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SUMMARY

A novel parallel method for determining an approximate total least squares (TLS) solution is

introduced. Based on domain distribution, the global TLS problem is partitioned into several

dependent TLS subproblems. A convergent algorithm using the parallel variable distribution technique

(Ferris and Mangasarian, 1994) is presented. Numerical results support the development and analysis

of the algorithms. Copyright c© 2002 John Wiley & Sons, Ltd.
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1. Introduction

Total least squares (TLS), which has existed in statistics under the name “errors-in-variables

regression” for a long time as a natural generalization of least squares (LS), was introduced

to numerical specialists in 1973 by Golub([1]). In the last two decades, the TLS problem

has been researched from many different numerical perspectives, [2, 3, 4, 5, 6, 7, 8],

excepting the development of a parallel algorithm. Among these references, [2] includes a

complete introduction and analysis of basic algorithms. Here, we consider large-scale well-

posed problems; for ill-posed TLS problems refer to [4, 5, 7, 8].
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In contrast to the standard LS model for the TLS model both the matrix A and the right

hand side b in the overdetermined linear system Ax ≈ b, A ∈ Rm×n,m > n, are assumed to

contain errors. The TLS solution xTLS solves the following optimization problem:

min
E,f

‖[E, f ]‖2F subject to (A+ E)x = b+ f, (1.1)

where ‖.‖F denotes the Frobenius norm. If UΣV T is a singular value decomposition of the

augmented matrix [A, b], the smallest singular value σn+1 is simple and v(n + 1, n + 1) 6= 0

(generic), then xTLS = −v(1 : n, n + 1)/v(n + 1, n + 1) and [E, f ] = −σn+1un+1v
T
n+1, where

ui, vi are the columns of matrices U and V , respectively. Moreover, xTLS satisfies,

f =
AxTLS − b

1 + ‖xTLS‖2 , (1.2)

E = −f · xT
TLS, (1.3)

and minimizes the sum of squared normalized residuals,

xTLS = argminxφ(x) = argminx

‖Ax− b‖2
1 + ‖x‖2 , (1.4)

[9, 2]. Here φ is the Rayleigh quotient (RQ) of matrix [A, b]T [A, b]. For convenience we denote

the TLS problem for the augmented matrix [A, b] by TLS(A, b) and say that xTLS solves the

problem TLS(A, b).

For a large-scale problem, the singular value decomposition (SVD) calculation is expensive.

Because we only need one singular vector, iterative methods can be used to reduce the

computational cost. For example, inverse power, inverse Chebyshev iteration [2] and Rayleigh

quotient iteration (RQI) [3] could be used. Related methods for computing smallest singular

value(s) (and vector(s)) are Jacobi-Davidson [10], trace minimization [11] and inverse Rayleigh

Ritz iteration [12]. We also note that block Lanczos and block Davidson methods, based

on parallel sparse matrix-vector multiplication, were discussed for computing the singular

subspace associated with the smallest singular values [13]. Here, rather than computing the

singular vectors, we use the TLS minimization formulation (1.4), and solve the optimization

problem by application of the parallel variable distribution (PVD) approach of Ferris and

Mangasarian, [14]. This approach is suitable for both sparse and dense data structures. The

specialization of PVD to the linear least squares problem was presented in [15], [16] and a

more general approach was presented in [17].

To apply the PVD approach we introduce the decomposition of the space Rn as a Cartesian

product of lower dimensional subspaces Rnj , j = 1, · · · , p, where
∑p

j=1 nj = n. Accordingly,
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2 H. GUO AND R. A. RENAUT

any vector x ∈ Rn is decomposed as (Px)T = (xT
1 , x

T
2 , · · · , xT

p ), where P is a permutation

matrix. Matrices A and E are partitioned consistently

AP = [A1, A2, · · · , Ap],

EP = [E1, E2, · · · , Ep].

Without loss of generality, we ignore the permutation matrix P in the analysis and theoretical

development of the algorithms. For ease we introduce the notation x̄i to be the complement

of xi, namely the vector x with zeros in block i.

