependent.

2. xHi ri = 0, ZH
i ri+1 = 0.

3. in the case of Item 1(b), if {xi} is bounded under the proper constraint, then

(a) ri ≠ 0 for all i but ri → 0 as i→ ∞,
(b) �̂ is an eigenvalue of F (�), and any limit point x̂ of {xi} is a corresponding eigenvector, i.e., F (�̂)x̂ = 0.

Proof. The proof is nearly the same as its analogue by Liang and Li [15, Theorem 8.1]. First by (7), clearly �i+1 ≤ �i.
There are only two possibilities: either ri = 0 for some i or ri ≠ 0 for all i. If ri = F (�i)xi = 0 for some i,
then (Zi) = span{xi, xi−1}. Note that (Zi−1) = span{xi−1, Ki−1F (�i)xi−1,… , (Ki−1F (�i))me−1xi−1, xi−2} and
xi = Zi−1yi−1 ∈ (Zi−1). Then (Zi) ⊂ (Zi−1), which implies �i+1 = �i and xi+1 = xi and then ri+1 = ri = 0.
Thus, (8) holds. Now consider ri ≠ 0 for all i. Note that ri ≠ 0 implies ∇�i ≠ 0, and so �(xi − �1Ki∇�i) < �(xi) for
some �1 with sufficiently tiny |�1|. This in turn implies �(xi + �2ri) < �(xi) for some �2 with sufficiently tiny |�2|.
Note that xi satisfies the proper constraint and the constraint is continuous, which implies xi+�2ri satisfies the proper
constraint. Thus,

�i+1 = min
t
�(Zyi) ≤ �(xi + �2ri) < �(xi).

Therefore �i is strictly monotonically decreasing. Since �i is strictly monotonically decreasing and bounded from
below since �i ≥ �−, it is convergent and �i → �̂ ∈ [�−, �+] because �i = �(xi) ∈ [�−, �+] for all i. No two xi are
linear dependent because linear dependent xi and xj produce �i = �j . This proves Item 1.

For Item 2, easy to see xHi ri = xHi F (�i)xi = 0. Since yi is a stationary point,

ZH
i ri+1 = −

�(xi+1)
2

ZH
i ∇�(xi+1) = −

�(xi+1)
2

ZH
i ∇�(Ziyi) = −

�(xi+1)
2

d�(Ziyi)
dy

= 0.

For Item 3(a), we have ‖ri‖ = ‖F (�i)xi‖ ≤
[
∑m
k=0 ‖Ak‖|�l|

m−k]
‖xi‖ so {ri} is a bounded sequence. It suffices

to show that any limit point of {ri} is the zero vector. Assume, to the contrary, {ri} has a nonzero limit point r̂, i.e.,
rij → r̂, where {rij} is a subsequence of {ri}. Since {xij} is bounded, it has a convergent subsequence. Without loss
of generality, we may assume xij itself is convergent and xij → x̂ as j → ∞. We have r̂Hx̂ = 0 and x̂ satisfies the
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proper constraint because rHijxij = 0 and xij satisfies the proper constraint. Now consider the projected problem for

Fij (�) ∶= Y H
ij
F (�)Yij =

[

xHijF (�)xij xHijF (�)rij
rHijF (�)xij rHijF (�)rij

]

,

where Yij = [xij , rij ]. Since rHijxij = 0, rank(Yij ) = 2, and thus Fij (�) still satisfies the assumptions at the beginning
of the paper. Denote by �j;k its eigenvalues. It can be seen that

�− < �1 ≤ �j;1 ≤ �j;2 ≤ �l. (9)
Then �1 ≤ �ij+1 ≤ �j;1. Let

F̂ (�) = lim
j→∞

Fij (�)

whose eigenvalues are denoted by �̂i. By the continuity of the eigenvalues with respect to the entries of coefficient
matrices, we know �j;i → �̂i as j → ∞, and thus

�− < �1 ≤ �̂1 ≤ �̂2 ≤ �̂l. (10)
Notice by (9) and (10)

�1 ≤ �ij+1 ≤ �j;1 ⇒ �− < �1 ≤ �̂ ≤ �̂1. (11)
On the other hand, by (9), we have

F̂ (�̂) = lim
j→∞

Fij (�ij ) = lim
j→∞

[

0 rHij rij
rHij rij rHijF (�ij )rij

]

=
[

0 r̂Hr̂
r̂Hr̂ r̂HF (�̂)r̂

]

which is indefinite because r̂Hr̂ > 0. But by (11), F̂ (�̂) ⪯ 0, a contradiction. So r̂ = 0, as was to be shown.
For Item 3(b), since ‖xi‖ = 1, {xi} has at least one limit point. Let x̂ be any limit point of xi, i.e., xij → x̂.

Taking the limit on both sides of F (�ij )xij = rij yields F (�̂)x̂ = 0, i.e., (�̂, x̂) is an eigenpair.
Theorem 2.1 shows that LOCG(1, me) converges globally, but provides no information on its convergence rate.

In order to obtain such a rate, we proceed as follows: first, a relationship between the quantities of two successive
iterations is established in Theorem 2.2; then, by this relationship, LOCG(1, me) is compared with SD(1, me) in The-
orem 2.3, where SD(1, me) is the block preconditioned steepest descent method; finally, the rate follows from this
comparison in Theorem 2.4. These three theorems are reminiscent of the theorems by Ovtchinnikov [22, Theo-
rem 2.6,Theorem 4.1, and Theorem 4.2], respectively. Our theorems are more general than those w.r.t. three aspects:
they hold for any Hermitian matrix polynomial F (�) satisfying the assumptions in Section 1, other than only the stan-
dard Hermitian eigenvalue problem F (�) = �I − A; they allow for any me in LOCG(1, me), other than only me = 1;
the estimates are somewhat refined.
Theorem 2.2. Let x ≠ 0, r(x) ≠ 0, p ≠ 0, and S =

[

s(1) … s(k)
]

, which satisfy pHr(x) ≠ 0, SHr(x) = 0. Suppose
that

[

x p S
]

is of full column rank, and (�opt , bopt) is a stationary point of the function �
(

x + �(I − Px,�(xopt ),�(x))[p + Sb]
)

.
Write

s = p + Sbopt , d = �opt(I − Px,�(xopt ),�(x))s, xopt = x + d.

Then, for the nontrivial case that xopt ≠ x,

�opt ≠ 0, ropt ⟂ span{x, p, S, s, d}, (12)
and

�opt = −
pHr(x)

sHF̌�(xopt ),�(x)(�(xopt); x)s
= −

dHF (�(xopt))d
r(x)Hp

, (13)
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�(xopt) − �(x) =
|r(x)Hp|2

[

xH�(�(xopt), �(x))x
]

[

sHF̌�(xopt ),�(x)(�(xopt); x)s
] =

dHF (�(xopt))d
xH�(�(xopt), �(x))x

, (14)

r(xopt) − r(x) = F̌�(xopt ),�(x)(�(xopt); x)d, (15)
bopt = −

[

SHF̌�(xopt ),�(x)(�(xopt); x)S
]†
SHF̌�(xopt ),�(x)(�(xopt); x)p + v, (16)

where v is a vector satisfying
F̌�(xopt ),�(x)(�(xopt); x)Sv ⟂ span{x, p, S, s, d}, (17)

as long as
xH�(�(xopt), �(x))x ≠ 0, sHF̌�(xopt ),�(x)(�(xopt); x)s ≠ 0,

Besides, (13)–(16) also holds for the trivial case that �opt = 0, d = 0, xopt = x, �(xopt) = �(x), r(xopt) = r(x).

