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SUMMARY

Structured matrix algebras L and a generalized BFGS-type iterative scheme have been recently investi-
gated to introduce low-complexity quasi-Newton methods, named LQN, for solving general
(non-structured) minimization problems. In this paper we introduce the LkQN methods, which exploit
ad hoc algebras at each step. Since the structure of the updated matrices can be modi�ed at each
iteration, the new methods can better �t the Hessian matrix, thereby improving the rate of convergence
of the algorithm. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we study a new class of quasi-Newton (QN) algorithms for the minimization
of a function f :Rn →R, which are a generalization of some previous methods introduced in
Reference [1]. The innovative algorithms, named LkQN, exploit, in the quasi-Newton iterative
scheme xk+1 =xk − �kB−1

k ∇f(xk), positive de�nite (p.d.) Hessian approximations of the type

Bk+1 =’(Ak; sk ; yk); Ak ∈Lk ; sk =xk+1 − xk ; yk =∇f(xk+1)− ∇f(xk) (1)

where the n× n matrix Ak is picked up in a structured matrix algebra Lk , shares some
signi�cant property with Bk and is p.d. In (1), ’(·; sk ; yk) denotes a function updating p.d.
matrices into p.d. matrices, whenever sTk yk¿0, i.e.

A p:d:

sTk yk¿0

}
⇒ ’(A; sk ; yk) p:d: (2)
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Condition (2) is in particular satis�ed by the BFGS updating formula (5) in the next
section, whereas a suitable choice of the step length �k assures the inequality sTk yk¿0 by
using classical Armijo–Goldstein conditions (see (7) or Reference [2]). We underline that
other possible updating formulas could be utilized (see e.g. Reference [3]).
Hessian approximations of type (1) were studied in the case Lk =L for any k, where L

is a �xed space, and the matrix Ak is the best approximation in the Frobenius norm of Bk
in L [1]. Such matrix Ak , denoted by LBk , inherites positive de�niteness from Bk . So, by
property (2), Bk+1 =’(LBk ; sk ; yk) is a p.d. matrix (provided that sTk yk¿0). As a consequence,
the LQN methods of Reference [1] yield a descent direction dk+1.
If L is de�ned as the set sdU of all matrices simultaneously diagonalized by a fast discrete

transform U (see (8)), then the time and space complexity of LQN is O(n log n) and O(n),
respectively [1, 4]. The latter result makes LQN methods suitable for minimizing functions f
where n is large. In fact, numerical experiences show the competitivity of LQN with limited-
memory BFGS (L-BFGS), which is an e�cient method for solving large-scale problems [4].
Moreover, a global linear convergence result for the class of NSLQN methods is obtained
in References [1, 5], by extending the analogous BFGS convergence result of Powell [6] with
a proper use of some crucial properties of the matrix LBk .
The local convergence properties of LQN were studied in Reference [7]. It is proved,

in particular, that LQN converges to a minimum point x∗ of f with a superlinear rate of
convergence whenever ∇2f(x∗)∈L. The latter result is rather restrictive but suggests that,
in order to improve LQN e�ciency, one might modify the algebra L in each iteration k,
i.e. introduce the LkQN methods. This requires a concept of ‘closeness’ of a space Lk with
respect to a matrix Bk and the construction, at each iteration, of a space Lk as ‘close’ as
possible to Bk . Two important properties of Bk are that Bk is p.d. and Bksk−1 = yk−1. So, we
can say that a structured matrix algebra Lk is ‘close’ to Bk if Lk includes matrices satisfying
the latter properties, i.e. if

• the set {X ∈Lk :X is p:d: and X sk−1 = yk−1} is not empty.
Once such space Lk is introduced, we can conceive at least two LkQN algorithms, based

on the updating formula (1):

Algorithm 1: (1) with Ak =Lk
sy, where Lk

sy ∈Lk is p.d. and solves the previous secant
equation X sk−1 = yk−1.

Algorithm 2: (1) with Ak =Lk
Bk , where Lk

Bk is the best least squares �t to Bk in Lk .