Consistent with application of the PVD approach we assume for the iterative algorithm

that there are p processors, each of which can update a different block-component, xj . Each

of these processors may be designated a slave processor, which is coordinated by a single

master processor. The slaves solve the local problems and are coordinated for solution of

the global problem by the master processor. If there are insufficient available processors,

the algorithms are modified appropriately to consider the separate processes, rather than

processors. If
∑p

j=1R
nj = Rn and

∑p
j=1 nj > n, the spatial decomposition is designated as an

overlapped decomposition, otherwise it is without overlap. In the theoretical analysis we assume

that the subproblems are not overlapped, although our numerical experiments consider both

situations.

In the presentation of the basic algorithms we do not give all details of the parallel

implementation for the linear algebra operations. For example, calculation of matrix vector

products, where the matrix is distributed over several processors with local memory, requires

local computation, global communication and global update. Such operations are by now well

documented, see for example [9], and dependent on the local architecture employed for problem

solution.

We reemphasize that the focus of this work is the development of a domain decomposition

approach and the study of its feasibility. The remaining sections of this paper are organized

as follows. We provide the development of the algorithms and analyze their properties in

Section 2. Convergence analysis is presented in Section 3, computational considerations in

Section 4, numerical experiments in Section 5 and conclusions in Section 6.
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2. Algorithms

2.1. Development

Domain decomposition applied to the Rayleigh quotient formulation for the TLS problem,

(1.4), suggests the local problems are given by

zi = argminz∈Rni

‖Aiz − b(x̄i)‖22
1 + ‖z‖22 +

∑
j 6=i ‖xj‖22

, (2.5)

where

b(x̄i) = b−
∑

j 6=i

Ajxj = r(x) +Aixi, r(x) = b−Ax. (2.6)

Setting

β2
i = 1 +

∑

j 6=i

‖xj‖2, wi = zi/βi and b̃i = b(x̄i)/βi, (2.7)

(2.5) is replaced by

wi = argminw∈Rni

‖Aiw − b̃i‖22
1 + ‖w‖22

, (2.8)

which now looks like (1.4) for TLS(Ai, b̃i). In other words, wi solves

min
Ẽi,f̃i

‖[Ẽi, f̃i]‖ subject to (Ai + Ẽi)wi = b̃i + f̃i.

Equivalently zi is the solution of the weighted TLS subproblem :

min
Ei,fi

‖[Ei, β
2
i fi]‖2F subject to (Ai + Ei)zi = b(x̄i) + β2

i fi. (2.9)

2.2. Global Update

The parallel algorithm requires both a mechanism to find local solutions Yi, = 1 . . . p, where

Yi is vector x with component xi replaced by zi, for each local problem, the parallelization

phase, and the process by which a global update is obtained, the synchronization phase. Of

course, if parallelism is not required, then a Gauss-Seidel update can be formed, in which the

local problems are solved using the most uptodate information from each subproblem. On

the other hand, for true parallelism, there are various approaches for the global update at

the synchronization step. These mimic the alternatives presented in [15] for the multisplitting

solution of the least squares problem.

Before listing all synchronization approaches, we introduce a mechanism for an optimal

global update at synchronization.

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 0:0–0
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Theorem 2.1. Let D ∈ Rn×p and γ ∈ Rp, and define

ψ(γ) =
‖A(x+Dγ)− b‖22

1 + ‖x+Dγ‖22
.

Then γmin = argminγ∈Rpψ(γ) satisfies

(DTATAD − ψ ·DTD)γ = DTAT r + ψ ·DTx, (2.10)

where r = b−Ax.

Proof: We introduce the notation ψ = ψ1/ψ2, where

ψ1(γ) = ‖A(x+Dγ)− b‖22 ≥ 0, (2.11)

ψ2(γ) = 1 + ‖x+Dγ‖22 ≥ 1. (2.12)

Then at a stationary point

ψ′1 − ψ · ψ′2 = 0.

Replacing ψ′1, ψ
′
2 by the corresponding gradient vectors, we immediately obtain condition

(2.10). 2

This result shows how to find an optimal update using the updated local solutions,

specifically it leads to the updates S1 and Sp given below.