Proof. Write
�opt = �(�(xopt), �(x)), Popt = Px,�(xopt ),�(x) =

xxH�opt

xH�optx
.

Recall from the end of Section 1 that we have
r(xopt)Hxopt = 0, r(x)Hx = 0, r(x)HPopt = 0, xH�optPopt = xH�opt .

Since (�opt , bopt) is a stationary point of the function �,

0 = d
db
�
(

x + �opt(I − Popt)(p + Sbopt)
)

=
(

∇�(x + �opt(I − Popt)s)
)H �opt(I − Popt)S

= −
2�opt
�(xopt)

r(xopt)H(I − Popt)S, (18)

and
0 = d

d�
�(x + �opt(I − Popt)s) =

(

∇�(x + �opt(I − Popt)s)
)H (I − Popt)s

= − 2
�(xopt)

r(xopt)H(I − Popt)s, (19)

which means r(xopt)Hd = 0. Then r(xopt)Hx = r(xopt)H(xopt − d) = 0 and r(xopt)HPopt = 0. Thus, r(xopt)Hs = 0 by
(19) and r(xopt)HS = 0 by (18), so that r(xopt)Hp = r(xopt)H(s − Sbopt) = 0. Then (12) holds. According to (19),

0 = xHoptF (�(xopt))(I − Popt)s

= xHF (�(xopt))(I − Popt)s + �optsHF̌�(xopt ),�(x)(�(xopt); x)s. (20)
Note that dHF (�(xopt))d = |�opt|2sHF̌�(xopt ),�(x)(�(xopt); x)s and

xHF (�(xopt))(I − Popt)s = xH
[

F (�(xopt)) − F (�(x))
]

(I − Popt)s + xHF (�(x))(I − Popt)s

= [�(xopt) − �(x)]xH�opt(I − Popt)s + r(x)H(I − Popt)s

= r(x)Hs = r(x)Hp. (21)
Then by (20), we have (13). Since

r(xopt) − r(x) = F (�(xopt))xopt − F (�(x))x

= F (�(xopt))xopt − F (�(xopt))x + F (�(xopt))x − F (�(x))x

= �optF (�(xopt))(I − Popt)s + [�(xopt) − �(x)]�optx, (22)
by (21), we get

�(xopt) − �(x) =
xH(r(xopt) − r(x)) − �optxHF (�(xopt))(I − Popt)s

xH�optx
= −

�optr(x)Hp
xH�optx

. (23)
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Together with (13), we obtain (14). Further,
F̌�(xopt ),�(x)(�(xopt); x)d = �opt(I − PH

opt)F (�(xopt))(I − Popt)s

= �opt

(

F (�(xopt))(I − Popt)s −
�optxxH

xH�optx
F (�(xopt))(I − Popt)s

)

= �opt

(

F (�(xopt))(I − Popt)s −�optx
r(x)Hp
xH�optx

)

by (21)

= �opt

(

F (�(xopt))(I − Popt)s +�optx
�(xopt) − �(x)

�opt

)

by (23)
= r(xopt) − r(x), by (22)

hence we obtain (15). Thus,
(xopt − x)HF̌�(xopt ),�(x)(�(xopt); x)(xopt − x) = (r(xopt) − r(x))H(xopt − x)

= −r(x)H(xopt − x) = −�optr(x)H(I − Popt)s = −�optr(x)Hp.

Finally,
0 = SH(I − PH

opt)(r(xopt) − r(x)) by (18)
= SH(I − PH

opt)F̌�(xopt ),�(x)(�(xopt); x)�opt(I − Popt)(p + Sb) by (22)
= �optS

HF̌�(xopt ),�(x)(�(xopt); x)(p + Sb), by the definition of F̌

which implies (16), and SHF̌�(xopt ),�(x)(�(xopt); x)Sv = 0. Note that SHF̌�(xopt ),�(x)d = SH[r(xopt)− r(x)] = 0 by (15),
and F̌�(xopt ),�(x)x = F̌ (�(xopt))(I − Popt)x = 0. It is easy to obtain (17).

Theorem 2.3. Suppose �1 < �i < �2. Assume that K
1∕2
i F ′(�i)K

1∕2
i is positive definite in the search subspace, or

equivalently, ZH
i K

1∕2
i F ′(�i)K

1∕2
i Zi ≻ 0. If �i−1 − �1 is sufficiently small, then for LOCG(1, 1), either �i − �i+1 ≥

√

�i−1 − �i, or

1
�i − �i+1

+ 1
�i−1 − �i

=
1 + O(

√

�i − �i+1) + O(�i−1 − �i)
�i − �oi+1

, (24)

where �oi+1 is the minimal value of �(x) in the subspace me(KiF (�i), xi).

Remark 2.1. If the case that �i − �i+1 ≥ √

�i−1 − �i occurs, the ith iteration improves the approximation a lot, so it
is very exceptional.
Proof. Assume that �i − �i+1 ≥ √

�i−1 − �i fails, namely
�i − �i+1 <

√

�i−1 − �i. (25)

For a general Ki ≻ 0, the ith iteration is just equivalent to the ith iteration of the algorithm applied to K1∕2
i F (�)K1∕2

iwithout a preconditioner, and then everything below can be easily examined. Thus, in the following we assume
Ki = I .

To use Theorem 2.2, without loss of generality, suppose we normalize xi in every iteration to make the first
element of yi (in Step 6 of Algorithm 2.1) be 1. Then in the ith iteration, write

"i = �i − �1, �i = −(�i+1 − �i) ≥ 0, di = xi+1 − xi, Fi = F (�i), F ′
i = F ′(�i),

�i = �(�i+1, �i), Pi = Pxi,�i+1,�i , F̌i = F̌�i+1,�i(�i+1; xi).
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Clearly dHi−1ri = 0. Note that �(xi) = xHi F
′
i xi > 0. Thus,

xHi �ixi
xHi xi

=
�(xi)
xHi xi

+
m
∑

k=2

(−�i)k−1

k!
xHi F

(k)(�i)xi
xHi xi

=
�(xi)
xHi xi

+ O(�i) > 0.

Without loss of generality, we assume xHi �ixi = 1.
If the notations in Theorem 2.2 are adopted, then

xi = x, ri = r(x), �i = �(x), xi+1 = xopt , ri+1 = r(xopt), �i+1 = �(xi+1).

For
Si ∶= (I − Pi)

(

I −
rirHi
rHi ri

)

[

Firi … Fmei ri
]

,

we obtain rHi Si = 0. �i+1 can be recognized as �opt in Theorem 2.2 as we let
p = ri, S =

[

xi−1 Si
]

=∶ S̃i.