The present paper is organized as follows. In Section 2 we recall some basic notions on
quasi-Newton methods in unconstrained minimization and, in particular, the BFGS algorithm
(Broyden et al., ’70) [2, 8]. In Section 3 we describe the basic properties of the LQN methods,
recently introduced in Reference [1]. The latter methods turn out to be more e�cient than
BFGS and extremely competitive with L-BFGS for solving large-scale minimization problems
[4]. In order to improve the LQN e�ciency, in Section 4 we introduce the innovative LkQN
algorithms. Assuming that Lk is the set of all matrices diagonalized by a unitary matrix Uk ,
we translate the previous requirement • to a condition on Uk (see (16)); then, we de�ne in
detail the LkQN Algorithm 1. In Section 5 we prove that matrix algebras Lk satisfying •
exist without special conditions on the algorithm. Moreover, we illustrate how to compute such
Lk , by expressing the corresponding matrix Uk as a product of two Householder matrices. In
Section 6 we introduce the LkQN Algorithm 2, and we prove that the NS version of such

Copyright ? 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:755–768



LOW-COMPLEXITY MINIMIZATION ALGORITHMS 757

algorithm is convergent. Moreover, we discuss some possible improvements of Algorithms 1
and 2 (see also Section 7). In particular, we de�ne a method LkQN which turns out to be
superior to LQN in solving large-scale minimization problems.

2. QUASI-NEWTON METHODS FOR THE UNCONSTRAINED MINIMIZATION

We have to minimize a function f, i.e. solve the problem:

f(x∗)= min
x∈Rn

f(x) �nd x∗ (3)

Let us apply a QN method to the gradient vector function ∇f. Given x0 ∈Rn, B0 = n× n p.d.,
a QN method generates a sequence {xk}∞

k=0 convergent to a zero of ∇f, by exploiting a QN
iterative scheme, i.e. a Newton scheme where the Hessian ∇2f(xk) is replaced by a suitable
approximation Bk :

xk+1 =xk + �kdk ; dk =−B−1
k ∇f(xk) (�k ∈R+) (4)

The matrix Bk is chosen p.d. so that the search direction dk is always a descent direction
(∇f(xk)Tdk¡0). How to choose the next Hessian approximation Bk+1? In secant methods
Bk+1 satis�es the secant equation, i.e. maps the vector sk into the vector yk , where sk =xk+1−
xk and yk =∇f(xk+1)− ∇f(xk):

Bk+1sk = yk (Secant equation)

Note that for n=1 the matrix Bk+1 is a scalar and is uniquely de�ned as the di�erence
quotient of the derivative function f′(x), i.e. we retrieve the ordinary secant method applied
to f′. In the general case (n¿1), the secant equation has many possible solutions and, as a
consequence, several secant algorithms can be de�ned.
In BFGS (Broyden et al., ’70) [2, 8, 9], the matrix Bk+1 is de�ned as a rank-2 perturbation

of the previous Hessian approximation Bk :

Bk+1 =’(Bk; sk ; yk) (BFGS)

where

’(B; s; y)=B+
1
yTs
yyT − 1

sTBs
BssTB (5)

By the structure of ’, (1) BFGS is a secant method (2) BFGS has the following property:
if Bk is p.d. then Bk+1 is p.d. provided that the inner product between yk and sk is positive.
Thus:

Bk p:d:

sTk yk¿0

}
⇒ Bk+1 =’(Bk; sk ; yk) p:d: (6)
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The condition sTk yk¿0 can be assured by a suitable choice of the step length �k [2]. In
particular, it is satis�ed if �k is chosen in the Armijo–Goldstein set

AGk ={�∈R+ :f(xk + �dk)6f(xk) + c1�dTk∇f(xk) and

dTk∇f(xk + �dk)¿c2dTk∇f(xk)}

0¡c1¡c2¡1 (7)

The BFGS method has a local superlinear rate of convergence and an O(n2) time and space
complexity. As a consequence, in unconstrained minimization BFGS is often more e�cient
than the modi�ed Newton algorithm. However, the implementation of BFGS becomes pro-
hibitive when in problem (3) the number n of variables is large. Such large scale problems
arise, for example, in the learning process of neural networks [4, 10].