Synchronization approaches: At iteration k, solution x(k) is updated by one of the following

four methods.

• Block Jacobi (BJ) Given the local solutions z(k)
i , i = 1 . . . p, form the block update

x(k) = z(k).

• Convex Update: Form the global update using the convex combination

x
(k)
i = (1− αi)x

(k−1)
i + αiz

(k)
i (2.13)

for each block i, where the weights αi satisfy 0 < αi < 1, with
∑p

i=1 αi = 1, and without

any optimality imposed it is practical to choose αi = 1/p.

• Line Search (S1): Define search direction d(k) = z(k) − x(k−1), and find scalar α such

that solution x(k) = x(k−1) + αd(k) solves the global minimization:

PVDTLS-S1

min
α∈R

ψ(α), ψ(α) =
‖A(x(k−1) + αd(k))− b‖22

1 + ‖x(k−1) + αd(k)‖22
. (2.14)

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 0:0–0
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The solution α is a root of the quadratic equation %1α
2 + %2α+ %3 = 0, where

%1 = (d(k))Tx(k−1) · ‖Ad(k)‖2 + (Ad(k))T r(k−1) · ‖d(k)‖2,
%2 = ‖Ad(k)‖2 · (1 + ‖x(k−1)‖2)− ‖r(k−1)‖2 · ‖d(k)‖2,
%3 = −(Ad(k))T r(k−1) · (1 + ‖x(k−1)‖2)− ‖r(k−1)‖2 · (d(k))Tx(k−1),

and is chosen such that ψ(α) is minimal. Here we introduce the use of the residual

r(k) = b−Ax(k).

• p−dimensional update (Sp): Search in a p−dimensional subspace Sp as follows:

Consider the update x(k) = x(k−1) +
∑p

i=1 γid
(k)
i , where the d(k)

i = [0, · · · , 0, (z(k)
i )T −

(x(k−1)
i )T , 0, · · · , 0]T are the components of the global search direction, and the

parameters γi determine the weight in each subdirection. We use D(k) to denote the

matrix with columns d
(k)
i , γ the vector with components γi, and solve the global

minimization:

PVDTLS-Sp

min
γ∈Rp

‖A(x(k−1) +D(k)γ)− b‖22
1 + ‖x(k−1) +D(k)γ‖22

. (2.15)

By Theorem 2.1, the conditions for optimality yield

((D(k))TATAD(k) − ψ · (D(k))TD(k))γ (2.16)

= (D(k))TAT r(k−1) + ψ · (D(k))Tx(k−1),

where

ψ =
‖AD(k)γ − r(k−1)‖22

1 + ‖x(k−1) +D(k)γ‖22
. (2.17)

Because p is assumed small relative to n we can assume that problems (2.16) and (2.17)

are small. Again γ is chosen such that ψ(γ) is minimal.

Remark 2.1. A secular equation with ψ as variable can be derived from equations (2.16)

and (2.17). Because we want to minimize the function ψ(x), the smallest root of the secular

equation is of interest. Thus the iteration may be initialized with ψ0 = 0.

Remark 2.2. Observe that the two search techniques, S1 and Sp, are more general forms

of the update (2.13). In particular S1 corresponds to (2.13) with αi = α, but without the

constraint on each αi, and Sp finds an optimal set of αi in (2.13) each step to minimize the

global objective. Clearly, S1 is the specification of Sp for the case p = 1. As presented the

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 0:0–0
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6 H. GUO AND R. A. RENAUT

optimal updates S1 and Sp do not impose convexity which is important for convergence in the

LS case, but we will see is irrelevant for TLS because of its lack of convexity.

Remark 2.3. We do not expect that use of the BJ update at each step would generate a

convergent algorithm. However, as in [15], it may speed up the iteration if at a given step the

BJ update is adopted when it has generated a smaller objective value than that given by (2.13),

and the sequence of objective function values is decreasing.