Without loss of generality, assume [ri xi−1 Si
] is of full column rank, otherwise we can delete the last several

columns of Si, which will not affect the search process. Thus, by (14) and (16),

�i = �i − �i+1 = −
|rHi ri|

2

[xHi �ixi][sHi F̌isi]
,

where
si = ri − S̃i(S̃H

i F̌iS̃i)
†S̃H

i F̌iri + S̃ivi, F̌iS̃ivi ⟂ span{xi, ri, S̃i, si, di}.

To describe the search process in the subspace me(KiF (�i), xi), we use the superscript “⋅o” for certain terms,
which gives

�oi = −(�oi+1 − �i) ≥ 0, F o
i+1 = F (�oi+1), �o

i = �(�oi+1, �i), P o
i = Pxi,�oi+1,�i , F̌ o

i = F̌�oi+1,�i(�
o
i+1; xi).

xoi+1 = xoopt , roi+1 = r(xoopt), �oi+1 = �(xoi+1),

Similarly, �oi+1 can be recognized as �oopt in Theorem 2.2 as we let
po = ri, So = Si.

Thus, by (14) and (16),
�oi = �i − �oi+1 = −

|rHi ri|
2

[xHi �
o
i xi][(s

o
i )HF̌

o
i s

o
i ]
. (26)

where
soi = ri − Si(SH

i F̌
o
i Si)

†SH
i F̌

o
i ri + Siv

o
i , F̌ o

i Siv
o
i ⟂ span{xi, ri, Si, soi }.

The rest of the proof is to estimate the ratio of �oi and �i. Let

� ∶=
�oi
�i

=
xHi �ixi
xHi �

o
i xi

sHi F̌isi
(soi )HF̌

o
i s

o
i

.

Clearly, � ≤ 1.
First, we prove that

SH
i Fi+1Si and SH

i F
o
i+1Si are nonsingular. (27)

Write
Ti = Si(SH

i F̌iSi)
−1SH

i F̌i = Si(SH
i Fi+1Si)

−1SH
i Fi+1(I − Pi),

T o
i = Si(SH

i F̌
o
i Si)

−1SH
i F̌

o
i = Si(SH

i F
o
i+1Si)

−1SH
i F

o
i+1(I − P o

i ).

8



Clearly, PiSi = 0, PiTi = TiPi = 0, P o
i T

o
i = T o

i P
o
i = 0, and

T H
i F̌i = T H

i F̌iTi, (I − T H
i )F̌i(I − Ti) = F̌i(I − Ti) = (I − T H

i )F̌i.

We have voi = 0 and
soi = ri − Si(SH

i F̌
o
i Si)

−1SH
i F̌

o
i ri = (I − T o

i )ri.

On the other hand, it is easy to see that S̃H
i F̌iS̃i is nonsingular if and only if
�i ∶= xHi−1F̌i(I − Ti)xi−1 ≠ 0, (28)

and when it is nonsingular, that

(S̃H
i F̌iS̃i)

−1 =
[

xHi−1F̌ixi−1 xHi−1F̌iSi
SH
i F̌ixi−1 SH

i F̌iSi

]−1

=

[ 1
�i

− 1
�i
wH
i

− 1
�i
wi

1
�i
wiwH

i + (SH
i F̌iSi)

−1

]

,

where wi = (SH
i F̌iSi)

−1SH
i F̌ixi−1 satisfying Siwi = Tixi−1. Actually, (28) is guaranteed by the claim (31) below.

Thus, S̃H
i F̌iS̃i is nonsingular,

S̃(S̃HF̌iS̃)−1S̃H = Si(SH
i F̌iSi)

−1SH
i + 1

�i
(I − Ti)xi−1xHi−1(I − T H),

and
si = ri − S̃i(S̃H

i F̌iS̃i)
−1S̃H

i F̌iri

= ri − Si(SH
i F̌iSi)

−1SH
i F̌iri −

1
�i
(I − Ti)xi−1xHi−1(I − T H

i )F̌iri

= (I − Ti)

[

ri −
xHi−1F̌i(I − Ti)ri

�i
xi−1

]

.

Write
ei = T o

i ri − Tiri, �i = xHi−1F̌i(I − Ti)ri,

so that soi + ei = (I − Ti)ri and
si = soi + ei −

�i
�i
(I − Ti)xi−1.

Let
� =

�oi
�i

=
xHi �ixi
xHi �

o
i xi

(soi )
HF̌isoi

(soi )HF̌
o
i s

o
i

(soi + ei)
HF̌i(soi + ei)

(soi )HF̌is
o
i

sHi F̌isi
(soi + ei)HF̌i(s

o
i + ei)

=∶ �1�2�3�4. (29)

First, observe that
�1 =

1
xHi �

o
i xi

= 1
�(xi) + O(�oi )

= 1
1 + O(�i)

= 1 + O(�i).

We assume for now that
�2 = 1 + O(�i), �3 = 1 + O(�i). (30)

For �4, since (I − T H
i )F̌i(I − Ti) = F̌i(I − Ti) = (I − T H

i )F̌i, we get then

�4 =
sHi F̌isi

(soi + ei)HF̌i(s
o
i + ei)

=
rHi F̌i(I − Ti)ri −

�2i
�i

rHi F̌i(I − Ti)ri
= 1 −

�2i
�irHi F̌i(I − Ti)ri

.

We claim that
�i = −

[

1 + O(�1∕2i−1 ) + O(�i)
]

�i−1, (31)
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�i =
[

1 + O(�i−1) + O(�i�
1∕2
i−1 )

]

‖ri‖
2 +

[

O(�i−1) + O(�i�
1∕2
i−1 )

]

‖ri‖, (32)
and

− rHi F̌i(I − Ti)ri ∼ rHi ri = O(�i). (33)
Recall (25), namely �i−1 > �2i . Therefore,

�i = −
[

1 + O(�1∕2i−1 )
]

�i−1, �i =
[

1 + O(�i−1)
]

‖ri‖
2 + O(�i−1)‖ri‖.

Thus,

1 − �4 =
�2i

�irHi F̌i(I − Ti)ri
=

(

O(�i−1)‖ri‖ +
[

1 + O(�i−1)
]

‖ri‖2
)2

−�i−1
[

1 + O(�1∕2i−1 )
]

rHi F̌i(I − Ti)ri

=

[

1 + O(�i−1)
]

‖ri‖4 + O(�i−1)‖ri‖3 + O(�2i−1)‖ri‖
2

−�i−1
[

1 + O(�1∕2i−1 )
]

rHi F̌i(I − Ti)ri

=

[

1 + O(�1∕2i−1 )
]

‖ri‖4 + O(�i−1)‖ri‖3 + O(�2i−1)‖ri‖
2

−�i−1rHi F̌i(I − Ti)ri

=
1 + O(�1∕2i−1 )

�i−1

‖ri‖4

rHi F̌i(I − Ti)ri
+ O(�1∕2i ) + O(�i−1).