3. LQN METHODS

The aim of LQN methods [1] is to reduce the complexity of BFGS by maintaining as more
as possible a quasi-Newton behaviour. Several attempts were performed towards this direction
(see e.g. References [11–13]). The main idea in Reference [1] is to replace Bk with a simpler
matrix chosen in an algebra L. Let U be a n× n unitary matrix and de�ne L as the set of
all matrices diagonalized by U (L=sdU ):

L=sdU := {Ud(z)U ∗ : z∈Cn}; d(z)=

⎡
⎢⎢⎣
z1 O

. . .

O zn

⎤
⎥⎥⎦ (8)

Pick up in L the best approximation of Bk in the Frobenius norm. Call this matrix the best
least squares �t to Bk in L and denote it by LBk . Then apply the updating function ’ to
LBk :

Bk+1 =’(LBk ; sk ; yk) (LQN)

If Bk is p.d. then LBk is p.d. This fact is a simple consequence of the following expression
of the eigenvalues of LBk :

LBk =Ud(zk)U
∗; (zk)i=[Uei]∗Bk[Uei] (9)

Thanks to this property, we have also for LQN methods that Bk+1 inherites p.d. from Bk
whenever sTk yk¿0; moreover, under the same condition s

T
k yk¿0, LBk+1 inherites p.d. from

LBk :

Bk p:d: ⇒ LBk p:d:

sTk yk¿0

}
⇒ Bk+1 p:d: ⇒ LBk+1 p:d: (10)

Thus we have two possible descent directions.
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Figure 1. HQN and L-BFGS applied to a function of 1408 variables.

1. The �rst one in terms of Bk+1, leading to a secant method:

dk+1 =−B−1
k+1∇f(xk+1) (SLQN)

(Bk+1sk = yk since ’(A; sk ; yk)sk = yk ∀A).
2. The second one in terms of LBk+1 , leading to a non-secant method:

dk+1 =−L−1
Bk+1∇f(xk+1) (NSLQN)

(LBk+1 does not map sk into yk , in general).

In References [1, 5] it is proved that NSLQN has a linear rate of convergence, whereas
numerical experiences in Reference [4] show that S LQN has a faster convergence rate.
Moreover, each step of any LQN method can be implemented so that the most expensive

operations are two U transforms and some vector inner products. This fact can be easily
proved by examining the identity

zk+1 = zk +
1
sTk yk

|U ∗yk |2 − 1
zTk |U ∗sk |2d(zk)

2|U ∗sk |2 (11)

and, in the secant case, the Shermann–Morrison–Woodbury inversion formula (see References
[1, 4]). It is well known in the literature that this formula can be unstable from a numerical
point of view [14]. However, the experiments performed on SLQN methods have not pointed
out signi�cant di�culties (see Figure 1, Section 7 and Reference [4]). Thus, if U de�nes a
fast discrete transform (L structured), then LQN can be implemented with
SPACE COMPLEXITY: O(n)=memory allocations for U , for vectors involved in iteration
(11) and in computing dk+1,
TIME COMPLEXITY (per step): O(n log n)= cost of U · z.
Numerical experiences on large-scale problems [4] have shown that SLQN, L=H≡

Hartley algebra = sdU , Uij=1=
√
n(cos(2�ij=n) + sin(2�ij=n)) [15–17] has a good rate of
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convergence and is competitive with the well-known L-BFGS method (for L-BFGS see
References [8, 13, 18]). For example, in Figure 1 is reported the time required by SLQN, and
by L-BFGS, m=13; 30; 90, to minimize the error function associated with a 34-38-2 neural
network for learning the ionosphere data (see Reference [10]). Here the number of variables n
is 1408 (for more details see Reference [4]). We recall that the L-BFGS procedure is de�ned
in terms of the m pairs (sj; yj); j= k; : : : ; k −m+ 1. Thus Figure 1 shows that strong storage
requirements are needed (m=90) in order to make L-BFGS competitive with LQN.