2.3. Algorithm

Algorithm 1. (PVDTLS) Given a tolerance τ and an initial vector x(0), set k = 0,

and calculate r(0) = b − Ax(0). Compute solutions x(k) iteratively until |φ(x(k)) −
φ(x(k−1))|/φ(x(k)) < τ as follows:

1. While not converged Do

(a) Parallelization (slave processor i):

i. k = k + 1.

ii. Calculate b(x̄(k)
i ) = r(k−1) +Aix

(k−1)
i .

iii. Find solution w(k)
i of TLS(Ai, b̃i), and calculate zi using (2.7).

(b) Synchronization (master processor):

i. Use a global update algorithm to find yopt and update x(k) = x(k−1) + yopt,

where

φ(x(k)) < φ(x(k−1)). (2.18)

ii. Test for convergence. Break if converged.

iii. Else Update necessary data values over all processors. Continue.

End Do

3. Convergence analysis

Discussion of convergence for the PVDTLS algorithms is far more complex than that for the

least squares PVD for which the objective function is convex. Consider the following low-

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 0:0–0
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Figure 1. Function φ(x) for (3.19) with maximum point (2,−1, 1), minimum point (−1,−1, 0.1) and

saddle point (0, 1, 0.5).

Figure 2. Curves crossing saddle point (0, 1) in coordinate directions, φ((0, x2)) and φ((x1, 1)).

dimensional example, for which φ(x) is illustrated in Figure 1.
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We see that not only is φ(x) not convex but it also possesses saddle points. Figure 2 illustrates

two curves which cross the saddle point (0, 1) of φ(x) for (3.19). Obviously, if the iteration

starts from x(0) = (0, 1), the update will not move from the saddle point, neither in the

parallelization nor the synchronization step, (in the latter D(1) = 0). Thus, even if the given

algorithms converge to some point, this point may not be at the global minimum, and may be

a saddle point which traps the subsequent iterative updates.

The difficulty exhibited by the example illustrated in Figure 1 is general, as demonstrated

by the following result for the stationary points of the non-concave function φ(x).

Lemma 3.1. ( FACT 1-8 in [18] ) The Rayleigh quotient of a symmetric matrix is stationary

at, and only at, the eigenvectors of the matrix.

Lemma 3.2. ([8]) If the extreme singular values of the matrix [A, b] are simple then φ(x) has

one unique maximum point, one unique minimum point and n-1 saddle points.

In particular, this result shows that if the iteration defined by the preceding algorithm starts

at a stationary point, the iteration need not converge to the global minimum of the objective.

3.1. Convergence Proof

First, note that when we relate a right singular vector vi(1 : n+1) of matrix [A, b] to (xT ,−1)T

we assume vi(n+ 1) 6= 0. We use the notation ∇2
iφ(x) for the ni−dimensional Hessian matrix

with respect to xi ∈ Rni . Also, for a bounded sequence {x(k)} with accumulation point x∗, we

use the indices kj , j = 1, 2 · · · for the subsequence {x(kj)} → x∗, when j →∞.

Theorem 3.3. Suppose {x(k)} is the sequence generated by Algorithm 1. Then

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 0:0–0
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8 H. GUO AND R. A. RENAUT

1. {φ(x(k)} converges.

2. If {x(k)} is bounded, any accumulation point, x∗, is a stationary point of φ(x) and ∇2
iφ(x∗) ≥ 0

on the subspace Rni for i = 1, · · · , p.
3. If {x(k)} is bounded and the singular values of matrix [A, b] are distinct {x(k)} converges.

Proof:

1. By the synchronization step it is guaranteed that the objective function decreases with

{x(k)}. Moreover, the objective function is bounded below by 0 and thus converges.

2. Because {x(k)} is bounded there exists at least one accumulation point x∗. Denote φ(x∗)

by φ∗. Suppose that this accumulation point is not at a minimum of φ with respect to

its first block component. Then there exists xnew
1 ∈ Rn1 such that

φ(xnew
1 , x∗

1
) < φ∗. (3.20)

Here 1 denotes the complement of element 1 in {1, · · · , p}, i.e., 1 = {2, · · · , p}. By the

requirement of objective function decrease, however, we must have

φ(x(kj)) ≤ φ(x(kj−1+1))

≤ φ(z(kj−1+1), x
(kj−1)

1
)

≤ φ(xnew
1 , x

(kj−1)

1
).