By (26) and (29),
�oi

�1�2�3
=

‖ri‖4

rHi F̌i(I − Ti)ri
,

which implies
1 − �4 =

1 + O(�1∕2i−1 )
�i−1

�oi
�1�2�3

+ O(�1∕2i ) + O(�i−1).

Since (1 − �4)�1�2�3 = �1�2�3 − � = 1 − � + O(�i), we obtain

�oi
�i−1

+ O(�1∕2i )

√

�oi
�i−1

+ O(�1∕2i ) + O(�i−1) + O(�i) − (1 − �) = 0,

which implies
�oi
�i−1

=
(

1
2

[

−O(�1∕2i ) ±
√

O(�i) + O(�
1∕2
i ) + O(�i−1) + 4(1 − �)

])2

= O(�i) + O(�
1∕2
i ) + O(�i−1) + 4(1 − �) + 2O(�1∕2i )

√

O(�1∕2i ) + O(�i−1) + (1 − �)

= 1 − � + O(�1∕2i ) + O(�i−1).

With
1
�i

=
1 + O(�1∕2i ) + O(�i−1)

�oi
− 1
�i−1

,

we arrive at (24).
We defer the proofs of the claims (27), (30), (31), (32), and (33) to Appendix B, as these consist of rather technical

calculations and estimations.
We summarize the findings of this section in the following theorem.
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Theorem 2.4. Suppose �1 ≤ �0 < �2. Let {�i} and {�oi } be produced by LOCG(1, me) and SD(1, me) with a fixed
preconditioner K ≻ 0, respectively. Assume that ZH

i K
1∕2F ′(�1)K1∕2Zi ≻ 0. If �i−1 − �1 is sufficiently small,

provided
�oi+1 − �1 ≤ �o(�oi − �1) + O((�

o
i − �1)

3∕2), for all i and a given �o < 1,

then
�i+1 − �1 ≤ �2(�i−1 − �1) + O((�i−1 − �1)3∕2), (34)

where
� =

�o
2 − �o

.

Proof. The proof is exactly the same as its analogue by Ovtchinnikov [22, Theorem 4.2].

3 Application to Definite Pairs and Hyperbolic Quadratic Polynomials

3.1 Definite Matrix Pair

As we stated in Section 1, the definite pair F (�) = �B−A for the special case that F (�0) ≺ 0,  = (�0,+∞), and the
smallest positive-type eigenvalue is chosen here. This setting satisfies the assumptions needed to apply tthe results
from the previous section. However, with little effort, we see that any definite pair or any type of eigenvalues could be
transformed into the case mentioned before. For example, for F (�0) ≺ 0,  = (−∞, �0), we consider F̂ (�) = F (−�)
and ̂ = (−�0,+∞); for F (�0) ≻ 0,  = (�0,+∞), we consider F̂ (�) = −F (�) and ̂ = .
Theorem 3.1. Let {�i}, {xi} be produced by LOCG(1, me) with a fixed preconditioner K ≻ 0 for the definite matrix
pair F (�) = �B − A. Suppose �+1 ≤ �0 < �+2 . Assume that Z

H
i K

1∕2F ′(�1)K1∕2Zi ≻ 0.

1. As i → ∞, �i monotonically converges to �+1 , and xi converges to the corresponding eigenvector in direction,
i.e., F (�i)xi → 0.

2. Denote by 
 and � the smallest and largest positive eigenvalue of the matrix −KF (�1). If �i−�+1 is sufficiently
small, then

�i+1 − �+1 ≤ �2(�i−1 − �+1 ) + O((�i−1 − �
+
1 )

3∕2), (35)
where

� = 2
�2me + �−2me

, � =

√

� + 1
√

� − 1
, � = �



.

Proof. For a definite matrix pair, the optimization problem (7) is
�i+1 = �(Ziyi) = min

yHZH
i BZiy = 1

yHZH
i AZiy.

Using Lagrangian multipliers, it is equivalent to
�i+1 = min(y, �) = min yHZH

i AZiy − �(yHZH
i BZiy − 1).

The minimal point (yi, �i) must satisfy:
)(yi, �i)

)y
= 2ZH

i AZiyi − 2�iZH
i BZiyi = 0, (36a)

)(yi, �i)
)�

= yHi Z
H
i BZiyi − 1 = 0. (36b)

Left multiplying (36a) by yHi gives �i = �(Ziyi), and then ZH
i r(Ziyi) = ZH

i F (�(Ziyi))Ziyi = 0. Thus, d�(Ziyi)
dy =

ZH
i ∇�(Ziyi) = 0, which means yi is a stationary point of �(Ziy). Besides, under the constraint xHi Bxi = 1,

xHi (�−B − A)xi = (�− − �i)xHi Bxi = �− − �i.
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Since �−B − A ≺ 0, ‖xi‖ ≤ �i−�−
�min(A−�−B)

≤ �0−�−
�min(A−�−B)

, which implies that ‖xi‖ is bounded. To sum up, by Theo-
rem 2.1, Item 1 holds.

For Item 2, first, under the assumption ZH
i K

1∕2F ′(�1)K1∕2Zi = ZH
i K

1∕2BK1∕2Zi ≻ 0, it is easy to check that
Theorem 3.4 in Golub and Ye [5] still holds, even if the matrix pair (A,B) is definite, rather than restricted to the
case that B ≻ 0. Then we choose the mth Chebyshev polynomial of the first kind as the polynomial p in the theorem.
Similarly to the discussions by Li [12, Section 2], an upper bound of �m in the theorem results. Then, together with
this theorem, by Theorem 2.4, Item 2 holds.

3.2 Hyperbolic Quadratic Eigenvalue Problems

As we stated in Section 1, the hyperbolic quadratic polynomial F (�) = �2A + �B + C for the special case that
 = (�0,+∞), and the smallest positive-type eigenvalue is chosen as what we need, satisfies the assumptions on
a generic F (�). However, with little effort, we know the negative-type eigenvalue or the largest eigenvalue could
be transformed into the case mentioned before. For example, for the largest eigenvalue lying in  = (−∞, �0),
we consider F̂ (�) = F (−�) and ̂ = (−�0,+∞); for the largest eigenvalue lying in  = (�0,+∞), we consider
F̂ (�) = −F (−�) and ̂ = (−∞, �0).
Theorem 3.2. Theorem 3.1 holds for the hyperbolic quadratic polynomial

F (�) = �2A + �B + C.

Proof. The optimization problem (7) is
�i+1 = �(Ziyi) = min

yHZH
i AZiy = 1

�(Ziy).

Using Lagrangian multipliers, it is equivalent to
�i+1 = min(y, �) = min �(Ziy) − �(yHZH

i AZiy − 1).

The minimal point (yi, �i) must satisfy:
)(yi, �i)

)y
= −2

ZH
i r(Ziyi)
�(Ziyi)

− 2�iZH
i AZiyi = 0, (37a)

)(yi, �i)
)�

= yHi Z
H
i AZiyi − 1 = 0. (37b)

Left multiplying (37a) by yHi gives �i = 0, and thenZH
i r(Ziyi) = 0. Thus, d�(Ziyi)

dy = ZH
i ∇�(Ziyi) = 0, which means

yi is a stationary point of �(Ziy). Besides, under the constraint xHi Axi = 1, ‖xi‖ ≤ 1
�min(A)

and then ‖xi‖ is bounded.
To sum up, by Theorem 2.1, Item 1 holds.