4. LkQN METHODS

The idea in LQN methods is to replace Bk in Bk+1 =’(Bk; sk ; yk) with a suitable matrix Ak
of a structured algebra L. In Reference [1] this matrix Ak is the best approximation in the
Frobenius norm of Bk =’(Ak−1; sk−1; yk−1). In the present paper, we try to satisfy the secant
equation

X sk−1 = yk−1 (12)

by means of a suitable approximation Ak of Bk where Ak belongs to an algebra L. It is clear
that in order to implement this new idea, the space L and therefore the structure of L must
change at each iteration k. The innovative LkQN methods obtained in this way can better
�t the Hessian structure, thereby improving the rate of convergence of the algorithm. As a
matter of fact, some theoretical and experimental results reported in Reference [7] had already
suggested that an adaptive choice of L during the minimization process is perhaps the best
way to obtain more e�cient LQN algorithms.
Both the previous and the innovative procedures are shown in the following scheme:

BFGS :

{
xk+1 =xk − �kB−1

k ∇f(xk)
Bk+1 =’(Bk; sk ; yk)

↓
LQN : Approximate Bk with a matrix of an algebra L

Previous ↙ ↘ Present

with LBk with the matrix of L
the best least squares �t to Bk in L solving the secant equation X sk−1 = yk−1

Let us introduce a basic criterion for choosing Lk , by assuming

Lk =sdUk := {Ukd(z)U ∗
k : z∈Cn}; Uk n× n unitary (13)

at the generic step k.
Let Ak denote the matrix of Lk that we have to update. So

Bk+1 =’(Ak; sk ; yk) (14)

Copyright ? 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:755–768



LOW-COMPLEXITY MINIMIZATION ALGORITHMS 761

We require

(i) Ak is p.d.,
(ii) Ak solves the secant equation in the previous iteration, i.e. Aksk−1 = yk−1.

Note that the latter conditions may yield a matrix Ak which is not the best approximation in
Frobenius norm of Bk in Lk (i.e. Ak �=Lk

Bk , in general).
Since Ak must be an element of the matrix algebra Lk , it will have the form Ak =

Ukd(wk)U ∗
k , for some vector wk . Then, the secant condition (ii) can be rewritten in order

to determine wk via U ∗
k , i.e.

(wk)i=
(U ∗

k yk−1)i
(U ∗

k sk−1)i
; (U ∗

k sk−1)i �=0 ∀i (15)

Finally, the positive de�niteness condition (i) is veri�ed if (wk)i¿0. So, the basic criterion
for choosing Lk is the following one:
Choose Uk such that

(wk)i=
(U ∗

k yk−1)i
(U ∗

k sk−1)i
¿0 ∀i (16)

and de�ne Lk as in (13).
Note that (16) is equivalent to say that ∃Uk unitary and (wk)i¿0 such that the secant equation
Ukd(wk)U ∗

k sk−1 = yk−1 is veri�ed. By multiplying on the left by s
T
k−1 the latter equation, we

�nd that sTk−1yk−1¿0 is a necessary condition for the existence of Uk satisfying (16).
Once Uk is found, the corresponding space Lk includes the desired matrix satisfying (i) and

(ii). Denote this matrix by Lk
sy and de�ne the new Hessian approximation Bk+1 by applying

’ to Lk
sy:

Bk+1 =’(Lk
sy; sk ; yk); Lk

sysk−1 = yk−1 (LkQN)

The two possible descent directions are

dk+1 =

⎧⎨
⎩

−B−1
k+1∇f(xk+1) (I)

−(Lk+1
sy )

−1∇f(xk+1) (II)

Note that both directions (I) and (II) are de�ned in terms of matrices satisfying the secant
equation.
The following questions arise: There exists a unitary matrix Uk satisfying the condition

(16)? Can this matrix be easily obtained?

5. PRACTICAL LkQN METHODS

We have observed that sTk−1yk−1¿0 is a necessary condition for the existence of a unitary
matrix Uk satisfying (16). Actually, the following result holds.