In the limit j →∞ this yields

φ∗ ≤ φ(xnew
1 , x∗

1
),

which contradicts (3.20). The same argument applies with respect to the other block

components.

3. We first prove that {x(k)} has an unique accumulation point provided that the

singular values of matrix [A, b] are distinct. Suppose the contrary, then there exists two

accumulation points x∗ and x∗∗, which by the previous statement are stationary points

of φ(x). Then, by Lemma 3.1, ((x∗)T ,−1)T and ((x∗∗)T ,−1)T are two eigenvectors

of matrix [A, b]T [A, b] corresponding to two distinct eigenvalues σ2
k < σ2

l . Moreover,

φ(x∗) = σ2
k < σ2

l = φ(x∗∗). But, by statement (1), {φ(x(k))} converges, φ(x∗) = φ(x∗∗).

Thus {x(k)} must converge to an unique accumulation point. Otherwise, because of the

boundedness of the sequence we could construct another accumulation point, which by

the above is not possible.

2
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4. Computational Considerations

We assess the maximal theoretical efficiency of PVDTLS for solution of (1.4) through

analysis of its computational cost in comparison to the traditional serial direct method

and its parallelization using PARPACK [19]. Comparison with indirect techniques, [2], is

not so immediate because the cost of each indirect algorithm depends on both its specific

implementation, and the condition of the underlying problem. See, for example, [3] for a

thorough discussion of approaches for implementation of the RQI to solve (1.4). Also, the use

of an indirect algorithm for (2.5) confounds the discussion in this paper, for which the major

intent is to assess the overall viability and stability of PVDTLS for large scale applications.

Thus, while we do not specifically exclude that indirect techniques can be useful for solving

each of the local problems, here we propose the use of a very efficient SVD update algorithm.

Measuring computational cost only in terms of number of flops, without consideration of

any hardware related issues for measure passing, or memory or cache usage, the cost of the

direct SVD solution of (1.4) is Cs = 2mn2 + 12n3, see Algorithm 12.3.1 in [9]. It is efficient to

use this same direct SVD algorithm for the solution of each (2.5), because the first ni columns

of Ãi = [Ai, b̃i] are fixed over all outer iterations. Hence, having calculated the initial SVD,

the SVD update algorithm, [20], can be utilized, yielding a total local cost Cl(K), where K is

the number of outer iterations to convergence,

Cl(K) ≈ 2n2
i (m+ 6ni) +K(2ni(m+ 5ni) + 4nim), (4.21)

Here the last term is the cost of updating b(x̄i) and generating Aidi as needed for the

global update. The cost of the global update, other than by Sp, is negligible. The major

costs associated with the solution of (2.15) are Lp3/3, where L is the number of iterations

for the minimization, and 2m(p + 1) which accounts for the initialization of the products

(AD(k))TAD(k) and (r(k−1))TAD(k). In the implementation, L ≤ 5 is limited under the

assumption, verified numerically, that exact global solution each outer iteration is unnecessary.

Hence,

CSp(K) ≈ K(2m(p+ 1) +
L

3
p3), (4.22)

and, using L = 5, the total parallel cost used in our theoretical estimates is

Cp(K) ≈ Cl(K) + CSp(K) (4.23)

≈ 2n2
i (m+ 6ni) + 2K(5n2

i + 3nim+ (p+ 1)m+
5
6
p3). (4.24)

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 0:0–0
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10 H. GUO AND R. A. RENAUT

Figure 3. Theoretical efficiency of PVDTLS-Sp against number of iterations to convergence for different

problem sizes, ignoring overheads of parallel communication and memory access.

Not surprisingly, there must be a balance between the size of the local problems, in order to

reduce local cost, and maintaining p small enough that the total number of outer iterations is

not too large. This is illustrated in Figure 3, in which the maximal efficiency,

Eff(p,K) =
Cs

pCp(K)
, (4.25)

is calculated for problems of increasing size and different numbers of domain blocks. Note that

ideal efficiency Eff(p) = 1 is potentially exceeded for problems with size n = O(103), with

p <= 32, and 500 ¹ K ¹ 1000.