Item 2 holds by Theorem 2.4, together with a theorem by Liang and Li[15, Theorem 9.1].

4 Numerical Examples

In the section, we will provide two examples to illustrate the proven convergence rate. We use the code by Li [13]
and make small modifications to it to do calculations in the examples below. All experiments are done in MATLAB
R2017a under the Windows 10 Professional 64-bit operating system on a PC with a Intel Core i7-8700 processor at
3.20GHz and 64GB RAM.
Example 4.1 ([15, Example 12.1]). This is the problem Wiresaw1 in the collection NLEVP [3]. It is actually a gyro-
scopic quadratic eigenvalue problem coming from the vibration analysis of a wiresaw [28], which we can transform
to the following hyperbolic quadratic matrix polynomial:

A = 1
2
In, C =

(�2 − 1)�2

2
diag(12, 22,… , n2),

12
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Figure 1: Example 4.1: calculation and prediction for LOCG(1, 1).

B = (bij) with bij =

⎧

⎪

⎨

⎪

⎩

�
√

−1
4ij

i2 − j2
, if i + j is odd,

0, otherwise,

where � is a real nonnegative parameter related to the speed of the wire.
In this example, we use LOCG(1, 1) in Algorithm 2.1 with X0 = randn(n, 1) for n = 1000, � = 0.1, with the

preconditioner K = C−1 to get the smallest positive-type eigenvalue of the problem. For the projected problem
in every step, the stopping criteria is that the normalized residual is no bigger than 0.1 or the number of CG steps
reaches 10. In Figure 1, the final approximation is treated as the exact eigenvalue �1, and then: the solid line is the
real approximation error; the dash line is the result predicted by (compared with (35))

�i+1 − �1 =
2

�2 + �−2
(�i − �1), � =

√

� + 1
√

� − 1
, � = �



.

At least we see that in this example, this kind of prediction is appropriate.
Example 4.2. This example is constructed by the MATLAB function gen_hyper2 in the collection NLEVP [3].
Here, we generate a small-scale problem of size 10 with eigenvalues ±1,±2,… ,±10, and a mid-scale problem of
size 1000 with eigenvalues ±1,±2,… ,±1000. The other parameters are chosen randomly. Thus, we know the exact
eigenvalue �1 = 1.

We use different values ofm for SD(1, m) and LOCG(1, m) to calculate the smallest positive-type eigenvalue, with
the preconditioner K = C−1. For the projected problem in every step, the stopping criteria is that the normalized
residual is no bigger than 0.1 or the number of CG steps reaches 10. In Figure 2, the left figure shows the relative
error of the approximations; the right figure shows the normalized residuals

‖Q(�i)xi‖2
(‖A‖1�2i + ‖B‖1|�i| + ‖C‖1)‖xi‖2

of the approximations.
In this example, we can see that
• LOCG is much better than SD, especially for mid/large-scale problems;
• increasing the dimension of the Krylov subspace indeed accelerates the convergence to the eigenvalue, though

not so significantly;
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Figure 2: Example 4.2: different dimenions m of Krylov subspaces.

• increasing the dimension of the Krylov subspace perhaps slows down the convergence of the normalized resid-
uals.

Thus, to balance the computational cost per step and the convergence, maybe the best choice is LOCG(1, 1).

5 Conclusions

We have performed the convergence analysis of an extended LOBPCG algorithm for computing the extreme eigen-
value of Hermitian matrix polynomials, including two common instances — definite matrix pairs and hyperbolic
quadratic matrix polynomials. This analysis was considered out of reach by Kressner et al [11, Subsection 3.2] or by
Liang and Li [15, Subsection 11.2] for the vector version of LOBPeCG. However, it is quite natural to ask whether
there exists any kind of convergence analysis for the block version of LOBPeCG. It is likely that some analogues
would hold, but this remains likely to be a difficult and complicated task for future work.

A A lemma on the inertia property

For any Hermitian matrix A, the inertia of A, denoted by inertia(A), is a triple of integers which are the number of
negative/zero/positive eigenvalues, respectively.
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For any real �, F (�) is a Hermitian matrix. So we can discuss its inertia, the result is Lemma A.1. Actually, the
lemma is obvious for �B −A when B ≻ 0; for a definite matrix pair or hyperbolic matrix polynomial F (�), it can be
found in many works (see, e.g. [26, (0.7)], [1, Corollary 2.3.7], and [9, Section 3]).
Lemma A.1. Given a Hermitian matrix polynomial F (�) satisfying the assumptions at the beginning of Section 1.
Then

inertia(F (�)) = (n − i, 0, i), for any � ∈ (�i, �i+1), (38)
where i is an index to make �i < �i+1.

Proof. First, for any � ∈ (�i, �i+1), F (�) is nonsingular. For �1 and �2 making F (�1) and F (�) have different inertia,
at least one positive (or negative) eigenvalue of F (�1) has to become a negative (or positive) eigenvalue of F (�2).
Since the eigenvalues of a matrix, as functions of the matrix entries, are continuous, there exists �3 between �1 and �2,
such that F (�3) has at least one zero eigenvalue, or equivalently, there exists a nonzero vector x, such that F (�3)x = 0.
This implies �3 is an eigenvalue of F (�). Thus, for any interval in which no eigenvalue lies, the inertia is invariant.

Without loss of generality, we assume the eigenvalues are simple. Since F (�1 − ") ≺ 0, by the continuity of
eigenvalues of a matrix, inertia(F (�1)) = (n − 1, 1, 0). Write the corresponding eigenvector of �1 is u1, and then
uH1 F (�1 + ")u1 > 0. Then, also by the continuity, inertia(F (�1 + ")) = (n − 1, 0, 1). Similarly, we have (38)
recursively.

B Claims in the proof of Theorem 2.3

Before proving the claims, we first establish two bound estimates, which will be used later.
One is that xi is bounded. Note that

Fi = F (�1) +
m
∑

k=1

"ki
k!
F (k)(�1), �i = F ′(�1) +

m
∑

k=2

"k−1i

k!
F (k)(�1).

Since "i is sufficiently small, ZH
i F

′(�i)Zi ≻ 0 implies ZH
i �iZi ≻ 0, ZH

i F
′(�1)Zi ≻ 0. Let Qi = Zi(ZH

i Zi)−1∕2 be
the orthonormal basis of(Zi). Then QH

i F
′(�i)Qi ≻ 0, QH

i �iQi ≻ 0, QH
i F

′(�1)Qi ≻ 0. Write xi = Qix̂i, and then
1 = xHi �ixi = x̂Hi Q

H
i �iQix̂i ≥ �min(QH

i �iQi)‖x̂i‖2,

which implies
‖xi‖

2 ≤ ‖x̂i‖
2 ≤ 1

�min(QH
i �iQi)

≤ 1
�min(QH

i F
′
iQi)

+ O(�i).