Copyright ? 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:755–768
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Theorem 5.1
The existence of a matrix U ∗

k satisfying (16) is guaranteed i�

yTk−1sk−1¿0 (17)

Observe that (17) is the condition required to obtain a p.d. matrix Bk =’(Ak−1; sk−1; yk−1),
i.e. (17) is already satis�ed (remember that the inequality sTk−1yk−1¿0 can be obtained by
choosing the step length �k−1 in the AGk−1 set).
Let H (z) denote the Householder matrix corresponding to the vector z, i.e.

H (z)= I − 2
‖z‖2 zz

∗; z∈Rn (18)

(H (0)= I). In order to prove Theorem 5.1, we need a preliminary result which turns out to
be useful for the explicit computation of U ∗

k .

Lemma 5.2
Given two vectors s; y∈Rn\{0}, let r; x∈Rn be such that ‖r‖‖x‖ �=0, ri �=0 ∀i and the cosine
of the angle between r and x is equal to the cosine of the angle between s and y, i.e.

rTx
‖r‖‖x‖ =

sTy
‖s‖‖y‖ (19)

Set u= s− y− ((‖s‖=‖r‖)r− (‖y‖=‖x‖)x), p=H (u)s− (‖s‖=‖r‖)r=H (u)y− (‖y‖=‖x‖)x and
U ∗=H (p)H (u) (20)

Then U ∗s=(‖s‖=‖r‖)r, U ∗y=(‖y‖=‖x‖)x and

wi=
(U ∗y)i
(U ∗s)i

=
‖y‖‖r‖xi
‖s‖‖x‖ri

Proof
First observe that if p= v − (‖v‖=‖z‖)z, v∈Rn, z∈Rn\{0}, then

H (p)v=
‖v‖
‖z‖z

(in fact, p∗v=‖p‖2 = 1
2). As a consequence, for any unitary matrix Q we have

p1 =Qs − ‖s‖
‖r‖ r; r �=0 ⇒ H (p1)Qs=

‖s‖
‖r‖ r

p2 =Qy − ‖y‖
‖x‖x; x �=0 ⇒ H (p2)Qy=

‖y‖
‖x‖x

Now choose Q such that p1 = p2 or, equivalently,

Q(s − y)= ‖s‖
‖r‖ r− ‖y‖

‖x‖x (21)
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Such choice is possible provided that ‖s − y‖= ‖(‖s‖=‖r‖)r − (‖y‖=‖x‖)x‖ from which we
deduce the condition (19) on r and x. A matrix Q satisfying (21) is H (u), u= s − y −
((‖s‖=‖r‖)r− (‖y‖=‖x‖)x).
Now, in order to construct U ∗

k satisfying (16), we need to prove the e�ective existence of
r; s∈Rn such that (19) holds with rixi¿0.
Proof of Theorem 5.1
Given the two vectors sk−1 and yk−1, an example of vector pair (x; r) such that

rTx
‖r‖‖x‖ =

sTk−1yk−1
‖sk−1‖‖yk−1‖ ≡

√
�k−1; rixi¿0 ∀i (22)

is the following:

x=[1 � · · · �]T; r=[� · · · � 1]T; �= �(
√
�k−1)

where

�(�)=
�

1 +
√
1− �2(n− 1) + �(n− 2)

In fact, �(�)¿0 if 0¡�61. So, under condition (17), we have that x and r have positive
entries. Once x and r have been introduced, de�ne the two vectors u and p as in Lemma 5.2,
in terms of sk−1, yk−1, r, x, and consider the corresponding Householder matrices H (u) and
H (p). Then the matrix U ∗

k is H (p)H (u). In fact, H (p)H (u) maps sk−1 and yk−1 into two
vectors whose directions are the same of r and x, respectively. So, by the condition rixi¿0,
the ratio of the two transformed vectors has positive entries:

(wk)i=
(U ∗

k yk−1)i
(U ∗

k sk−1)i
=

‖yk−1‖‖r‖xi
‖sk−1‖‖x‖ri¿0 ∀i (23)

Note that if we de�ne U ∗
k as the product of the two Householder matrices H (p) and

H (u) (as above suggested), then the corresponding LkQN method can be implemented with
only O(n) arithmetic operations per step and O(n) memory allocations. This result is easily
obtained from the identity (method (I))

dk+1 =−’(Ukd(wk)U ∗
k ; sk ; yk)

−1∇f(xk+1)
by applying the Shermann–Morrison–Woodbury formula. Obviously, method (II) can be im-
plemented with the same complexity.