A standard alternative to the design of a new algorithm for large scale problems is the

parallelization of the most computationally demanding steps of a serial algorithm. Here we

consider the use of PARPACK for the parallel implicit restart Lanczos method (IRLM), [19],

to calculate the smallest eigenpair of matrix [A, b]T [A, b]. We use the default number, 20, of

Lanczos basis vectors and request only one eigenvalue needed for the explicit representation of

the TLS solution. The parallelizable cost of the IRLM includes the initial cost of generating

a 20-dimensional Krylov subspace, 20(n + 1)(4m + 9 + 2 ∗ 20), and the per iteration cost of

20(n+ 1)(4m+ (6 + 9) + 4 ∗ 20), [21]. The serial cost in each iteration for 19 implicitly shifted

QR steps is 6 ∗ 202 ∗ 19, [9]. Hence the total parallel cost for K iterations, again ignoring all

parallel overheads, is

CIRLM
p (K) =

80(K + 1)mn+ (960 + 1900K)n
p

+ 45600K, (4.26)

where, unlike PVDTLS, K is independent of the number of processors. This estimate is used

to compare the efficiencies for the numerical experiments reported in Section 5.

5. Numerical Experiments

5.1. Evaluation of the PVDTLS Algorithms

To evaluate the algorithms we use both a standard test problem, staar, [22] and three different

versions of a test problem which can be modified to change the underlying condition of the

problem. In each case the problem size and number of subdomains are chosen so that each

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 0:0–0
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subdomain is of equal size. All tests are run with Matlab 7.0 and x(0) = 0. We design the

test data in such a way that the exact TLS solution, xTLS, and optimal objective function

value, φmin = σ2
n+1, are known. For stopping criterion we use tolerance τ = .00001. In each

case we report the number of outer iterations K to the given convergence, the relative errors

of the converged x(K) to xTLS and of the converged φ(x(K)) to φmin. Each case is tested

for solution by Gauss-Seidel and PVD techniques PVDTLS-S1 and PVDTLS-Sp. A selection

strategy, denoted by “Sel” in the results indicating Selection, is also tested in which at each

step the update chosen is that which gives the greatest reduction in the objective function

when chosen from the local solutions Yi, the BJ update z(k) and the convex update given by

(2.13). This is consistent with the approach presented for the convex cases in [17], [15], and

permits evaluation of whether the optimal update is necessary for obtaining a good solution.

For the second test problem, the third situation leads to a case in which one block converges

to a poor solution. In this case we evaluate also the use of truncated TLS for regularization of

the local solution on this block to demonstrate the flexibility inherent in PVDTLS.

Test 1.

We consider problem staar [22] for m = 162. The Rayleigh quotient is φ(xTLS) = m, [2]

(Chapter 2.4). For all cases the iteration converges to the correct solution and minimal φ in

just two steps.

Test 2.

Based on the sensitivity analysis presented in [23], Björck et al. [3] suggest that the ratio

σ′1/(σ
′
n − σn+1) be used as an approximate measure of the condition of a TLS problem.

Here σi and σ′i represent the ith singular values of matrices [A, b] and A respectively. The

approximate condition numbers partially reveal the local structure of the surface of φ(x) near

the minimum point. A large condition number predicts that locally the surface is flat which

makes the problem difficult to solve, while a small condition number indicates that the surface

is locally steep. The TLS condition number for Test 1 is just 30.7, suggesting that staar is

rather well-conditioned. In contrast, the following construction leads to examples with different

condition numbers such as to evaluate PVDTLS with respect to the condition of the problem.
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Figure 4. The four lowest stationary points of φ(x) for Test 2. The lower right is the solution at the

lowest stationary point, xTLS.