The other is:
−tHi Fiti ∼ tHi �iti ∼ tHi ti, for any ti = Qit̂i ≠ 0 satisfying tHi �ixi = 0. (39)

In fact, since QH
i �iQi ≻ 0, tHi �iti = t̂HQH

i �iQit̂ ∼ t̂Hi t̂i ∼ tHi ti. For the rest, since xHi �ixi = 1, xHi Fixi = 0, using
the min-max principles (5) for the definite matrix pair (−QH

i FiQi, QH
i �iQi),

−
t̂Hi Q

H
i FiQit̂i

t̂Hi Q
H
i �iQit̂i

=
t̂Hi (−Q

H
i FiQi)t̂i

t̂Hi Q
H
i �iQit̂i

+
x̂Hi (−Q

H
i FiQi)x̂i

x̂Hi Q
H
i �iQix̂i

≥ �min(−[QH
i �iQi]−1∕2QH

i FiQi[QH
i �iQi]−1∕2) + �

(2)
min(−[Q

H
i �iQi]−1∕2QH

i FiQi[QH
i �iQi]−1∕2)

= 0 + �(2)min(−[Q
H
i F

′(�1)Qi]−1∕2QH
i F (�1)Qi[QH

i F
′(�1)Qi]−1∕2) + O("i).

By (4),
�(2)min(−[Q

H
i F

′(�1)Qi]−1∕2QH
i F (�1)Qi[QH

i F
′(�1)Qi]−1∕2)

= min
dim=2

max
u∈

−uH[QH
i F

′(�1)Qi]−1∕2QH
i F (�1)Qi[QH

i F
′(�1)Qi]−1∕2u

uHu
(write v = [QH

i F
′(�1)Qi]−1∕2u, and then u = [QH

i F
′(�1)Qi]1∕2v)

15



= min
dim=2

max
v∈

−vHQH
i F (�1)Qiv

vHQH
i Qiv

vHv
vHQH

i F ′(�1)Qiv
(write w = QH

i v)

= min
dim=2

max
w∈

−wHF (�1)w
wHw

vHv
vHQH

i F ′(�1)Qiv

≥ min
dim=2

max
v∈

−vHF (�1)v
vHv

1
�max(QH

i F ′(�1)Qi)

=
�(2)min(−F (�1))

�max(QH
i F ′(�1)Qi)

≥
−�(2)max(F (�1))
�max(F ′(�1))

=∶ !.

Thus,
−tHi Fiti
tHi �iti

= −
t̂Hi Q

H
i FiQit̂i

t̂Hi Q
H
i �iQit̂i

≥ ! + O("i) > 0. (40)

On the other hand, −tHi Fiti ≤ ‖Fi‖tHi ti ∼ tHi �iti. In total, −tHi Fiti ∼ tHi �iti.
Now we can begin to prove those claims.

Proof of (27). Note that(Si) ⊂ (Zi) and SH
i �ixi = 0. By (40), −t̂Hi SH

i FiSit̂i ≥ (! +O("i))t̂Hi S
H
i �iSit̂i. Hence

�min(−SH
i FiSi) ≥ (! + O("i))�min(SH

i �iSi) ≥ (! + O("i))�min(QH
i �iQi)�min(SH

i Si) > 0.

Note that SH
i Fi+1Si = SH

i FiSi − �iSi�iSi. It is clear that �min(−SH
i Fi+1Si) ≥ !�min(QH

i F
′(�1)Qi) + O("i) > 0,

which implies that SH
i Fi+1Si is nonsingular. It is similar that SH

i F
o
i+1Si is nonsingular.

Proof of (33). Since (I − Pi)(I − Ti)ri ∈ (Zi) and xHi �i(I − Pi)(I − Ti)ri = 0, by (39),
−rHi F̌i(I − Ti)ri = −rHi (I − T H

i )F̌i(I − Ti)ri ∼ rHi ri.

For the rest, let �SDi+1 be the minimal value of �(x) in the subspace span{xi, ri}, then

�SDi = −
|rHi ri|

2

[xHi �
SD
i xi][rHi F̌

SD
i ri]

⇒ rHi ri = −�SDi [xHi �
SD
i xi]

rHi F̌
SD
i ri

rHi ri
= O(�i).

Proof of (30). Consider �2.

�2 =
(soi )

HF̌isoi
(soi )HF̌

o
i s

o
i

=
(soi )

H(I − PH
i )Fi+1(I − Pi)soi

(soi )H(I − (P o
i )H)F

o
i+1(I − P o

i )s
o
i

=
(soi )

H(I − PH
i )Fi(I − Pi)soi − �i+1(s

o
i )

H(I − PH
i )�i(I − Pi)soi

(soi )H(I − (P o
i )H)Fi(I − P o

i )s
o
i − �

o
i+1(s

o
i )H(I − (P o

i )H)�
o
i (I − P o

i )s
o
i
.

Since (I − PH
i )s

o
i ∈ (Zi) and (I − PH

i )�ixi = 0, by (39),
−(soi )

H(I − PH
i )Fi(I − Pi)soi ∼ (soi )

H(I − PH
i )�i(I − Pi)soi ;

since (I − (P o
i )

H)soi ∈ (Zi) and (I − (P o
i )

H)�o
i xi = 0, then similarly to (39), we have

−(soi )
H(I − (P o

i )
H)Fi(I − P o

i )s
o
i ∼ (soi )

H(I − (P o
i )

H)�o
i (I − P o

i )s
o
i .

Thus
�2 =

[1 + O(�i)](soi )
H(I − PH

i )Fi(I − Pi)soi
[1 + O(�oi )](s

o
i )H(I − (P o

i )H)Fi(I − P o
i )s

o
i
.
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Note that
0 ≥ (soi )

H(I − PH
i )Fi(I − Pi)soi = (soi )

HFis
o
i − 2ℜ(soi )

H�ixix
H
i Fis

o
i + (soi )

H�ixix
H
i Fixix

H
i �s

o
i

= (soi )
HFis

o
i − 2rHi riℜ(s

o
i )

H�ixi,

and a similar expansion of (soi )H(I − (P o
i )

H)Fi(I − P o
i )s

o
i holds. Then

�2 = [1 + O(�i)]
(soi )

HFisoi − 2rHi riℜ(s
o
i )

H�ixi
(soi )HFis

o
i − 2rHi riℜ(s

o
i )H�

o
i xi

= [1 + O(�i)]

[

1 +
2rHi riℜ(s

o
i )

H[�o
i −�i]xi

(soi )HFis
o
i − 2rHi riℜ(s

o
i )H�

o
i xi

]

= [1 + O(�i)]

[

1 +
2rHi riℜ(s

o
i )

H[�o
i −�i]xi

[1 + O(�oi )](s
o
i )HF̌

o
i s

o
i

]

.

It is easy to see that
(soi )

HF̌ o
i s

o
i = rHi (I − (T o)H)F̌ o

i (I − T o)ri = rHi F̌
o
i ri − r

H
i F̌

o
i Si(S

H
i F̌

o
i Si)

−1SH
i F̌

o
i ri.

