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ABSTRACT

We consider symmetric preconditioning strategies for the iterative solution
of dense complex symmetric non�Hermitian systems arising in computational
electromagnetics� In particular we report on the numerical behaviour of the classical
Incomplete Cholesky factorization as well as some of its recent variants and consider
also well known factorized approximate inverses� We illustrate the di�culties that
those techniques encounter on the linear systems under consideration and give
some clues to explain their disappointing behaviour� We propose two symmetric
preconditioners based on Frobenius�norm minimization that use a prescribed
sparsity pattern� The numerical and computational e�ciency of the proposed
preconditioners are illustrated on a set of model problems arising both from academic
and from industrial applications�

Keywords� Preconditioning techniques� Frobenius�norm minimization method�
factorized approximate inverse� Incomplete Cholesky factorization� nonzero
pattern selection strategies� electromagnetic scattering applications�

AMS�MOS� subject classi�cations� ��F��� ��F��� ��N	
� ��R��� �
A
��
�
A��� �
��
�

�Current reports available by anonymous ftp to ftp�numerical�rl�ac�uk in
directory pub�reports� This report is available in compressed postscript as �le
cdgmRAL��������ps�gz or as the PDF �le cdgmRAL��������pdf� Report also available

through URL http���www�numerical�rl�ac�uk�reports�reports�html�
An earlier version was published as Technical Report TR�PA�����	 from CERFACS�
�b�carpentieri
dm�uniba�it� the work of this author was supported by I�N�D�A�M� �Rome�

Italy
 under a grant �Borsa di Studio per l�estero� Provvedimento del Presidente del ��

Aprile ����

�i�s�du�
rl�ac�uk� the work of this author was supported in part by the EPSRC Grant
GR�R������
�giraud
cerfacs�fr� CERFACS� �� Ave G� Coriolis� ���	� Toulouse Cedex� France�
�magolu
ulb�ac�be� Universit�e Libre de Bruxelles� Facult�e des Sciences Appliqu�ees� Service

de Metrologie Nucl�eaire� CPI ��	���� 	�� av� F�D� Roosevelt� B���	� Bruxelles�

Computational Science and Engineering Department
Atlas Centre
Rutherford Appleton Laboratory
Oxon OX�� �QX

May �� ����



Contents

� Introduction �

� Symmetric preconditioning for dense problems �
��� Frobenius�norm minimization methods � � � � � � � � � � � � � � � � � �
��� Classical symmetric preconditioners � � � � � � � � � � � � � � � � � � � 


����� Factorized sparse approximate preconditioners � � � � � � � � � 

����� Incomplete Cholesky factorization � � � � � � � � � � � � � � � � �

� Numerical experiments �
	�� Possible causes of failure of factorized approximate inverses � � � � � � �
	�� Numerical experiments with Incomplete Cholesky factorization � � � � ��
	�	 Study of symmetric Frobenius�norm minimization type preconditioners ��

� Conclusions �	

i



� Introduction

In electromagnetism calculations� �nding the scattered wave of a given incident
�eld on a scattering obstacle requires the solution of a linear system of equations�
Such analysis� relying on Maxwell�s equations� is required in the simulation of
many industrial processes coming from antenna design to absorbing materials�
electromagnetic compatibility� and so on� Recently the Boundary Element Method
�BEM� has been successfully employed in the numerical solution of this class of
problems� proving to be an e�ective alternative to common discretization schemes
like Finite Element Methods �FEM�s�� Finite Di�erence Methods �FDM�s� or Finite
Volume Method �FVM�s�� The idea of BEM is to shift the focus from solving a
partial di�erential equation de�ned on a closed or unbounded domain to solving a
boundary integral equation over the �nite part of the boundary� The discretization
by BEM results in linear systems with dense complex matrices� The coe�cient
matrix can be symmetric non�Hermitian in the Electric Field Integral Equation
formulation �EFIE�� or unsymmetric in the Combined Field Integral Equation
formulation �CFIE� �see Peterson� Ray and Mittra ������ for further details�� The
unknowns are associated with the edges of an underlying mesh on the surface of
the object� With the advent of parallel processing� this approach has become viable
for large problems and the typical problem size in the electromagnetics industry
is continually increasing� Nevertheless� nowadays� many problems can no longer
be solved by parallel out�of�core direct solvers as they require too much memory�
CPU and disk resources and iterative solvers appear as a viable alternative� Here
we will only consider cases where the matrix is symmetric because EFIE usually
gives rise to linear systems that are more di�cult to solve with iterative methods�
Another motivation to focus only on EFIE formulation is that it does not require
any restriction on the geometry of the scattering obstacle as CFIE does and in this
respect is more general�

Thus� in this paper� we are concerned with symmetric preconditioning of linear
systems of equations of the form

Ax � b� �����

where the n by n coe�cient matrix A � �aij� is dense� complex� symmetric and
non�Hermitian� and arises from the discretization of boundary integral equations
in electromagnetism� When iterative methods are used for the solution of ������
preconditioning plays a key role� Earlier works �All�eon� Benzi and Giraud
����� Carpentieri� Du� and Giraud ����� showed that sparse approximate inverse
methods based on Frobenius�norm minimization give rise to e�ective and robust
preconditioners� However� the preconditioners considered in these papers were not
symmetric and consequently might not have fully exploited all the characteristics of
the linear system� To complete these earlier studies� we now investigate implicit and
explicit symmetric preconditioners� with an emphasis again on approximate inverse
techniques�

In Section �� we consider di�erent approaches to construct symmetric
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preconditioners� More precisely in Section ��� we introduce some strategies for
building symmetric preconditioners based on Frobenius�norm minimization� In
the later sections� we brie�y present more classical techniques like a factorized
approximate inverse preconditioner namely AINV �Benzi ���	� Benzi� Meyer and
T�uma ����� Benzi and T�uma ���
� and FSAI �Kolotilina and Yeremin ���	��
and incomplete Cholesky factorization �Meijerink and van der Vorst ������ In
Section 	� we study the numerical behaviour of those preconditioners on a set of
model problems representative of real calculations in electromagnetics applications�
In particular� we give some clues to explain the poor behaviour of some of them�
We conclude this paper with some remarks in Section 
�

� Symmetric preconditioning for dense problems

In this section we consider di�erent methods which compute symmetric
preconditioners of both implicit and explicit type for the iterative solution of the
linear system ������ All the preconditioners are computed using as input �A� a sparse
approximation of the dense coe�cient matrix A� Several heuristics can be used for
de�ning the sparsity pattern for �A based either on algebraic considerations �All�eon et
al� ����� or on using information from the underlying mesh �Carpentieri et al� ������
In the following� we only consider a geometric approach� which is the only one that
can be e�ciently implemented in a parallel fast multipole environment �Carpentieri�
Du�� Giraud and Sylvand ������ In BEM calculations� each equation is associated
with one edge of the mesh and the pattern of �A is de�ned as follows� for each edge
we select all those edges within a su�ciently large sphere centered on that edge that
de�nes its geometric neighbourhood� By using a suitable size for this sphere and
because of the rapid decay of the Green�s functions� we hope to include the most
relevant contributions from A in the approximate matrix �A�

��� Frobenius�norm minimization methods

A natural way to compute an explicit preconditioner is based on Frobenius�norm
minimization �Benson ���	� Benson and Frederickson ��
�� Benson� Krettmann and
Wright ��

� Frederickson ������ The idea is to compute the sparse approximate
inverse as the matrix M which minimizes kI � M �AkF �or kI � �AMkF for right
preconditioning� subject to certain sparsity constraints� The Frobenius norm
is usually chosen since it allows the decoupling of the constrained minimization
problem into n independent linear least�squares problems� one for each column of
M �when preconditioning from the right� or row of M �when preconditioning from
the left��

The independence of these least�squares problems follows immediately from the
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identity�

kI �M �Ak�F � kI � �AMT k�F �
nX
j��

kej � �Amj�k
�
� �����

where ej is the jth canonical unit vector and mj� is the column vector representing
the jth row of M �
In the case of right preconditioning� the analogous relation

kI � �AMk�F �
nX
j��

kej � �Am
�jk

�
� �����

holds� where m�j is the column vector representing the jth column of M � Clearly�
there is considerable scope for parallelism in this approach� By construction� the
sparse approximate inverse computed is not guaranteed to be symmetric� and usually
is not� even if a symmetric pattern is imposed on M � This fact prevents the use of
symmetric Krylov solvers�

In this section we consider two possible symmetrization strategies for Frobenius�
norm minimization using a prescribed pattern for the preconditioner based on
geometric information� Similarly to the procedure used to de�ne �A� for each edge
we select all those edges within a su�ciently large sphere that de�nes our geometric
neighbourhood� By using a suitable size for this sphere� we hope to include the
most relevant contributions to the inverse and consequently to obtain an e�ective
sparse approximate inverse� For those preconditioners� we select a smaller sphere
than the one used to de�ne �A� Consequently we compute less nonzeros than the
number retained in the sparse approximation of A �we refer to Carpentieri et al�
������ for the complete and detailed description�� IfMFrob denotes the unsymmetric
matrix resulting from the minimization ������ the �rst strategy simply averages its
o��diagonal entries� That is

MAver�Frob �
MFrob �MT

Frob

�
� ���	�

An alternative way to construct a symmetric sparse approximate inverse is to
only compute the lower triangular part� including the diagonal� of the preconditioner�
The nonzeros calculated are re�ected with respect to the diagonal and are used to
update the right�hand sides of the subsequent least�squares problems involved in
the construction of the remaining columns of the preconditioner� More precisely�
in the computation of the k�th column of the preconditioner� the entries mik for
i � k are set to mki that are already available and only the lower diagonal entries
are computed� The entries mki are then used to update the right�hand sides of the
least�squares problems which involve the remaining unknowns mik� for k � i� The
least�squares problems are as follows�

mink�ej � �A �m�jk
�
� ���
�

	



where �ej � ej �
P

k�j �a�kmkj and �m
�j � ��� ��� ��mjj� ����mnj�

T � In the following�
this preconditioner is referred to as MSym�Frob� It should be noted that the
preconditioner built using this approach no longer minimizes any Frobenius norm
and it might be sensitive to the ordering of columns� In addition� if � denotes the
number of nonzeros entries in MSym�Frob� this method only computes �� � n���
nonzeros� Thus the overall computational complexity for the construction of
MSym�Frob can be considerably less than forMAver�Frob as the least�squares problems
are usually solved by QR factorizations whose complexity is of the order of the square
in the number of unknowns and is linear in the number of equations�

��� Classical symmetric preconditioners

�
�
� Factorized sparse approximate preconditioners

An alternative way to construct a symmetric sparse approximate inverse is to
compute it in factorized form� In this paper we consider two classical techniques�
the �rst constructs an approximation of the inverse of the factors using an �A�
biconjugation process �Benzi and T�uma ���
� and the other one a Frobenius�norm
minimization technique �Kolotilina and Yeremin ���	��

If the matrix �A can be written in the form LDLT where L is unit lower triangular
and D is diagonal� then its inverse can be decomposed as �A�� � L�TD��L�� �
ZD��ZT where Z � L�T is unit triangular� Factorized sparse approximate
inverse techniques compute sparse approximations �Z � Z so that the resulting
preconditioner will be M � �Z �D�� �ZT � �A��� for �D � D�

In the approach known as AINV � the triangular factor is computed by means
of a set of �A�biconjugate vectors fzig

n
i�� such that zTi

�Azj � � if and only if i �� j�
Then� introducing the matrix Z � �z�� z�� ���zn� the relation

ZT �AZ � D �

�
BBBB�

p� � � � � �
� p� � � � �
���

���
� � �

���
� � � � � pn

�
CCCCA

holds� where pi � zTi �Azi �� � � and the inverse is equal to

�A�� � ZD��ZT �
nX
i��

ziz
T
i

pi
�

The two sets of �A�biconjugate vectors are computed by means of a �two�sided� Gram�
Schmidt orthogonalization process with respect to the bilinear form associated with
�A� AINV does not require a pattern prescribed in advance for the approximate
inverse factors� and sparsity is preserved during the process� by discarding elements
having magnitude smaller than a given positive threshold� The value of this
threshold governs the density of the preconditioner�






An alternative approach was proposed by Kolotilina and Yeremin in a series
of papers �Kolotilina and Yeremin ���	� Kolotilina and Yeremin ����� Kolotilina�
Yeremin and Nikishin ����� Kolotilina� Yeremin and Nikishin ������ This approach�
known as FSAI� approximates �A�� by the factorization GTG� where G is a sparse
lower triangular matrix approximating the inverse of the lower triangular Cholesky
factor� �L� of �A� This technique has obtained good results on some di�cult problems
and is suitable for parallel implementation� but it requires an a priori prescription
for the sparsity pattern for the approximate factors� Minimizing jjI � G�Ljj�F can
be accomplished without knowing the Cholesky factor �L by solving the normal
equations

fG�L�LT gij � �LT
ij� �i� j� � S�L �����

where S�L is a lower triangular nonzero pattern for G� Equation ����� can be replaced
by

f �G �Agij � Iij� �i� j� � S�L �����

where �G � �D��G and �D is the diagonal of �L� Then� each row of �G can be computed
independently by solving a small linear system� The preconditioned linear system
has the form

G �AGT � �D �G �A �GT �D�

The matrix �D is not known and is generally chosen so that the diagonal of G �AGT is
all ones� The FSAI preconditioner is well de�ned for Hermitian matrices� but might
not be de�ned for general matrices� In our implementation� the prescription for the
sparsity pattern for the approximate factors is performed using the same heuristic
that is used to sparsify the dense matrix A and is based on geometric information�

�
�
� Incomplete Cholesky factorization

In this section we consider another classical symmetric preconditioner� that is the
incomplete Cholesky factorization normally denoted by IC� We assume that the
standard IC factorization matrix M of �A is given in the following form

M � LDLT � �����

where D and L stand for� respectively� the diagonal matrix and the unit lower
triangular matrix whose entries are computed by means of the algorithm given in
Figure ���� The set F of �ll�in entries to be kept is given by

F � f �k� i� j lev�lk�i� � � g �
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where integer � denotes a user speci�ed maximal �ll�in level� The level lev�lk�i� of
the coe�cient lk�i of L is de�ned by�

Initialization

lev�lk�i� �

���
��

� if lk�i �� � or k � i

� otherwise
Factorization

lev�lk�i� � min f lev�lk�i� � lev�li�j� � lev�lk�j � � � g �

The resulting preconditioner is usually denoted by IC���� Alternative strategies
that dynamically discard �ll�in entries are summarized in �Saad ������

Compute D and L

Initialization phase

di�i � �ai�i � i � �� �� � � � � n

li�j � �ai�j � i � �� � � � � n � j � �� �� � � � � i � �

Incomplete factorization process

do j � �� �� � � � � n � �

do i � j � �� j � �� � � � � n

di�i � di�i �
l�i�j
dj�j

li�j �
li�j
dj�j

do k � i � �� i � �� � � � � n

if �i� k� � F lk�i � lk�i� li�j lk�j

end do

end do

end do

Figure ���� Incomplete factorization algorithm � M � LDLT �

� Numerical experiments

To study the numerical behaviour of the preconditioners described in the previous
section� we consider a set of test examples representative of calculations in
electromagnetics applications� Those tests examples are de�ned by�
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Example �� a cylinder with a hollow inside� a matrix of order n � ��
�� see
Figure ��a��

Example �� a cylinder with a break on the surface� a matrix of order n � �����
see Figure ��b��

Example �� a satellite� a matrix of order n � ����� see Figure ��c��

Example �� a parallelepiped� a matrix of order n � ����� see Figure ��d�� and

Example �� a sphere� a matrix of order n � �
	�� Figure ��e��

We mention that� for physical consistency� we have set the frequency of the incident
wave so that there are about ten discretization points per wavelength �Bendali ��

��

We investigate the behaviour of the preconditioners when used to accelerate
restarted GMRES �Saad and Schultz ��
�� and symmetric QMR �Freund and
Nachtigal ���
�� For all the numerical experiments with GMRES we use the
implementation described by Frayss�e� Giraud and Gratton ������� In each case�
we take as the initial guess x� � �� and the right�hand side is such that the exact
solution of the system is known� We perform di�erent tests with di�erent known
solutions� observing identical results� The stopping criterion in all cases just consists
in reducing the original residual by ���� that then can be related to a norm�wise
backward error� In all the tables� the symbol �� means that convergence is not
obtained after ��� iterations� All the numerical experiments are performed in double
precision complex arithmetic on a SGI Origin ���� and the number of iterations
reported in this paper are for right preconditioning� Finally we mention that no
explicit scaling is performed as the matrices are already well scaled�

In order to illustrate the trend in the behaviour of these preconditioners� we
�rst show in Table 	�� the number of iterations required to compute the solution
on Example �� All the preconditioners are computed using the same sparse
approximation of the original matrix� For all the preconditioners we tune their
governing parameters so that they all have roughly the same number of nonzeros
entries� In Table 	�� we give the number of iterations for both GMRES and SQMR
that actually also corresponds to the number of matrix�vector products that is the
most time consuming part of the algorithms� Nevertheless� it should be noted that
for the other parts of the algorithms the coupled two term recurrences of SQMR
is much cheaper than the orthogonalization and least�squares solution involved in
GMRES� From a memory point of view� SQMR is also much less demanding� if
we used the same memory workspace for GMRES as for SQMR� the largest restart
would be ��

Frobenius�norm minimization type methods can deliver a good rate of
convergence compared to standard IC� while the results observed with factorized
approximate inverses are disappointing� For AINV� we can obtain a preconditioner
that leads to similar numerical convergence as the one reported for the MFrob

variants if we use a threshold equal to ���� that gives rise to a preconditioner
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�a	 Example � �b	 Example �

�c	 Example � �d	 Example �

�e	 Example �

Figure 	��� Mesh associated with test examples






Example � � Density of �A � 	��
! � Density of M � ����!
Precond� GMRES�	�� GMRES�
�� GMRES��� SQMR
MFrob �� 
	 
	 "
MAver�Frob �� 

 

 	

MSym�Frob �� 
� 
� 
�
IC��� � �	
 ��� ��

AINV � � � �
FSAI � � � �

Table 	��� Number of iterations using both symmetric and unsymmetric
preconditioners and Krylov methods on a test example�

that is about �� ! dense� Another alternative for AINV is to consider a twice as
dense approximation of A� in that case the threshold that ensures a comparable
numerical convergence is ���� with a preconditioner that only is about 	� ! dense�
For FSAI comparable observations can be made� Using the same �A as in Table 	��
a preconditioner that is �� ! dense exhibits a similar convergence behaviour� In
any case� the resulting preconditioners are still much denser than those required
for the MFrob variants� We intend� in the following sections� to understand the
numerical behaviour of these methods on electromagnetic problems and to identify
some potential causes of failure�

��� Possible causes of failure of factorized approximate

inverses

One potential di�culty with the factorized approximate inverse method AINV is
the tuning of the threshold parameter that controls the �ll�in in the inverse factors�
For a typical example we display in Figure 	�� the sparsity pattern of of A�� �a�
and L�� �b�� the inverse of its Cholesky factor� where all the entries smaller than
��� � ���� have been dropped after a symmetric scaling such that maxi jajij �
maxi j�jij � �� The location of the large entries in the inverse matrix exhibit some
structure� In addition� only a very small number of its entries have large magnitude
compared to the others that are much smaller� This fact has been successfully
exploited to de�ne various a priori pattern selection strategies for Frobenius norm
minimization preconditioners �All�eon et al� ����� Carpentieri et al� ����� in a non�
factorized form� On the contrary� the inverse factors can be totally unstructured as
shown in Figure 	�� �b�� In this case� the a priori selection of a sparse pattern for
the factors can be extremely hard as no real structures are revealed� preventing the
use of techniques like FSAI� In Figure 	�	 we plot the magnitude of the entries
in the �rst column of A�� and L�� with respect to their row index� Those plots
indicate that any dropping strategy� either static or dynamic� may be very di�cult
to tune as it can easily discard relevant information and potentially lead to a very
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poor preconditioner� Selecting too small a threshold would retain too many entries
and lead to a fairly dense preconditioner� A larger threshold would yield a sparser
preconditioner but might discard too many entries of moderate magnitude that
are important for the preconditioner� For those problems� �nding the appropriate
threshold to enable a good trade�o� between sparsity and numerical e�ciency is
challenging and very problem�dependent�
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Figure 	��� Sparsity patterns of the inverse of A �on the left� and of the inverse
of its lower triangular factor �on the right�� where all the entries whose relative
magnitude is smaller than ���� ���� are dropped� The test problem� representative
of the general trend� is a small sphere�
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Figure 	�	� Histograms of the magnitude of the entries of one column of A�� and
its lower triangular factor� A similar behaviour has been observed for all the other
columns� The test problem� representative of the general trend� is a small sphere�
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��� Numerical experiments with Incomplete Cholesky