We construct [A, b] ∈ Rm×(n+1)

[A, b] = UΣV T ,

U = Im − 2χχT ,

V = In+1 − 2ςςT ,

Σ =


 Σ1

0


 ,

where

χ(i) = sin(4πi/m), i = 0, 1, · · · ,m− 1,

ς(j) = cos(4πj/(n+ 1)), j = 0, 1, · · · , n,

and are normalized such that‖χ‖2 = ‖ς‖2 = 1. In the tests we set m = 162 and n = 160, and

Σ1 is one of the following three diagonal matrices:

a Σ1 = diag(v1, v2, v3, v4, 0.001), where v1, v2, v3 and v4 are constant row vectors with length

n/4 and values 4/n, 2/n, 4/(3n) and 1/n respectively. This test has condition 4.76 and

φ = σ2
n+1 = 1.0e− 6.

b Σ1 = diag(1, 1/2, · · · , 1/n, 0.001). The condition is 190.5 and φ = σ2
n+1 = 1.0e− 6.

c Σ1 = diag(1, 1/2, · · · , 1/(n+ 1)). The condition is 2576 and φ = σ2
n+1 = (1/161)2.

In these examples, the stationary points are all the same, the ith, i ≤ n, of which is

close to [0, · · · , 0, hi, 0, · · · , 0], where hi is a positive number, see Figure 4. In each example,

however, the function values at these stationary points are different. In turn the matrix spectra

are different and the condition increases from Test 2 (a) to (c). Results of the numerical

experiments are detailed in Tables I-III, in which x.y(−t) indicates x.y×10−t and N indicates

that convergence has not occured by the 500th iteration.

Also illustrated in Figure 5 is the estimate of the q-factor in each case, which demonstrates

the q-linear convergence behavior, [24]. Indeed, in most cases the convergence rate is nearly

linear, which is consistent with the result for strongly convex problems, Theorem 2.3 of [14].

Theoretically, the converged point may be a saddle point, see Figure 1, but we did not encounter
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Table I. Test 2 (a): Outer iteration steps / relative error to φmin /relative error to TLS solution.

PVD p overlap 0 overlap 1 overlap 2 overlap 5

Table II. Test 2 (b): Outer iteration steps / relative error to φmin /relative error to TLS solution.

PVD p overlap 0 overlap 1 overlap 2 overlap 5

Table III. Test 2 (c): Outer iteration steps / relative error to φmin /relative error to TLS solution.

PVD p overlap 0 overlap 1 overlap 2 overlap 5

Figure 5. Convergence history for 4 examples. In each case the solid line indicates the relative error

of x(k) to xTLS (solid) and the dotted line the relative error of φ(k) to φmin (dots). The approximate

q-factors of linear convergence are also presented.

Figure 6. Test 2 (c), PVDTLS-S1, p = 2, overlap 5. Left: convergence history, the solid line indicates

the relative error of x(k) to xTLS, the dotted line the relative error of φ(k) to φmin and the crosses the

estimated relative error of objective |φ(x(k))− φ(x(k−1))|/φ(x(k)) Right: converged solution and true

TLS solution.

this in any of our tests. Instead, we did find some cases that converged to a point which is

neither a saddle nor the true solution. Illustrated in Figure 6 is one such case, Test 2 (c), using

S1 for the global update, with p = 2 and overlap of 5. Here, it is apparent that the converged

solution is close to the true solution, and even iterating to 50000 iterations, the solution is

still not improved. This does not contradict Theorem 3.3 because the structure of objective

function is so flat near to the true solution that (2.18) can not be satisfied to double float

accuracy. In this case, it is possible to obtain a solution which does converge with relative

error less than 1.0× 10−11 if we pick the initial guess as the true TLS solution with 10% noise

added.

5.1.1. Discussion Our main observations from the numerical results follow.
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1. A simple selection strategy, “Sel”, does not provide satisfactory convergence behavior

for PVDTLS. When the TLS condition number is not small, and the number of blocks

increases, this approach does not succeed, even if regularization is applied to the “bad”

block. In particular it is essential that the global update is optimized using an approach

such as S1 or Sp. This contrasts the LS case in which convex updates or BJ updates

were often sufficient to maintain satisfactory convergence at less cost than the optimal

recombination global update.

2. Use of a p-dimensional optimal update reduces the total number of iterations, and is more

reliable at obtaining a good converged solution, than the line search S1, for minimal extra

cost, when p is small.