Similarly to the proof of (27), we know −
[

Si ri
]H F̌ o

i
[

Si ri
]

= −
[

Si (I − P o
i )ri

]H F o
i+1

[

Si (I − P o
i )ri

] is
positive definite. Thus, since rHi Si = 0, by a matrix version of the Wielandt inequality (see Wang and Ip [27,
Theorem 1]),

−rHi F̌
o
i Si(S

H
i F̌

o
i Si)

−1SH
i F̌

o
i ri ≤ −[� + O("i)]rHi F̌

o
i ri, � =

(

�max(−F (�1)) − �
(2)
min(−F (�1))

�max(−F (�1)) + �
(2)
min(−F (�1))

)2

.

which gives −(soi )HF̌ o
i s

o
i ∼ −rHi F̌

o
i ri. Note that by (39), −rHi F̌ o

i ri ∼ rHi ri,−(s
o
i )

HF̌ o
i s

o
i ∼ (soi )

Hsoi . Thus,
− rHi F̌

o
i ri ∼ rHi ri ∼ (soi )

Hsi ∼ −(soi )
HF̌ o

i s
o
i , (41)

and
�2 = [1 + O(�i)]

(

1 + O(1)ℜ(soi )
H[�o

i −�i]xi
)

.

Noticing that
|

|

|

(soi )
H[�o

i −�i]xi
|

|

|

≤ ‖si‖(�i − �oi )
[

‖F ′′(�i)‖ + O(�i)
]

‖xi‖ = O(�3∕2i ),

we have
�2 = [1 + O(�i)]

(

1 + O(�3∕2i )
)

= 1 + O(�i).

Consider �3. By the Sherman-Morrison-Woodbury formula, letting Di = F̌ o
i − F̌i,

ei = Si(SH
i F̌

o
i Si)

−1SH
i F̌

o
i ri − Si(S

H
i F̌iSi)

−1SH
i F̌iri,

= Si
[

(SH
i F̌

o
i Si)

−1SH
i F̌

o
i − (SH

i F̌iSi)
−1SH

i F̌i
]

ri
= Si

[(

(SH
i F̌iSi)

−1 − (SH
i F̌iSi)

−1SH
i DiSi(SH

i F̌
o
i Si)

−1)SH
i F̌

o
i − (SH

i F̌iSi)
−1SH

i F̌i
]

ri
= Si

[

(SH
i F̌iSi)

−1SH
i Di − (SH

i F̌iSi)
−1SH

i DiSi(SH
i F̌

o
i Si)

−1SH
i F̌

o
i
]

ri
= Si(SH

i F̌iSi)
−1SH

i Di
[

I − Si(SH
i F̌

o
i Si)

−1SH
i F̌

o
i
]

ri
= Si(SH

i F̌iSi)
−1SH

i Dis
o
i .

Since Si(SH
i F̌iSi)

−1SH
i F̌i(s

o
i + ei) = Ti(I − Ti)ri = 0, we have eHi F̌i(soi + ei) = 0. Thus,

�3 =
(soi + ei)

HF̌i(soi + ei)

(soi )HF̌is
o
i

= 1 −
eHi F̌iei

(soi )HF̌is
o
i

= 1 −
(soi )

HDiSi(SH
i F̌iSi)

−1SH
i Disoi

(soi )HF̌is
o
i

.
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First we estimate Si(SH
i F̌iSi)

−1SH
i . Let Si = QSRS be its QR factorization, and then

Si(SH
i F̌iSi)

−1SH
i = QS(QH

S F̌iQS)−1QH
S = QS

(

QH
S(I − PH

i )Fi+1(I − Pi)QS
)−1QH

S .

Since((I − Pi)QS) ⊂ (Zi), similarly to the proof of (27), we have

‖Si(SH
i F̌iSi)

−1SH
i ‖ ≤ 1

!�min(QH
SF

′(�1)QS) + O("i)
. (42)

Then turn to Di. Noticing (I − Pi)QS = QS ,
QH
SDi = QH

S
[

(I − (P o
i )

H)F o
i+1(I − P o

i ) − (I − PH
i )Fi+1(I − Pi)

]

= QH
S
[

(PH
i − (P o

i )
H)F o

i+1(I − P o
i ) + F

o
i+1(I − P o

i ) − Fi+1(I − Pi)
]

= QH
S
[

(PH
i − P o

i )
HF o

i+1(I − P o
i ) + F

o
i+1(Pi − P

o
i ) + (F o

i+1 − Fi+1)(I − Pi)
]

= QH
S
[

(�i −�o
i )xix

H
i F

o
i+1(I − P o

i ) + F
o
i+1xix

H
i (�i −�o

i ) + (F o
i+1 − Fi+1)(I − Pi)

]

and then
‖QH

SDi‖ ≤ (�i − �oi )
[(

‖F ′′(�i)‖ + O(�i)
)

‖xi‖
2
‖F o

i+1‖
(

‖I − P o
i ‖ + 1

)

+
(

‖F ′(�i) + O(�i)
)

‖I − Pi‖
]

= O(�i).

Thus, to sum up, together with (41),

�3 = 1 −
(soi )

HDiQSQH
SSi(S

H
i F̌iSi)

−1SH
i QSQH

SDisoi
(soi )HF̌is

o
i

= 1 +
O(1)‖QH

SDi‖
2
‖soi ‖

2

‖soi ‖2
= 1 − O(�2i ).

Proof of (31). Since F̌ixi−1 = F̌i(xi − di−1) = −F̌idi−1 and F̌i(I − Ti) = (I − T H
i )F̌i,

�i = xHi−1F̌i(I − Ti)xi−1 = dHi−1F̌i(I − Ti)di−1.

First
F̌i = (I − PH

i )Fi+1(I − Pi)
= PH

i Fi+1Pi − P
H
i Fi+1 − Fi+1Pi + Fi+1 − Fi + Fi

= Fi+1 − Fi +�ixix
H
i Fi+1xix

H
i �i −�ixix

H
i Fi+1 − Fi+1xix

H
i �i + Fi

= −�i�i − �i�ixix
H
i �i −�ixix

H
i (Fi − �i�i) − (Fi − �i�i)xixHi �i + Fi

= Fi −�ixir
H
i − rixHi �i − �i�i[I − xixHi �i]. (43)

Since rHi di−1 = 0 by (12),
dHi−1F̌idi−1 = dHi−1Fidi−1 − d

H
i−1�ixir

H
i di−1 − d

H
i−1rix

H
i �idi−1 − �idHi−1�i(I − Pi)di−1

= dHi−1Fidi−1 − �id
H
i−1�i(I − Pi)di−1

= dHi−1Fidi−1 + O(�i)‖di−1‖
2.