6. ALTERNATIVE LkQN METHODS

In this section an alternative LkQN method is obtained in order to regain the best least
squares �t condition.
Let Uk be a unitary matrix satisfying condition (16), so that the corresponding matrix

algebra Lk includes a p.d. matrix Lk
sy solving the previous secant equation X sk−1 = yk−1.

Copyright ? 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:755–768
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Pick up in Lk the best approximation Lk
Bk in the Frobenius norm of Bk and apply ’ to Lk

Bk .
So

Bk+1 =’(Lk
Bk ; sk ; yk) (Alternative LkQN)

Since

Bk p:d: ⇒ Lk
Bk p:d:

sTk yk¿0

}
⇒ Bk+1 p:d: ⇒ Lk+1

Bk+1 p:d:

the latter de�nition of Bk+1 leads to two possible descent directions which are expressed in
terms of Bk+1 and in terms of Lk+1

Bk+1 , respectively. The former leads to a secant method, the
latter to a non-secant one:

dk+1 =

⎧⎨
⎩

−B−1
k+1∇f(xk+1) SLkQN

−(Lk+1
Bk+1 )

−1∇f(xk+1) NSLkQN

Since NSLkQN is a BFGS-type algorithm where B̃k =Lk
Bk (see Reference [1]) and, by

(9), Lk
Bk satis�es the conditions det Bk6 detL

k
Bk and tr Bk¿ trL

k
Bk , we can apply Theorem

3.2 of Reference [1], thereby stating the following convergence results.

Theorem 6.1
If the NSLkQN iterates {xk}, de�ned with �k ∈AG, satisfy the condition

‖yk‖2
yTk sk

6M (24)

for some constant M , then a subsequence of the gradients converges to the null vector.
If, moreover, the level set I0 = {x :f(x)6f(x0)} is bounded, then a subsequence of {xk}
converges to a stationary point x∗ of f and f(xk)→f(x∗).

Corollary 6.2
Let f be a twice continuously di�erentiable convex function in the level set I0. Assume I0

convex and bounded. Then all the assertions of Theorem 6.1 hold, moreover, f(x∗)= minx∈Rn
f(x).

In the next section, experimental results will clearly show that the novel NSLkQN out-
performs the previous NSLQN [1] in which the space L is maintained unchanged in the
optimization procedure. However,NS and SLkQN methods cannot be applied in the present
form to large-scale problems since no relation exists between Lk+1 and Lk (or Uk+1 and Uk)
which allows to compute the eigenvalues zk+1 of Lk+1

Bk+1 e�ciently from the eigenvalues zk of
Lk
Bk . A simple strategy to avoid this inconvenience consists of the following three stages:

1. At the step mj introduce a space Lmj =sdUmj where the unitary matrix Umj satis�es the
condition • (written in terms of mj instead of k).

Copyright ? 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:755–768
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2. At the next steps k¿mj, choose Lk=Lmj until the matrix Umj diag([U
∗
mjyk−1]i=[U

∗
mjsk−1]i)

U ∗
mj remains p.d. or, equivalently, until the space Lmj includes a p.d. matrix solving the
secant equation X sk−1 = yk−1.