3. When using a Gauss-Seidel approach, results show that it is essential to do some global

update optimization, as indicated here by use of the line search S1. Moreover, as for the

selection strategy, the Gauss Seidel approach is not successful when the TLS condition

number increases and a given block needs some regularization. Use of Sp may be useful

to improve the convergence of GS.

4. As p increases the number of iterations to convergence increases.

5. Increasing overlap can be used to reduce the number of iterations to convergence.

These latter two results are completely expected for any parallel appproach. The former results

are specific to the PVD for TLS.

Our implementation does not use the forget-me-not term in the global update as used in

[14, 16]. While its inclusion might increase the speed of the convergence, it would also exclude

the use of the efficient SVD update scheme. Moreover, the formulation as presented, also

easily permits, independently of other domains, the inclusion of regularization for a specific

subdomain, [7], [5].

5.2. Comparison with IRLM

To compare with parallel IRLM we also solve the second test case to achievable accuracy by

both the parallel IRLM and PVDTLS-Sp and evaluate the relative efficiency. We present the

number of iterations to find in each case the best achievable accuracy measured in terms of the

relative error to the true TLS solution. Representative cases for PVDTLS-Sp with overlap of

5, and 2, 4 and 8 subdomains are given in top half of Table IV. From these results we observe

that PVDTLS has better achievable accuracy for the Test 2 (b), regardless of the number of
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Figure 7. Convergence history for Test 2 (b) and Test 2 (c) with IRLM.

Table IV. Best achievable accuracy for PVDTLS-Sp with overlap 5 and for IRLM: iteration steps /

relative error to TLS solution.

size Method Test 2 (a) Test 2 (b) Test 2 (c)

Table V. Number of iteration steps for PVDTLS / number of steps for IRLM/ relative efficiencies,

Cp(PVDTLS)/Cp(IRLM), ignoring parallel overheads in both cases, for reaching equivalent relative

error to TLS solution, Error = ‖x(k) − xTLS‖/‖xTLS‖.

size p Test 2 (a) Test 2 (b) Test 2 (c)

subdomains. Moreover, it is apparent by the high number of iterations required to achieve a

converged solution, that for this specific test the subdomain size is too small when the global

problem is split into 8 local problems. The convergence history for parallel IRLM, shown in

Figure 7, confirms that the IRLM does not improve with iteration after a certain number of

iterations. On the other hand, in terms of accuracy parallel IRLM outperforms PVDTLS in

two cases. Moreover the convergence history for PVDTLS in these cases has also stagnated,

Figure 5 (a)-(d).

Table V shows the relative efficiency Cp(PV DTLS)/Cp(IRLM) for achieving the equivalent

accuracy with p = 2 and 4. A ratio greater than 1 suggests that IRLM is more efficient, while

PVDTLS is potentially more efficient for a ratio less than 1. The results clearly demonstrate

that parallel IRLM is less efficient than PVDTLS-Sp for the examples with higher condition

number, while the converse is true for well-conditioned cases.

We also compare these two methods for larger examples, designed in the same way as Test 2

but with m = 1602 and n = 800. In this test the iteration is terminated for PVDTLS when

either the relative solution error, ‖x(k)−xTLS‖/‖xTLS‖, is less than 1.0×10−6, or if 1000 steps

have been taken without achieving convergence. These results are tabulated in the lower half

of Table IV. Observe that the IRLM iteration does not converge for the second two examples,

even when we increase the dimension of Krylov subspace from 20 to 100. Therefore, it is clear

than PVDTLS outperforms IRLM except for the well-conditioned test.
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6. Conclusion

We have presented a domain decomposition strategy for solution of the TLS problem, using

PVD techniques combined with optimal global update. The method can be implemented in

a serial GS manner, or a parallel BJ approach. To obtain a satisfactory convergence history

it is essential to optimize the global update at each outer iteration. The use of inexact local

solutions is not needed because the local solutions use an optimal SVD update scheme. The

algorithm can be adapted to handle problems in which some regularization is needed on a

local subdomain because of ill-conditioning of the local problem. As compared to a parallel

implementation of the implicitly restarted Lanczos algorithm, PVDTLS-Sp offers a viable

strategy for those large problems which are also poorly conditioned.
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