Then, noticing that xHi−1�i−1di−1 = xHi−1�i−1(I − Pi−1)di−1 = 0, by (14),
dHi−1Fidi−1 = −�i−1xHi−1�i−1xi−1 = −�i−1(xi − di−1)H�i−1(xi − di−1)

= −�i−1(xHi �i−1xi − dHi−1�i−1di−1)
= −�i−1(xHi �ixi − dHi−1�i−1di−1 + O(�i−1))
= −�i−1(1 − dHi−1�i−1di−1 + O(�i−1)).
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Similarly to (39), −dHi−1Fidi−1 ∼ dHi−1�i−1di−1, which implies

dHi−1Fidi−1 = −
�i−1

1 + O(�i−1)
+ O(�2i−1) = −�i−1 + O(�2i−1),

and �i−1 ∼ dHi−1�i−1di−1 ∼ dHi−1di−1. Thus
dHi−1F̌idi−1 = −�i−1[1 + O(�i−1) + O(�i)]. (44)

Then, by (43),
dHi−1F̌iTidi−1 = dHi−1FiTidi−1 − d

H
i−1�ixir

H
i Tidi−1 − d

H
i−1rix

H
i �iTidi−1 − �idHi−1�i[I − xixHi �i]Tidi−1

= dHi−1FiTidi−1 − �id
H
i−1�i[I − xixHi �i]Tidi−1.

Since ‖Ti‖ ≤ ‖Si(SH
i F̌iSi)

−1SH
i ‖‖Fi‖‖I − Pi‖2, by (42),

dHi−1F̌iTidi−1 = dHi−1FiTidi−1 + O(�i�i−1).

Then, also using (42),
dHi−1FiTidi−1 = [xi − xi−1]HFiSi(SH

i F̌iSi)
−1SH

i Fi+1(I − Pi)[xi − xi−1]

= [xi − xi−1]HFiSi(SH
i F̌iSi)

−1SH
i Fi+1[xi(x

H
i �ixi−1) − xi−1]

= [ri − (Fi−1 − �i−1�i−1)xi−1]HSi(SH
i F̌iSi)

−1SH
i [(Fi − �i�i)xi(xHi �ixi−1) − (Fi−1 − �i−1�i−1 − �i�i)xi−1]

= [rHi − rHi−1 + �i−1x
H
i−1�i−1]Si(SH

i F̌iSi)
−1SH

i [(ri − �i�ixi)(1 + O(�
1∕2
i−1 )) − ri−1 + �i−1�i−1xi−1 + �i�ixi−1]

= [−rHi−1 + �i−1x
H
i−1�i−1]Si(SH

i F̌iSi)
−1SH

i [−ri−1 + �i−1�i−1xi−1 − �i�i(di−1 + xiO(�
1∕2
i−1 ))]

= rHi−1Si(S
H
i F̌iSi)

−1SH
i ri−1 + O(�

3∕2
i−1 ).

Since rHi F ji−1ri−1 = 0 for j = 1,… , me by (12) and then
rHi−1F

j
i ri = rHi−1[F

j
i−1 − �i−1F

j−1
i−1 �i−1 − �i−1�i−1F

j−1
i−1 + �2i−1F

j−2
i−1 �

2
i−1 +⋯]ri

= rHi−1F
j
i−1ri + O(�i−1)‖ri−1‖‖ri‖ = O(�3∕2i−1 )‖ri‖,

together with
rHi−1xi = rHi−1(xi−1 + di−1) = rHi−1di−1 = O(�i−1),

we have
‖rHi−1Si‖ = ‖rHi−1(I − xixHi �i − rirHi (r

H
i ri)

−1)
[

Firi … Fmei ri
]

‖ = O(�i−1)‖ri‖. (45)
Similarly to the proof of (27),

‖(SH
i F̌iSi)

−1
‖ = O(‖ri‖−2). (46)

Thus, rHi−1Si(SH
i F̌iSi)

−1SH
i ri−1 = O(�2i−1) and dHi−1FiTidi−1 = O(�3∕2i−1 ). Thus,

dHi−1F̌iTidi−1 = �i−1[O(�
1∕2
i−1 ) + O(�i)]. (47)

Then (44) and (47) give (31).
Proof of (32). Since F̌ixi−1 = F̌i(xi − di−1) = −F̌idi−1 and F̌i(I − Ti) = (I − T H

i )F̌i,
�i = xHi−1F̌i(I − Ti)ri = dHi−1F̌i(I − Ti)ri.

By (43),
dHi−1F̌i(I − Ti)ri = dHi−1Fi(I − Ti)ri − dHi−1�ixir

H
i (I − Ti)ri − dHi−1rix

H
i �i(I − Ti)ri − �idHi−1�i(I − Pi)(I − Ti)ri

= dHi−1Fi(I − Ti)ri − dHi−1�ixir
H
i ri − �id

H
i−1�i(I − Pi)(I − Ti)ri
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= dHi−1F̌i−1(I − Ti)ri + dHi−1FiPi−1(I − Ti)ri − dHi−1�ixir
H
i ri + O(�i�

1∕2
i−1 )‖ri‖.

By (15), dHi−1F̌i−1(I − Ti)ri = (ri − ri−1)H(I − Ti)ri = rHi ri + r
H
i−1Tiri. Note that

dHi−1FiPi−1(I − Ti)ri = dHi−1Fixi−1
xHi−1�i−1(I − Ti)ri
xHi−1�i−1xi−1

= (xi − xi−1)HFixi−1
xHi−1�i−1(I − Ti)ri
xHi−1�i−1xi−1

= −xHi−1Fixi−1
xHi−1�i−1(I − Ti)ri
xHi−1�i−1xi−1

= −xHi−1(Fi−1 − �i−1�i−1)xi−1
xHi−1�i−1(I − Ti)ri
xHi−1�i−1xi−1

= �i−1x
H
i−1�i−1(I − Ti)ri

= O(�i−1)‖ri‖.

Thus,
dHi−1F̌i(I − Ti)ri = rHi−1Tiri + (1 − dHi−1�ixi)rHi ri + [O(�i−1) + O(�i�

1∕2
i−1 )]‖ri‖.

Note that �i−1 ∼ dHi−1�idi−1 ∼ dHi−1di−1 and then ‖xi−1‖ = ‖xi − di−1‖ ≤ ‖xi‖ + O(�i−1) which means xi−1 is
bounded. Also, note that rHi ri = O(�i) and xHi−1�i−1di−1 = 0. Thus,

xHi �idi−1 = dHi−1�idi−1 + xHi−1�idi−1
= O(�i−1) + xHi−1�i−1di−1 + (�i−1 − �i)xHi−1F

′′(�1)di−1
= O(�i−1) + O(�i�

1∕2
i−1 ).

By (45) and (46), noticing that ‖Si‖ ≤ ‖

‖

‖

[

Firi … Fmei ri
]

‖

‖

‖

= O(1)‖ri‖, we have

|rHi−1Tiri| = |rHi−1Si(S
H
i Fi+1Si)

−1SH
i Fi+1(I − Pi)ri|

≤ ‖rHi−1Si‖‖(S
H
i Fi+1Si)

−1
‖‖SH

i Fi+1(I − Pi)ri‖ = O(�i−1)‖ri‖.

Then, to sum up, we have (32).
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