3. Set mj+1 = k, j := j + 1, and go to 1.

The numerical experiments on this modi�ed alternative LkQN algorithm con�rm for the
SLkQN method a satisfactory numerical behaviour of the Shermann–Morrison–Woodbury
formula. Observe, in fact, that a possible instability of the latter formula could be in any case
easily detected by a pathological increase of time and=or number of iterations, particularly if
one requires high-precision stopping rules.
We may summarize the main ideas of the present paper in the following scheme:

BFGS:

{
xk+1 =xk − �kB−1

k ∇f(xk)
Bk+1 =’(Bk; sk ; yk)

↓
LkQN : Approximate Bk with a matrix of a structured algebra Lmj , mj6k,

satisfying • (written in terms of mj instead of k)
Now ↙ ↘ Now

with Lk
sy (mj= k) with L

mj
Bk (mj6k)

solving the secant equation X sk−1 = yk−1 in Lk the best least squares �t to Bk in Lmj

7. PERFORMANCE OF LkQN METHODS

We have compared the performances of LkQN and LQN methods in the minimization of
some simple test functions f taken from Reference [2] (see Tables I and II) and in solving
the more di�cult problem cited in Section 3 where f has 1408 independent variables (see
Table III and Figure 2). The LQN method is implemented with L=H, where H is the
Hartley algebra. The matrices Uk utilized in LkQN methods are the product of two

Table I. Performance of non-secant methods.

f Upd.matr. 10−4 10−6 10−8

Rosenbrock n=2 L 364 535 677
Lk 75 112 149

Helical n=3 L 447
Lk 62 83 114

Powell n=4 L 338 ¿2000
Lk 87 165 269

Wood n=4 L 277 439 623
Lk 121 188 223

Trigon. n=32 L 48
Lk 29
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Table II. Performance of secant methods.

f Upd.matr. 10−4 10−6 10−8

Rosenbrock n=2 L 11 13 16
Lk 14 15 15
Lk

sy 19 21 22

Helical n=3 L 22 29 36
Lk 23 25 28
Lk

sy 23 25 27

Powell n=4 L 29 47 175
Lk 32 56 62
Lk

sy 20 21 36

Wood n=4 L 49 67 95
Lk 54 78 80
Lk

sy 24 41 45

Trigon. n=32 L 22
Lk 20
Lk

sy 27

Table III. NSLkQN and NSLQN applied to a function of 1408 variables.

k (sec) : f(xk)¡0:1

Method x(1)0 x(2)0 x(3)0
NSLQN 7639 (696) 8742 (850) 9180 (901)
NSLkQN 2441 (183) 3772 (321) 3919 (341)

Householder matrices, as suggested in Section 5 (see the proof of Theorem 5.1). Table III
and Figure 2 refer to experiences performed on a Pentium 4, 2GHz, whereas Tables I and II
(as well as Figure 1) report results of experiments run on an Alpha Server 800 5=333.
Table I reports the number of iterations required by NSLQN (Section 3) and NS LkQN

(Section 6) to obtain f(xk)¡�, �=10−4; 10−6; 10−8. It is clear that the rate of convergence of
non-secant methods may be considerably improved by changing the space L at each iteration
k. Recall that NS methods are convergent.
The same set of benchmarks is exploited to study the behaviour of the algorithms SLQN

(Section 3), SLkQN (Section 6) and LkQN (I) (Section 4). Table II shows that the latter
methods are faster than the NS algorithms. Moreover, SLkQN and LkQN (I) turn out to
be superior to SLQN in most cases.
When n is large, the best performances of LkQN is obtained by slightly modifying the

alternative LkQN methods, following procedure 1–3 suggested at the end of the previous sec-
tion. The unitary matrix Umj , de�ning the space Lmj =sdUmj (see (13)), is in fact kept �xed
until the quotients wi=[U ∗

mjyk−1]i=[U
∗
mjsk−1]i, k¿mj, remain positive. The latter procedure

allows to obtain a more signi�cant information on the spectrum of the Hessian ∇2f(xk+1)
at a lower cost with respect to LQN.
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Figure 2. LkQN and HQN applied to a function of 1408 variables.

As Table III and Figure 2 show, the performances of such modi�ed alternative NS and
SLkQN algorithms are extremely encouraging for solving the ionosphere problem [10] where
n=1408. In particular, this can be seen by comparing the results with those illustrated in
Figure 1.
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