factorization

In Table 	��� we display the number of iterations using an incomplete Cholesky
factorization preconditioner on Example 	� The reported behaviour is representative
of what was observed on the other test examples� We show results for increasing
values of the density for the sparse approximation of A as well as various levels of
�ll�in� The general trend is that increasing the �ll�in generally produces a much
more robust preconditioner than IC��� applied to a denser sparse approximation
of the original matrix� Moreover� IC��� with � � � might deliver a good rate of
convergence if the coe�cient matrix is not too sparse�

Example 	

Density of �A � ���� !
IC�level� Density of M GMRES�	�� GMRES���� SQMR
IC��� ���� ! # 	�� ��

IC��� ���� ! �	� �	� ���
IC��� 
��� ! ��	 �� 
�

Density of �A � 
��� !
IC�level� Density of M GMRES�	�� GMRES���� SQMR
IC��� 
��� ! # # ���
IC��� ���� ! 
� �� �

IC��� ���	� ! 	� 		 		

Density of �A � ���	 !
IC�level� Density of M GMRES�	�� GMRES���� SQMR
IC��� ���	 ! # # ���
IC��� ���� ! ��� �� �

IC��� �	��
 ! �
 �
 ��

Density of �A � ���� !
IC�level� Density of M GMRES�	�� GMRES���� SQMR
IC��� ���� ! # # ��	
IC��� ����	 ! �� 

 ��
IC��� ����� ! �� �� �


Table 	��� Number of iterations varying the sparsity level of �A and the level of �ll�in
on Example 	�

However� on inde�nite problems the numerical behaviour of IC can be fairly
chaotic� In Table 	�	 we show the number of iterations for Example �� As in the
previous table� the preconditioner is computed from a sparse approximation of the
dense coe�cient matrix� Di�erent values of density in the sparsi�ed matrix are
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considered and various levels of �ll�in are allowed in the factors� The factorization
of a very sparse approximation �up to � !� of the coe�cient matrix can be stable and
deliver a good rate of convergence� especially if at least one level of �ll�in is retained�
For higher values of density for the approximation of A� the factors may become very
ill�conditioned and consequently the preconditioner is very poor� This behaviour has
been already observed on sparse real inde�nite systems� see for instance Chow and
Saad ������� As an attempt for a possible remedy� following monga Made ������
and monga Made� Beauwens and Warzee ������� we apply IC��� to a perturbation
of eA by a complex diagonal matrix� more speci�cally� we use

eA� � eA� i �h$r � �	���

where $r � diag�Re�A�� � diag�Re� eA��� and � stands for a nonnegative real
parameter� while

h � n�
�

d with d � 	 �the space dimension�� �	���

The intention is to move the eigenvalues of the preconditioned system along the
imaginary axis and thus avoid a possible eigenvalue cluster close to zero�

In Table 	�
� we show the number of SQMR iterations for di�erent values of � �
the shift parameter� and various level of �ll�in in the preconditioner� Although it is
not easy to tune and its e�ect is di�cult to predict� a small diagonal shift can help
to compute a more stable factorization� and in some cases the performance of the
preconditioner can signi�cantly improve�

In Figures 	�
 and 	��� we illustrate the e�ect of this shift strategy on the
eigenvalue distribution of the preconditioned matrix� For each value of the shift
parameter � � we display ��L�� the condition number of the computed L factor�
and the number of iterations required by SQMR� The eigenvalues are scattered all
over the complex plane when no shift is used� whereas they look more clustered
when a shift is applied� A clustered spectrum of the preconditioned matrix is
usually considered as a desirable property for a fast convergence of Krylov solvers�
However� for incomplete factorizations the condition number of the factors plays a
more important role than the eigenvalue distribution on the rate of convergence of
the Krylov iterations�
One possibility for constructing a robust shifted IC factorization would be to
implement an auto�tuned strategy� This would consist in incrementing the value
of the shift and computing a new incomplete factorization if the condition number
of the current factor is too large� Such a procedure might be very time consuming�
for this reason we do not explore it further here�
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Table 	�	� Number of iterations and condition numbers of �A and L varying the
sparsity level of �A and the level of �ll�in on Example ��
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of �ll�in in IC�
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Figure 	�
� The eigenvalue distribution on the square ���� �� of the matrix
preconditioned with IC���� the condition number of L and the number of iterations
with SQMR for various values of the shift parameter � � The test problem is
Example ��

��



−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y 
ax

is

�a� � � ��� � ��L� � ����

 � iter�
� ����

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y 
ax

is

�b� � � ��� � ��L� � �	
��� � iter�
� ����

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y 
ax

is

�a� � � ��	 � ��L� � ���
 � iter� �
	�	

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y 
ax

is

�b� � � ��� � ��L� � ���� � iter� �
���

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y 
ax

is

�c� � � ��� � ��L� � ��� � iter� �
���

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y 
ax

is

�d� � � ��� � ��L� � 
	
 � iter� �
��


−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y 
ax

is

�c� � � ��� � ��L� � ��� � iter� �
��

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Real axis

Im
ag

in
ar

y 
ax

is

�d� � � ��	 � ��L� � �
	 � iter� �
�


Figure 	��� The eigenvalue distribution on the square ����	� ��	� of the matrix
preconditioned with IC���� the condition number of L and the number of iterations
with SQMR for various values of the shift parameter � � The test problem is
Example ��
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��� Study of symmetric Frobenius�norm minimization type

preconditioners

In Table 	��� we show the numerical behaviour of the di�erent Frobenius�norm
minimization type preconditioners� both symmetric and unsymmetric� We compare
the unsymmetric preconditioner MFrob and the two symmetric preconditioners
MAver�Frob and MSym�Frob� The column entitled �Relative Flops displays the ratio
�QR�M�

�QR�MFrob�
� where the �QR�M� represents the number of �oating�point operations

required by the sequence of QR factorizations used to build the preconditioner M �
that is either M � MAver�Frob or M � MSym�Frob� In this table� it can be seen
that MAver�Frob almost always requires less iterations than MSym�Frob that imposes
the symmetry directly and consequently only computes half of the entries� Since
MSym�Frob computes less entries the associated values in the column �Relative
Flops are all less than one and close to a third in all cases� On the hardest
test cases �Examples � and 	� the combination SQMR and MAver�Frob needs less
than half the iterations of MFrob with GMRES�	�� and is only very slightly less
e�cient than MFrob and GMRES�
��� On the less di�cult problems� SQMR plus
MAver�Frob converges between �� and 	� ! faster than GMRES�
�� plus MFrob

and between 	� and 
	 ! faster than GMRES�	�� plus MFrob� MSym�Frob� that
only computes half of the entries of the preconditioner� has a poor convergence
behaviour on the hardest problems and is slightly less e�cient than MAver�Frob on
the other problems when used with SQMR� Nevertheless� we should mention that�
for the sake of comparison� those preliminary results have been performed using the
set of parameters for the density of �A and M that were the best for MFrob and
consequently nearly optimal for MAver�Frob� the performance of MSym�Frob might
be improved as shown by the results depicted in Table 	��� Nevertheless� those �rst
experiments reveal the remarkable robustness of SQMR when used in combination
with a symmetric preconditioner� This combination generally outperforms GMRES
even for large restarts�

The best alternative for signi�cantly improving the behaviour of MSym�Frob is
to enlarge signi�cantly the density of �A and only marginally increase the density of
the preconditioner� In Table 	��� we show the number of iterations observed with
this strategy that consists in using a density of �A that is three times larger than
that for MSym�Frob� we recall that for MAver�Frob and MFrob a density of �A twice as
large as that of the preconditioner is usually the best trade�o� between computing
cost and numerical e�ciency� It can be seen that MSym�Frob is slightly better than
MAver�Frob �as in Table 	��� but it is less expensive to build� In this table� we
consider the same values for �QR�MFrob� as those in Table 	�� to evaluate the ratio
�Relative Flops �

To illustrate the e�ect of the densities of �A and of the preconditioners� we
performed experiments with preconditioned SQMR� where the preconditioners are
built by using either the same sparsity pattern for �A or a two� three or �ve times

��
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Table 	��� Number of iterations on the test examples using the same pattern for the
preconditioners�

denser pattern for �A� We report in Tables 	�� and 	�
 respectively the number of
SQMR iterations for MSym�Frob� and for MAver�Frob respectively� In these tables�
MSym�Frob always requires more iterations than MAver�Frob for the same values of
density for �A and for the preconditioner� but its computation costs about a fourth
�ops for each test�

Because the construction of MSym�Frob is dependent on the ordering selected�
a natural question concerns the sensitivity of the quality of the preconditioner to
this� In particular Du� and Meurant ���
�� show that the numerical behaviour
of IC is very much dependent on the ordering� The e�ect of the ordering is also
highlighted by Benzi and T�uma ������ for AINV� In Table 	��� we display the
number of iterations with SQMR� selecting the same density parameters as those

�
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Table 	��� Number of iterations for MSym�Frob combined with SQMR using 	 times
more nonzeros in �A than in the preconditioner�
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Table 	��� Number of iterations of SQMR with MSym�Frob with di�erent values for
the density ofM using the same pattern for A and larger patterns� The test problem
is Example ��
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Table 	�
� Number of iterations of SQMR with MAver�Frob with di�erent values for
the density ofM using the same pattern for A and larger patterns� The test problem
is Example ��

used for the experiments reported in Table 	��� but using di�erent orderings to
permute the original pattern of MSym�Frob� More precisely we consider the reverse
Cuthill�McKee ordering �RCM� �Cuthill and McKee ������ the minimum degree

��



ordering �MD� �George and Liu ��
�� Tinney and Walker ������ the spectral nested
dissection ordering �SND� �Pothen� Simon and Liou ����� and lastly we reorder
the matrix by putting the denser rows and columns �rst �DF�� It can be seen that
MSym�Frob is not too sensitive to the ordering and none of the tested orderings
appears superior to the others�

Example Density Original RCM MD SND DF
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Table 	��� Number of iterations of SQMR with MSym�Frob with di�erent orderings�

� Conclusions

In this work we have investigated the use of symmetric preconditioners for the
solution of symmetric non�Hermitian complex linear systems in electromagnetics
applications� The motivations are twofold� �rst to re�ect the symmetry of
the original matrix in the associated preconditioner� second to use a symmetric
Krylov solver that might be cheaper than GMRES iterations� since� with an
unsymmetric preconditioner� GMRES appears to be the most e�cient iterative
method �Carpentieri et al� ������

The classical IC preconditioner exhibits a rather poor and chaotic behaviour�
It appears that this disappointing behaviour is due to the ill�conditioning of the
computed factors� The use of a shift in some cases improved this situation but its
e�ect is di�cult to predict�

The classical factorized approximate inverses namely AINV and FSAI� that
are also appropriate candidates� only show poor convergence behaviour� We
present some clues to explain that disappointing behaviour� Although no numerical
experiments are reported� we have tried both re�ordering and shift strategies but
without success to improve their convergence rate�

Both MAver�Frob and MSym�Frob appear to be e�cient and robust� Through
numerical experiments� we have shown that MSym�Frob was not too sensitive to

��



column ordering while MAver�Frob is totally insensitive� In addition MAver�Frob is
straightforward to parallelize even though it requires more �ops for its construction�
It would probably be the preconditioner of choice in a parallel distributed fast
multipole environment but possibilities for parallelizing MSym�Frob also exist
although they are more complex to implement� Finally� the major bene�t of
these two preconditioners is the remarkable robustness they exhibit when used in
conjunction with SQMR�
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